freedreno/ir3: re-work shader inputs/outputs
[mesa.git] / src / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "compiler/shader_enums.h"
31
32 #include "util/bitscan.h"
33 #include "util/list.h"
34 #include "util/set.h"
35 #include "util/u_debug.h"
36
37 #include "instr-a3xx.h"
38
39 /* low level intermediate representation of an adreno shader program */
40
41 struct ir3_compiler;
42 struct ir3;
43 struct ir3_instruction;
44 struct ir3_block;
45
46 struct ir3_info {
47 uint32_t gpu_id;
48 uint16_t sizedwords;
49 uint16_t instrs_count; /* expanded to account for rpt's */
50 uint16_t nops_count; /* # of nop instructions, including nopN */
51 /* NOTE: max_reg, etc, does not include registers not touched
52 * by the shader (ie. vertex fetched via VFD_DECODE but not
53 * touched by shader)
54 */
55 int8_t max_reg; /* highest GPR # used by shader */
56 int8_t max_half_reg;
57 int16_t max_const;
58
59 /* number of sync bits: */
60 uint16_t ss, sy;
61 };
62
63 struct ir3_register {
64 enum {
65 IR3_REG_CONST = 0x001,
66 IR3_REG_IMMED = 0x002,
67 IR3_REG_HALF = 0x004,
68 /* high registers are used for some things in compute shaders,
69 * for example. Seems to be for things that are global to all
70 * threads in a wave, so possibly these are global/shared by
71 * all the threads in the wave?
72 */
73 IR3_REG_HIGH = 0x008,
74 IR3_REG_RELATIV= 0x010,
75 IR3_REG_R = 0x020,
76 /* Most instructions, it seems, can do float abs/neg but not
77 * integer. The CP pass needs to know what is intended (int or
78 * float) in order to do the right thing. For this reason the
79 * abs/neg flags are split out into float and int variants. In
80 * addition, .b (bitwise) operations, the negate is actually a
81 * bitwise not, so split that out into a new flag to make it
82 * more clear.
83 */
84 IR3_REG_FNEG = 0x040,
85 IR3_REG_FABS = 0x080,
86 IR3_REG_SNEG = 0x100,
87 IR3_REG_SABS = 0x200,
88 IR3_REG_BNOT = 0x400,
89 IR3_REG_EVEN = 0x800,
90 IR3_REG_POS_INF= 0x1000,
91 /* (ei) flag, end-input? Set on last bary, presumably to signal
92 * that the shader needs no more input:
93 */
94 IR3_REG_EI = 0x2000,
95 /* meta-flags, for intermediate stages of IR, ie.
96 * before register assignment is done:
97 */
98 IR3_REG_SSA = 0x4000, /* 'instr' is ptr to assigning instr */
99 IR3_REG_ARRAY = 0x8000,
100
101 } flags;
102
103 bool merged : 1; /* half-regs conflict with full regs (ie >= a6xx) */
104
105 /* normal registers:
106 * the component is in the low two bits of the reg #, so
107 * rN.x becomes: (N << 2) | x
108 */
109 uint16_t num;
110 union {
111 /* immediate: */
112 int32_t iim_val;
113 uint32_t uim_val;
114 float fim_val;
115 /* relative: */
116 struct {
117 uint16_t id;
118 int16_t offset;
119 } array;
120 };
121
122 /* For IR3_REG_SSA, src registers contain ptr back to assigning
123 * instruction.
124 *
125 * For IR3_REG_ARRAY, the pointer is back to the last dependent
126 * array access (although the net effect is the same, it points
127 * back to a previous instruction that we depend on).
128 */
129 struct ir3_instruction *instr;
130
131 union {
132 /* used for cat5 instructions, but also for internal/IR level
133 * tracking of what registers are read/written by an instruction.
134 * wrmask may be a bad name since it is used to represent both
135 * src and dst that touch multiple adjacent registers.
136 */
137 unsigned wrmask;
138 /* for relative addressing, 32bits for array size is too small,
139 * but otoh we don't need to deal with disjoint sets, so instead
140 * use a simple size field (number of scalar components).
141 */
142 unsigned size;
143 };
144 };
145
146 /*
147 * Stupid/simple growable array implementation:
148 */
149 #define DECLARE_ARRAY(type, name) \
150 unsigned name ## _count, name ## _sz; \
151 type * name;
152
153 #define array_insert(ctx, arr, val) do { \
154 if (arr ## _count == arr ## _sz) { \
155 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
156 arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
157 } \
158 arr[arr ##_count++] = val; \
159 } while (0)
160
161 struct ir3_instruction {
162 struct ir3_block *block;
163 opc_t opc;
164 enum {
165 /* (sy) flag is set on first instruction, and after sample
166 * instructions (probably just on RAW hazard).
167 */
168 IR3_INSTR_SY = 0x001,
169 /* (ss) flag is set on first instruction, and first instruction
170 * to depend on the result of "long" instructions (RAW hazard):
171 *
172 * rcp, rsq, log2, exp2, sin, cos, sqrt
173 *
174 * It seems to synchronize until all in-flight instructions are
175 * completed, for example:
176 *
177 * rsq hr1.w, hr1.w
178 * add.f hr2.z, (neg)hr2.z, hc0.y
179 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
180 * rsq hr2.x, hr2.x
181 * (rpt1)nop
182 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
183 * nop
184 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
185 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
186 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
187 *
188 * The last mul.f does not have (ss) set, presumably because the
189 * (ss) on the previous instruction does the job.
190 *
191 * The blob driver also seems to set it on WAR hazards, although
192 * not really clear if this is needed or just blob compiler being
193 * sloppy. So far I haven't found a case where removing the (ss)
194 * causes problems for WAR hazard, but I could just be getting
195 * lucky:
196 *
197 * rcp r1.y, r3.y
198 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
199 *
200 */
201 IR3_INSTR_SS = 0x002,
202 /* (jp) flag is set on jump targets:
203 */
204 IR3_INSTR_JP = 0x004,
205 IR3_INSTR_UL = 0x008,
206 IR3_INSTR_3D = 0x010,
207 IR3_INSTR_A = 0x020,
208 IR3_INSTR_O = 0x040,
209 IR3_INSTR_P = 0x080,
210 IR3_INSTR_S = 0x100,
211 IR3_INSTR_S2EN = 0x200,
212 IR3_INSTR_G = 0x400,
213 IR3_INSTR_SAT = 0x800,
214 /* meta-flags, for intermediate stages of IR, ie.
