3ba140bce3eafd3dab9541311a7cb42d6884e19f
[gem5.git] / src / dev / i8254xGBe.cc
1 /*
2 * Copyright (c) 2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Ali Saidi
29 */
30
31 /* @file
32 * Device model for Intel's 8254x line of gigabit ethernet controllers.
33 * In particular an 82547 revision 2 (82547GI) MAC because it seems to have the
34 * fewest workarounds in the driver. It will probably work with most of the
35 * other MACs with slight modifications.
36 */
37
38
39 /*
40 * @todo really there are multiple dma engines.. we should implement them.
41 */
42
43 #include <algorithm>
44
45 #include "base/inet.hh"
46 #include "base/trace.hh"
47 #include "debug/Drain.hh"
48 #include "debug/EthernetAll.hh"
49 #include "dev/i8254xGBe.hh"
50 #include "mem/packet.hh"
51 #include "mem/packet_access.hh"
52 #include "params/IGbE.hh"
53 #include "sim/stats.hh"
54 #include "sim/system.hh"
55
56 using namespace iGbReg;
57 using namespace Net;
58
59 IGbE::IGbE(const Params *p)
60 : EtherDevice(p), etherInt(NULL), drainEvent(NULL),
61 useFlowControl(p->use_flow_control),
62 rxFifo(p->rx_fifo_size), txFifo(p->tx_fifo_size), rxTick(false),
63 txTick(false), txFifoTick(false), rxDmaPacket(false), pktOffset(0),
64 fetchDelay(p->fetch_delay), wbDelay(p->wb_delay),
65 fetchCompDelay(p->fetch_comp_delay), wbCompDelay(p->wb_comp_delay),
66 rxWriteDelay(p->rx_write_delay), txReadDelay(p->tx_read_delay),
67 rdtrEvent(this), radvEvent(this),
68 tadvEvent(this), tidvEvent(this), tickEvent(this), interEvent(this),
69 rxDescCache(this, name()+".RxDesc", p->rx_desc_cache_size),
70 txDescCache(this, name()+".TxDesc", p->tx_desc_cache_size),
71 lastInterrupt(0)
72 {
73 etherInt = new IGbEInt(name() + ".int", this);
74
75 // Initialized internal registers per Intel documentation
76 // All registers intialized to 0 by per register constructor
77 regs.ctrl.fd(1);
78 regs.ctrl.lrst(1);
79 regs.ctrl.speed(2);
80 regs.ctrl.frcspd(1);
81 regs.sts.speed(3); // Say we're 1000Mbps
82 regs.sts.fd(1); // full duplex
83 regs.sts.lu(1); // link up
84 regs.eecd.fwe(1);
85 regs.eecd.ee_type(1);
86 regs.imr = 0;
87 regs.iam = 0;
88 regs.rxdctl.gran(1);
89 regs.rxdctl.wthresh(1);
90 regs.fcrth(1);
91 regs.tdwba = 0;
92 regs.rlpml = 0;
93 regs.sw_fw_sync = 0;
94
95 regs.pba.rxa(0x30);
96 regs.pba.txa(0x10);
97
98 eeOpBits = 0;
99 eeAddrBits = 0;
100 eeDataBits = 0;
101 eeOpcode = 0;
102
103 // clear all 64 16 bit words of the eeprom
104 memset(&flash, 0, EEPROM_SIZE*2);
105
106 // Set the MAC address
107 memcpy(flash, p->hardware_address.bytes(), ETH_ADDR_LEN);
108 for (int x = 0; x < ETH_ADDR_LEN/2; x++)
109 flash[x] = htobe(flash[x]);
110
111 uint16_t csum = 0;
112 for (int x = 0; x < EEPROM_SIZE; x++)
113 csum += htobe(flash[x]);
114
115
116 // Magic happy checksum value
117 flash[EEPROM_SIZE-1] = htobe((uint16_t)(EEPROM_CSUM - csum));
118
119 // Store the MAC address as queue ID
120 macAddr = p->hardware_address;
121
122 rxFifo.clear();
123 txFifo.clear();
124 }
125
126 IGbE::~IGbE()
127 {
128 delete etherInt;
129 }
130
131 void
132 IGbE::init()
133 {
134 cpa = CPA::cpa();
135 PciDev::init();
136 }
137
138 EtherInt*
139 IGbE::getEthPort(const std::string &if_name, int idx)
140 {
141
142 if (if_name == "interface") {
143 if (etherInt->getPeer())
144 panic("Port already connected to\n");
145 return etherInt;
146 }
147 return NULL;
148 }
149
150 Tick
151 IGbE::writeConfig(PacketPtr pkt)
152 {
153 int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
154 if (offset < PCI_DEVICE_SPECIFIC)
155 PciDev::writeConfig(pkt);
156 else
157 panic("Device specific PCI config space not implemented.\n");
158
159 //
160 // Some work may need to be done here based for the pci COMMAND bits.
161 //
162
163 return pioDelay;
164 }
165
166 // Handy macro for range-testing register access addresses
167 #define IN_RANGE(val, base, len) (val >= base && val < (base + len))
168
169 Tick
170 IGbE::read(PacketPtr pkt)
171 {
172 int bar;
173 Addr daddr;
174
175 if (!getBAR(pkt->getAddr(), bar, daddr))
176 panic("Invalid PCI memory access to unmapped memory.\n");
177
178 // Only Memory register BAR is allowed
179 assert(bar == 0);
180
181 // Only 32bit accesses allowed
182 assert(pkt->getSize() == 4);
183
184 DPRINTF(Ethernet, "Read device register %#X\n", daddr);
185
186 pkt->allocate();
187
188 //
189 // Handle read of register here
190 //
191
192
193 switch (daddr) {
194 case REG_CTRL:
195 pkt->set<uint32_t>(regs.ctrl());
196 break;
197 case REG_STATUS:
198 pkt->set<uint32_t>(regs.sts());
199 break;
200 case REG_EECD:
201 pkt->set<uint32_t>(regs.eecd());
202 break;
203 case REG_EERD:
204 pkt->set<uint32_t>(regs.eerd());
205 break;
206 case REG_CTRL_EXT:
207 pkt->set<uint32_t>(regs.ctrl_ext());
208 break;
209 case REG_MDIC:
210 pkt->set<uint32_t>(regs.mdic());
211 break;
212 case REG_ICR:
213 DPRINTF(Ethernet, "Reading ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n",
214 regs.icr(), regs.imr, regs.iam, regs.ctrl_ext.iame());
215 pkt->set<uint32_t>(regs.icr());
216 if (regs.icr.int_assert() || regs.imr == 0) {
217 regs.icr = regs.icr() & ~mask(30);
218 DPRINTF(Ethernet, "Cleared ICR. ICR=%#x\n", regs.icr());
219 }
220 if (regs.ctrl_ext.iame() && regs.icr.int_assert())
221 regs.imr &= ~regs.iam;
222 chkInterrupt();
223 break;
224 case REG_EICR:
225 // This is only useful for MSI, but the driver reads it every time
226 // Just don't do anything
227 pkt->set<uint32_t>(0);
228 break;
229 case REG_ITR:
230 pkt->set<uint32_t>(regs.itr());
231 break;
232 case REG_RCTL:
233 pkt->set<uint32_t>(regs.rctl());
234 break;
235 case REG_FCTTV:
236 pkt->set<uint32_t>(regs.fcttv());
237 break;
238 case REG_TCTL:
239 pkt->set<uint32_t>(regs.tctl());
240 break;
241 case REG_PBA:
242 pkt->set<uint32_t>(regs.pba());
243 break;
244 case REG_WUC:
245 case REG_LEDCTL:
246 pkt->set<uint32_t>(0); // We don't care, so just return 0
247 break;
248 case REG_FCRTL:
249 pkt->set<uint32_t>(regs.fcrtl());
250 break;
251 case REG_FCRTH:
252 pkt->set<uint32_t>(regs.fcrth());
253 break;
254 case REG_RDBAL:
255 pkt->set<uint32_t>(regs.rdba.rdbal());
256 break;
257 case REG_RDBAH:
258 pkt->set<uint32_t>(regs.rdba.rdbah());
259 break;
260 case REG_RDLEN:
261 pkt->set<uint32_t>(regs.rdlen());
262 break;
263 case REG_SRRCTL:
264 pkt->set<uint32_t>(regs.srrctl());
265 break;
266 case REG_RDH:
267 pkt->set<uint32_t>(regs.rdh());
268 break;
269 case REG_RDT:
270 pkt->set<uint32_t>(regs.rdt());
271 break;
272 case REG_RDTR:
273 pkt->set<uint32_t>(regs.rdtr());
274 if (regs.rdtr.fpd()) {
275 rxDescCache.writeback(0);
276 DPRINTF(EthernetIntr,
277 "Posting interrupt because of RDTR.FPD write\n");
278 postInterrupt(IT_RXT);
279 regs.rdtr.fpd(0);
280 }
281 break;
282 case REG_RXDCTL:
283 pkt->set<uint32_t>(regs.rxdctl());
284 break;
285 case REG_RADV:
286 pkt->set<uint32_t>(regs.radv());
287 break;
288 case REG_TDBAL:
289 pkt->set<uint32_t>(regs.tdba.tdbal());
290 break;
291 case REG_TDBAH:
292 pkt->set<uint32_t>(regs.tdba.tdbah());
293 break;
294 case REG_TDLEN:
295 pkt->set<uint32_t>(regs.tdlen());
296 break;
297 case REG_TDH:
298 pkt->set<uint32_t>(regs.tdh());
299 break;
300 case REG_TXDCA_CTL:
301 pkt->set<uint32_t>(regs.txdca_ctl());
302 break;
303 case REG_TDT:
304 pkt->set<uint32_t>(regs.tdt());
305 break;
306 case REG_TIDV:
307 pkt->set<uint32_t>(regs.tidv());
308 break;
309 case REG_TXDCTL:
310 pkt->set<uint32_t>(regs.txdctl());
311 break;
312 case REG_TADV:
313 pkt->set<uint32_t>(regs.tadv());
314 break;
315 case REG_TDWBAL:
316 pkt->set<uint32_t>(regs.tdwba & mask(32));
317 break;
318 case REG_TDWBAH:
319 pkt->set<uint32_t>(regs.tdwba >> 32);
320 break;
321 case REG_RXCSUM:
322 pkt->set<uint32_t>(regs.rxcsum());
323 break;
324 case REG_RLPML:
325 pkt->set<uint32_t>(regs.rlpml);
326 break;
327 case REG_RFCTL:
328 pkt->set<uint32_t>(regs.rfctl());
329 break;
330 case REG_MANC:
331 pkt->set<uint32_t>(regs.manc());
332 break;
333 case REG_SWSM:
334 pkt->set<uint32_t>(regs.swsm());
335 regs.swsm.smbi(1);
336 break;
337 case REG_FWSM:
338 pkt->set<uint32_t>(regs.fwsm());
339 break;
340 case REG_SWFWSYNC:
341 pkt->set<uint32_t>(regs.sw_fw_sync);
342 break;
343 default:
344 if (!IN_RANGE(daddr, REG_VFTA, VLAN_FILTER_TABLE_SIZE*4) &&
345 !IN_RANGE(daddr, REG_RAL, RCV_ADDRESS_TABLE_SIZE*8) &&
346 !IN_RANGE(daddr, REG_MTA, MULTICAST_TABLE_SIZE*4) &&
347 !IN_RANGE(daddr, REG_CRCERRS, STATS_REGS_SIZE))
348 panic("Read request to unknown register number: %#x\n", daddr);
349 else
350 pkt->set<uint32_t>(0);
351 };
352
353 pkt->makeAtomicResponse();
354 return pioDelay;
355 }
356
357 Tick
358 IGbE::write(PacketPtr pkt)
