freedreno/ir3/sched: avoid scheduling outputs
[mesa.git] / src / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "compiler/shader_enums.h"
31
32 #include "util/bitscan.h"
33 #include "util/list.h"
34 #include "util/set.h"
35 #include "util/u_debug.h"
36
37 #include "instr-a3xx.h"
38
39 /* low level intermediate representation of an adreno shader program */
40
41 struct ir3_compiler;
42 struct ir3;
43 struct ir3_instruction;
44 struct ir3_block;
45
46 struct ir3_info {
47 uint32_t gpu_id;
48 uint16_t sizedwords;
49 uint16_t instrs_count; /* expanded to account for rpt's */
50 uint16_t nops_count; /* # of nop instructions, including nopN */
51 uint16_t mov_count;
52 uint16_t cov_count;
53 /* NOTE: max_reg, etc, does not include registers not touched
54 * by the shader (ie. vertex fetched via VFD_DECODE but not
55 * touched by shader)
56 */
57 int8_t max_reg; /* highest GPR # used by shader */
58 int8_t max_half_reg;
59 int16_t max_const;
60
61 /* number of sync bits: */
62 uint16_t ss, sy;
63
64 /* estimate of number of cycles stalled on (ss) */
65 uint16_t sstall;
66
67 uint16_t last_baryf; /* instruction # of last varying fetch */
68 };
69
70 struct ir3_register {
71 enum {
72 IR3_REG_CONST = 0x001,
73 IR3_REG_IMMED = 0x002,
74 IR3_REG_HALF = 0x004,
75 /* high registers are used for some things in compute shaders,
76 * for example. Seems to be for things that are global to all
77 * threads in a wave, so possibly these are global/shared by
78 * all the threads in the wave?
79 */
80 IR3_REG_HIGH = 0x008,
81 IR3_REG_RELATIV= 0x010,
82 IR3_REG_R = 0x020,
83 /* Most instructions, it seems, can do float abs/neg but not
84 * integer. The CP pass needs to know what is intended (int or
85 * float) in order to do the right thing. For this reason the
86 * abs/neg flags are split out into float and int variants. In
87 * addition, .b (bitwise) operations, the negate is actually a
88 * bitwise not, so split that out into a new flag to make it
89 * more clear.
90 */
91 IR3_REG_FNEG = 0x040,
92 IR3_REG_FABS = 0x080,
93 IR3_REG_SNEG = 0x100,
94 IR3_REG_SABS = 0x200,
95 IR3_REG_BNOT = 0x400,
96 IR3_REG_EVEN = 0x800,
97 IR3_REG_POS_INF= 0x1000,
98 /* (ei) flag, end-input? Set on last bary, presumably to signal
99 * that the shader needs no more input:
100 */
101 IR3_REG_EI = 0x2000,
102 /* meta-flags, for intermediate stages of IR, ie.
103 * before register assignment is done:
104 */
105 IR3_REG_SSA = 0x4000, /* 'instr' is ptr to assigning instr */
106 IR3_REG_ARRAY = 0x8000,
107
108 } flags;
109
110 /* used for cat5 instructions, but also for internal/IR level
111 * tracking of what registers are read/written by an instruction.
112 * wrmask may be a bad name since it is used to represent both
113 * src and dst that touch multiple adjacent registers.
114 */
115 unsigned wrmask : 16; /* up to vec16 */
116
117 /* for relative addressing, 32bits for array size is too small,
118 * but otoh we don't need to deal with disjoint sets, so instead
119 * use a simple size field (number of scalar components).
120 *
121 * Note the size field isn't important for relative const (since
122 * we don't have to do register allocation for constants).
123 */
124 unsigned size : 15;
125
126 bool merged : 1; /* half-regs conflict with full regs (ie >= a6xx) */
127
128 /* normal registers:
129 * the component is in the low two bits of the reg #, so
130 * rN.x becomes: (N << 2) | x
131 */
132 uint16_t num;
133 union {
134 /* immediate: */
135 int32_t iim_val;
136 uint32_t uim_val;
137 float fim_val;
138 /* relative: */
139 struct {
140 uint16_t id;
141 int16_t offset;
142 } array;
143 };
144
145 /* For IR3_REG_SSA, src registers contain ptr back to assigning
146 * instruction.
147 *
148 * For IR3_REG_ARRAY, the pointer is back to the last dependent
149 * array access (although the net effect is the same, it points
150 * back to a previous instruction that we depend on).
151 */
152 struct ir3_instruction *instr;
153 };
154
155 /*
156 * Stupid/simple growable array implementation:
157 */
158 #define DECLARE_ARRAY(type, name) \
159 unsigned name ## _count, name ## _sz; \
160 type * name;
161
162 #define array_insert(ctx, arr, val) do { \
163 if (arr ## _count == arr ## _sz) { \
164 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
165 arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
166 } \
167 arr[arr ##_count++] = val; \
168 } while (0)
169
170 struct ir3_instruction {
171 struct ir3_block *block;
172 opc_t opc;
173 enum {
174 /* (sy) flag is set on first instruction, and after sample
175 * instructions (probably just on RAW hazard).
176 */
177 IR3_INSTR_SY = 0x001,
178 /* (ss) flag is set on first instruction, and first instruction
179 * to depend on the result of "long" instructions (RAW hazard):
180 *
181 * rcp, rsq, log2, exp2, sin, cos, sqrt
182 *
183 * It seems to synchronize until all in-flight instructions are
184 * completed, for example:
185 *
186 * rsq hr1.w, hr1.w
187 * add.f hr2.z, (neg)hr2.z, hc0.y
188 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
189 * rsq hr2.x, hr2.x
190 * (rpt1)nop
191 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
192 * nop
193 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
194 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
195 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
196 *
197 * The last mul.f does not have (ss) set, presumably because the
198 * (ss) on the previous instruction does the job.
199 *
200 * The blob driver also seems to set it on WAR hazards, although
201 * not really clear if this is needed or just blob compiler being
202 * sloppy. So far I haven't found a case where removing the (ss)
203 * causes problems for WAR hazard, but I could just be getting
204 * lucky:
205 *
206 * rcp r1.y, r3.y
207 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
208 *
209 */
210 IR3_INSTR_SS = 0x002,
211 /* (jp) flag is set on jump targets:
212 */
213 IR3_INSTR_JP = 0x004,
214 IR3_INSTR_UL = 0x008,
215 IR3_INSTR_3D = 0x010,
216 IR3_INSTR_A = 0x020,
217 IR3_INSTR_O = 0x040,
218 IR3_INSTR_P = 0x080,
219 IR3_INSTR_S = 0x100,
220 IR3_INSTR_S2EN = 0x200,
221 IR3_INSTR_G = 0x400,
222 IR3_INSTR_SAT = 0x800,
223 /* (cat5/cat6) Bindless */
224 IR3_INSTR_B = 0x1000,
225 /* (cat5-only) Get some parts of the encoding from a1.x */
226 IR3_INSTR_A1EN = 0x2000,
227 /* meta-flags, for intermediate stages of IR, ie.