215 * before register assignment is done:
216 */
217 IR3_INSTR_MARK = 0x1000,
218 IR3_INSTR_UNUSED= 0x2000,
219 } flags;
220 uint8_t repeat;
221 uint8_t nop;
222 #ifdef DEBUG
223 unsigned regs_max;
224 #endif
225 unsigned regs_count;
226 struct ir3_register **regs;
227 union {
228 struct {
229 char inv;
230 char comp;
231 int immed;
232 struct ir3_block *target;
233 } cat0;
234 struct {
235 type_t src_type, dst_type;
236 } cat1;
237 struct {
238 enum {
239 IR3_COND_LT = 0,
240 IR3_COND_LE = 1,
241 IR3_COND_GT = 2,
242 IR3_COND_GE = 3,
243 IR3_COND_EQ = 4,
244 IR3_COND_NE = 5,
245 } condition;
246 } cat2;
247 struct {
248 unsigned samp, tex;
249 type_t type;
250 } cat5;
251 struct {
252 type_t type;
253 int src_offset;
254 int dst_offset;
255 int iim_val : 3; /* for ldgb/stgb, # of components */
256 unsigned d : 3;
257 bool typed : 1;
258 } cat6;
259 struct {
260 unsigned w : 1; /* write */
261 unsigned r : 1; /* read */
262 unsigned l : 1; /* local */
263 unsigned g : 1; /* global */
264 } cat7;
265 /* for meta-instructions, just used to hold extra data
266 * before instruction scheduling, etc
267 */
268 struct {
269 int off; /* component/offset */
270 } split;
271 struct {
272 /* for output collects, this maps back to the entry in the
273 * ir3_shader_variant::outputs table.
274 */
275 int outidx;
276 } collect;
277 struct {
278 unsigned samp, tex;
279 unsigned input_offset;
280 } prefetch;
281 struct {
282 /* maps back to entry in ir3_shader_variant::inputs table: */
283 int inidx;
284 /* for sysvals, identifies the sysval type. Mostly so we can
285 * identify the special cases where a sysval should not be DCE'd
286 * (currently, just pre-fs texture fetch)
287 */
288 gl_system_value sysval;
289 } input;
290 };
291
292 /* transient values used during various algorithms: */
293 union {
294 /* The instruction depth is the max dependency distance to output.
295 *
296 * You can also think of it as the "cost", if we did any sort of
297 * optimization for register footprint. Ie. a value that is just
298 * result of moving a const to a reg would have a low cost, so to
299 * it could make sense to duplicate the instruction at various
300 * points where the result is needed to reduce register footprint.
301 */
302 int depth;
303 /* When we get to the RA stage, we no longer need depth, but
304 * we do need instruction's position/name:
305 */
306 struct {
307 uint16_t ip;
308 uint16_t name;
309 };
310 };
311
312 /* used for per-pass extra instruction data.
313 *
314 * TODO we should remove the per-pass data like this and 'use_count'
315 * and do something similar to what RA does w/ ir3_ra_instr_data..
316 * ie. use the ir3_count_instructions pass, and then use instr->ip
317 * to index into a table of pass-private data.
318 */
319 void *data;
320
321 int sun; /* Sethi–Ullman number, used by sched */
322 int use_count; /* currently just updated/used by cp */
323
324 /* Used during CP and RA stages. For collect and shader inputs/
325 * outputs where we need a sequence of consecutive registers,
326 * keep track of each src instructions left (ie 'n-1') and right
327 * (ie 'n+1') neighbor. The front-end must insert enough mov's
328 * to ensure that each instruction has at most one left and at
329 * most one right neighbor. During the copy-propagation pass,
330 * we only remove mov's when we can preserve this constraint.
331 * And during the RA stage, we use the neighbor information to
332 * allocate a block of registers in one shot.
333 *
334 * TODO: maybe just add something like:
335 * struct ir3_instruction_ref {
336 * struct ir3_instruction *instr;
337 * unsigned cnt;
338 * }
339 *
340 * Or can we get away without the refcnt stuff? It seems like
341 * it should be overkill.. the problem is if, potentially after
342 * already eliminating some mov's, if you have a single mov that
343 * needs to be grouped with it's neighbors in two different
344 * places (ex. shader output and a collect).
345 */
346 struct {
347 struct ir3_instruction *left, *right;
348 uint16_t left_cnt, right_cnt;
349 } cp;
350
351 /* an instruction can reference at most one address register amongst
352 * it's src/dst registers. Beyond that, you need to insert mov's.
353 *
354 * NOTE: do not write this directly, use ir3_instr_set_address()
355 */
356 struct ir3_instruction *address;
357
358 /* Tracking for additional dependent instructions. Used to handle
359 * barriers, WAR hazards for arrays/SSBOs/etc.
360 */
361 DECLARE_ARRAY(struct ir3_instruction *, deps);
362
363 /*
364 * From PoV of instruction scheduling, not execution (ie. ignores global/
365 * local distinction):
366 * shared image atomic SSBO everything
367 * barrier()/ - R/W R/W R/W R/W X
368 * groupMemoryBarrier()
369 * memoryBarrier() - R/W R/W
370 * (but only images declared coherent?)
371 * memoryBarrierAtomic() - R/W
372 * memoryBarrierBuffer() - R/W
373 * memoryBarrierImage() - R/W
374 * memoryBarrierShared() - R/W
375 *
376 * TODO I think for SSBO/image/shared, in cases where we can determine
377 * which variable is accessed, we don't need to care about accesses to
378 * different variables (unless declared coherent??)
379 */
380 enum {
381 IR3_BARRIER_EVERYTHING = 1 << 0,
382 IR3_BARRIER_SHARED_R = 1 << 1,
383 IR3_BARRIER_SHARED_W = 1 << 2,
384 IR3_BARRIER_IMAGE_R = 1 << 3,
385 IR3_BARRIER_IMAGE_W = 1 << 4,
386 IR3_BARRIER_BUFFER_R = 1 << 5,
387 IR3_BARRIER_BUFFER_W = 1 << 6,
388 IR3_BARRIER_ARRAY_R = 1 << 7,
389 IR3_BARRIER_ARRAY_W = 1 << 8,
390 } barrier_class, barrier_conflict;
391
392 /* Entry in ir3_block's instruction list: */
393 struct list_head node;
394
395 #ifdef DEBUG
396 uint32_t serialno;
397 #endif
398 };
399
400 static inline struct ir3_instruction *
401 ir3_neighbor_first(struct ir3_instruction *instr)
402 {
403 int cnt = 0;
404 while (instr->cp.left) {
405 instr = instr->cp.left;
406 if (++cnt > 0xffff) {
407 debug_assert(0);
408 break;
409 }
410 }
411 return instr;
412 }
413
414 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
415 {
416 int num = 1;
417
418 debug_assert(!instr->cp.left);
419
420 while (instr->cp.right) {
421 num++;
422 instr = instr->cp.right;
423 if (num > 0xffff) {
424 debug_assert(0);
425 break;
426 }
427 }
428
429 return num;
430 }
431
432 struct ir3 {
433 struct ir3_compiler *compiler;
434 gl_shader_stage type;
435
436 DECLARE_ARRAY(struct ir3_instruction *, inputs);
437 DECLARE_ARRAY(struct ir3_instruction *, outputs);
438
439 /* Track bary.f (and ldlv) instructions.. this is needed in
440 * scheduling to ensure that all varying fetches happen before
441 * any potential kill instructions. The hw gets grumpy if all
442 * threads in a group are killed before the last bary.f gets
443 * a chance to signal end of input (ei).