359 {
360 int bar;
361 Addr daddr;
362
363
364 if (!getBAR(pkt->getAddr(), bar, daddr))
365 panic("Invalid PCI memory access to unmapped memory.\n");
366
367 // Only Memory register BAR is allowed
368 assert(bar == 0);
369
370 // Only 32bit accesses allowed
371 assert(pkt->getSize() == sizeof(uint32_t));
372
373 DPRINTF(Ethernet, "Wrote device register %#X value %#X\n",
374 daddr, pkt->get<uint32_t>());
375
376 //
377 // Handle write of register here
378 //
379 uint32_t val = pkt->get<uint32_t>();
380
381 Regs::RCTL oldrctl;
382 Regs::TCTL oldtctl;
383
384 switch (daddr) {
385 case REG_CTRL:
386 regs.ctrl = val;
387 if (regs.ctrl.tfce())
388 warn("TX Flow control enabled, should implement\n");
389 if (regs.ctrl.rfce())
390 warn("RX Flow control enabled, should implement\n");
391 break;
392 case REG_CTRL_EXT:
393 regs.ctrl_ext = val;
394 break;
395 case REG_STATUS:
396 regs.sts = val;
397 break;
398 case REG_EECD:
399 int oldClk;
400 oldClk = regs.eecd.sk();
401 regs.eecd = val;
402 // See if this is a eeprom access and emulate accordingly
403 if (!oldClk && regs.eecd.sk()) {
404 if (eeOpBits < 8) {
405 eeOpcode = eeOpcode << 1 | regs.eecd.din();
406 eeOpBits++;
407 } else if (eeAddrBits < 8 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
408 eeAddr = eeAddr << 1 | regs.eecd.din();
409 eeAddrBits++;
410 } else if (eeDataBits < 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
411 assert(eeAddr>>1 < EEPROM_SIZE);
412 DPRINTF(EthernetEEPROM, "EEPROM bit read: %d word: %#X\n",
413 flash[eeAddr>>1] >> eeDataBits & 0x1,
414 flash[eeAddr>>1]);
415 regs.eecd.dout((flash[eeAddr>>1] >> (15-eeDataBits)) & 0x1);
416 eeDataBits++;
417 } else if (eeDataBits < 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI) {
418 regs.eecd.dout(0);
419 eeDataBits++;
420 } else
421 panic("What's going on with eeprom interface? opcode:"
422 " %#x:%d addr: %#x:%d, data: %d\n", (uint32_t)eeOpcode,
423 (uint32_t)eeOpBits, (uint32_t)eeAddr,
424 (uint32_t)eeAddrBits, (uint32_t)eeDataBits);
425
426 // Reset everything for the next command
427 if ((eeDataBits == 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) ||
428 (eeDataBits == 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI)) {
429 eeOpBits = 0;
430 eeAddrBits = 0;
431 eeDataBits = 0;
432 eeOpcode = 0;
433 eeAddr = 0;
434 }
435
436 DPRINTF(EthernetEEPROM, "EEPROM: opcode: %#X:%d addr: %#X:%d\n",
437 (uint32_t)eeOpcode, (uint32_t) eeOpBits,
438 (uint32_t)eeAddr>>1, (uint32_t)eeAddrBits);
439 if (eeOpBits == 8 && !(eeOpcode == EEPROM_READ_OPCODE_SPI ||
440 eeOpcode == EEPROM_RDSR_OPCODE_SPI ))
441 panic("Unknown eeprom opcode: %#X:%d\n", (uint32_t)eeOpcode,
442 (uint32_t)eeOpBits);
443
444
445 }
446 // If driver requests eeprom access, immediately give it to it
447 regs.eecd.ee_gnt(regs.eecd.ee_req());
448 break;
449 case REG_EERD:
450 regs.eerd = val;
451 if (regs.eerd.start()) {
452 regs.eerd.done(1);
453 assert(regs.eerd.addr() < EEPROM_SIZE);
454 regs.eerd.data(flash[regs.eerd.addr()]);
455 regs.eerd.start(0);
456 DPRINTF(EthernetEEPROM, "EEPROM: read addr: %#X data %#x\n",
457 regs.eerd.addr(), regs.eerd.data());
458 }
459 break;
460 case REG_MDIC:
461 regs.mdic = val;
462 if (regs.mdic.i())
463 panic("No support for interrupt on mdic complete\n");
464 if (regs.mdic.phyadd() != 1)
465 panic("No support for reading anything but phy\n");
466 DPRINTF(Ethernet, "%s phy address %x\n",
467 regs.mdic.op() == 1 ? "Writing" : "Reading",
468 regs.mdic.regadd());
469 switch (regs.mdic.regadd()) {
470 case PHY_PSTATUS:
471 regs.mdic.data(0x796D); // link up
472 break;
473 case PHY_PID:
474 regs.mdic.data(params()->phy_pid);
475 break;
476 case PHY_EPID:
477 regs.mdic.data(params()->phy_epid);
478 break;
479 case PHY_GSTATUS:
480 regs.mdic.data(0x7C00);
481 break;
482 case PHY_EPSTATUS:
483 regs.mdic.data(0x3000);
484 break;
485 case PHY_AGC:
486 regs.mdic.data(0x180); // some random length
487 break;
488 default:
489 regs.mdic.data(0);
490 }
491 regs.mdic.r(1);
492 break;
493 case REG_ICR:
494 DPRINTF(Ethernet, "Writing ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n",
495 regs.icr(), regs.imr, regs.iam, regs.ctrl_ext.iame());
496 if (regs.ctrl_ext.iame())
497 regs.imr &= ~regs.iam;
498 regs.icr = ~bits(val,30,0) & regs.icr();
499 chkInterrupt();
500 break;
501 case REG_ITR:
502 regs.itr = val;
503 break;
504 case REG_ICS:
505 DPRINTF(EthernetIntr, "Posting interrupt because of ICS write\n");
506 postInterrupt((IntTypes)val);
507 break;
508 case REG_IMS:
509 regs.imr |= val;
510 chkInterrupt();
511 break;
512 case REG_IMC:
513 regs.imr &= ~val;
514 chkInterrupt();
515 break;
516 case REG_IAM:
517 regs.iam = val;
518 break;
519 case REG_RCTL:
520 oldrctl = regs.rctl;
521 regs.rctl = val;
522 if (regs.rctl.rst()) {
523 rxDescCache.reset();
524 DPRINTF(EthernetSM, "RXS: Got RESET!\n");
525 rxFifo.clear();
526 regs.rctl.rst(0);
527 }
528 if (regs.rctl.en())
529 rxTick = true;
530 restartClock();
531 break;
532 case REG_FCTTV:
533 regs.fcttv = val;
534 break;
535 case REG_TCTL:
536 regs.tctl = val;
537 oldtctl = regs.tctl;
538 regs.tctl = val;
539 if (regs.tctl.en())
540 txTick = true;
541 restartClock();
542 if (regs.tctl.en() && !oldtctl.en()) {
543 txDescCache.reset();
544 }
545 break;
546 case REG_PBA:
547 regs.pba.rxa(val);
548 regs.pba.txa(64 - regs.pba.rxa());
549 break;
550 case REG_WUC:
551 case REG_LEDCTL:
552 case REG_FCAL:
553 case REG_FCAH:
554 case REG_FCT:
555 case REG_VET:
556 case REG_AIFS:
557 case REG_TIPG:
558 ; // We don't care, so don't store anything
559 break;
560 case REG_IVAR0:
561 warn("Writing to IVAR0, ignoring...\n");
562 break;
563 case REG_FCRTL:
564 regs.fcrtl = val;
565 break;
566 case REG_FCRTH:
567 regs.fcrth = val;
568 break;
569 case REG_RDBAL:
570 regs.rdba.rdbal( val & ~mask(4));
571 rxDescCache.areaChanged();
572 break;
573 case REG_RDBAH:
574 regs.rdba.rdbah(val);
575 rxDescCache.areaChanged();
576 break;
577 case REG_RDLEN:
578 regs.rdlen = val & ~mask(7);
579 rxDescCache.areaChanged();
580 break;
581 case REG_SRRCTL:
582 regs.srrctl = val;
583 break;
584 case REG_RDH:
585 regs.rdh = val;
586 rxDescCache.areaChanged();
587 break;
588 case REG_RDT:
589 regs.rdt = val;
590 DPRINTF(EthernetSM, "RXS: RDT Updated.\n");
591 if (getState() == SimObject::Running) {
592 DPRINTF(EthernetSM, "RXS: RDT Fetching Descriptors!\n");
593 rxDescCache.fetchDescriptors();
594 } else {
595 DPRINTF(EthernetSM, "RXS: RDT NOT Fetching Desc b/c draining!\n");
596 }
597 break;
598 case REG_RDTR:
599 regs.rdtr = val;
600 break;
601 case REG_RADV:
602 regs.radv = val;
603 break;
604 case REG_RXDCTL:
605 regs.rxdctl = val;
606 break;
607 case REG_TDBAL:
608 regs.tdba.tdbal( val & ~mask(4));
609 txDescCache.areaChanged();
610 break;
611 case REG_TDBAH:
612 regs.tdba.tdbah(val);
613 txDescCache.areaChanged();
614 break;
615 case REG_TDLEN:
616 regs.tdlen = val & ~mask(7);
617 txDescCache.areaChanged();
618 break;
619 case REG_TDH:
620 regs.tdh = val;
621 txDescCache.areaChanged();
622 break;
623 case REG_TXDCA_CTL:
624 regs.txdca_ctl = val;
625 if (regs.txdca_ctl.enabled())
626 panic("No support for DCA\n");
627 break;
628 case REG_TDT:
629 regs.tdt = val;
630 DPRINTF(EthernetSM, "TXS: TX Tail pointer updated\n");
631 if (getState() == SimObject::Running) {
632 DPRINTF(EthernetSM, "TXS: TDT Fetching Descriptors!\n");
633 txDescCache.fetchDescriptors();
634 } else {
635 DPRINTF(EthernetSM, "TXS: TDT NOT Fetching Desc b/c draining!\n");
636 }
637 break;
638 case REG_TIDV:
639 regs.tidv = val;
640 break;
641 case REG_TXDCTL:
642 regs.txdctl = val;
643 break;
644 case REG_TADV:
645 regs.tadv = val;
646 break;
647 case REG_TDWBAL:
648 regs.tdwba &= ~mask(32);
649 regs.tdwba |= val;
650 txDescCache.completionWriteback(regs.tdwba & ~mask(1),
651 regs.tdwba & mask(1));
652 break;
653 case REG_TDWBAH:
654 regs.tdwba &= mask(32);
655 regs.tdwba |= (uint64_t)val << 32;
656 txDescCache.completionWriteback(regs.tdwba & ~mask(1),
657 regs.tdwba & mask(1));
658 break;
659 case REG_RXCSUM:
660 regs.rxcsum = val;
661 break;
662 case REG_RLPML:
663 regs.rlpml = val;
664 break;
665 case REG_RFCTL:
666 regs.rfctl = val;
667 if (regs.rfctl.exsten())
668 panic("Extended RX descriptors not implemented\n");
669 break;
670 case REG_MANC:
671 regs.manc = val;
672 break;
673 case REG_SWSM:
674 regs.swsm = val;
675 if (regs.fwsm.eep_fw_semaphore())
676 regs.swsm.swesmbi(0);
677 break;
678 case REG_SWFWSYNC:
679 regs.sw_fw_sync = val;
680 break;
681 default:
682 if (!IN_RANGE(daddr, REG_VFTA, VLAN_FILTER_TABLE_SIZE*4) &&
683 !IN_RANGE(daddr, REG_RAL, RCV_ADDRESS_TABLE_SIZE*8) &&