228 * before register assignment is done:
229 */
230 IR3_INSTR_MARK = 0x4000,
231 IR3_INSTR_UNUSED= 0x8000,
232 } flags;
233 uint8_t repeat;
234 uint8_t nop;
235 #ifdef DEBUG
236 unsigned regs_max;
237 #endif
238 unsigned regs_count;
239 struct ir3_register **regs;
240 union {
241 struct {
242 char inv;
243 char comp;
244 int immed;
245 struct ir3_block *target;
246 } cat0;
247 struct {
248 type_t src_type, dst_type;
249 } cat1;
250 struct {
251 enum {
252 IR3_COND_LT = 0,
253 IR3_COND_LE = 1,
254 IR3_COND_GT = 2,
255 IR3_COND_GE = 3,
256 IR3_COND_EQ = 4,
257 IR3_COND_NE = 5,
258 } condition;
259 } cat2;
260 struct {
261 unsigned samp, tex;
262 unsigned tex_base : 3;
263 type_t type;
264 } cat5;
265 struct {
266 type_t type;
267 int src_offset;
268 int dst_offset;
269 int iim_val : 3; /* for ldgb/stgb, # of components */
270 unsigned d : 3; /* for ldc, component offset */
271 bool typed : 1;
272 unsigned base : 3;
273 } cat6;
274 struct {
275 unsigned w : 1; /* write */
276 unsigned r : 1; /* read */
277 unsigned l : 1; /* local */
278 unsigned g : 1; /* global */
279 } cat7;
280 /* for meta-instructions, just used to hold extra data
281 * before instruction scheduling, etc
282 */
283 struct {
284 int off; /* component/offset */
285 } split;
286 struct {
287 /* for output collects, this maps back to the entry in the
288 * ir3_shader_variant::outputs table.
289 */
290 int outidx;
291 } collect;
292 struct {
293 unsigned samp, tex;
294 unsigned input_offset;
295 unsigned samp_base : 3;
296 unsigned tex_base : 3;
297 } prefetch;
298 struct {
299 /* maps back to entry in ir3_shader_variant::inputs table: */
300 int inidx;
301 /* for sysvals, identifies the sysval type. Mostly so we can
302 * identify the special cases where a sysval should not be DCE'd
303 * (currently, just pre-fs texture fetch)
304 */
305 gl_system_value sysval;
306 } input;
307 };
308
309 /* When we get to the RA stage, we need instruction's position/name: */
310 uint16_t ip;
311 uint16_t name;
312
313 /* used for per-pass extra instruction data.
314 *
315 * TODO we should remove the per-pass data like this and 'use_count'
316 * and do something similar to what RA does w/ ir3_ra_instr_data..
317 * ie. use the ir3_count_instructions pass, and then use instr->ip
318 * to index into a table of pass-private data.
319 */
320 void *data;
321
322 /**
323 * Valid if pass calls ir3_find_ssa_uses().. see foreach_ssa_use()
324 */
325 struct set *uses;
326
327 int sun; /* Sethi–Ullman number, used by sched */
328 int use_count; /* currently just updated/used by cp */
329
330 /* Used during CP and RA stages. For collect and shader inputs/
331 * outputs where we need a sequence of consecutive registers,
332 * keep track of each src instructions left (ie 'n-1') and right
333 * (ie 'n+1') neighbor. The front-end must insert enough mov's
334 * to ensure that each instruction has at most one left and at
335 * most one right neighbor. During the copy-propagation pass,
336 * we only remove mov's when we can preserve this constraint.
337 * And during the RA stage, we use the neighbor information to
338 * allocate a block of registers in one shot.
339 *
340 * TODO: maybe just add something like:
341 * struct ir3_instruction_ref {
342 * struct ir3_instruction *instr;
343 * unsigned cnt;
344 * }
345 *
346 * Or can we get away without the refcnt stuff? It seems like
347 * it should be overkill.. the problem is if, potentially after
348 * already eliminating some mov's, if you have a single mov that
349 * needs to be grouped with it's neighbors in two different
350 * places (ex. shader output and a collect).
351 */
352 struct {
353 struct ir3_instruction *left, *right;
354 uint16_t left_cnt, right_cnt;
355 } cp;
356
357 /* an instruction can reference at most one address register amongst
358 * it's src/dst registers. Beyond that, you need to insert mov's.
359 *
360 * NOTE: do not write this directly, use ir3_instr_set_address()
361 */
362 struct ir3_instruction *address;
363
364 /* Tracking for additional dependent instructions. Used to handle
365 * barriers, WAR hazards for arrays/SSBOs/etc.
366 */
367 DECLARE_ARRAY(struct ir3_instruction *, deps);
368
369 /*
370 * From PoV of instruction scheduling, not execution (ie. ignores global/
371 * local distinction):
372 * shared image atomic SSBO everything
373 * barrier()/ - R/W R/W R/W R/W X
374 * groupMemoryBarrier()
375 * memoryBarrier() - R/W R/W
376 * (but only images declared coherent?)
377 * memoryBarrierAtomic() - R/W
378 * memoryBarrierBuffer() - R/W
379 * memoryBarrierImage() - R/W
380 * memoryBarrierShared() - R/W
381 *
382 * TODO I think for SSBO/image/shared, in cases where we can determine
383 * which variable is accessed, we don't need to care about accesses to
384 * different variables (unless declared coherent??)
385 */
386 enum {
387 IR3_BARRIER_EVERYTHING = 1 << 0,
388 IR3_BARRIER_SHARED_R = 1 << 1,
389 IR3_BARRIER_SHARED_W = 1 << 2,
390 IR3_BARRIER_IMAGE_R = 1 << 3,
391 IR3_BARRIER_IMAGE_W = 1 << 4,
392 IR3_BARRIER_BUFFER_R = 1 << 5,
393 IR3_BARRIER_BUFFER_W = 1 << 6,
394 IR3_BARRIER_ARRAY_R = 1 << 7,
395 IR3_BARRIER_ARRAY_W = 1 << 8,
396 } barrier_class, barrier_conflict;
397
398 /* Entry in ir3_block's instruction list: */
399 struct list_head node;
400
401 #ifdef DEBUG
402 uint32_t serialno;
403 #endif
404
405 // TODO only computerator/assembler:
406 int line;
407 };
408
409 static inline struct ir3_instruction *
410 ir3_neighbor_first(struct ir3_instruction *instr)
411 {
412 int cnt = 0;
413 while (instr->cp.left) {
414 instr = instr->cp.left;
415 if (++cnt > 0xffff) {
416 debug_assert(0);
417 break;
418 }
419 }
420 return instr;
421 }
422
423 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
424 {
425 int num = 1;
426
427 debug_assert(!instr->cp.left);
428
429 while (instr->cp.right) {
430 num++;
431 instr = instr->cp.right;
432 if (num > 0xffff) {
433 debug_assert(0);
434 break;
435 }
436 }
437
438 return num;
439 }
440
441 struct ir3 {
442 struct ir3_compiler *compiler;
443 gl_shader_stage type;
444
445 DECLARE_ARRAY(struct ir3_instruction *, inputs);
446 DECLARE_ARRAY(struct ir3_instruction *, outputs);
447
448 /* Track bary.f (and ldlv) instructions.. this is needed in
449 * scheduling to ensure that all varying fetches happen before
450 * any potential kill instructions. The hw gets grumpy if all
451 * threads in a group are killed before the last bary.f gets
452 * a chance to signal end of input (ei).
453 */
454 DECLARE_ARRAY(struct ir3_instruction *, baryfs);
455
456 /* Track all indirect instructions (read and write). To avoid
457 * deadlock scenario where an address register gets scheduled,
458 * but other dependent src instructions cannot be scheduled due
459 * to dependency on a *different* address register value, the
460 * scheduler needs to ensure that all dependencies other than
461 * the instruction other than the address register are scheduled
462 * before the one that writes the address register. Having a
463 * convenient list of instructions that reference some address
464 * register simplifies this.