444 */
445 DECLARE_ARRAY(struct ir3_instruction *, baryfs);
446
447 /* Track all indirect instructions (read and write). To avoid
448 * deadlock scenario where an address register gets scheduled,
449 * but other dependent src instructions cannot be scheduled due
450 * to dependency on a *different* address register value, the
451 * scheduler needs to ensure that all dependencies other than
452 * the instruction other than the address register are scheduled
453 * before the one that writes the address register. Having a
454 * convenient list of instructions that reference some address
455 * register simplifies this.
456 */
457 DECLARE_ARRAY(struct ir3_instruction *, indirects);
458
459 /* and same for instructions that consume predicate register: */
460 DECLARE_ARRAY(struct ir3_instruction *, predicates);
461
462 /* Track texture sample instructions which need texture state
463 * patched in (for astc-srgb workaround):
464 */
465 DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
466
467 /* List of blocks: */
468 struct list_head block_list;
469
470 /* List of ir3_array's: */
471 struct list_head array_list;
472
473 unsigned max_sun; /* max Sethi–Ullman number */
474
475 #ifdef DEBUG
476 unsigned block_count, instr_count;
477 #endif
478 };
479
480 struct ir3_array {
481 struct list_head node;
482 unsigned length;
483 unsigned id;
484
485 struct nir_register *r;
486
487 /* To avoid array write's from getting DCE'd, keep track of the
488 * most recent write. Any array access depends on the most
489 * recent write. This way, nothing depends on writes after the
490 * last read. But all the writes that happen before that have
491 * something depending on them
492 */
493 struct ir3_instruction *last_write;
494
495 /* extra stuff used in RA pass: */
496 unsigned base; /* base vreg name */
497 unsigned reg; /* base physical reg */
498 uint16_t start_ip, end_ip;
499 };
500
501 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
502
503 struct ir3_block {
504 struct list_head node;
505 struct ir3 *shader;
506
507 const struct nir_block *nblock;
508
509 struct list_head instr_list; /* list of ir3_instruction */
510
511 /* each block has either one or two successors.. in case of
512 * two successors, 'condition' decides which one to follow.
513 * A block preceding an if/else has two successors.
514 */
515 struct ir3_instruction *condition;
516 struct ir3_block *successors[2];
517
518 struct set *predecessors; /* set of ir3_block */
519
520 uint16_t start_ip, end_ip;
521
522 /* Track instructions which do not write a register but other-
523 * wise must not be discarded (such as kill, stg, etc)
524 */
525 DECLARE_ARRAY(struct ir3_instruction *, keeps);
526
527 /* used for per-pass extra block data. Mainly used right
528 * now in RA step to track livein/liveout.
529 */
530 void *data;
531
532 #ifdef DEBUG
533 uint32_t serialno;
534 #endif
535 };
536
537 static inline uint32_t
538 block_id(struct ir3_block *block)
539 {
540 #ifdef DEBUG
541 return block->serialno;
542 #else
543 return (uint32_t)(unsigned long)block;
544 #endif
545 }
546
547 struct ir3 * ir3_create(struct ir3_compiler *compiler, gl_shader_stage type);
548 void ir3_destroy(struct ir3 *shader);
549 void * ir3_assemble(struct ir3 *shader,
550 struct ir3_info *info, uint32_t gpu_id);
551 void * ir3_alloc(struct ir3 *shader, int sz);
552
553 struct ir3_block * ir3_block_create(struct ir3 *shader);
554
555 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
556 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
557 opc_t opc, int nreg);
558 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
559 void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
560 const char *ir3_instr_name(struct ir3_instruction *instr);
561
562 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
563 int num, int flags);
564 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
565 struct ir3_register *reg);
566
567 void ir3_instr_set_address(struct ir3_instruction *instr,
568 struct ir3_instruction *addr);
569
570 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
571 {
572 if (instr->flags & IR3_INSTR_MARK)
573 return true; /* already visited */
574 instr->flags |= IR3_INSTR_MARK;
575 return false;
576 }
577
578 void ir3_block_clear_mark(struct ir3_block *block);
579 void ir3_clear_mark(struct ir3 *shader);
580
581 unsigned ir3_count_instructions(struct ir3 *ir);
582
583 static inline int ir3_instr_regno(struct ir3_instruction *instr,
584 struct ir3_register *reg)
585 {
586 unsigned i;
587 for (i = 0; i < instr->regs_count; i++)
588 if (reg == instr->regs[i])
589 return i;
590 return -1;
591 }
592
593
594 #define MAX_ARRAYS 16
595
596 /* comp:
597 * 0 - x
598 * 1 - y
599 * 2 - z
600 * 3 - w
601 */
602 static inline uint32_t regid(int num, int comp)
603 {
604 return (num << 2) | (comp & 0x3);
605 }
606
607 static inline uint32_t reg_num(struct ir3_register *reg)
608 {
609 return reg->num >> 2;
610 }
611
612 static inline uint32_t reg_comp(struct ir3_register *reg)
613 {
614 return reg->num & 0x3;
615 }
616
617 static inline bool is_flow(struct ir3_instruction *instr)
618 {
619 return (opc_cat(instr->opc) == 0);
620 }
621
622 static inline bool is_kill(struct ir3_instruction *instr)
623 {
624 return instr->opc == OPC_KILL || instr->opc == OPC_CONDEND;
625 }
626
627 static inline bool is_nop(struct ir3_instruction *instr)
628 {
629 return instr->opc == OPC_NOP;
630 }
631
632 static inline bool is_same_type_reg(struct ir3_register *reg1,
633 struct ir3_register *reg2)
634 {
635 unsigned type_reg1 = (reg1->flags & (IR3_REG_HIGH | IR3_REG_HALF));
636 unsigned type_reg2 = (reg2->flags & (IR3_REG_HIGH | IR3_REG_HALF));
637
638 if (type_reg1 ^ type_reg2)
639 return false;
640 else
641 return true;
642 }
643
644 /* Is it a non-transformative (ie. not type changing) mov? This can
645 * also include absneg.s/absneg.f, which for the most part can be
646 * treated as a mov (single src argument).