684 !IN_RANGE(daddr, REG_MTA, MULTICAST_TABLE_SIZE*4))
685 panic("Write request to unknown register number: %#x\n", daddr);
686 };
687
688 pkt->makeAtomicResponse();
689 return pioDelay;
690 }
691
692 void
693 IGbE::postInterrupt(IntTypes t, bool now)
694 {
695 assert(t);
696
697 // Interrupt is already pending
698 if (t & regs.icr() && !now)
699 return;
700
701 regs.icr = regs.icr() | t;
702
703 Tick itr_interval = SimClock::Int::ns * 256 * regs.itr.interval();
704 DPRINTF(EthernetIntr,
705 "EINT: postInterrupt() curTick(): %d itr: %d interval: %d\n",
706 curTick(), regs.itr.interval(), itr_interval);
707
708 if (regs.itr.interval() == 0 || now ||
709 lastInterrupt + itr_interval <= curTick()) {
710 if (interEvent.scheduled()) {
711 deschedule(interEvent);
712 }
713 cpuPostInt();
714 } else {
715 Tick int_time = lastInterrupt + itr_interval;
716 assert(int_time > 0);
717 DPRINTF(EthernetIntr, "EINT: Scheduling timer interrupt for tick %d\n",
718 int_time);
719 if (!interEvent.scheduled()) {
720 schedule(interEvent, int_time);
721 }
722 }
723 }
724
725 void
726 IGbE::delayIntEvent()
727 {
728 cpuPostInt();
729 }
730
731
732 void
733 IGbE::cpuPostInt()
734 {
735
736 postedInterrupts++;
737
738 if (!(regs.icr() & regs.imr)) {
739 DPRINTF(Ethernet, "Interrupt Masked. Not Posting\n");
740 return;
741 }
742
743 DPRINTF(Ethernet, "Posting Interrupt\n");
744
745
746 if (interEvent.scheduled()) {
747 deschedule(interEvent);
748 }
749
750 if (rdtrEvent.scheduled()) {
751 regs.icr.rxt0(1);
752 deschedule(rdtrEvent);
753 }
754 if (radvEvent.scheduled()) {
755 regs.icr.rxt0(1);
756 deschedule(radvEvent);
757 }
758 if (tadvEvent.scheduled()) {
759 regs.icr.txdw(1);
760 deschedule(tadvEvent);
761 }
762 if (tidvEvent.scheduled()) {
763 regs.icr.txdw(1);
764 deschedule(tidvEvent);
765 }
766
767 regs.icr.int_assert(1);
768 DPRINTF(EthernetIntr, "EINT: Posting interrupt to CPU now. Vector %#x\n",
769 regs.icr());
770
771 intrPost();
772
773 lastInterrupt = curTick();
774 }
775
776 void
777 IGbE::cpuClearInt()
778 {
779 if (regs.icr.int_assert()) {
780 regs.icr.int_assert(0);
781 DPRINTF(EthernetIntr,
782 "EINT: Clearing interrupt to CPU now. Vector %#x\n",
783 regs.icr());
784 intrClear();
785 }
786 }
787
788 void
789 IGbE::chkInterrupt()
790 {
791 DPRINTF(Ethernet, "Checking interrupts icr: %#x imr: %#x\n", regs.icr(),
792 regs.imr);
793 // Check if we need to clear the cpu interrupt
794 if (!(regs.icr() & regs.imr)) {
795 DPRINTF(Ethernet, "Mask cleaned all interrupts\n");
796 if (interEvent.scheduled())
797 deschedule(interEvent);
798 if (regs.icr.int_assert())
799 cpuClearInt();
800 }
801 DPRINTF(Ethernet, "ITR = %#X itr.interval = %#X\n",
802 regs.itr(), regs.itr.interval());
803
804 if (regs.icr() & regs.imr) {
805 if (regs.itr.interval() == 0) {
806 cpuPostInt();
807 } else {
808 DPRINTF(Ethernet,
809 "Possibly scheduling interrupt because of imr write\n");
810 if (!interEvent.scheduled()) {
811 Tick t = curTick() + SimClock::Int::ns * 256 * regs.itr.interval();
812 DPRINTF(Ethernet, "Scheduling for %d\n", t);
813 schedule(interEvent, t);
814 }
815 }
816 }
817 }
818
819
820 ///////////////////////////// IGbE::DescCache //////////////////////////////
821
822 template<class T>
823 IGbE::DescCache<T>::DescCache(IGbE *i, const std::string n, int s)
824 : igbe(i), _name(n), cachePnt(0), size(s), curFetching(0),
825 wbOut(0), pktPtr(NULL), wbDelayEvent(this),
826 fetchDelayEvent(this), fetchEvent(this), wbEvent(this)
827 {
828 fetchBuf = new T[size];
829 wbBuf = new T[size];
830 }
831
832 template<class T>
833 IGbE::DescCache<T>::~DescCache()
834 {
835 reset();
836 delete[] fetchBuf;
837 delete[] wbBuf;
838 }
839
840 template<class T>
841 void
842 IGbE::DescCache<T>::areaChanged()
843 {
844 if (usedCache.size() > 0 || curFetching || wbOut)
845 panic("Descriptor Address, Length or Head changed. Bad\n");
846 reset();
847
848 }
849
850 template<class T>
851 void
852 IGbE::DescCache<T>::writeback(Addr aMask)
853 {
854 int curHead = descHead();
855 int max_to_wb = usedCache.size();
856
857 // Check if this writeback is less restrictive that the previous
858 // and if so setup another one immediately following it
859 if (wbOut) {
860 if (aMask < wbAlignment) {
861 moreToWb = true;
862 wbAlignment = aMask;
863 }
864 DPRINTF(EthernetDesc,
865 "Writing back already in process, returning\n");
866 return;
867 }
868
869 moreToWb = false;
870 wbAlignment = aMask;
871
872
873 DPRINTF(EthernetDesc, "Writing back descriptors head: %d tail: "
874 "%d len: %d cachePnt: %d max_to_wb: %d descleft: %d\n",
875 curHead, descTail(), descLen(), cachePnt, max_to_wb,
876 descLeft());
877
878 if (max_to_wb + curHead >= descLen()) {
879 max_to_wb = descLen() - curHead;
880 moreToWb = true;
881 // this is by definition aligned correctly
882 } else if (wbAlignment != 0) {
883 // align the wb point to the mask
884 max_to_wb = max_to_wb & ~wbAlignment;
885 }
886
887 DPRINTF(EthernetDesc, "Writing back %d descriptors\n", max_to_wb);
888
889 if (max_to_wb <= 0) {
890 if (usedCache.size())
891 igbe->anBegin(annSmWb, "Wait Alignment", CPA::FL_WAIT);
892 else
893 igbe->anWe(annSmWb, annUsedCacheQ);
894 return;
895 }
896
897 wbOut = max_to_wb;
898
899 assert(!wbDelayEvent.scheduled());
900 igbe->schedule(wbDelayEvent, curTick() + igbe->wbDelay);
901 igbe->anBegin(annSmWb, "Prepare Writeback Desc");
902 }
903
904 template<class T>
905 void
906 IGbE::DescCache<T>::writeback1()
907 {
908 // If we're draining delay issuing this DMA
909 if (igbe->getState() != SimObject::Running) {
910 igbe->schedule(wbDelayEvent, curTick() + igbe->wbDelay);
911 return;
912 }
913
914 DPRINTF(EthernetDesc, "Begining DMA of %d descriptors\n", wbOut);
915
916 for (int x = 0; x < wbOut; x++) {
917 assert(usedCache.size());
918 memcpy(&wbBuf[x], usedCache[x], sizeof(T));
919 igbe->anPq(annSmWb, annUsedCacheQ);
920 igbe->anPq(annSmWb, annDescQ);
921 igbe->anQ(annSmWb, annUsedDescQ);
922 }
923
924
925 igbe->anBegin(annSmWb, "Writeback Desc DMA");
926
927 assert(wbOut);
928 igbe->dmaWrite(pciToDma(descBase() + descHead() * sizeof(T)),
929 wbOut * sizeof(T), &wbEvent, (uint8_t*)wbBuf,
930 igbe->wbCompDelay);
931 }
932
933 template<class T>
934 void
935 IGbE::DescCache<T>::fetchDescriptors()
936 {
937 size_t max_to_fetch;
938
939 if (curFetching) {
940 DPRINTF(EthernetDesc,
941 "Currently fetching %d descriptors, returning\n",
942 curFetching);
943 return;
944 }
945
946 if (descTail() >= cachePnt)
947 max_to_fetch = descTail() - cachePnt;
948 else
949 max_to_fetch = descLen() - cachePnt;
950
951 size_t free_cache = size - usedCache.size() - unusedCache.size();
952
953 if (!max_to_fetch)
954 igbe->anWe(annSmFetch, annUnusedDescQ);
955 else
956 igbe->anPq(annSmFetch, annUnusedDescQ, max_to_fetch);
957
958 if (max_to_fetch) {
959 if (!free_cache)
960 igbe->anWf(annSmFetch, annDescQ);
961 else
962 igbe->anRq(annSmFetch, annDescQ, free_cache);
963 }
964
965 max_to_fetch = std::min(max_to_fetch, free_cache);
966
967
968 DPRINTF(EthernetDesc, "Fetching descriptors head: %d tail: "
969 "%d len: %d cachePnt: %d max_to_fetch: %d descleft: %d\n",
970 descHead(), descTail(), descLen(), cachePnt,
971 max_to_fetch, descLeft());
972
973 // Nothing to do
974 if (max_to_fetch == 0)
975 return;
976
977 // So we don't have two descriptor fetches going on at once
978 curFetching = max_to_fetch;
979
980 assert(!fetchDelayEvent.scheduled());
981 igbe->schedule(fetchDelayEvent, curTick() + igbe->fetchDelay);
982 igbe->anBegin(annSmFetch, "Prepare Fetch Desc");
983 }
984
985 template<class T>
986 void
987 IGbE::DescCache<T>::fetchDescriptors1()
988 {
989 // If we're draining delay issuing this DMA
990 if (igbe->getState() != SimObject::Running) {
991 igbe->schedule(fetchDelayEvent, curTick() + igbe->fetchDelay);
992 return;
993 }
994
995 igbe->anBegin(annSmFetch, "Fetch Desc");
996
997 DPRINTF(EthernetDesc, "Fetching descriptors at %#x (%#x), size: %#x\n",
998 descBase() + cachePnt * sizeof(T),
999 pciToDma(descBase() + cachePnt * sizeof(T)),
1000 curFetching * sizeof(T));
1001 assert(curFetching);
1002 igbe->dmaRead(pciToDma(descBase() + cachePnt * sizeof(T)),
1003 curFetching * sizeof(T), &fetchEvent, (uint8_t*)fetchBuf,
1004 igbe->fetchCompDelay);
1005 }
1006
1007 template<class T>
1008 void
1009 IGbE::DescCache<T>::fetchComplete()
1010 {
1011 T *newDesc;
1012 igbe->anBegin(annSmFetch, "Fetch Complete");
1013 for (int x = 0; x < curFetching; x++) {
1014 newDesc = new T;
1015 memcpy(newDesc, &fetchBuf[x], sizeof(T));
1016 unusedCache.push_back(newDesc);
1017 igbe->anDq(annSmFetch, annUnusedDescQ);