465 */
466 DECLARE_ARRAY(struct ir3_instruction *, a0_users);
467
468 /* same for a1.x: */
469 DECLARE_ARRAY(struct ir3_instruction *, a1_users);
470
471 /* and same for instructions that consume predicate register: */
472 DECLARE_ARRAY(struct ir3_instruction *, predicates);
473
474 /* Track texture sample instructions which need texture state
475 * patched in (for astc-srgb workaround):
476 */
477 DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
478
479 /* List of blocks: */
480 struct list_head block_list;
481
482 /* List of ir3_array's: */
483 struct list_head array_list;
484
485 unsigned max_sun; /* max Sethi–Ullman number */
486
487 #ifdef DEBUG
488 unsigned block_count, instr_count;
489 #endif
490 };
491
492 struct ir3_array {
493 struct list_head node;
494 unsigned length;
495 unsigned id;
496
497 struct nir_register *r;
498
499 /* To avoid array write's from getting DCE'd, keep track of the
500 * most recent write. Any array access depends on the most
501 * recent write. This way, nothing depends on writes after the
502 * last read. But all the writes that happen before that have
503 * something depending on them
504 */
505 struct ir3_instruction *last_write;
506
507 /* extra stuff used in RA pass: */
508 unsigned base; /* base vreg name */
509 unsigned reg; /* base physical reg */
510 uint16_t start_ip, end_ip;
511
512 /* Indicates if half-precision */
513 bool half;
514 };
515
516 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
517
518 struct ir3_block {
519 struct list_head node;
520 struct ir3 *shader;
521
522 const struct nir_block *nblock;
523
524 struct list_head instr_list; /* list of ir3_instruction */
525
526 /* each block has either one or two successors.. in case of
527 * two successors, 'condition' decides which one to follow.
528 * A block preceding an if/else has two successors.
529 */
530 struct ir3_instruction *condition;
531 struct ir3_block *successors[2];
532
533 struct set *predecessors; /* set of ir3_block */
534
535 uint16_t start_ip, end_ip;
536
537 /* Track instructions which do not write a register but other-
538 * wise must not be discarded (such as kill, stg, etc)
539 */
540 DECLARE_ARRAY(struct ir3_instruction *, keeps);
541
542 /* used for per-pass extra block data. Mainly used right
543 * now in RA step to track livein/liveout.
544 */
545 void *data;
546
547 #ifdef DEBUG
548 uint32_t serialno;
549 #endif
550 };
551
552 static inline uint32_t
553 block_id(struct ir3_block *block)
554 {
555 #ifdef DEBUG
556 return block->serialno;
557 #else
558 return (uint32_t)(unsigned long)block;
559 #endif
560 }
561
562 struct ir3 * ir3_create(struct ir3_compiler *compiler, gl_shader_stage type);
563 void ir3_destroy(struct ir3 *shader);
564 void * ir3_assemble(struct ir3 *shader,
565 struct ir3_info *info, uint32_t gpu_id);
566 void * ir3_alloc(struct ir3 *shader, int sz);
567
568 struct ir3_block * ir3_block_create(struct ir3 *shader);
569
570 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
571 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
572 opc_t opc, int nreg);
573 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
574 void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
575 const char *ir3_instr_name(struct ir3_instruction *instr);
576
577 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
578 int num, int flags);
579 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
580 struct ir3_register *reg);
581
582 void ir3_instr_set_address(struct ir3_instruction *instr,
583 struct ir3_instruction *addr);
584
585 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
586 {
587 if (instr->flags & IR3_INSTR_MARK)
588 return true; /* already visited */
589 instr->flags |= IR3_INSTR_MARK;
590 return false;
591 }
592
593 void ir3_block_clear_mark(struct ir3_block *block);
594 void ir3_clear_mark(struct ir3 *shader);
595
596 unsigned ir3_count_instructions(struct ir3 *ir);
597 unsigned ir3_count_instructions_ra(struct ir3 *ir);
598
599 void ir3_find_ssa_uses(struct ir3 *ir, void *mem_ctx, bool falsedeps);
600
601 #include "util/set.h"
602 #define foreach_ssa_use(__use, __instr) \
603 for (struct ir3_instruction *__use = (void *)~0; \
604 __use && (__instr)->uses; __use = NULL) \
605 set_foreach ((__instr)->uses, __entry) \
606 if ((__use = (void *)__entry->key))
607
608 #define MAX_ARRAYS 16
609
610 /* comp:
611 * 0 - x
612 * 1 - y
613 * 2 - z
614 * 3 - w
615 */
616 static inline uint32_t regid(int num, int comp)
617 {
618 return (num << 2) | (comp & 0x3);
619 }
620
621 static inline uint32_t reg_num(struct ir3_register *reg)
622 {
623 return reg->num >> 2;
624 }
625
626 static inline uint32_t reg_comp(struct ir3_register *reg)
627 {
628 return reg->num & 0x3;
629 }
630
631 #define INVALID_REG regid(63, 0)
632 #define VALIDREG(r) ((r) != INVALID_REG)
633 #define CONDREG(r, val) COND(VALIDREG(r), (val))
634
635 static inline bool is_flow(struct ir3_instruction *instr)
636 {
637 return (opc_cat(instr->opc) == 0);
638 }
639
640 static inline bool is_kill(struct ir3_instruction *instr)
641 {
642 return instr->opc == OPC_KILL;
643 }
644
645 static inline bool is_nop(struct ir3_instruction *instr)
646 {
647 return instr->opc == OPC_NOP;
648 }
649
650 static inline bool is_same_type_reg(struct ir3_register *reg1,
651 struct ir3_register *reg2)
652 {
653 unsigned type_reg1 = (reg1->flags & (IR3_REG_HIGH | IR3_REG_HALF));
654 unsigned type_reg2 = (reg2->flags & (IR3_REG_HIGH | IR3_REG_HALF));
655
656 if (type_reg1 ^ type_reg2)
657 return false;
658 else
659 return true;
660 }
661
662 /* Is it a non-transformative (ie. not type changing) mov? This can
663 * also include absneg.s/absneg.f, which for the most part can be
664 * treated as a mov (single src argument).
665 */
666 static inline bool is_same_type_mov(struct ir3_instruction *instr)
667 {
668 struct ir3_register *dst;
669
670 switch (instr->opc) {
671 case OPC_MOV:
672 if (instr->cat1.src_type != instr->cat1.dst_type)
673 return false;
674 /* If the type of dest reg and src reg are different,
675 * it shouldn't be considered as same type mov
676 */
677 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
678 return false;
679 break;
680 case OPC_ABSNEG_F:
681 case OPC_ABSNEG_S:
682 if (instr->flags & IR3_INSTR_SAT)
683 return false;
684 /* If the type of dest reg and src reg are different,
685 * it shouldn't be considered as same type mov
686 */
687 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
688 return false;
689 break;
690 default:
691 return false;
692 }
693
694 dst = instr->regs[0];
695
696 /* mov's that write to a0 or p0.x are special: */
697 if (dst->num == regid(REG_P0, 0))
698 return false;
699 if (reg_num(dst) == REG_A0)
700 return false;
701
702 if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
703 return false;
704
705 return true;
706 }
707
708 /* A move from const, which changes size but not type, can also be
709 * folded into dest instruction in some cases.