647 */
648 static inline bool is_same_type_mov(struct ir3_instruction *instr)
649 {
650 struct ir3_register *dst;
651
652 switch (instr->opc) {
653 case OPC_MOV:
654 if (instr->cat1.src_type != instr->cat1.dst_type)
655 return false;
656 /* If the type of dest reg and src reg are different,
657 * it shouldn't be considered as same type mov
658 */
659 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
660 return false;
661 break;
662 case OPC_ABSNEG_F:
663 case OPC_ABSNEG_S:
664 if (instr->flags & IR3_INSTR_SAT)
665 return false;
666 /* If the type of dest reg and src reg are different,
667 * it shouldn't be considered as same type mov
668 */
669 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
670 return false;
671 break;
672 default:
673 return false;
674 }
675
676 dst = instr->regs[0];
677
678 /* mov's that write to a0.x or p0.x are special: */
679 if (dst->num == regid(REG_P0, 0))
680 return false;
681 if (dst->num == regid(REG_A0, 0))
682 return false;
683
684 if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
685 return false;
686
687 return true;
688 }
689
690 static inline bool is_alu(struct ir3_instruction *instr)
691 {
692 return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
693 }
694
695 static inline bool is_sfu(struct ir3_instruction *instr)
696 {
697 return (opc_cat(instr->opc) == 4);
698 }
699
700 static inline bool is_tex(struct ir3_instruction *instr)
701 {
702 return (opc_cat(instr->opc) == 5);
703 }
704
705 static inline bool is_mem(struct ir3_instruction *instr)
706 {
707 return (opc_cat(instr->opc) == 6);
708 }
709
710 static inline bool is_barrier(struct ir3_instruction *instr)
711 {
712 return (opc_cat(instr->opc) == 7);
713 }
714
715 static inline bool
716 is_store(struct ir3_instruction *instr)
717 {
718 /* these instructions, the "destination" register is
719 * actually a source, the address to store to.
720 */
721 switch (instr->opc) {
722 case OPC_STG:
723 case OPC_STGB:
724 case OPC_STIB:
725 case OPC_STP:
726 case OPC_STL:
727 case OPC_STLW:
728 case OPC_L2G:
729 case OPC_G2L:
730 return true;
731 default:
732 return false;
733 }
734 }
735
736 static inline bool is_load(struct ir3_instruction *instr)
737 {
738 switch (instr->opc) {
739 case OPC_LDG:
740 case OPC_LDGB:
741 case OPC_LDIB:
742 case OPC_LDL:
743 case OPC_LDP:
744 case OPC_L2G:
745 case OPC_LDLW:
746 case OPC_LDC:
747 case OPC_LDLV:
748 /* probably some others too.. */
749 return true;
750 default:
751 return false;
752 }
753 }
754
755 static inline bool is_input(struct ir3_instruction *instr)
756 {
757 /* in some cases, ldlv is used to fetch varying without
758 * interpolation.. fortunately inloc is the first src
759 * register in either case
760 */
761 switch (instr->opc) {
762 case OPC_LDLV:
763 case OPC_BARY_F:
764 return true;
765 default:
766 return false;
767 }
768 }
769
770 static inline bool is_bool(struct ir3_instruction *instr)
771 {
772 switch (instr->opc) {
773 case OPC_CMPS_F:
774 case OPC_CMPS_S:
775 case OPC_CMPS_U:
776 return true;
777 default:
778 return false;
779 }
780 }
781
782 static inline bool is_meta(struct ir3_instruction *instr)
783 {
784 return (opc_cat(instr->opc) == -1);
785 }
786
787 static inline unsigned dest_regs(struct ir3_instruction *instr)
788 {
789 if ((instr->regs_count == 0) || is_store(instr))
790 return 0;
791
792 return util_last_bit(instr->regs[0]->wrmask);
793 }
794
795 static inline bool writes_addr(struct ir3_instruction *instr)
796 {
797 if (instr->regs_count > 0) {
798 struct ir3_register *dst = instr->regs[0];
799 return reg_num(dst) == REG_A0;
800 }
801 return false;
802 }
803
804 static inline bool writes_pred(struct ir3_instruction *instr)
805 {
806 if (instr->regs_count > 0) {
807 struct ir3_register *dst = instr->regs[0];
808 return reg_num(dst) == REG_P0;
809 }
810 return false;
811 }
812
813 /* returns defining instruction for reg */
814 /* TODO better name */
815 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
816 {
817 if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
818 return reg->instr;
819 }
820 return NULL;
821 }
822
823 static inline bool conflicts(struct ir3_instruction *a,
824 struct ir3_instruction *b)
825 {
826 return (a && b) && (a != b);
827 }
828
829 static inline bool reg_gpr(struct ir3_register *r)
830 {
831 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
832 return false;
833 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
834 return false;
835 return true;
836 }
837
838 static inline type_t half_type(type_t type)
839 {
840 switch (type) {
841 case TYPE_F32: return TYPE_F16;
842 case TYPE_U32: return TYPE_U16;
843 case TYPE_S32: return TYPE_S16;
844 case TYPE_F16:
845 case TYPE_U16:
846 case TYPE_S16:
847 return type;
848 default:
849 assert(0);
850 return ~0;
851 }
852 }
853
854 /* some cat2 instructions (ie. those which are not float) can embed an
855 * immediate:
856 */
857 static inline bool ir3_cat2_int(opc_t opc)
858 {
859 switch (opc) {
860 case OPC_ADD_U:
861 case OPC_ADD_S:
862 case OPC_SUB_U:
863 case OPC_SUB_S:
864 case OPC_CMPS_U:
865 case OPC_CMPS_S:
866 case OPC_MIN_U:
867 case OPC_MIN_S:
868 case OPC_MAX_U:
869 case OPC_MAX_S:
870 case OPC_CMPV_U:
871 case OPC_CMPV_S:
872 case OPC_MUL_U24:
873 case OPC_MUL_S24:
874 case OPC_MULL_U:
875 case OPC_CLZ_S:
876 case OPC_ABSNEG_S:
877 case OPC_AND_B:
878 case OPC_OR_B:
879 case OPC_NOT_B:
880 case OPC_XOR_B:
881 case OPC_BFREV_B:
882 case OPC_CLZ_B:
883 case OPC_SHL_B:
884 case OPC_SHR_B:
885 case OPC_ASHR_B:
886 case OPC_MGEN_B:
887 case OPC_GETBIT_B:
888 case OPC_CBITS_B:
889 case OPC_BARY_F:
890 return true;
891
892 default:
893 return false;
894 }
895 }
896
897 static inline bool ir3_cat2_float(opc_t opc)
898 {
899 switch (opc) {
900 case OPC_ADD_F:
901 case OPC_MIN_F:
902 case OPC_MAX_F:
903 case OPC_MUL_F:
904 case OPC_SIGN_F:
905 case OPC_CMPS_F:
906 case OPC_ABSNEG_F:
907 case OPC_CMPV_F:
908 case OPC_FLOOR_F:
909 case OPC_CEIL_F:
910 case OPC_RNDNE_F:
911 case OPC_RNDAZ_F:
912 case OPC_TRUNC_F:
913 return true;
914
915 default:
916 return false;
917 }
918 }
919
920 static inline bool ir3_cat3_float(opc_t opc)
921 {
922 switch (opc) {
923 case OPC_MAD_F16:
924 case OPC_MAD_F32:
925 case OPC_SEL_F16:
926 case OPC_SEL_F32:
927 return true;
928 default:
929 return false;
930 }
931 }
932
933 /* map cat2 instruction to valid abs/neg flags: */
934 static inline unsigned ir3_cat2_absneg(opc_t opc)
935 {
936 switch (opc) {
937 case OPC_ADD_F:
938 case OPC_MIN_F:
939 case OPC_MAX_F:
940 case OPC_MUL_F:
941 case OPC_SIGN_F:
942 case OPC_CMPS_F:
943 case OPC_ABSNEG_F:
944 case OPC_CMPV_F:
945 case OPC_FLOOR_F:
946 case OPC_CEIL_F:
947 case OPC_RNDNE_F:
948 case OPC_RNDAZ_F:
949 case OPC_TRUNC_F:
950 case OPC_BARY_F:
951 return IR3_REG_FABS | IR3_REG_FNEG;
952
953 case OPC_ADD_U:
954 case OPC_ADD_S:
955 case OPC_SUB_U:
956 case OPC_SUB_S:
957 case OPC_CMPS_U:
958 case OPC_CMPS_S:
959 case OPC_MIN_U:
960 case OPC_MIN_S:
961 case OPC_MAX_U:
962 case OPC_MAX_S:
963 case OPC_CMPV_U:
964 case OPC_CMPV_S:
965 case OPC_MUL_U24:
966 case OPC_MUL_S24:
967 case OPC_MULL_U:
968 case OPC_CLZ_S:
969 return 0;
970
971 case OPC_ABSNEG_S:
972 return IR3_REG_SABS | IR3_REG_SNEG;
973
974 case OPC_AND_B:
975 case OPC_OR_B:
976 case OPC_NOT_B:
977 case OPC_XOR_B:
978 case OPC_BFREV_B:
979 case OPC_CLZ_B:
980 case OPC_SHL_B:
981 case OPC_SHR_B:
982 case OPC_ASHR_B:
983 case OPC_MGEN_B:
984 case OPC_GETBIT_B:
985 case OPC_CBITS_B:
986 return IR3_REG_BNOT;
987
988 default:
989 return 0;
990 }
991 }
992
993 /* map cat3 instructions to valid abs/neg flags: */
994 static inline unsigned ir3_cat3_absneg(opc_t opc)
995 {
996 switch (opc) {
997 case OPC_MAD_F16:
998 case OPC_MAD_F32:
999 case OPC_SEL_F16:
1000 case OPC_SEL_F32:
1001 return IR3_REG_FNEG;
1002
1003 case OPC_MAD_U16:
1004 case OPC_MADSH_U16:
1005 case OPC_MAD_S16:
1006 case OPC_MADSH_M16:
1007 case OPC_MAD_U24:
1008 case OPC_MAD_S24:
1009 case OPC_SEL_S16:
1010 case OPC_SEL_S32:
1011 case OPC_SAD_S16:
1012 case OPC_SAD_S32:
1013 /* neg *may* work on 3rd src.. */
1014
1015 case OPC_SEL_B16:
1016 case OPC_SEL_B32:
1017
1018 default:
1019 return 0;
1020 }
1021 }
1022
1023 #define MASK(n) ((1 << (n)) - 1)
1024
1025 /* iterator for an instructions's sources (reg), also returns src #: */
1026 #define foreach_src_n(__srcreg, __n, __instr) \
1027 if ((__instr)->regs_count) \
1028 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
1029 if ((__srcreg = (__instr)->regs[__n + 1]))
1030
1031 /* iterator for an instructions's sources (reg): */
1032 #define foreach_src(__srcreg, __instr) \
1033 foreach_src_n(__srcreg, __i, __instr)
1034
1035 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
1036 {
1037 unsigned cnt = instr->regs_count + instr->deps_count;
1038 if (instr->address)
1039 cnt++;
1040 return cnt;
1041 }
1042
1043 static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
1044 {
1045 if (n == (instr->regs_count + instr->deps_count))
1046 return instr->address;
1047 if (n >= instr->regs_count)
1048 return instr->deps[n - instr->regs_count];
1049 return ssa(instr->regs[n]);
1050 }
1051
1052 static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
1053 {
1054 if (n == (instr->regs_count + instr->deps_count))
1055 return false;
1056 if (n >= instr->regs_count)
1057 return true;
1058 return false;
1059 }
1060
1061 #define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
1062
1063 /* iterator for an instruction's SSA sources (instr), also returns src #: */
1064 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
1065 for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
1066 if ((__srcinst = __ssa_src_n(__instr, __n)))
1067
1068 /* iterator for an instruction's SSA sources (instr): */
1069 #define foreach_ssa_src(__srcinst, __instr) \
1070 foreach_ssa_src_n(__srcinst, __i, __instr)
1071
1072 /* iterators for shader inputs: */
1073 #define foreach_input_n(__ininstr, __cnt, __ir) \
1074 for (unsigned __cnt = 0; __cnt < (__ir)->inputs_count; __cnt++) \
1075 if ((__ininstr = (__ir)->inputs[__cnt]))
1076 #define foreach_input(__ininstr, __ir) \
1077 foreach_input_n(__ininstr, __i, __ir)
1078