1018 igbe->anQ(annSmFetch, annUnusedCacheQ);
1019 igbe->anQ(annSmFetch, annDescQ);
1020 }
1021
1022
1023 #ifndef NDEBUG
1024 int oldCp = cachePnt;
1025 #endif
1026
1027 cachePnt += curFetching;
1028 assert(cachePnt <= descLen());
1029 if (cachePnt == descLen())
1030 cachePnt = 0;
1031
1032 curFetching = 0;
1033
1034 DPRINTF(EthernetDesc, "Fetching complete cachePnt %d -> %d\n",
1035 oldCp, cachePnt);
1036
1037 if ((descTail() >= cachePnt ? (descTail() - cachePnt) : (descLen() -
1038 cachePnt)) == 0)
1039 {
1040 igbe->anWe(annSmFetch, annUnusedDescQ);
1041 } else if (!(size - usedCache.size() - unusedCache.size())) {
1042 igbe->anWf(annSmFetch, annDescQ);
1043 } else {
1044 igbe->anBegin(annSmFetch, "Wait", CPA::FL_WAIT);
1045 }
1046
1047 enableSm();
1048 igbe->checkDrain();
1049 }
1050
1051 template<class T>
1052 void
1053 IGbE::DescCache<T>::wbComplete()
1054 {
1055
1056 igbe->anBegin(annSmWb, "Finish Writeback");
1057
1058 long curHead = descHead();
1059 #ifndef NDEBUG
1060 long oldHead = curHead;
1061 #endif
1062
1063 for (int x = 0; x < wbOut; x++) {
1064 assert(usedCache.size());
1065 delete usedCache[0];
1066 usedCache.pop_front();
1067
1068 igbe->anDq(annSmWb, annUsedCacheQ);
1069 igbe->anDq(annSmWb, annDescQ);
1070 }
1071
1072 curHead += wbOut;
1073 wbOut = 0;
1074
1075 if (curHead >= descLen())
1076 curHead -= descLen();
1077
1078 // Update the head
1079 updateHead(curHead);
1080
1081 DPRINTF(EthernetDesc, "Writeback complete curHead %d -> %d\n",
1082 oldHead, curHead);
1083
1084 // If we still have more to wb, call wb now
1085 actionAfterWb();
1086 if (moreToWb) {
1087 moreToWb = false;
1088 DPRINTF(EthernetDesc, "Writeback has more todo\n");
1089 writeback(wbAlignment);
1090 }
1091
1092 if (!wbOut) {
1093 igbe->checkDrain();
1094 if (usedCache.size())
1095 igbe->anBegin(annSmWb, "Wait", CPA::FL_WAIT);
1096 else
1097 igbe->anWe(annSmWb, annUsedCacheQ);
1098 }
1099 fetchAfterWb();
1100 }
1101
1102 template<class T>
1103 void
1104 IGbE::DescCache<T>::reset()
1105 {
1106 DPRINTF(EthernetDesc, "Reseting descriptor cache\n");
1107 for (typename CacheType::size_type x = 0; x < usedCache.size(); x++)
1108 delete usedCache[x];
1109 for (typename CacheType::size_type x = 0; x < unusedCache.size(); x++)
1110 delete unusedCache[x];
1111
1112 usedCache.clear();
1113 unusedCache.clear();
1114
1115 cachePnt = 0;
1116
1117 }
1118
1119 template<class T>
1120 void
1121 IGbE::DescCache<T>::serialize(std::ostream &os)
1122 {
1123 SERIALIZE_SCALAR(cachePnt);
1124 SERIALIZE_SCALAR(curFetching);
1125 SERIALIZE_SCALAR(wbOut);
1126 SERIALIZE_SCALAR(moreToWb);
1127 SERIALIZE_SCALAR(wbAlignment);
1128
1129 typename CacheType::size_type usedCacheSize = usedCache.size();
1130 SERIALIZE_SCALAR(usedCacheSize);
1131 for (typename CacheType::size_type x = 0; x < usedCacheSize; x++) {
1132 arrayParamOut(os, csprintf("usedCache_%d", x),
1133 (uint8_t*)usedCache[x],sizeof(T));
1134 }
1135
1136 typename CacheType::size_type unusedCacheSize = unusedCache.size();
1137 SERIALIZE_SCALAR(unusedCacheSize);
1138 for (typename CacheType::size_type x = 0; x < unusedCacheSize; x++) {
1139 arrayParamOut(os, csprintf("unusedCache_%d", x),
1140 (uint8_t*)unusedCache[x],sizeof(T));
1141 }
1142
1143 Tick fetch_delay = 0, wb_delay = 0;
1144 if (fetchDelayEvent.scheduled())
1145 fetch_delay = fetchDelayEvent.when();
1146 SERIALIZE_SCALAR(fetch_delay);
1147 if (wbDelayEvent.scheduled())
1148 wb_delay = wbDelayEvent.when();
1149 SERIALIZE_SCALAR(wb_delay);
1150
1151
1152 }
1153
1154 template<class T>
1155 void
1156 IGbE::DescCache<T>::unserialize(Checkpoint *cp, const std::string &section)
1157 {
1158 UNSERIALIZE_SCALAR(cachePnt);
1159 UNSERIALIZE_SCALAR(curFetching);
1160 UNSERIALIZE_SCALAR(wbOut);
1161 UNSERIALIZE_SCALAR(moreToWb);
1162 UNSERIALIZE_SCALAR(wbAlignment);
1163
1164 typename CacheType::size_type usedCacheSize;
1165 UNSERIALIZE_SCALAR(usedCacheSize);
1166 T *temp;
1167 for (typename CacheType::size_type x = 0; x < usedCacheSize; x++) {
1168 temp = new T;
1169 arrayParamIn(cp, section, csprintf("usedCache_%d", x),
1170 (uint8_t*)temp,sizeof(T));
1171 usedCache.push_back(temp);
1172 }
1173
1174 typename CacheType::size_type unusedCacheSize;
1175 UNSERIALIZE_SCALAR(unusedCacheSize);
1176 for (typename CacheType::size_type x = 0; x < unusedCacheSize; x++) {
1177 temp = new T;
1178 arrayParamIn(cp, section, csprintf("unusedCache_%d", x),
1179 (uint8_t*)temp,sizeof(T));
1180 unusedCache.push_back(temp);
1181 }
1182 Tick fetch_delay = 0, wb_delay = 0;
1183 UNSERIALIZE_SCALAR(fetch_delay);
1184 UNSERIALIZE_SCALAR(wb_delay);
1185 if (fetch_delay)
1186 igbe->schedule(fetchDelayEvent, fetch_delay);
1187 if (wb_delay)
1188 igbe->schedule(wbDelayEvent, wb_delay);
1189
1190
1191 }
1192
1193 ///////////////////////////// IGbE::RxDescCache //////////////////////////////
1194
1195 IGbE::RxDescCache::RxDescCache(IGbE *i, const std::string n, int s)
1196 : DescCache<RxDesc>(i, n, s), pktDone(false), splitCount(0),
1197 pktEvent(this), pktHdrEvent(this), pktDataEvent(this)
1198
1199 {
1200 annSmFetch = "RX Desc Fetch";
1201 annSmWb = "RX Desc Writeback";
1202 annUnusedDescQ = "RX Unused Descriptors";
1203 annUnusedCacheQ = "RX Unused Descriptor Cache";
1204 annUsedCacheQ = "RX Used Descriptor Cache";
1205 annUsedDescQ = "RX Used Descriptors";
1206 annDescQ = "RX Descriptors";
1207 }
1208
1209 void
1210 IGbE::RxDescCache::pktSplitDone()
1211 {
1212 splitCount++;
1213 DPRINTF(EthernetDesc,
1214 "Part of split packet done: splitcount now %d\n", splitCount);
1215 assert(splitCount <= 2);
1216 if (splitCount != 2)
1217 return;
1218 splitCount = 0;
1219 DPRINTF(EthernetDesc,
1220 "Part of split packet done: calling pktComplete()\n");
1221 pktComplete();
1222 }
1223
1224 int
1225 IGbE::RxDescCache::writePacket(EthPacketPtr packet, int pkt_offset)
1226 {
1227 assert(unusedCache.size());
1228 //if (!unusedCache.size())
1229 // return false;
1230
1231 pktPtr = packet;
1232 pktDone = false;
1233 unsigned buf_len, hdr_len;
1234
1235 RxDesc *desc = unusedCache.front();
1236 switch (igbe->regs.srrctl.desctype()) {
1237 case RXDT_LEGACY:
1238 assert(pkt_offset == 0);
1239 bytesCopied = packet->length;
1240 DPRINTF(EthernetDesc, "Packet Length: %d Desc Size: %d\n",
1241 packet->length, igbe->regs.rctl.descSize());
1242 assert(packet->length < igbe->regs.rctl.descSize());
1243 igbe->dmaWrite(pciToDma(desc->legacy.buf),
1244 packet->length, &pktEvent, packet->data,
1245 igbe->rxWriteDelay);
1246 break;
1247 case RXDT_ADV_ONEBUF:
1248 assert(pkt_offset == 0);
1249 bytesCopied = packet->length;
1250 buf_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.bufLen() :
1251 igbe->regs.rctl.descSize();
1252 DPRINTF(EthernetDesc, "Packet Length: %d srrctl: %#x Desc Size: %d\n",
1253 packet->length, igbe->regs.srrctl(), buf_len);
1254 assert(packet->length < buf_len);
1255 igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
1256 packet->length, &pktEvent, packet->data,
1257 igbe->rxWriteDelay);
1258 desc->adv_wb.header_len = htole(0);
1259 desc->adv_wb.sph = htole(0);
1260 desc->adv_wb.pkt_len = htole((uint16_t)(pktPtr->length));
1261 break;
1262 case RXDT_ADV_SPLIT_A:
1263 int split_point;
1264
1265 buf_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.bufLen() :
1266 igbe->regs.rctl.descSize();
1267 hdr_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.hdrLen() : 0;
1268 DPRINTF(EthernetDesc,
1269 "lpe: %d Packet Length: %d offset: %d srrctl: %#x "
1270 "hdr addr: %#x Hdr Size: %d desc addr: %#x Desc Size: %d\n",
1271 igbe->regs.rctl.lpe(), packet->length, pkt_offset,
1272 igbe->regs.srrctl(), desc->adv_read.hdr, hdr_len,
1273 desc->adv_read.pkt, buf_len);
1274
1275 split_point = hsplit(pktPtr);
1276
1277 if (packet->length <= hdr_len) {
1278 bytesCopied = packet->length;
1279 assert(pkt_offset == 0);
1280 DPRINTF(EthernetDesc, "Hdr split: Entire packet in header\n");
1281 igbe->dmaWrite(pciToDma(desc->adv_read.hdr),
1282 packet->length, &pktEvent, packet->data,
1283 igbe->rxWriteDelay);
1284 desc->adv_wb.header_len = htole((uint16_t)packet->length);
1285 desc->adv_wb.sph = htole(0);
1286 desc->adv_wb.pkt_len = htole(0);
1287 } else if (split_point) {
1288 if (pkt_offset) {
1289 // we are only copying some data, header/data has already been
1290 // copied
1291 int max_to_copy =
1292 std::min(packet->length - pkt_offset, buf_len);
1293 bytesCopied += max_to_copy;
1294 DPRINTF(EthernetDesc,
1295 "Hdr split: Continuing data buffer copy\n");
1296 igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
1297 max_to_copy, &pktEvent,
1298 packet->data + pkt_offset, igbe->rxWriteDelay);