710 */
711 static inline bool is_const_mov(struct ir3_instruction *instr)
712 {
713 if (instr->opc != OPC_MOV)
714 return false;
715
716 if (!(instr->regs[1]->flags & IR3_REG_CONST))
717 return false;
718
719 type_t src_type = instr->cat1.src_type;
720 type_t dst_type = instr->cat1.dst_type;
721
722 return (type_float(src_type) && type_float(dst_type)) ||
723 (type_uint(src_type) && type_uint(dst_type)) ||
724 (type_sint(src_type) && type_sint(dst_type));
725 }
726
727 static inline bool is_alu(struct ir3_instruction *instr)
728 {
729 return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
730 }
731
732 static inline bool is_sfu(struct ir3_instruction *instr)
733 {
734 return (opc_cat(instr->opc) == 4);
735 }
736
737 static inline bool is_tex(struct ir3_instruction *instr)
738 {
739 return (opc_cat(instr->opc) == 5);
740 }
741
742 static inline bool is_tex_or_prefetch(struct ir3_instruction *instr)
743 {
744 return is_tex(instr) || (instr->opc == OPC_META_TEX_PREFETCH);
745 }
746
747 static inline bool is_mem(struct ir3_instruction *instr)
748 {
749 return (opc_cat(instr->opc) == 6);
750 }
751
752 static inline bool is_barrier(struct ir3_instruction *instr)
753 {
754 return (opc_cat(instr->opc) == 7);
755 }
756
757 static inline bool
758 is_half(struct ir3_instruction *instr)
759 {
760 return !!(instr->regs[0]->flags & IR3_REG_HALF);
761 }
762
763 static inline bool
764 is_high(struct ir3_instruction *instr)
765 {
766 return !!(instr->regs[0]->flags & IR3_REG_HIGH);
767 }
768
769 static inline bool
770 is_store(struct ir3_instruction *instr)
771 {
772 /* these instructions, the "destination" register is
773 * actually a source, the address to store to.
774 */
775 switch (instr->opc) {
776 case OPC_STG:
777 case OPC_STGB:
778 case OPC_STIB:
779 case OPC_STP:
780 case OPC_STL:
781 case OPC_STLW:
782 case OPC_L2G:
783 case OPC_G2L:
784 return true;
785 default:
786 return false;
787 }
788 }
789
790 static inline bool is_load(struct ir3_instruction *instr)
791 {
792 switch (instr->opc) {
793 case OPC_LDG:
794 case OPC_LDGB:
795 case OPC_LDIB:
796 case OPC_LDL:
797 case OPC_LDP:
798 case OPC_L2G:
799 case OPC_LDLW:
800 case OPC_LDC:
801 case OPC_LDLV:
802 /* probably some others too.. */
803 return true;
804 default:
805 return false;
806 }
807 }
808
809 static inline bool is_input(struct ir3_instruction *instr)
810 {
811 /* in some cases, ldlv is used to fetch varying without
812 * interpolation.. fortunately inloc is the first src
813 * register in either case
814 */
815 switch (instr->opc) {
816 case OPC_LDLV:
817 case OPC_BARY_F:
818 return true;
819 default:
820 return false;
821 }
822 }
823
824 static inline bool is_bool(struct ir3_instruction *instr)
825 {
826 switch (instr->opc) {
827 case OPC_CMPS_F:
828 case OPC_CMPS_S:
829 case OPC_CMPS_U:
830 return true;
831 default:
832 return false;
833 }
834 }
835
836 static inline bool is_meta(struct ir3_instruction *instr)
837 {
838 return (opc_cat(instr->opc) == -1);
839 }
840
841 static inline unsigned dest_regs(struct ir3_instruction *instr)
842 {
843 if ((instr->regs_count == 0) || is_store(instr) || is_flow(instr))
844 return 0;
845
846 return util_last_bit(instr->regs[0]->wrmask);
847 }
848
849 static inline bool
850 writes_gpr(struct ir3_instruction *instr)
851 {
852 if (dest_regs(instr) == 0)
853 return false;
854 /* is dest a normal temp register: */
855 struct ir3_register *reg = instr->regs[0];
856 debug_assert(!(reg->flags & (IR3_REG_CONST | IR3_REG_IMMED)));
857 if ((reg_num(reg) == REG_A0) ||
858 (reg->num == regid(REG_P0, 0)))
859 return false;
860 return true;
861 }
862
863 static inline bool writes_addr0(struct ir3_instruction *instr)
864 {
865 if (instr->regs_count > 0) {
866 struct ir3_register *dst = instr->regs[0];
867 return dst->num == regid(REG_A0, 0);
868 }
869 return false;
870 }
871
872 static inline bool writes_addr1(struct ir3_instruction *instr)
873 {
874 if (instr->regs_count > 0) {
875 struct ir3_register *dst = instr->regs[0];
876 return dst->num == regid(REG_A0, 1);
877 }
878 return false;
879 }
880
881 static inline bool writes_pred(struct ir3_instruction *instr)
882 {
883 if (instr->regs_count > 0) {
884 struct ir3_register *dst = instr->regs[0];
885 return reg_num(dst) == REG_P0;
886 }
887 return false;
888 }
889
890 /* returns defining instruction for reg */
891 /* TODO better name */
892 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
893 {
894 if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
895 return reg->instr;
896 }
897 return NULL;
898 }
899
900 static inline bool conflicts(struct ir3_instruction *a,
901 struct ir3_instruction *b)
902 {
903 return (a && b) && (a != b);
904 }
905
906 static inline bool reg_gpr(struct ir3_register *r)
907 {
908 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
909 return false;
910 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
911 return false;
912 return true;
913 }
914
915 static inline type_t half_type(type_t type)
916 {
917 switch (type) {
918 case TYPE_F32: return TYPE_F16;
919 case TYPE_U32: return TYPE_U16;
920 case TYPE_S32: return TYPE_S16;
921 case TYPE_F16:
922 case TYPE_U16:
923 case TYPE_S16:
924 return type;
925 default:
926 assert(0);
927 return ~0;
928 }
929 }
930
931 /* some cat2 instructions (ie. those which are not float) can embed an
932 * immediate:
933 */
934 static inline bool ir3_cat2_int(opc_t opc)
935 {
936 switch (opc) {
937 case OPC_ADD_U:
938 case OPC_ADD_S:
939 case OPC_SUB_U:
940 case OPC_SUB_S:
941 case OPC_CMPS_U:
942 case OPC_CMPS_S:
943 case OPC_MIN_U:
944 case OPC_MIN_S:
945 case OPC_MAX_U:
946 case OPC_MAX_S:
947 case OPC_CMPV_U:
948 case OPC_CMPV_S:
949 case OPC_MUL_U24:
950 case OPC_MUL_S24:
951 case OPC_MULL_U:
952 case OPC_CLZ_S:
953 case OPC_ABSNEG_S:
954 case OPC_AND_B:
955 case OPC_OR_B:
956 case OPC_NOT_B:
957 case OPC_XOR_B:
958 case OPC_BFREV_B:
959 case OPC_CLZ_B:
960 case OPC_SHL_B:
961 case OPC_SHR_B:
962 case OPC_ASHR_B:
963 case OPC_MGEN_B:
964 case OPC_GETBIT_B:
965 case OPC_CBITS_B:
966 case OPC_BARY_F:
967 return true;
968
969 default:
970 return false;
971 }
972 }
973
974 /* map cat2 instruction to valid abs/neg flags: */
975 static inline unsigned ir3_cat2_absneg(opc_t opc)
976 {
977 switch (opc) {
978 case OPC_ADD_F:
979 case OPC_MIN_F:
980 case OPC_MAX_F:
981 case OPC_MUL_F:
982 case OPC_SIGN_F:
983 case OPC_CMPS_F:
984 case OPC_ABSNEG_F:
985 case OPC_CMPV_F:
986 case OPC_FLOOR_F:
987 case OPC_CEIL_F:
988 case OPC_RNDNE_F:
989 case OPC_RNDAZ_F:
990 case OPC_TRUNC_F:
991 case OPC_BARY_F:
992 return IR3_REG_FABS | IR3_REG_FNEG;
993
994 case OPC_ADD_U:
995 case OPC_ADD_S:
996 case OPC_SUB_U:
997 case OPC_SUB_S:
998 case OPC_CMPS_U:
999 case OPC_CMPS_S:
1000 case OPC_MIN_U:
1001 case OPC_MIN_S:
1002 case OPC_MAX_U:
1003 case OPC_MAX_S:
1004 case OPC_CMPV_U:
1005 case OPC_CMPV_S:
1006 case OPC_MUL_U24:
1007 case OPC_MUL_S24:
1008 case OPC_MULL_U:
1009 case OPC_CLZ_S:
1010 return 0;
1011
1012 case OPC_ABSNEG_S:
1013 return IR3_REG_SABS | IR3_REG_SNEG;
1014
1015 case OPC_AND_B:
1016 case OPC_OR_B:
1017 case OPC_NOT_B:
1018 case OPC_XOR_B:
1019 case OPC_BFREV_B:
1020 case OPC_CLZ_B:
1021 case OPC_SHL_B:
1022 case OPC_SHR_B:
1023 case OPC_ASHR_B:
1024 case OPC_MGEN_B:
1025 case OPC_GETBIT_B:
1026 case OPC_CBITS_B:
1027 return IR3_REG_BNOT;
1028
1029 default:
1030 return 0;
1031 }
1032 }
1033
1034 /* map cat3 instructions to valid abs/neg flags: */
1035 static inline unsigned ir3_cat3_absneg(opc_t opc)
1036 {
1037 switch (opc) {
1038 case OPC_MAD_F16:
1039 case OPC_MAD_F32:
1040 case OPC_SEL_F16:
1041 case OPC_SEL_F32:
1042 return IR3_REG_FNEG;
1043
1044 case OPC_MAD_U16:
1045 case OPC_MADSH_U16:
1046 case OPC_MAD_S16:
1047 case OPC_MADSH_M16:
1048 case OPC_MAD_U24:
1049 case OPC_MAD_S24:
1050 case OPC_SEL_S16:
1051 case OPC_SEL_S32:
1052 case OPC_SAD_S16:
1053 case OPC_SAD_S32:
1054 /* neg *may* work on 3rd src.. */
1055
1056 case OPC_SEL_B16:
1057 case OPC_SEL_B32:
1058
1059 default:
1060 return 0;
1061 }
1062 }
1063
1064 #define MASK(n) ((1 << (n)) - 1)
1065
1066 /* iterator for an instructions's sources (reg), also returns src #: */
1067 #define foreach_src_n(__srcreg, __n, __instr) \
1068 if ((__instr)->regs_count) \
1069 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
1070 if ((__srcreg = (__instr)->regs[__n + 1]))
1071
1072 /* iterator for an instructions's sources (reg): */
1073 #define foreach_src(__srcreg, __instr) \
1074 foreach_src_n(__srcreg, __i, __instr)
1075
1076 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
1077 {
1078 unsigned cnt = instr->regs_count + instr->deps_count;
1079 if (instr->address)
1080 cnt++;
1081 return cnt;
1082 }
1083
1084 static inline struct ir3_instruction **
1085 __ssa_srcp_n(struct ir3_instruction *instr, unsigned n)
1086 {
1087 if (n == (instr->regs_count + instr->deps_count))
1088 return &instr->address;
1089 if (n >= instr->regs_count)
1090 return &instr->deps[n - instr->regs_count];
1091 if (ssa(instr->regs[n]))
1092 return &instr->regs[n]->instr;
1093 return NULL;
1094 }
1095
1096 static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
1097 {
1098 if (n == (instr->regs_count + instr->deps_count))
1099 return false;
1100 if (n >= instr->regs_count)
1101 return true;
1102 return false;
1103 }
1104
1105 #define foreach_ssa_srcp_n(__srcp, __n, __instr) \
1106 for (struct ir3_instruction **__srcp = (void *)~0; __srcp; __srcp = NULL) \
1107 for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
1108 if ((__srcp = __ssa_srcp_n(__instr, __n)))
1109
1110 #define foreach_ssa_srcp(__srcp, __instr) \
1111 foreach_ssa_srcp_n(__srcp, __i, __instr)
1112
1113 /* iterator for an instruction's SSA sources (instr), also returns src #: */
1114 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
1115 foreach_ssa_srcp_n(__srcp, __n, __instr) \
1116 if ((__srcinst = *__srcp))
1117
1118 /* iterator for an instruction's SSA sources (instr): */
1119 #define foreach_ssa_src(__srcinst, __instr) \
1120 foreach_ssa_src_n(__srcinst, __i, __instr)
1121
1122 /* iterators for shader inputs: */
1123 #define foreach_input_n(__ininstr, __cnt, __ir) \
1124 for (unsigned __cnt = 0; __cnt < (__ir)->inputs_count; __cnt++) \
1125 if ((__ininstr = (__ir)->inputs[__cnt]))
1126 #define foreach_input(__ininstr, __ir) \
1127 foreach_input_n(__ininstr, __i, __ir)
1128
1129 /* iterators for shader outputs: */
1130 #define foreach_output_n(__outinstr, __cnt, __ir) \
1131 for (unsigned __cnt = 0; __cnt < (__ir)->outputs_count; __cnt++) \
1132 if ((__outinstr = (__ir)->outputs[__cnt]))
1133 #define foreach_output(__outinstr, __ir) \
1134 foreach_output_n(__outinstr, __i, __ir)
1135
1136 /* iterators for instructions: */
1137 #define foreach_instr(__instr, __list) \
1138 list_for_each_entry(struct ir3_instruction, __instr, __list, node)
1139 #define foreach_instr_rev(__instr, __list) \
1140 list_for_each_entry_rev(struct ir3_instruction, __instr, __list, node)
1141 #define foreach_instr_safe(__instr, __list) \
1142 list_for_each_entry_safe(struct ir3_instruction, __instr, __list, node)
1143
1144 /* iterators for blocks: */
1145 #define foreach_block(__block, __list) \
1146 list_for_each_entry(struct ir3_block, __block, __list, node)
1147 #define foreach_block_safe(__block, __list) \
1148 list_for_each_entry_safe(struct ir3_block, __block, __list, node)
1149 #define foreach_block_rev(__block, __list) \
1150 list_for_each_entry_rev(struct ir3_block, __block, __list, node)
1151
1152 /* iterators for arrays: */
1153 #define foreach_array(__array, __list) \
1154 list_for_each_entry(struct ir3_array, __array, __list, node)
1155
1156 /* Check if condition is true for any src instruction.