1079 /* iterators for shader outputs: */
1080 #define foreach_output_n(__outinstr, __cnt, __ir) \
1081 for (unsigned __cnt = 0; __cnt < (__ir)->outputs_count; __cnt++) \
1082 if ((__outinstr = (__ir)->outputs[__cnt]))
1083 #define foreach_output(__outinstr, __ir) \
1084 foreach_output_n(__outinstr, __i, __ir)
1085
1086 /* dump: */
1087 void ir3_print(struct ir3 *ir);
1088 void ir3_print_instr(struct ir3_instruction *instr);
1089
1090 /* depth calculation: */
1091 struct ir3_shader_variant;
1092 int ir3_delayslots(struct ir3_instruction *assigner,
1093 struct ir3_instruction *consumer, unsigned n);
1094 void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
1095 void ir3_depth(struct ir3 *ir, struct ir3_shader_variant *so);
1096
1097 /* copy-propagate: */
1098 void ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
1099
1100 /* group neighbors and insert mov's to resolve conflicts: */
1101 void ir3_group(struct ir3 *ir);
1102
1103 /* Sethi–Ullman numbering: */
1104 void ir3_sun(struct ir3 *ir);
1105
1106 /* scheduling: */
1107 void ir3_sched_add_deps(struct ir3 *ir);
1108 int ir3_sched(struct ir3 *ir);
1109
1110 void ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so);
1111
1112 /* register assignment: */
1113 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(struct ir3_compiler *compiler);
1114 int ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor, unsigned nprecolor);
1115
1116 /* legalize: */
1117 void ir3_legalize(struct ir3 *ir, bool *has_ssbo, bool *need_pixlod, int *max_bary);
1118
1119 /* ************************************************************************* */
1120 /* instruction helpers */
1121
1122 /* creates SSA src of correct type (ie. half vs full precision) */
1123 static inline struct ir3_register * __ssa_src(struct ir3_instruction *instr,
1124 struct ir3_instruction *src, unsigned flags)
1125 {
1126 struct ir3_register *reg;
1127 if (src->regs[0]->flags & IR3_REG_HALF)
1128 flags |= IR3_REG_HALF;
1129 reg = ir3_reg_create(instr, 0, IR3_REG_SSA | flags);
1130 reg->instr = src;
1131 reg->wrmask = src->regs[0]->wrmask;
1132 return reg;
1133 }
1134
1135 static inline struct ir3_register * __ssa_dst(struct ir3_instruction *instr)
1136 {
1137 struct ir3_register *reg = ir3_reg_create(instr, 0, 0);
1138 reg->flags |= IR3_REG_SSA;
1139 return reg;
1140 }
1141
1142 static inline struct ir3_instruction *
1143 create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
1144 {
1145 struct ir3_instruction *mov;
1146 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1147
1148 mov = ir3_instr_create(block, OPC_MOV);
1149 mov->cat1.src_type = type;
1150 mov->cat1.dst_type = type;
1151 __ssa_dst(mov)->flags |= flags;
1152 ir3_reg_create(mov, 0, IR3_REG_IMMED)->uim_val = val;
1153
1154 return mov;
1155 }
1156
1157 static inline struct ir3_instruction *
1158 create_immed(struct ir3_block *block, uint32_t val)
1159 {
1160 return create_immed_typed(block, val, TYPE_U32);
1161 }
1162
1163 static inline struct ir3_instruction *
1164 create_uniform_typed(struct ir3_block *block, unsigned n, type_t type)
1165 {
1166 struct ir3_instruction *mov;
1167 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1168
1169 mov = ir3_instr_create(block, OPC_MOV);
1170 mov->cat1.src_type = type;
1171 mov->cat1.dst_type = type;
1172 __ssa_dst(mov)->flags |= flags;
1173 ir3_reg_create(mov, n, IR3_REG_CONST | flags);
1174
1175 return mov;
1176 }
1177
1178 static inline struct ir3_instruction *
1179 create_uniform(struct ir3_block *block, unsigned n)
1180 {
1181 return create_uniform_typed(block, n, TYPE_F32);
1182 }
1183
1184 static inline struct ir3_instruction *
1185 create_uniform_indirect(struct ir3_block *block, int n,
1186 struct ir3_instruction *address)
1187 {
1188 struct ir3_instruction *mov;
1189
1190 mov = ir3_instr_create(block, OPC_MOV);
1191 mov->cat1.src_type = TYPE_U32;
1192 mov->cat1.dst_type = TYPE_U32;
1193 __ssa_dst(mov);
1194 ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
1195
1196 ir3_instr_set_address(mov, address);
1197
1198 return mov;
1199 }
1200
1201 static inline struct ir3_instruction *
1202 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
1203 {
1204 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1205 __ssa_dst(instr);
1206 if (src->regs[0]->flags & IR3_REG_ARRAY) {
1207 struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY);
1208 src_reg->array = src->regs[0]->array;
1209 } else {
1210 __ssa_src(instr, src, src->regs[0]->flags & IR3_REG_HIGH);
1211 }
1212 debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
1213 instr->cat1.src_type = type;
1214 instr->cat1.dst_type = type;
1215 return instr;
1216 }
1217
1218 static inline struct ir3_instruction *
1219 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
1220 type_t src_type, type_t dst_type)
1221 {
1222 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1223 unsigned dst_flags = (type_size(dst_type) < 32) ? IR3_REG_HALF : 0;
1224 unsigned src_flags = (type_size(src_type) < 32) ? IR3_REG_HALF : 0;
1225
1226 debug_assert((src->regs[0]->flags & IR3_REG_HALF) == src_flags);