1299 desc->adv_wb.header_len = htole(0);
1300 desc->adv_wb.pkt_len = htole((uint16_t)max_to_copy);
1301 desc->adv_wb.sph = htole(0);
1302 } else {
1303 int max_to_copy =
1304 std::min(packet->length - split_point, buf_len);
1305 bytesCopied += max_to_copy + split_point;
1306
1307 DPRINTF(EthernetDesc, "Hdr split: splitting at %d\n",
1308 split_point);
1309 igbe->dmaWrite(pciToDma(desc->adv_read.hdr),
1310 split_point, &pktHdrEvent,
1311 packet->data, igbe->rxWriteDelay);
1312 igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
1313 max_to_copy, &pktDataEvent,
1314 packet->data + split_point, igbe->rxWriteDelay);
1315 desc->adv_wb.header_len = htole(split_point);
1316 desc->adv_wb.sph = 1;
1317 desc->adv_wb.pkt_len = htole((uint16_t)(max_to_copy));
1318 }
1319 } else {
1320 panic("Header split not fitting within header buffer or "
1321 "undecodable packet not fitting in header unsupported\n");
1322 }
1323 break;
1324 default:
1325 panic("Unimplemnted RX receive buffer type: %d\n",
1326 igbe->regs.srrctl.desctype());
1327 }
1328 return bytesCopied;
1329
1330 }
1331
1332 void
1333 IGbE::RxDescCache::pktComplete()
1334 {
1335 assert(unusedCache.size());
1336 RxDesc *desc;
1337 desc = unusedCache.front();
1338
1339 igbe->anBegin("RXS", "Update Desc");
1340
1341 uint16_t crcfixup = igbe->regs.rctl.secrc() ? 0 : 4 ;
1342 DPRINTF(EthernetDesc, "pktPtr->length: %d bytesCopied: %d "
1343 "stripcrc offset: %d value written: %d %d\n",
1344 pktPtr->length, bytesCopied, crcfixup,
1345 htole((uint16_t)(pktPtr->length + crcfixup)),
1346 (uint16_t)(pktPtr->length + crcfixup));
1347
1348 // no support for anything but starting at 0
1349 assert(igbe->regs.rxcsum.pcss() == 0);
1350
1351 DPRINTF(EthernetDesc, "Packet written to memory updating Descriptor\n");
1352
1353 uint16_t status = RXDS_DD;
1354 uint8_t err = 0;
1355 uint16_t ext_err = 0;
1356 uint16_t csum = 0;
1357 uint16_t ptype = 0;
1358 uint16_t ip_id = 0;
1359
1360 assert(bytesCopied <= pktPtr->length);
1361 if (bytesCopied == pktPtr->length)
1362 status |= RXDS_EOP;
1363
1364 IpPtr ip(pktPtr);
1365
1366 if (ip) {
1367 DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n", ip->id());
1368 ptype |= RXDP_IPV4;
1369 ip_id = ip->id();
1370
1371 if (igbe->regs.rxcsum.ipofld()) {
1372 DPRINTF(EthernetDesc, "Checking IP checksum\n");
1373 status |= RXDS_IPCS;
1374 csum = htole(cksum(ip));
1375 igbe->rxIpChecksums++;
1376 if (cksum(ip) != 0) {
1377 err |= RXDE_IPE;
1378 ext_err |= RXDEE_IPE;
1379 DPRINTF(EthernetDesc, "Checksum is bad!!\n");
1380 }
1381 }
1382 TcpPtr tcp(ip);
1383 if (tcp && igbe->regs.rxcsum.tuofld()) {
1384 DPRINTF(EthernetDesc, "Checking TCP checksum\n");
1385 status |= RXDS_TCPCS;
1386 ptype |= RXDP_TCP;
1387 csum = htole(cksum(tcp));
1388 igbe->rxTcpChecksums++;
1389 if (cksum(tcp) != 0) {
1390 DPRINTF(EthernetDesc, "Checksum is bad!!\n");
1391 err |= RXDE_TCPE;
1392 ext_err |= RXDEE_TCPE;
1393 }
1394 }
1395
1396 UdpPtr udp(ip);
1397 if (udp && igbe->regs.rxcsum.tuofld()) {
1398 DPRINTF(EthernetDesc, "Checking UDP checksum\n");
1399 status |= RXDS_UDPCS;
1400 ptype |= RXDP_UDP;
1401 csum = htole(cksum(udp));
1402 igbe->rxUdpChecksums++;
1403 if (cksum(udp) != 0) {
1404 DPRINTF(EthernetDesc, "Checksum is bad!!\n");
1405 ext_err |= RXDEE_TCPE;
1406 err |= RXDE_TCPE;
1407 }
1408 }
1409 } else { // if ip
1410 DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
1411 }
1412
1413 switch (igbe->regs.srrctl.desctype()) {
1414 case RXDT_LEGACY:
1415 desc->legacy.len = htole((uint16_t)(pktPtr->length + crcfixup));
1416 desc->legacy.status = htole(status);
1417 desc->legacy.errors = htole(err);
1418 // No vlan support at this point... just set it to 0
1419 desc->legacy.vlan = 0;
1420 break;
1421 case RXDT_ADV_SPLIT_A:
1422 case RXDT_ADV_ONEBUF:
1423 desc->adv_wb.rss_type = htole(0);
1424 desc->adv_wb.pkt_type = htole(ptype);
1425 if (igbe->regs.rxcsum.pcsd()) {
1426 // no rss support right now
1427 desc->adv_wb.rss_hash = htole(0);
1428 } else {
1429 desc->adv_wb.id = htole(ip_id);
1430 desc->adv_wb.csum = htole(csum);
1431 }
1432 desc->adv_wb.status = htole(status);
1433 desc->adv_wb.errors = htole(ext_err);
1434 // no vlan support
1435 desc->adv_wb.vlan_tag = htole(0);
1436 break;
1437 default:
1438 panic("Unimplemnted RX receive buffer type %d\n",
1439 igbe->regs.srrctl.desctype());
1440 }
1441
1442 DPRINTF(EthernetDesc, "Descriptor complete w0: %#x w1: %#x\n",
1443 desc->adv_read.pkt, desc->adv_read.hdr);
1444
1445 if (bytesCopied == pktPtr->length) {
1446 DPRINTF(EthernetDesc,
1447 "Packet completely written to descriptor buffers\n");
1448 // Deal with the rx timer interrupts
1449 if (igbe->regs.rdtr.delay()) {
1450 Tick delay = igbe->regs.rdtr.delay() * igbe->intClock();
1451 DPRINTF(EthernetSM, "RXS: Scheduling DTR for %d\n", delay);
1452 igbe->reschedule(igbe->rdtrEvent, curTick() + delay);
1453 }
1454
1455 if (igbe->regs.radv.idv()) {
1456 Tick delay = igbe->regs.radv.idv() * igbe->intClock();
1457 DPRINTF(EthernetSM, "RXS: Scheduling ADV for %d\n", delay);
1458 if (!igbe->radvEvent.scheduled()) {
1459 igbe->schedule(igbe->radvEvent, curTick() + delay);
1460 }
1461 }
1462
1463 // if neither radv or rdtr, maybe itr is set...
1464 if (!igbe->regs.rdtr.delay() && !igbe->regs.radv.idv()) {
1465 DPRINTF(EthernetSM,
1466 "RXS: Receive interrupt delay disabled, posting IT_RXT\n");
1467 igbe->postInterrupt(IT_RXT);
1468 }
1469
1470 // If the packet is small enough, interrupt appropriately
1471 // I wonder if this is delayed or not?!
1472 if (pktPtr->length <= igbe->regs.rsrpd.idv()) {
1473 DPRINTF(EthernetSM,
1474 "RXS: Posting IT_SRPD beacuse small packet received\n");
1475 igbe->postInterrupt(IT_SRPD);
1476 }
1477 bytesCopied = 0;
1478 }
1479
1480 pktPtr = NULL;
1481 igbe->checkDrain();
1482 enableSm();
1483 pktDone = true;
1484
1485 igbe->anBegin("RXS", "Done Updating Desc");
1486 DPRINTF(EthernetDesc, "Processing of this descriptor complete\n");
1487 igbe->anDq("RXS", annUnusedCacheQ);
1488 unusedCache.pop_front();
1489 igbe->anQ("RXS", annUsedCacheQ);
1490 usedCache.push_back(desc);
1491 }
1492
1493 void
1494 IGbE::RxDescCache::enableSm()
1495 {
1496 if (!igbe->drainEvent) {
1497 igbe->rxTick = true;
1498 igbe->restartClock();
1499 }
1500 }
1501
1502 bool
1503 IGbE::RxDescCache::packetDone()
1504 {
1505 if (pktDone) {
1506 pktDone = false;
1507 return true;
1508 }
1509 return false;
1510 }
1511
1512 bool
1513 IGbE::RxDescCache::hasOutstandingEvents()
1514 {
1515 return pktEvent.scheduled() || wbEvent.scheduled() ||
1516 fetchEvent.scheduled() || pktHdrEvent.scheduled() ||
1517 pktDataEvent.scheduled();
1518
1519 }
1520
1521 void
1522 IGbE::RxDescCache::serialize(std::ostream &os)
1523 {
1524 DescCache<RxDesc>::serialize(os);
1525 SERIALIZE_SCALAR(pktDone);
1526 SERIALIZE_SCALAR(splitCount);
1527 SERIALIZE_SCALAR(bytesCopied);
1528 }
1529
1530 void
1531 IGbE::RxDescCache::unserialize(Checkpoint *cp, const std::string &section)
1532 {
1533 DescCache<RxDesc>::unserialize(cp, section);
1534 UNSERIALIZE_SCALAR(pktDone);
1535 UNSERIALIZE_SCALAR(splitCount);
1536 UNSERIALIZE_SCALAR(bytesCopied);
1537 }
1538
1539
1540 ///////////////////////////// IGbE::TxDescCache //////////////////////////////
1541
1542 IGbE::TxDescCache::TxDescCache(IGbE *i, const std::string n, int s)
1543 : DescCache<TxDesc>(i,n, s), pktDone(false), isTcp(false),
1544 pktWaiting(false), completionAddress(0), completionEnabled(false),
1545 useTso(false), tsoHeaderLen(0), tsoMss(0), tsoTotalLen(0), tsoUsedLen(0),
1546 tsoPrevSeq(0), tsoPktPayloadBytes(0), tsoLoadedHeader(false),
1547 tsoPktHasHeader(false), tsoDescBytesUsed(0), tsoCopyBytes(0), tsoPkts(0),
1548 pktEvent(this), headerEvent(this), nullEvent(this)
1549 {
1550 annSmFetch = "TX Desc Fetch";
1551 annSmWb = "TX Desc Writeback";
1552 annUnusedDescQ = "TX Unused Descriptors";
1553 annUnusedCacheQ = "TX Unused Descriptor Cache";
1554 annUsedCacheQ = "TX Used Descriptor Cache";
1555 annUsedDescQ = "TX Used Descriptors";
1556 annDescQ = "TX Descriptors";
1557 }
1558
1559 void
1560 IGbE::TxDescCache::processContextDesc()
1561 {
1562 assert(unusedCache.size());
1563 TxDesc *desc;
1564
1565 DPRINTF(EthernetDesc, "Checking and processing context descriptors\n");
1566
1567 while (!useTso && unusedCache.size() &&
1568 TxdOp::isContext(unusedCache.front())) {
1569 DPRINTF(EthernetDesc, "Got context descriptor type...\n");
1570
1571 desc = unusedCache.front();
1572 DPRINTF(EthernetDesc, "Descriptor upper: %#x lower: %#X\n",
1573 desc->d1, desc->d2);
1574
1575
1576 // is this going to be a tcp or udp packet?