1157 */
1158 static inline bool
1159 check_src_cond(struct ir3_instruction *instr, bool (*cond)(struct ir3_instruction *))
1160 {
1161 struct ir3_register *reg;
1162
1163 /* Note that this is also used post-RA so skip the ssa iterator: */
1164 foreach_src (reg, instr) {
1165 struct ir3_instruction *src = reg->instr;
1166
1167 if (!src)
1168 continue;
1169
1170 /* meta:split/collect aren't real instructions, the thing that
1171 * we actually care about is *their* srcs
1172 */
1173 if ((src->opc == OPC_META_SPLIT) || (src->opc == OPC_META_COLLECT)) {
1174 if (check_src_cond(src, cond))
1175 return true;
1176 } else {
1177 if (cond(src))
1178 return true;
1179 }
1180 }
1181
1182 return false;
1183 }
1184
1185 /* dump: */
1186 void ir3_print(struct ir3 *ir);
1187 void ir3_print_instr(struct ir3_instruction *instr);
1188
1189 /* delay calculation: */
1190 int ir3_delayslots(struct ir3_instruction *assigner,
1191 struct ir3_instruction *consumer, unsigned n, bool soft);
1192 unsigned ir3_delay_calc(struct ir3_block *block, struct ir3_instruction *instr,
1193 bool soft, bool pred);
1194 void ir3_remove_nops(struct ir3 *ir);
1195
1196 /* dead code elimination: */
1197 struct ir3_shader_variant;
1198 void ir3_dce(struct ir3 *ir, struct ir3_shader_variant *so);
1199
1200 /* fp16 conversion folding */
1201 void ir3_cf(struct ir3 *ir);
1202
1203 /* copy-propagate: */
1204 void ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
1205
1206 /* group neighbors and insert mov's to resolve conflicts: */
1207 void ir3_group(struct ir3 *ir);
1208
1209 /* Sethi–Ullman numbering: */
1210 void ir3_sun(struct ir3 *ir);
1211
1212 /* scheduling: */
1213 void ir3_sched_add_deps(struct ir3 *ir);
1214 int ir3_sched(struct ir3 *ir);
1215
1216 struct ir3_context;
1217 int ir3_postsched(struct ir3_context *ctx);
1218
1219 bool ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so);
1220
1221 /* register assignment: */
1222 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(struct ir3_compiler *compiler);
1223 int ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor, unsigned nprecolor);
1224
1225 /* legalize: */
1226 void ir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary);
1227
1228 static inline bool
1229 ir3_has_latency_to_hide(struct ir3 *ir)
1230 {
1231 /* VS/GS/TCS/TESS co-exist with frag shader invocations, but we don't
1232 * know the nature of the fragment shader. Just assume it will have
1233 * latency to hide:
1234 */
1235 if (ir->type != MESA_SHADER_FRAGMENT)
1236 return true;
1237
1238 foreach_block (block, &ir->block_list) {
1239 foreach_instr (instr, &block->instr_list) {
1240 if (is_tex_or_prefetch(instr))
1241 return true;
1242
1243 if (is_load(instr)) {
1244 switch (instr->opc) {
1245 case OPC_LDLV:
1246 case OPC_LDL:
1247 case OPC_LDLW:
1248 break;
1249 default:
1250 return true;
1251 }
1252 }
1253 }
1254 }
1255
1256 return false;
1257 }
1258
1259 /* ************************************************************************* */
1260 /* instruction helpers */
1261
1262 /* creates SSA src of correct type (ie. half vs full precision) */
1263 static inline struct ir3_register * __ssa_src(struct ir3_instruction *instr,
1264 struct ir3_instruction *src, unsigned flags)
1265 {
1266 struct ir3_register *reg;
1267 if (src->regs[0]->flags & IR3_REG_HALF)
1268 flags |= IR3_REG_HALF;
1269 reg = ir3_reg_create(instr, 0, IR3_REG_SSA | flags);
1270 reg->instr = src;
1271 reg->wrmask = src->regs[0]->wrmask;
1272 return reg;
1273 }
1274
1275 static inline struct ir3_register * __ssa_dst(struct ir3_instruction *instr)
1276 {
1277 struct ir3_register *reg = ir3_reg_create(instr, 0, 0);
1278 reg->flags |= IR3_REG_SSA;
1279 return reg;
1280 }
1281
1282 static inline struct ir3_instruction *
1283 create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
1284 {
1285 struct ir3_instruction *mov;
1286 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1287
1288 mov = ir3_instr_create(block, OPC_MOV);
1289 mov->cat1.src_type = type;
1290 mov->cat1.dst_type = type;
1291 __ssa_dst(mov)->flags |= flags;
1292 ir3_reg_create(mov, 0, IR3_REG_IMMED | flags)->uim_val = val;
1293
1294 return mov;
1295 }
1296
1297 static inline struct ir3_instruction *
1298 create_immed(struct ir3_block *block, uint32_t val)
1299 {
1300 return create_immed_typed(block, val, TYPE_U32);
1301 }
1302
1303 static inline struct ir3_instruction *
1304 create_uniform_typed(struct ir3_block *block, unsigned n, type_t type)
1305 {
1306 struct ir3_instruction *mov;
1307 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1308
1309 mov = ir3_instr_create(block, OPC_MOV);
1310 mov->cat1.src_type = type;
1311 mov->cat1.dst_type = type;
1312 __ssa_dst(mov)->flags |= flags;
1313 ir3_reg_create(mov, n, IR3_REG_CONST | flags);
1314
1315 return mov;
1316 }
1317
1318 static inline struct ir3_instruction *
1319 create_uniform(struct ir3_block *block, unsigned n)
1320 {
1321 return create_uniform_typed(block, n, TYPE_F32);
1322 }
1323
1324 static inline struct ir3_instruction *
1325 create_uniform_indirect(struct ir3_block *block, int n,
1326 struct ir3_instruction *address)
1327 {
1328 struct ir3_instruction *mov;
1329
1330 mov = ir3_instr_create(block, OPC_MOV);
1331 mov->cat1.src_type = TYPE_U32;
1332 mov->cat1.dst_type = TYPE_U32;
1333 __ssa_dst(mov);
1334 ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
1335
1336 ir3_instr_set_address(mov, address);
1337
1338 return mov;
1339 }
1340
1341 static inline struct ir3_instruction *
1342 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
1343 {
1344 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1345 __ssa_dst(instr);