1227
1228 __ssa_dst(instr)->flags |= dst_flags;
1229 __ssa_src(instr, src, 0);
1230 instr->cat1.src_type = src_type;
1231 instr->cat1.dst_type = dst_type;
1232 debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
1233 return instr;
1234 }
1235
1236 static inline struct ir3_instruction *
1237 ir3_NOP(struct ir3_block *block)
1238 {
1239 return ir3_instr_create(block, OPC_NOP);
1240 }
1241
1242 #define IR3_INSTR_0 0
1243
1244 #define __INSTR0(flag, name, opc) \
1245 static inline struct ir3_instruction * \
1246 ir3_##name(struct ir3_block *block) \
1247 { \
1248 struct ir3_instruction *instr = \
1249 ir3_instr_create(block, opc); \
1250 instr->flags |= flag; \
1251 return instr; \
1252 }
1253 #define INSTR0F(f, name) __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name)
1254 #define INSTR0(name) __INSTR0(0, name, OPC_##name)
1255
1256 #define __INSTR1(flag, name, opc) \
1257 static inline struct ir3_instruction * \
1258 ir3_##name(struct ir3_block *block, \
1259 struct ir3_instruction *a, unsigned aflags) \
1260 { \
1261 struct ir3_instruction *instr = \
1262 ir3_instr_create(block, opc); \
1263 __ssa_dst(instr); \
1264 __ssa_src(instr, a, aflags); \
1265 instr->flags |= flag; \
1266 return instr; \
1267 }
1268 #define INSTR1F(f, name) __INSTR1(IR3_INSTR_##f, name##_##f, OPC_##name)
1269 #define INSTR1(name) __INSTR1(0, name, OPC_##name)
1270
1271 #define __INSTR2(flag, name, opc) \
1272 static inline struct ir3_instruction * \
1273 ir3_##name(struct ir3_block *block, \
1274 struct ir3_instruction *a, unsigned aflags, \
1275 struct ir3_instruction *b, unsigned bflags) \
1276 { \
1277 struct ir3_instruction *instr = \
1278 ir3_instr_create(block, opc); \
1279 __ssa_dst(instr); \
1280 __ssa_src(instr, a, aflags); \
1281 __ssa_src(instr, b, bflags); \
1282 instr->flags |= flag; \
1283 return instr; \
1284 }
1285 #define INSTR2F(f, name) __INSTR2(IR3_INSTR_##f, name##_##f, OPC_##name)
1286 #define INSTR2(name) __INSTR2(0, name, OPC_##name)
1287
1288 #define __INSTR3(flag, name, opc) \
1289 static inline struct ir3_instruction * \
1290 ir3_##name(struct ir3_block *block, \
1291 struct ir3_instruction *a, unsigned aflags, \
1292 struct ir3_instruction *b, unsigned bflags, \
1293 struct ir3_instruction *c, unsigned cflags) \
1294 { \
1295 struct ir3_instruction *instr = \
1296 ir3_instr_create2(block, opc, 4); \
1297 __ssa_dst(instr); \
1298 __ssa_src(instr, a, aflags); \
1299 __ssa_src(instr, b, bflags); \
1300 __ssa_src(instr, c, cflags); \
1301 instr->flags |= flag; \
1302 return instr; \
1303 }
1304 #define INSTR3F(f, name) __INSTR3(IR3_INSTR_##f, name##_##f, OPC_##name)
1305 #define INSTR3(name) __INSTR3(0, name, OPC_##name)
1306
1307 #define __INSTR4(flag, name, opc) \
1308 static inline struct ir3_instruction * \
1309 ir3_##name(struct ir3_block *block, \
1310 struct ir3_instruction *a, unsigned aflags, \
1311 struct ir3_instruction *b, unsigned bflags, \
1312 struct ir3_instruction *c, unsigned cflags, \
1313 struct ir3_instruction *d, unsigned dflags) \
1314 { \
1315 struct ir3_instruction *instr = \
1316 ir3_instr_create2(block, opc, 5); \
1317 __ssa_dst(instr); \
1318 __ssa_src(instr, a, aflags); \
1319 __ssa_src(instr, b, bflags); \
1320 __ssa_src(instr, c, cflags); \
1321 __ssa_src(instr, d, dflags); \
1322 instr->flags |= flag; \
1323 return instr; \
1324 }
1325 #define INSTR4F(f, name) __INSTR4(IR3_INSTR_##f, name##_##f, OPC_##name)
1326 #define INSTR4(name) __INSTR4(0, name, OPC_##name)
1327
1328 /* cat0 instructions: */
1329 INSTR0(BR)
1330 INSTR0(JUMP)
1331 INSTR1(KILL)
1332 INSTR0(END)
1333 INSTR0(CHSH)
1334 INSTR0(CHMASK)
1335 INSTR1(CONDEND)
1336 INSTR0(ENDPATCH)
1337
1338 /* cat2 instructions, most 2 src but some 1 src: */
1339 INSTR2(ADD_F)
1340 INSTR2(MIN_F)
1341 INSTR2(MAX_F)
1342 INSTR2(MUL_F)
1343 INSTR1(SIGN_F)
1344 INSTR2(CMPS_F)
1345 INSTR1(ABSNEG_F)
1346 INSTR2(CMPV_F)
1347 INSTR1(FLOOR_F)
1348 INSTR1(CEIL_F)
1349 INSTR1(RNDNE_F)
1350 INSTR1(RNDAZ_F)
1351 INSTR1(TRUNC_F)
1352 INSTR2(ADD_U)
1353 INSTR2(ADD_S)
1354 INSTR2(SUB_U)
1355 INSTR2(SUB_S)
1356 INSTR2(CMPS_U)
1357 INSTR2(CMPS_S)
1358 INSTR2(MIN_U)
1359 INSTR2(MIN_S)
1360 INSTR2(MAX_U)
1361 INSTR2(MAX_S)
1362 INSTR1(ABSNEG_S)
1363 INSTR2(AND_B)
1364 INSTR2(OR_B)
1365 INSTR1(NOT_B)
1366 INSTR2(XOR_B)
1367 INSTR2(CMPV_U)
1368 INSTR2(CMPV_S)
1369 INSTR2(MUL_U24)
1370 INSTR2(MUL_S24)
1371 INSTR2(MULL_U)
1372 INSTR1(BFREV_B)
1373 INSTR1(CLZ_S)
1374 INSTR1(CLZ_B)
1375 INSTR2(SHL_B)
1376 INSTR2(SHR_B)
1377 INSTR2(ASHR_B)
1378 INSTR2(BARY_F)
1379 INSTR2(MGEN_B)
1380 INSTR2(GETBIT_B)
1381 INSTR1(SETRM)
1382 INSTR1(CBITS_B)
1383 INSTR2(SHB)
1384 INSTR2(MSAD)
1385
1386 /* cat3 instructions: */
1387 INSTR3(MAD_U16)
1388 INSTR3(MADSH_U16)
1389 INSTR3(MAD_S16)
1390 INSTR3(MADSH_M16)
1391 INSTR3(MAD_U24)
1392 INSTR3(MAD_S24)
1393 INSTR3(MAD_F16)
1394 INSTR3(MAD_F32)
1395 INSTR3(SEL_B16)
1396 INSTR3(SEL_B32)
1397 INSTR3(SEL_S16)
1398 INSTR3(SEL_S32)
1399 INSTR3(SEL_F16)
1400 INSTR3(SEL_F32)
1401 INSTR3(SAD_S16)
1402 INSTR3(SAD_S32)
1403