1577 isTcp = TxdOp::tcp(desc) ? true : false;
1578
1579 // setup all the TSO variables, they'll be ignored if we don't use
1580 // tso for this connection
1581 tsoHeaderLen = TxdOp::hdrlen(desc);
1582 tsoMss = TxdOp::mss(desc);
1583
1584 if (TxdOp::isType(desc, TxdOp::TXD_CNXT) && TxdOp::tse(desc)) {
1585 DPRINTF(EthernetDesc, "TCP offload enabled for packet hdrlen: "
1586 "%d mss: %d paylen %d\n", TxdOp::hdrlen(desc),
1587 TxdOp::mss(desc), TxdOp::getLen(desc));
1588 useTso = true;
1589 tsoTotalLen = TxdOp::getLen(desc);
1590 tsoLoadedHeader = false;
1591 tsoDescBytesUsed = 0;
1592 tsoUsedLen = 0;
1593 tsoPrevSeq = 0;
1594 tsoPktHasHeader = false;
1595 tsoPkts = 0;
1596 tsoCopyBytes = 0;
1597 }
1598
1599 TxdOp::setDd(desc);
1600 unusedCache.pop_front();
1601 igbe->anDq("TXS", annUnusedCacheQ);
1602 usedCache.push_back(desc);
1603 igbe->anQ("TXS", annUsedCacheQ);
1604 }
1605
1606 if (!unusedCache.size())
1607 return;
1608
1609 desc = unusedCache.front();
1610 if (!useTso && TxdOp::isType(desc, TxdOp::TXD_ADVDATA) &&
1611 TxdOp::tse(desc)) {
1612 DPRINTF(EthernetDesc, "TCP offload(adv) enabled for packet "
1613 "hdrlen: %d mss: %d paylen %d\n",
1614 tsoHeaderLen, tsoMss, TxdOp::getTsoLen(desc));
1615 useTso = true;
1616 tsoTotalLen = TxdOp::getTsoLen(desc);
1617 tsoLoadedHeader = false;
1618 tsoDescBytesUsed = 0;
1619 tsoUsedLen = 0;
1620 tsoPrevSeq = 0;
1621 tsoPktHasHeader = false;
1622 tsoPkts = 0;
1623 }
1624
1625 if (useTso && !tsoLoadedHeader) {
1626 // we need to fetch a header
1627 DPRINTF(EthernetDesc, "Starting DMA of TSO header\n");
1628 assert(TxdOp::isData(desc) && TxdOp::getLen(desc) >= tsoHeaderLen);
1629 pktWaiting = true;
1630 assert(tsoHeaderLen <= 256);
1631 igbe->dmaRead(pciToDma(TxdOp::getBuf(desc)),
1632 tsoHeaderLen, &headerEvent, tsoHeader, 0);
1633 }
1634 }
1635
1636 void
1637 IGbE::TxDescCache::headerComplete()
1638 {
1639 DPRINTF(EthernetDesc, "TSO: Fetching TSO header complete\n");
1640 pktWaiting = false;
1641
1642 assert(unusedCache.size());
1643 TxDesc *desc = unusedCache.front();
1644 DPRINTF(EthernetDesc, "TSO: len: %d tsoHeaderLen: %d\n",
1645 TxdOp::getLen(desc), tsoHeaderLen);
1646
1647 if (TxdOp::getLen(desc) == tsoHeaderLen) {
1648 tsoDescBytesUsed = 0;
1649 tsoLoadedHeader = true;
1650 unusedCache.pop_front();
1651 usedCache.push_back(desc);
1652 } else {
1653 // I don't think this case happens, I think the headrer is always
1654 // it's own packet, if it wasn't it might be as simple as just
1655 // incrementing descBytesUsed by the header length, but I'm not
1656 // completely sure
1657 panic("TSO header part of bigger packet, not implemented\n");
1658 }
1659 enableSm();
1660 igbe->checkDrain();
1661 }
1662
1663 unsigned
1664 IGbE::TxDescCache::getPacketSize(EthPacketPtr p)
1665 {
1666 if (!unusedCache.size())
1667 return 0;
1668
1669 DPRINTF(EthernetDesc, "Starting processing of descriptor\n");
1670
1671 assert(!useTso || tsoLoadedHeader);
1672 TxDesc *desc = unusedCache.front();
1673
1674 if (useTso) {
1675 DPRINTF(EthernetDesc, "getPacket(): TxDescriptor data "
1676 "d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1677 DPRINTF(EthernetDesc, "TSO: use: %d hdrlen: %d mss: %d total: %d "
1678 "used: %d loaded hdr: %d\n", useTso, tsoHeaderLen, tsoMss,
1679 tsoTotalLen, tsoUsedLen, tsoLoadedHeader);
1680
1681 if (tsoPktHasHeader)
1682 tsoCopyBytes = std::min((tsoMss + tsoHeaderLen) - p->length,
1683 TxdOp::getLen(desc) - tsoDescBytesUsed);
1684 else
1685 tsoCopyBytes = std::min(tsoMss,
1686 TxdOp::getLen(desc) - tsoDescBytesUsed);
1687 unsigned pkt_size =
1688 tsoCopyBytes + (tsoPktHasHeader ? 0 : tsoHeaderLen);
1689
1690 DPRINTF(EthernetDesc, "TSO: descBytesUsed: %d copyBytes: %d "
1691 "this descLen: %d\n",
1692 tsoDescBytesUsed, tsoCopyBytes, TxdOp::getLen(desc));
1693 DPRINTF(EthernetDesc, "TSO: pktHasHeader: %d\n", tsoPktHasHeader);
1694 DPRINTF(EthernetDesc, "TSO: Next packet is %d bytes\n", pkt_size);
1695 return pkt_size;
1696 }
1697
1698 DPRINTF(EthernetDesc, "Next TX packet is %d bytes\n",
1699 TxdOp::getLen(unusedCache.front()));
1700 return TxdOp::getLen(desc);
1701 }
1702
1703 void
1704 IGbE::TxDescCache::getPacketData(EthPacketPtr p)
1705 {
1706 assert(unusedCache.size());
1707
1708 TxDesc *desc;
1709 desc = unusedCache.front();
1710
1711 DPRINTF(EthernetDesc, "getPacketData(): TxDescriptor data "
1712 "d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1713 assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) &&
1714 TxdOp::getLen(desc));
1715
1716 pktPtr = p;
1717
1718 pktWaiting = true;
1719
1720 DPRINTF(EthernetDesc, "Starting DMA of packet at offset %d\n", p->length);
1721
1722 if (useTso) {
1723 assert(tsoLoadedHeader);
1724 if (!tsoPktHasHeader) {
1725 DPRINTF(EthernetDesc,
1726 "Loading TSO header (%d bytes) into start of packet\n",
1727 tsoHeaderLen);
1728 memcpy(p->data, &tsoHeader,tsoHeaderLen);
1729 p->length +=tsoHeaderLen;
1730 tsoPktHasHeader = true;
1731 }
1732 }
1733
1734 if (useTso) {
1735 DPRINTF(EthernetDesc,
1736 "Starting DMA of packet at offset %d length: %d\n",
1737 p->length, tsoCopyBytes);
1738 igbe->dmaRead(pciToDma(TxdOp::getBuf(desc))
1739 + tsoDescBytesUsed,
1740 tsoCopyBytes, &pktEvent, p->data + p->length,
1741 igbe->txReadDelay);
1742 tsoDescBytesUsed += tsoCopyBytes;
1743 assert(tsoDescBytesUsed <= TxdOp::getLen(desc));
1744 } else {
1745 igbe->dmaRead(pciToDma(TxdOp::getBuf(desc)),
1746 TxdOp::getLen(desc), &pktEvent, p->data + p->length,
1747 igbe->txReadDelay);
1748 }
1749 }
1750
1751 void
1752 IGbE::TxDescCache::pktComplete()
1753 {
1754
1755 TxDesc *desc;
1756 assert(unusedCache.size());
1757 assert(pktPtr);
1758
1759 igbe->anBegin("TXS", "Update Desc");
1760
1761 DPRINTF(EthernetDesc, "DMA of packet complete\n");
1762
1763
1764 desc = unusedCache.front();
1765 assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) &&
1766 TxdOp::getLen(desc));
1767
1768 DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n",
1769 desc->d1, desc->d2);
1770
1771 // Set the length of the data in the EtherPacket
1772 if (useTso) {
1773 DPRINTF(EthernetDesc, "TSO: use: %d hdrlen: %d mss: %d total: %d "
1774 "used: %d loaded hdr: %d\n", useTso, tsoHeaderLen, tsoMss,
1775 tsoTotalLen, tsoUsedLen, tsoLoadedHeader);
1776 pktPtr->length += tsoCopyBytes;
1777 tsoUsedLen += tsoCopyBytes;
1778 DPRINTF(EthernetDesc, "TSO: descBytesUsed: %d copyBytes: %d\n",
1779 tsoDescBytesUsed, tsoCopyBytes);
1780 } else
1781 pktPtr->length += TxdOp::getLen(desc);
1782
1783
1784
1785 if ((!TxdOp::eop(desc) && !useTso) ||
1786 (pktPtr->length < ( tsoMss + tsoHeaderLen) &&
1787 tsoTotalLen != tsoUsedLen && useTso)) {
1788 assert(!useTso || (tsoDescBytesUsed == TxdOp::getLen(desc)));
1789 igbe->anDq("TXS", annUnusedCacheQ);
1790 unusedCache.pop_front();
1791 igbe->anQ("TXS", annUsedCacheQ);
1792 usedCache.push_back(desc);
1793
1794 tsoDescBytesUsed = 0;
1795 pktDone = true;
1796 pktWaiting = false;
1797 pktMultiDesc = true;
1798
1799 DPRINTF(EthernetDesc, "Partial Packet Descriptor of %d bytes Done\n",
1800 pktPtr->length);
1801 pktPtr = NULL;
1802
1803 enableSm();
1804 igbe->checkDrain();
1805 return;
1806 }
1807
1808
1809 pktMultiDesc = false;
1810 // no support for vlans
1811 assert(!TxdOp::vle(desc));
1812
1813 // we only support single packet descriptors at this point
1814 if (!useTso)
1815 assert(TxdOp::eop(desc));
1816
1817 // set that this packet is done
1818 if (TxdOp::rs(desc))
1819 TxdOp::setDd(desc);
1820
1821 DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n",
1822 desc->d1, desc->d2);
1823
1824 if (useTso) {
1825 IpPtr ip(pktPtr);
1826 if (ip) {
1827 DPRINTF(EthernetDesc, "TSO: Modifying IP header. Id + %d\n",
1828 tsoPkts);
1829 ip->id(ip->id() + tsoPkts++);
1830 ip->len(pktPtr->length - EthPtr(pktPtr)->size());
1831
1832 TcpPtr tcp(ip);
1833 if (tcp) {
1834 DPRINTF(EthernetDesc,
1835 "TSO: Modifying TCP header. old seq %d + %d\n",
1836 tcp->seq(), tsoPrevSeq);
1837 tcp->seq(tcp->seq() + tsoPrevSeq);
1838 if (tsoUsedLen != tsoTotalLen)
1839 tcp->flags(tcp->flags() & ~9); // clear fin & psh
1840 }
1841 UdpPtr udp(ip);
1842 if (udp) {
1843 DPRINTF(EthernetDesc, "TSO: Modifying UDP header.\n");
1844 udp->len(pktPtr->length - EthPtr(pktPtr)->size());
1845 }
1846 }
1847 tsoPrevSeq = tsoUsedLen;
1848 }
1849
1850 if (DTRACE(EthernetDesc)) {
1851 IpPtr ip(pktPtr);
1852 if (ip)
1853 DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n",
1854 ip->id());
1855 else
1856 DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
1857 }
1858
1859 // Checksums are only ofloaded for new descriptor types
1860 if (TxdOp::isData(desc) && ( TxdOp::ixsm(desc) || TxdOp::txsm(desc)) ) {
1861 DPRINTF(EthernetDesc, "Calculating checksums for packet\n");
1862 IpPtr ip(pktPtr);
1863 assert(ip);
1864 if (TxdOp::ixsm(desc)) {
1865 ip->sum(0);
1866 ip->sum(cksum(ip));
1867 igbe->txIpChecksums++;
1868 DPRINTF(EthernetDesc, "Calculated IP checksum\n");
1869 }
1870 if (TxdOp::txsm(desc)) {
1871 TcpPtr tcp(ip);
1872 UdpPtr udp(ip);
1873 if (tcp) {
1874 tcp->sum(0);
1875 tcp->sum(cksum(tcp));
1876 igbe->txTcpChecksums++;
1877 DPRINTF(EthernetDesc, "Calculated TCP checksum\n");
1878 } else if (udp) {
1879 assert(udp);
1880 udp->sum(0);
1881 udp->sum(cksum(udp));
1882 igbe->txUdpChecksums++;
1883 DPRINTF(EthernetDesc, "Calculated UDP checksum\n");
1884 } else {
1885 panic("Told to checksum, but don't know how\n");
1886 }
1887 }
1888 }
1889
1890 if (TxdOp::ide(desc)) {
1891 // Deal with the rx timer interrupts
1892 DPRINTF(EthernetDesc, "Descriptor had IDE set\n");
1893 if (igbe->regs.tidv.idv()) {