1346 if (src->regs[0]->flags & IR3_REG_ARRAY) {
1347 struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY);
1348 src_reg->array = src->regs[0]->array;
1349 } else {
1350 __ssa_src(instr, src, src->regs[0]->flags & IR3_REG_HIGH);
1351 }
1352 debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
1353 instr->cat1.src_type = type;
1354 instr->cat1.dst_type = type;
1355 return instr;
1356 }
1357
1358 static inline struct ir3_instruction *
1359 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
1360 type_t src_type, type_t dst_type)
1361 {
1362 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1363 unsigned dst_flags = (type_size(dst_type) < 32) ? IR3_REG_HALF : 0;
1364 unsigned src_flags = (type_size(src_type) < 32) ? IR3_REG_HALF : 0;
1365
1366 debug_assert((src->regs[0]->flags & IR3_REG_HALF) == src_flags);
1367
1368 __ssa_dst(instr)->flags |= dst_flags;
1369 __ssa_src(instr, src, 0);
1370 instr->cat1.src_type = src_type;
1371 instr->cat1.dst_type = dst_type;
1372 debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
1373 return instr;
1374 }
1375
1376 static inline struct ir3_instruction *
1377 ir3_NOP(struct ir3_block *block)
1378 {
1379 return ir3_instr_create(block, OPC_NOP);
1380 }
1381
1382 #define IR3_INSTR_0 0
1383
1384 #define __INSTR0(flag, name, opc) \
1385 static inline struct ir3_instruction * \
1386 ir3_##name(struct ir3_block *block) \
1387 { \
1388 struct ir3_instruction *instr = \
1389 ir3_instr_create(block, opc); \
1390 instr->flags |= flag; \
1391 return instr; \
1392 }
1393 #define INSTR0F(f, name) __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name)
1394 #define INSTR0(name) __INSTR0(0, name, OPC_##name)
1395
1396 #define __INSTR1(flag, name, opc) \
1397 static inline struct ir3_instruction * \
1398 ir3_##name(struct ir3_block *block, \
1399 struct ir3_instruction *a, unsigned aflags) \
1400 { \
1401 struct ir3_instruction *instr = \
1402 ir3_instr_create(block, opc); \
1403 __ssa_dst(instr); \
1404 __ssa_src(instr, a, aflags); \
1405 instr->flags |= flag; \
1406 return instr; \
1407 }
1408 #define INSTR1F(f, name) __INSTR1(IR3_INSTR_##f, name##_##f, OPC_##name)
1409 #define INSTR1(name) __INSTR1(0, name, OPC_##name)
1410
1411 #define __INSTR2(flag, name, opc) \
1412 static inline struct ir3_instruction * \
1413 ir3_##name(struct ir3_block *block, \
1414 struct ir3_instruction *a, unsigned aflags, \
1415 struct ir3_instruction *b, unsigned bflags) \
1416 { \
1417 struct ir3_instruction *instr = \
1418 ir3_instr_create(block, opc); \
1419 __ssa_dst(instr); \
1420 __ssa_src(instr, a, aflags); \
1421 __ssa_src(instr, b, bflags); \
1422 instr->flags |= flag; \
1423 return instr; \
1424 }
1425 #define INSTR2F(f, name) __INSTR2(IR3_INSTR_##f, name##_##f, OPC_##name)
1426 #define INSTR2(name) __INSTR2(0, name, OPC_##name)
1427
1428 #define __INSTR3(flag, name, opc) \
1429 static inline struct ir3_instruction * \
1430 ir3_##name(struct ir3_block *block, \
1431 struct ir3_instruction *a, unsigned aflags, \
1432 struct ir3_instruction *b, unsigned bflags, \
1433 struct ir3_instruction *c, unsigned cflags) \
1434 { \
1435 struct ir3_instruction *instr = \
1436 ir3_instr_create2(block, opc, 4); \
1437 __ssa_dst(instr); \
1438 __ssa_src(instr, a, aflags); \
1439 __ssa_src(instr, b, bflags); \
1440 __ssa_src(instr, c, cflags); \
1441 instr->flags |= flag; \
1442 return instr; \
1443 }
1444 #define INSTR3F(f, name) __INSTR3(IR3_INSTR_##f, name##_##f, OPC_##name)
1445 #define INSTR3(name) __INSTR3(0, name, OPC_##name)
1446
1447 #define __INSTR4(flag, name, opc) \
1448 static inline struct ir3_instruction * \
1449 ir3_##name(struct ir3_block *block, \
1450 struct ir3_instruction *a, unsigned aflags, \
1451 struct ir3_instruction *b, unsigned bflags, \
1452 struct ir3_instruction *c, unsigned cflags, \
1453 struct ir3_instruction *d, unsigned dflags) \
1454 { \
1455 struct ir3_instruction *instr = \
1456 ir3_instr_create2(block, opc, 5); \
1457 __ssa_dst(instr); \
1458 __ssa_src(instr, a, aflags); \
1459 __ssa_src(instr, b, bflags); \
1460 __ssa_src(instr, c, cflags); \
1461 __ssa_src(instr, d, dflags); \
1462 instr->flags |= flag; \
1463 return instr; \
1464 }
1465 #define INSTR4F(f, name) __INSTR4(IR3_INSTR_##f, name##_##f, OPC_##name)
1466 #define INSTR4(name) __INSTR4(0, name, OPC_##name)
1467
1468 /* cat0 instructions: */
1469 INSTR1(B)
1470 INSTR0(JUMP)
1471 INSTR1(KILL)
1472 INSTR0(END)
1473 INSTR0(CHSH)
1474 INSTR0(CHMASK)
1475 INSTR1(PREDT)
1476 INSTR0(PREDF)
1477 INSTR0(PREDE)
1478
1479 /* cat2 instructions, most 2 src but some 1 src: */
1480 INSTR2(ADD_F)
1481 INSTR2(MIN_F)
1482 INSTR2(MAX_F)
1483 INSTR2(MUL_F)
1484 INSTR1(SIGN_F)
1485 INSTR2(CMPS_F)
1486 INSTR1(ABSNEG_F)
1487 INSTR2(CMPV_F)
1488 INSTR1(FLOOR_F)
1489 INSTR1(CEIL_F)
1490 INSTR1(RNDNE_F)
1491 INSTR1(RNDAZ_F)
1492 INSTR1(TRUNC_F)
1493 INSTR2(ADD_U)
1494 INSTR2(ADD_S)
1495 INSTR2(SUB_U)
1496 INSTR2(SUB_S)
1497 INSTR2(CMPS_U)
1498 INSTR2(CMPS_S)
1499 INSTR2(MIN_U)
1500 INSTR2(MIN_S)
1501 INSTR2(MAX_U)
1502 INSTR2(MAX_S)
1503 INSTR1(ABSNEG_S)
1504 INSTR2(AND_B)
1505 INSTR2(OR_B)
1506 INSTR1(NOT_B)
1507 INSTR2(XOR_B)
1508 INSTR2(CMPV_U)
1509 INSTR2(CMPV_S)
1510 INSTR2(MUL_U24)
1511 INSTR2(MUL_S24)
1512 INSTR2(MULL_U)
1513 INSTR1(BFREV_B)
1514 INSTR1(CLZ_S)
1515 INSTR1(CLZ_B)
1516 INSTR2(SHL_B)
1517 INSTR2(SHR_B)
1518 INSTR2(ASHR_B)
1519 INSTR2(BARY_F)
1520 INSTR2(MGEN_B)
1521 INSTR2(GETBIT_B)
1522 INSTR1(SETRM)
1523 INSTR1(CBITS_B)
1524 INSTR2(SHB)
1525 INSTR2(MSAD)
1526
1527 /* cat3 instructions: */
1528 INSTR3(MAD_U16)
1529 INSTR3(MADSH_U16)
1530 INSTR3(MAD_S16)
1531 INSTR3(MADSH_M16)
1532 INSTR3(MAD_U24)
1533 INSTR3(MAD_S24)
1534 INSTR3(MAD_F16)
1535 INSTR3(MAD_F32)