1404 /* cat4 instructions: */
1405 INSTR1(RCP)
1406 INSTR1(RSQ)
1407 INSTR1(LOG2)
1408 INSTR1(EXP2)
1409 INSTR1(SIN)
1410 INSTR1(COS)
1411 INSTR1(SQRT)
1412
1413 /* cat5 instructions: */
1414 INSTR1(DSX)
1415 INSTR1(DSY)
1416 INSTR1F(3D, DSX)
1417 INSTR1F(3D, DSY)
1418 INSTR1(RGETPOS)
1419
1420 static inline struct ir3_instruction *
1421 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1422 unsigned wrmask, unsigned flags, struct ir3_instruction *samp_tex,
1423 struct ir3_instruction *src0, struct ir3_instruction *src1)
1424 {
1425 struct ir3_instruction *sam;
1426
1427 sam = ir3_instr_create(block, opc);
1428 sam->flags |= flags | IR3_INSTR_S2EN;
1429 __ssa_dst(sam)->wrmask = wrmask;
1430 __ssa_src(sam, samp_tex, IR3_REG_HALF);
1431 if (src0) {
1432 __ssa_src(sam, src0, 0)->wrmask = (1 << (src0->regs_count - 1)) - 1;
1433 }
1434 if (src1) {
1435 __ssa_src(sam, src1, 0)->wrmask =(1 << (src1->regs_count - 1)) - 1;
1436 }
1437 sam->cat5.type = type;
1438
1439 return sam;
1440 }
1441
1442 /* cat6 instructions: */
1443 INSTR2(LDLV)
1444 INSTR3(LDG)
1445 INSTR3(LDL)
1446 INSTR3(LDLW)
1447 INSTR3(STG)
1448 INSTR3(STL)
1449 INSTR3(STLW)
1450 INSTR1(RESINFO)
1451 INSTR1(RESFMT)
1452 INSTR2(ATOMIC_ADD)
1453 INSTR2(ATOMIC_SUB)
1454 INSTR2(ATOMIC_XCHG)
1455 INSTR2(ATOMIC_INC)
1456 INSTR2(ATOMIC_DEC)
1457 INSTR2(ATOMIC_CMPXCHG)
1458 INSTR2(ATOMIC_MIN)
1459 INSTR2(ATOMIC_MAX)
1460 INSTR2(ATOMIC_AND)
1461 INSTR2(ATOMIC_OR)
1462 INSTR2(ATOMIC_XOR)
1463 #if GPU >= 600
1464 INSTR3(STIB);
1465 INSTR2(LDIB);
1466 INSTR3F(G, ATOMIC_ADD)
1467 INSTR3F(G, ATOMIC_SUB)
1468 INSTR3F(G, ATOMIC_XCHG)
1469 INSTR3F(G, ATOMIC_INC)
1470 INSTR3F(G, ATOMIC_DEC)
1471 INSTR3F(G, ATOMIC_CMPXCHG)
1472 INSTR3F(G, ATOMIC_MIN)
1473 INSTR3F(G, ATOMIC_MAX)
1474 INSTR3F(G, ATOMIC_AND)
1475 INSTR3F(G, ATOMIC_OR)
1476 INSTR3F(G, ATOMIC_XOR)
1477 #elif GPU >= 400
1478 INSTR3(LDGB)
1479 INSTR4(STGB)
1480 INSTR4(STIB)
1481 INSTR4F(G, ATOMIC_ADD)
1482 INSTR4F(G, ATOMIC_SUB)
1483 INSTR4F(G, ATOMIC_XCHG)
1484 INSTR4F(G, ATOMIC_INC)
1485 INSTR4F(G, ATOMIC_DEC)
1486 INSTR4F(G, ATOMIC_CMPXCHG)
1487 INSTR4F(G, ATOMIC_MIN)
1488 INSTR4F(G, ATOMIC_MAX)
1489 INSTR4F(G, ATOMIC_AND)
1490 INSTR4F(G, ATOMIC_OR)
1491 INSTR4F(G, ATOMIC_XOR)
1492 #endif
1493
1494 INSTR4F(G, STG)
1495
1496 /* cat7 instructions: */
1497 INSTR0(BAR)
1498 INSTR0(FENCE)
1499
1500 /* meta instructions: */
1501 INSTR0(META_TEX_PREFETCH);
1502
1503 /* ************************************************************************* */
1504 /* split this out or find some helper to use.. like main/bitset.h.. */
1505
1506 #include <string.h>
1507
1508 #define MAX_REG 256
1509
1510 typedef uint8_t regmask_t[2 * MAX_REG / 8];
1511
1512 static inline unsigned regmask_idx(struct ir3_register *reg)
1513 {
1514 unsigned num = (reg->flags & IR3_REG_RELATIV) ? reg->array.offset : reg->num;
1515 debug_assert(num < MAX_REG);
1516 if (reg->flags & IR3_REG_HALF) {
1517 if (reg->merged) {
1518 num /= 2;
1519 } else {
1520 num += MAX_REG;
1521 }
1522 }
1523 return num;
1524 }
1525
1526 static inline void regmask_init(regmask_t *regmask)
1527 {
1528 memset(regmask, 0, sizeof(*regmask));
1529 }
1530
1531 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1532 {
1533 unsigned idx = regmask_idx(reg);
1534 if (reg->flags & IR3_REG_RELATIV) {
1535 unsigned i;
1536 for (i = 0; i < reg->size; i++, idx++)
1537 (*regmask)[idx / 8] |= 1 << (idx % 8);
1538 } else {
1539 unsigned mask;
1540 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1541 if (mask & 1)
1542 (*regmask)[idx / 8] |= 1 << (idx % 8);
1543 }
1544 }
1545
1546 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1547 {
1548 unsigned i;
1549 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1550 (*dst)[i] = (*a)[i] | (*b)[i];
1551 }
1552
1553 /* set bits in a if not set in b, conceptually:
1554 * a |= (reg & ~b)
1555 */
1556 static inline void regmask_set_if_not(regmask_t *a,
1557 struct ir3_register *reg, regmask_t *b)
1558 {
1559 unsigned idx = regmask_idx(reg);
1560 if (reg->flags & IR3_REG_RELATIV) {
1561 unsigned i;
1562 for (i = 0; i < reg->size; i++, idx++)
1563 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1564 (*a)[idx / 8] |= 1 << (idx % 8);
1565 } else {
1566 unsigned mask;
1567 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1568 if (mask & 1)
1569 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1570 (*a)[idx / 8] |= 1 << (idx % 8);
1571 }
1572 }
1573
1574 static inline bool regmask_get(regmask_t *regmask,
1575 struct ir3_register *reg)
1576 {
1577 unsigned idx = regmask_idx(reg);
1578 if (reg->flags & IR3_REG_RELATIV) {
1579 unsigned i;
1580 for (i = 0; i < reg->size; i++, idx++)
1581 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1582 return true;
1583 } else {
1584 unsigned mask;
1585 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1586 if (mask & 1)
1587 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1588 return true;
1589 }
1590 return false;
1591 }
1592
1593 /* ************************************************************************* */
1594
1595 #endif /* IR3_H_ */