1894 Tick delay = igbe->regs.tidv.idv() * igbe->intClock();
1895 DPRINTF(EthernetDesc, "setting tidv\n");
1896 igbe->reschedule(igbe->tidvEvent, curTick() + delay, true);
1897 }
1898
1899 if (igbe->regs.tadv.idv() && igbe->regs.tidv.idv()) {
1900 Tick delay = igbe->regs.tadv.idv() * igbe->intClock();
1901 DPRINTF(EthernetDesc, "setting tadv\n");
1902 if (!igbe->tadvEvent.scheduled()) {
1903 igbe->schedule(igbe->tadvEvent, curTick() + delay);
1904 }
1905 }
1906 }
1907
1908
1909 if (!useTso || TxdOp::getLen(desc) == tsoDescBytesUsed) {
1910 DPRINTF(EthernetDesc, "Descriptor Done\n");
1911 igbe->anDq("TXS", annUnusedCacheQ);
1912 unusedCache.pop_front();
1913 igbe->anQ("TXS", annUsedCacheQ);
1914 usedCache.push_back(desc);
1915 tsoDescBytesUsed = 0;
1916 }
1917
1918 if (useTso && tsoUsedLen == tsoTotalLen)
1919 useTso = false;
1920
1921
1922 DPRINTF(EthernetDesc,
1923 "------Packet of %d bytes ready for transmission-------\n",
1924 pktPtr->length);
1925 pktDone = true;
1926 pktWaiting = false;
1927 pktPtr = NULL;
1928 tsoPktHasHeader = false;
1929
1930 if (igbe->regs.txdctl.wthresh() == 0) {
1931 igbe->anBegin("TXS", "Desc Writeback");
1932 DPRINTF(EthernetDesc, "WTHRESH == 0, writing back descriptor\n");
1933 writeback(0);
1934 } else if (!igbe->regs.txdctl.gran() && igbe->regs.txdctl.wthresh() <=
1935 descInBlock(usedCache.size())) {
1936 DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
1937 igbe->anBegin("TXS", "Desc Writeback");
1938 writeback((igbe->cacheBlockSize()-1)>>4);
1939 } else if (igbe->regs.txdctl.wthresh() <= usedCache.size()) {
1940 DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
1941 igbe->anBegin("TXS", "Desc Writeback");
1942 writeback((igbe->cacheBlockSize()-1)>>4);
1943 }
1944
1945 enableSm();
1946 igbe->checkDrain();
1947 }
1948
1949 void
1950 IGbE::TxDescCache::actionAfterWb()
1951 {
1952 DPRINTF(EthernetDesc, "actionAfterWb() completionEnabled: %d\n",
1953 completionEnabled);
1954 igbe->postInterrupt(iGbReg::IT_TXDW);
1955 if (completionEnabled) {
1956 descEnd = igbe->regs.tdh();
1957 DPRINTF(EthernetDesc,
1958 "Completion writing back value: %d to addr: %#x\n", descEnd,
1959 completionAddress);
1960 igbe->dmaWrite(pciToDma(mbits(completionAddress, 63, 2)),
1961 sizeof(descEnd), &nullEvent, (uint8_t*)&descEnd, 0);
1962 }
1963 }
1964
1965 void
1966 IGbE::TxDescCache::serialize(std::ostream &os)
1967 {
1968 DescCache<TxDesc>::serialize(os);
1969 SERIALIZE_SCALAR(pktDone);
1970 SERIALIZE_SCALAR(isTcp);
1971 SERIALIZE_SCALAR(pktWaiting);
1972 SERIALIZE_SCALAR(pktMultiDesc);
1973
1974 SERIALIZE_SCALAR(useTso);
1975 SERIALIZE_SCALAR(tsoHeaderLen);
1976 SERIALIZE_SCALAR(tsoMss);
1977 SERIALIZE_SCALAR(tsoTotalLen);
1978 SERIALIZE_SCALAR(tsoUsedLen);
1979 SERIALIZE_SCALAR(tsoPrevSeq);;
1980 SERIALIZE_SCALAR(tsoPktPayloadBytes);
1981 SERIALIZE_SCALAR(tsoLoadedHeader);
1982 SERIALIZE_SCALAR(tsoPktHasHeader);
1983 SERIALIZE_ARRAY(tsoHeader, 256);
1984 SERIALIZE_SCALAR(tsoDescBytesUsed);
1985 SERIALIZE_SCALAR(tsoCopyBytes);
1986 SERIALIZE_SCALAR(tsoPkts);
1987
1988 SERIALIZE_SCALAR(completionAddress);
1989 SERIALIZE_SCALAR(completionEnabled);
1990 SERIALIZE_SCALAR(descEnd);
1991 }
1992
1993 void
1994 IGbE::TxDescCache::unserialize(Checkpoint *cp, const std::string &section)
1995 {
1996 DescCache<TxDesc>::unserialize(cp, section);
1997 UNSERIALIZE_SCALAR(pktDone);
1998 UNSERIALIZE_SCALAR(isTcp);
1999 UNSERIALIZE_SCALAR(pktWaiting);
2000 UNSERIALIZE_SCALAR(pktMultiDesc);
2001
2002 UNSERIALIZE_SCALAR(useTso);
2003 UNSERIALIZE_SCALAR(tsoHeaderLen);
2004 UNSERIALIZE_SCALAR(tsoMss);
2005 UNSERIALIZE_SCALAR(tsoTotalLen);
2006 UNSERIALIZE_SCALAR(tsoUsedLen);
2007 UNSERIALIZE_SCALAR(tsoPrevSeq);;
2008 UNSERIALIZE_SCALAR(tsoPktPayloadBytes);
2009 UNSERIALIZE_SCALAR(tsoLoadedHeader);
2010 UNSERIALIZE_SCALAR(tsoPktHasHeader);
2011 UNSERIALIZE_ARRAY(tsoHeader, 256);
2012 UNSERIALIZE_SCALAR(tsoDescBytesUsed);
2013 UNSERIALIZE_SCALAR(tsoCopyBytes);
2014 UNSERIALIZE_SCALAR(tsoPkts);
2015
2016 UNSERIALIZE_SCALAR(completionAddress);
2017 UNSERIALIZE_SCALAR(completionEnabled);
2018 UNSERIALIZE_SCALAR(descEnd);
2019 }
2020
2021 bool
2022 IGbE::TxDescCache::packetAvailable()
2023 {
2024 if (pktDone) {
2025 pktDone = false;
2026 return true;
2027 }
2028 return false;
2029 }
2030
2031 void
2032 IGbE::TxDescCache::enableSm()
2033 {
2034 if (!igbe->drainEvent) {
2035 igbe->txTick = true;
2036 igbe->restartClock();
2037 }
2038 }
2039
2040 bool
2041 IGbE::TxDescCache::hasOutstandingEvents()
2042 {
2043 return pktEvent.scheduled() || wbEvent.scheduled() ||
2044 fetchEvent.scheduled();
2045 }
2046
2047
2048 ///////////////////////////////////// IGbE /////////////////////////////////
2049
2050 void
2051 IGbE::restartClock()
2052 {
2053 if (!tickEvent.scheduled() && (rxTick || txTick || txFifoTick) &&
2054 getState() == SimObject::Running)
2055 schedule(tickEvent, clockEdge(1));
2056 }
2057
2058 unsigned int
2059 IGbE::drain(Event *de)
2060 {
2061 unsigned int count;
2062 count = pioPort.drain(de) + dmaPort.drain(de);
2063 if (rxDescCache.hasOutstandingEvents() ||
2064 txDescCache.hasOutstandingEvents()) {
2065 count++;
2066 drainEvent = de;
2067 }
2068
2069 txFifoTick = false;
2070 txTick = false;
2071 rxTick = false;
2072
2073 if (tickEvent.scheduled())
2074 deschedule(tickEvent);
2075
2076 if (count) {
2077 DPRINTF(Drain, "IGbE not drained\n");
2078 changeState(Draining);
2079 } else
2080 changeState(Drained);
2081
2082 return count;
2083 }
2084
2085 void
2086 IGbE::resume()
2087 {
2088 SimObject::resume();
2089
2090 txFifoTick = true;
2091 txTick = true;
2092 rxTick = true;
2093
2094 restartClock();
2095 DPRINTF(EthernetSM, "resuming from drain");
2096 }
2097
2098 void
2099 IGbE::checkDrain()
2100 {
2101 if (!drainEvent)
2102 return;
2103
2104 txFifoTick = false;
2105 txTick = false;
2106 rxTick = false;
2107 if (!rxDescCache.hasOutstandingEvents() &&
2108 !txDescCache.hasOutstandingEvents()) {
2109 DPRINTF(Drain, "IGbE done draining, processing drain event\n");
2110 drainEvent->process();
2111 drainEvent = NULL;
2112 }
2113 }
2114
2115 void
2116 IGbE::txStateMachine()
2117 {
2118 if (!regs.tctl.en()) {
2119 txTick = false;
2120 DPRINTF(EthernetSM, "TXS: TX disabled, stopping ticking\n");
2121 return;
2122 }
2123
2124 // If we have a packet available and it's length is not 0 (meaning it's not
2125 // a multidescriptor packet) put it in the fifo, otherwise an the next
2126 // iteration we'll get the rest of the data
2127 if (txPacket && txDescCache.packetAvailable()
2128 && !txDescCache.packetMultiDesc() && txPacket->length) {
2129 anQ("TXS", "TX FIFO Q");
2130 DPRINTF(EthernetSM, "TXS: packet placed in TX FIFO\n");
2131 #ifndef NDEBUG
2132 bool success =
2133 #endif
2134 txFifo.push(txPacket);
2135 txFifoTick = true && !drainEvent;
2136 assert(success);
2137 txPacket = NULL;
2138 anBegin("TXS", "Desc Writeback");
2139 txDescCache.writeback((cacheBlockSize()-1)>>4);
2140 return;
2141 }
2142
2143 // Only support descriptor granularity
2144 if (regs.txdctl.lwthresh() &&
2145 txDescCache.descLeft() < (regs.txdctl.lwthresh() * 8)) {
2146 DPRINTF(EthernetSM, "TXS: LWTHRESH caused posting of TXDLOW\n");
2147 postInterrupt(IT_TXDLOW);
2148 }
2149
2150 if (!txPacket) {
2151 txPacket = new EthPacketData(16384);
2152 }
2153
2154 if (!txDescCache.packetWaiting()) {
2155 if (txDescCache.descLeft() == 0) {
2156 postInterrupt(IT_TXQE);
2157 anBegin("TXS", "Desc Writeback");
2158 txDescCache.writeback(0);
2159 anBegin("TXS", "Desc Fetch");
2160 anWe("TXS", txDescCache.annUnusedCacheQ);
2161 txDescCache.fetchDescriptors();
2162 DPRINTF(EthernetSM, "TXS: No descriptors left in ring, forcing "
2163 "writeback stopping ticking and posting TXQE\n");
2164 txTick = false;
2165 return;
2166 }
2167
2168
2169 if (!(txDescCache.descUnused())) {
2170 anBegin("TXS", "Desc Fetch");
2171 txDescCache.fetchDescriptors();
2172 anWe("TXS", txDescCache.annUnusedCacheQ);
2173 DPRINTF(EthernetSM, "TXS: No descriptors available in cache, "
2174 "fetching and stopping ticking\n");
2175 txTick = false;
2176 return;
2177 }
2178 anPq("TXS", txDescCache.annUnusedCacheQ);
2179
2180
2181 txDescCache.processContextDesc();
2182 if (txDescCache.packetWaiting()) {
2183 DPRINTF(EthernetSM,
2184 "TXS: Fetching TSO header, stopping ticking\n");
2185 txTick = false;
2186 return;
2187 }
2188
2189 unsigned size = txDescCache.getPacketSize(txPacket);
2190 if (size > 0 && txFifo.avail() > size) {
2191 anRq("TXS", "TX FIFO Q");
2192 anBegin("TXS", "DMA Packet");
2193 DPRINTF(EthernetSM, "TXS: Reserving %d bytes in FIFO and "
2194 "beginning DMA of next packet\n", size);
2195 txFifo.reserve(size);
2196 txDescCache.getPacketData(txPacket);
2197 } else if (size == 0) {
2198 DPRINTF(EthernetSM, "TXS: getPacketSize returned: %d\n", size);
2199 DPRINTF(EthernetSM,
2200 "TXS: No packets to get, writing back used descriptors\n");
2201 anBegin("TXS", "Desc Writeback");
2202 txDescCache.writeback(0);
2203 } else {
2204 anWf("TXS", "TX FIFO Q");
2205 DPRINTF(EthernetSM, "TXS: FIFO full, stopping ticking until space "
2206 "available in FIFO\n");
2207 txTick = false;
2208 }
2209
2210
2211 return;
2212 }
2213 DPRINTF(EthernetSM, "TXS: Nothing to do, stopping ticking\n");
2214 txTick = false;
2215 }
2216
2217 bool
2218 IGbE::ethRxPkt(EthPacketPtr pkt)
2219 {
2220 rxBytes += pkt->length;
2221 rxPackets++;
2222
2223 DPRINTF(Ethernet, "RxFIFO: Receiving pcakte from wire\n");
2224 anBegin("RXQ", "Wire Recv");
2225
2226
2227 if (!regs.rctl.en()) {
2228 DPRINTF(Ethernet, "RxFIFO: RX not enabled, dropping\n");
2229 anBegin("RXQ", "FIFO Drop", CPA::FL_BAD);