1536 /* NOTE: SEL_B32 checks for zero vs nonzero */
1537 INSTR3(SEL_B16)
1538 INSTR3(SEL_B32)
1539 INSTR3(SEL_S16)
1540 INSTR3(SEL_S32)
1541 INSTR3(SEL_F16)
1542 INSTR3(SEL_F32)
1543 INSTR3(SAD_S16)
1544 INSTR3(SAD_S32)
1545
1546 /* cat4 instructions: */
1547 INSTR1(RCP)
1548 INSTR1(RSQ)
1549 INSTR1(HRSQ)
1550 INSTR1(LOG2)
1551 INSTR1(HLOG2)
1552 INSTR1(EXP2)
1553 INSTR1(HEXP2)
1554 INSTR1(SIN)
1555 INSTR1(COS)
1556 INSTR1(SQRT)
1557
1558 /* cat5 instructions: */
1559 INSTR1(DSX)
1560 INSTR1(DSXPP_1)
1561 INSTR1(DSY)
1562 INSTR1(DSYPP_1)
1563 INSTR1F(3D, DSX)
1564 INSTR1F(3D, DSY)
1565 INSTR1(RGETPOS)
1566
1567 static inline struct ir3_instruction *
1568 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1569 unsigned wrmask, unsigned flags, struct ir3_instruction *samp_tex,
1570 struct ir3_instruction *src0, struct ir3_instruction *src1)
1571 {
1572 struct ir3_instruction *sam;
1573
1574 sam = ir3_instr_create(block, opc);
1575 sam->flags |= flags;
1576 __ssa_dst(sam)->wrmask = wrmask;
1577 if (flags & IR3_INSTR_S2EN) {
1578 __ssa_src(sam, samp_tex, IR3_REG_HALF);
1579 }
1580 if (src0) {
1581 __ssa_src(sam, src0, 0);
1582 }
1583 if (src1) {
1584 __ssa_src(sam, src1, 0);
1585 }
1586 sam->cat5.type = type;
1587
1588 return sam;
1589 }
1590
1591 /* cat6 instructions: */
1592 INSTR2(LDLV)
1593 INSTR3(LDG)
1594 INSTR3(LDL)
1595 INSTR3(LDLW)
1596 INSTR3(STG)
1597 INSTR3(STL)
1598 INSTR3(STLW)
1599 INSTR1(RESINFO)
1600 INSTR1(RESFMT)
1601 INSTR2(ATOMIC_ADD)
1602 INSTR2(ATOMIC_SUB)
1603 INSTR2(ATOMIC_XCHG)
1604 INSTR2(ATOMIC_INC)
1605 INSTR2(ATOMIC_DEC)
1606 INSTR2(ATOMIC_CMPXCHG)
1607 INSTR2(ATOMIC_MIN)
1608 INSTR2(ATOMIC_MAX)
1609 INSTR2(ATOMIC_AND)
1610 INSTR2(ATOMIC_OR)
1611 INSTR2(ATOMIC_XOR)
1612 INSTR2(LDC)
1613 #if GPU >= 600
1614 INSTR3(STIB);
1615 INSTR2(LDIB);
1616 INSTR3F(G, ATOMIC_ADD)
1617 INSTR3F(G, ATOMIC_SUB)
1618 INSTR3F(G, ATOMIC_XCHG)
1619 INSTR3F(G, ATOMIC_INC)
1620 INSTR3F(G, ATOMIC_DEC)
1621 INSTR3F(G, ATOMIC_CMPXCHG)
1622 INSTR3F(G, ATOMIC_MIN)
1623 INSTR3F(G, ATOMIC_MAX)
1624 INSTR3F(G, ATOMIC_AND)
1625 INSTR3F(G, ATOMIC_OR)
1626 INSTR3F(G, ATOMIC_XOR)
1627 #elif GPU >= 400
1628 INSTR3(LDGB)
1629 INSTR4(STGB)
1630 INSTR4(STIB)
1631 INSTR4F(G, ATOMIC_ADD)
1632 INSTR4F(G, ATOMIC_SUB)
1633 INSTR4F(G, ATOMIC_XCHG)
1634 INSTR4F(G, ATOMIC_INC)
1635 INSTR4F(G, ATOMIC_DEC)
1636 INSTR4F(G, ATOMIC_CMPXCHG)
1637 INSTR4F(G, ATOMIC_MIN)
1638 INSTR4F(G, ATOMIC_MAX)
1639 INSTR4F(G, ATOMIC_AND)
1640 INSTR4F(G, ATOMIC_OR)
1641 INSTR4F(G, ATOMIC_XOR)
1642 #endif
1643
1644 INSTR4F(G, STG)
1645
1646 /* cat7 instructions: */
1647 INSTR0(BAR)
1648 INSTR0(FENCE)
1649
1650 /* meta instructions: */
1651 INSTR0(META_TEX_PREFETCH);
1652
1653 /* ************************************************************************* */
1654 /* split this out or find some helper to use.. like main/bitset.h.. */
1655
1656 #include <string.h>
1657 #include "util/bitset.h"
1658
1659 #define MAX_REG 256
1660
1661 typedef BITSET_DECLARE(regmask_t, 2 * MAX_REG);
1662
1663 static inline bool
1664 __regmask_get(regmask_t *regmask, struct ir3_register *reg, unsigned n)
1665 {
1666 if (reg->merged) {
1667 /* a6xx+ case, with merged register file, we track things in terms
1668 * of half-precision registers, with a full precisions register
1669 * using two half-precision slots:
1670 */
1671 if (reg->flags & IR3_REG_HALF) {
1672 return BITSET_TEST(*regmask, n);
1673 } else {
1674 n *= 2;
1675 return BITSET_TEST(*regmask, n) || BITSET_TEST(*regmask, n+1);
1676 }
1677 } else {
1678 /* pre a6xx case, with separate register file for half and full
1679 * precision:
1680 */
1681 if (reg->flags & IR3_REG_HALF)
1682 n += MAX_REG;
1683 return BITSET_TEST(*regmask, n);
1684 }
1685 }
1686
1687 static inline void
1688 __regmask_set(regmask_t *regmask, struct ir3_register *reg, unsigned n)
1689 {
1690 if (reg->merged) {
1691 /* a6xx+ case, with merged register file, we track things in terms
1692 * of half-precision registers, with a full precisions register
1693 * using two half-precision slots:
1694 */
1695 if (reg->flags & IR3_REG_HALF) {
1696 BITSET_SET(*regmask, n);
1697 } else {
1698 n *= 2;
1699 BITSET_SET(*regmask, n);
1700 BITSET_SET(*regmask, n+1);
1701 }
1702 } else {
1703 /* pre a6xx case, with separate register file for half and full
1704 * precision:
1705 */
1706 if (reg->flags & IR3_REG_HALF)
1707 n += MAX_REG;
1708 BITSET_SET(*regmask, n);
1709 }
1710 }
1711
1712 static inline void regmask_init(regmask_t *regmask)
1713 {
1714 memset(regmask, 0, sizeof(*regmask));
1715 }
1716
1717 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1718 {
1719 if (reg->flags & IR3_REG_RELATIV) {
1720 for (unsigned i = 0; i < reg->size; i++)
1721 __regmask_set(regmask, reg, reg->array.offset + i);
1722 } else {
1723 for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
1724 if (mask & 1)
1725 __regmask_set(regmask, reg, n);
1726 }
1727 }
1728
1729 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1730 {
1731 unsigned i;
1732 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1733 (*dst)[i] = (*a)[i] | (*b)[i];
1734 }
1735
1736 static inline bool regmask_get(regmask_t *regmask,
1737 struct ir3_register *reg)
1738 {
1739 if (reg->flags & IR3_REG_RELATIV) {
1740 for (unsigned i = 0; i < reg->size; i++)
1741 if (__regmask_get(regmask, reg, reg->array.offset + i))
1742 return true;
1743 } else {
1744 for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
1745 if (mask & 1)
1746 if (__regmask_get(regmask, reg, n))
1747 return true;
1748 }
1749 return false;
1750 }
1751
1752 /* ************************************************************************* */
1753
1754 #endif /* IR3_H_ */