2230 return true;
2231 }
2232
2233 // restart the state machines if they are stopped
2234 rxTick = true && !drainEvent;
2235 if ((rxTick || txTick) && !tickEvent.scheduled()) {
2236 DPRINTF(EthernetSM,
2237 "RXS: received packet into fifo, starting ticking\n");
2238 restartClock();
2239 }
2240
2241 if (!rxFifo.push(pkt)) {
2242 DPRINTF(Ethernet, "RxFIFO: Packet won't fit in fifo... dropped\n");
2243 postInterrupt(IT_RXO, true);
2244 anBegin("RXQ", "FIFO Drop", CPA::FL_BAD);
2245 return false;
2246 }
2247
2248 if (CPA::available() && cpa->enabled()) {
2249 assert(sys->numSystemsRunning <= 2);
2250 System *other_sys;
2251 if (sys->systemList[0] == sys)
2252 other_sys = sys->systemList[1];
2253 else
2254 other_sys = sys->systemList[0];
2255
2256 cpa->hwDq(CPA::FL_NONE, sys, macAddr, "RXQ", "WireQ", 0, other_sys);
2257 anQ("RXQ", "RX FIFO Q");
2258 cpa->hwWe(CPA::FL_NONE, sys, macAddr, "RXQ", "WireQ", 0, other_sys);
2259 }
2260
2261 return true;
2262 }
2263
2264
2265 void
2266 IGbE::rxStateMachine()
2267 {
2268 if (!regs.rctl.en()) {
2269 rxTick = false;
2270 DPRINTF(EthernetSM, "RXS: RX disabled, stopping ticking\n");
2271 return;
2272 }
2273
2274 // If the packet is done check for interrupts/descriptors/etc
2275 if (rxDescCache.packetDone()) {
2276 rxDmaPacket = false;
2277 DPRINTF(EthernetSM, "RXS: Packet completed DMA to memory\n");
2278 int descLeft = rxDescCache.descLeft();
2279 DPRINTF(EthernetSM, "RXS: descLeft: %d rdmts: %d rdlen: %d\n",
2280 descLeft, regs.rctl.rdmts(), regs.rdlen());
2281 switch (regs.rctl.rdmts()) {
2282 case 2: if (descLeft > .125 * regs.rdlen()) break;
2283 case 1: if (descLeft > .250 * regs.rdlen()) break;
2284 case 0: if (descLeft > .500 * regs.rdlen()) break;
2285 DPRINTF(Ethernet, "RXS: Interrupting (RXDMT) "
2286 "because of descriptors left\n");
2287 postInterrupt(IT_RXDMT);
2288 break;
2289 }
2290
2291 if (rxFifo.empty())
2292 rxDescCache.writeback(0);
2293
2294 if (descLeft == 0) {
2295 anBegin("RXS", "Writeback Descriptors");
2296 rxDescCache.writeback(0);
2297 DPRINTF(EthernetSM, "RXS: No descriptors left in ring, forcing"
2298 " writeback and stopping ticking\n");
2299 rxTick = false;
2300 }
2301
2302 // only support descriptor granulaties
2303 assert(regs.rxdctl.gran());
2304
2305 if (regs.rxdctl.wthresh() >= rxDescCache.descUsed()) {
2306 DPRINTF(EthernetSM,
2307 "RXS: Writing back because WTHRESH >= descUsed\n");
2308 anBegin("RXS", "Writeback Descriptors");
2309 if (regs.rxdctl.wthresh() < (cacheBlockSize()>>4))
2310 rxDescCache.writeback(regs.rxdctl.wthresh()-1);
2311 else
2312 rxDescCache.writeback((cacheBlockSize()-1)>>4);
2313 }
2314
2315 if ((rxDescCache.descUnused() < regs.rxdctl.pthresh()) &&
2316 ((rxDescCache.descLeft() - rxDescCache.descUnused()) >
2317 regs.rxdctl.hthresh())) {
2318 DPRINTF(EthernetSM, "RXS: Fetching descriptors because "
2319 "descUnused < PTHRESH\n");
2320 anBegin("RXS", "Fetch Descriptors");
2321 rxDescCache.fetchDescriptors();
2322 }
2323
2324 if (rxDescCache.descUnused() == 0) {
2325 anBegin("RXS", "Fetch Descriptors");
2326 rxDescCache.fetchDescriptors();
2327 anWe("RXS", rxDescCache.annUnusedCacheQ);
2328 DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
2329 "fetching descriptors and stopping ticking\n");
2330 rxTick = false;
2331 }
2332 return;
2333 }
2334
2335 if (rxDmaPacket) {
2336 DPRINTF(EthernetSM,
2337 "RXS: stopping ticking until packet DMA completes\n");
2338 rxTick = false;
2339 return;
2340 }
2341
2342 if (!rxDescCache.descUnused()) {
2343 anBegin("RXS", "Fetch Descriptors");
2344 rxDescCache.fetchDescriptors();
2345 anWe("RXS", rxDescCache.annUnusedCacheQ);
2346 DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
2347 "stopping ticking\n");
2348 rxTick = false;
2349 DPRINTF(EthernetSM, "RXS: No descriptors available, fetching\n");
2350 return;
2351 }
2352 anPq("RXS", rxDescCache.annUnusedCacheQ);
2353
2354 if (rxFifo.empty()) {
2355 anWe("RXS", "RX FIFO Q");
2356 DPRINTF(EthernetSM, "RXS: RxFIFO empty, stopping ticking\n");
2357 rxTick = false;
2358 return;
2359 }
2360 anPq("RXS", "RX FIFO Q");
2361 anBegin("RXS", "Get Desc");
2362
2363 EthPacketPtr pkt;
2364 pkt = rxFifo.front();
2365
2366
2367 pktOffset = rxDescCache.writePacket(pkt, pktOffset);
2368 DPRINTF(EthernetSM, "RXS: Writing packet into memory\n");
2369 if (pktOffset == pkt->length) {
2370 anBegin( "RXS", "FIFO Dequeue");
2371 DPRINTF(EthernetSM, "RXS: Removing packet from FIFO\n");
2372 pktOffset = 0;
2373 anDq("RXS", "RX FIFO Q");
2374 rxFifo.pop();
2375 }
2376
2377 DPRINTF(EthernetSM, "RXS: stopping ticking until packet DMA completes\n");
2378 rxTick = false;
2379 rxDmaPacket = true;
2380 anBegin("RXS", "DMA Packet");
2381 }
2382
2383 void
2384 IGbE::txWire()
2385 {
2386 if (txFifo.empty()) {
2387 anWe("TXQ", "TX FIFO Q");
2388 txFifoTick = false;
2389 return;
2390 }
2391
2392
2393 anPq("TXQ", "TX FIFO Q");
2394 if (etherInt->sendPacket(txFifo.front())) {
2395 cpa->hwQ(CPA::FL_NONE, sys, macAddr, "TXQ", "WireQ", 0);
2396 if (DTRACE(EthernetSM)) {
2397 IpPtr ip(txFifo.front());
2398 if (ip)
2399 DPRINTF(EthernetSM, "Transmitting Ip packet with Id=%d\n",
2400 ip->id());
2401 else
2402 DPRINTF(EthernetSM, "Transmitting Non-Ip packet\n");
2403 }
2404 anDq("TXQ", "TX FIFO Q");
2405 anBegin("TXQ", "Wire Send");
2406 DPRINTF(EthernetSM,
2407 "TxFIFO: Successful transmit, bytes available in fifo: %d\n",
2408 txFifo.avail());
2409
2410 txBytes += txFifo.front()->length;
2411 txPackets++;
2412 txFifoTick = false;
2413
2414 txFifo.pop();
2415 } else {
2416 // We'll get woken up when the packet ethTxDone() gets called
2417 txFifoTick = false;
2418 }
2419 }
2420
2421 void
2422 IGbE::tick()
2423 {
2424 DPRINTF(EthernetSM, "IGbE: -------------- Cycle --------------\n");
2425
2426 if (rxTick)
2427 rxStateMachine();
2428
2429 if (txTick)
2430 txStateMachine();
2431
2432 if (txFifoTick)
2433 txWire();
2434
2435
2436 if (rxTick || txTick || txFifoTick)
2437 schedule(tickEvent, curTick() + clockPeriod());
2438 }
2439
2440 void
2441 IGbE::ethTxDone()
2442 {
2443 anBegin("TXQ", "Send Done");
2444 // restart the tx state machines if they are stopped
2445 // fifo to send another packet
2446 // tx sm to put more data into the fifo
2447 txFifoTick = true && !drainEvent;
2448 if (txDescCache.descLeft() != 0 && !drainEvent)
2449 txTick = true;
2450
2451 restartClock();
2452 txWire();
2453 DPRINTF(EthernetSM, "TxFIFO: Transmission complete\n");
2454 }
2455
2456 void
2457 IGbE::serialize(std::ostream &os)
2458 {
2459 PciDev::serialize(os);
2460
2461 regs.serialize(os);
2462 SERIALIZE_SCALAR(eeOpBits);
2463 SERIALIZE_SCALAR(eeAddrBits);
2464 SERIALIZE_SCALAR(eeDataBits);
2465 SERIALIZE_SCALAR(eeOpcode);
2466 SERIALIZE_SCALAR(eeAddr);
2467 SERIALIZE_SCALAR(lastInterrupt);
2468 SERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
2469
2470 rxFifo.serialize("rxfifo", os);
2471 txFifo.serialize("txfifo", os);
2472
2473 bool txPktExists = txPacket;
2474 SERIALIZE_SCALAR(txPktExists);
2475 if (txPktExists)
2476 txPacket->serialize("txpacket", os);
2477
2478 Tick rdtr_time = 0, radv_time = 0, tidv_time = 0, tadv_time = 0,
2479 inter_time = 0;
2480
2481 if (rdtrEvent.scheduled())
2482 rdtr_time = rdtrEvent.when();
2483 SERIALIZE_SCALAR(rdtr_time);
2484
2485 if (radvEvent.scheduled())
2486 radv_time = radvEvent.when();
2487 SERIALIZE_SCALAR(radv_time);
2488
2489 if (tidvEvent.scheduled())
2490 tidv_time = tidvEvent.when();
2491 SERIALIZE_SCALAR(tidv_time);
2492
2493 if (tadvEvent.scheduled())
2494 tadv_time = tadvEvent.when();
2495 SERIALIZE_SCALAR(tadv_time);
2496
2497 if (interEvent.scheduled())
2498 inter_time = interEvent.when();
2499 SERIALIZE_SCALAR(inter_time);
2500
2501 SERIALIZE_SCALAR(pktOffset);
2502
2503 nameOut(os, csprintf("%s.TxDescCache", name()));
2504 txDescCache.serialize(os);
2505
2506 nameOut(os, csprintf("%s.RxDescCache", name()));
2507 rxDescCache.serialize(os);
2508 }
2509
2510 void
2511 IGbE::unserialize(Checkpoint *cp, const std::string &section)
2512 {
2513 PciDev::unserialize(cp, section);
2514
2515 regs.unserialize(cp, section);
2516 UNSERIALIZE_SCALAR(eeOpBits);
2517 UNSERIALIZE_SCALAR(eeAddrBits);
2518 UNSERIALIZE_SCALAR(eeDataBits);
2519 UNSERIALIZE_SCALAR(eeOpcode);
2520 UNSERIALIZE_SCALAR(eeAddr);
2521 UNSERIALIZE_SCALAR(lastInterrupt);
2522 UNSERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
2523
2524 rxFifo.unserialize("rxfifo", cp, section);
2525 txFifo.unserialize("txfifo", cp, section);
2526
2527 bool txPktExists;
2528 UNSERIALIZE_SCALAR(txPktExists);
2529 if (txPktExists) {
2530 txPacket = new EthPacketData(16384);
2531 txPacket->unserialize("txpacket", cp, section);
2532 }
2533
2534 rxTick = true;
2535 txTick = true;
2536 txFifoTick = true;
2537
2538 Tick rdtr_time, radv_time, tidv_time, tadv_time, inter_time;
2539 UNSERIALIZE_SCALAR(rdtr_time);
2540 UNSERIALIZE_SCALAR(radv_time);
2541 UNSERIALIZE_SCALAR(tidv_time);
2542 UNSERIALIZE_SCALAR(tadv_time);
2543 UNSERIALIZE_SCALAR(inter_time);
2544
2545 if (rdtr_time)
2546 schedule(rdtrEvent, rdtr_time);
2547
2548 if (radv_time)
2549 schedule(radvEvent, radv_time);
2550
2551 if (tidv_time)
2552 schedule(tidvEvent, tidv_time);
2553
2554 if (tadv_time)
2555 schedule(tadvEvent, tadv_time);
2556
2557 if (inter_time)
2558 schedule(interEvent, inter_time);
2559
2560 UNSERIALIZE_SCALAR(pktOffset);
2561
2562 txDescCache.unserialize(cp, csprintf("%s.TxDescCache", section));
2563
2564 rxDescCache.unserialize(cp, csprintf("%s.RxDescCache", section));
2565 }
2566
2567 IGbE *
2568 IGbEParams::create()
2569 {
2570 return new IGbE(this);
2571 }