freedreno/ir3: fix neverball assert in case of unused VS inputs
[mesa.git] / src / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "compiler/shader_enums.h"
31
32 #include "util/bitscan.h"
33 #include "util/list.h"
34 #include "util/set.h"
35 #include "util/u_debug.h"
36
37 #include "instr-a3xx.h"
38
39 /* low level intermediate representation of an adreno shader program */
40
41 struct ir3_compiler;
42 struct ir3;
43 struct ir3_instruction;
44 struct ir3_block;
45
46 struct ir3_info {
47 uint32_t gpu_id;
48 uint16_t sizedwords;
49 uint16_t instrs_count; /* expanded to account for rpt's */
50 uint16_t nops_count; /* # of nop instructions, including nopN */
51 /* NOTE: max_reg, etc, does not include registers not touched
52 * by the shader (ie. vertex fetched via VFD_DECODE but not
53 * touched by shader)
54 */
55 int8_t max_reg; /* highest GPR # used by shader */
56 int8_t max_half_reg;
57 int16_t max_const;
58
59 /* number of sync bits: */
60 uint16_t ss, sy;
61 };
62
63 struct ir3_register {
64 enum {
65 IR3_REG_CONST = 0x001,
66 IR3_REG_IMMED = 0x002,
67 IR3_REG_HALF = 0x004,
68 /* high registers are used for some things in compute shaders,
69 * for example. Seems to be for things that are global to all
70 * threads in a wave, so possibly these are global/shared by
71 * all the threads in the wave?
72 */
73 IR3_REG_HIGH = 0x008,
74 IR3_REG_RELATIV= 0x010,
75 IR3_REG_R = 0x020,
76 /* Most instructions, it seems, can do float abs/neg but not
77 * integer. The CP pass needs to know what is intended (int or
78 * float) in order to do the right thing. For this reason the
79 * abs/neg flags are split out into float and int variants. In
80 * addition, .b (bitwise) operations, the negate is actually a
81 * bitwise not, so split that out into a new flag to make it
82 * more clear.
83 */
84 IR3_REG_FNEG = 0x040,
85 IR3_REG_FABS = 0x080,
86 IR3_REG_SNEG = 0x100,
87 IR3_REG_SABS = 0x200,
88 IR3_REG_BNOT = 0x400,
89 IR3_REG_EVEN = 0x800,
90 IR3_REG_POS_INF= 0x1000,
91 /* (ei) flag, end-input? Set on last bary, presumably to signal
92 * that the shader needs no more input:
93 */
94 IR3_REG_EI = 0x2000,
95 /* meta-flags, for intermediate stages of IR, ie.
96 * before register assignment is done:
97 */
98 IR3_REG_SSA = 0x4000, /* 'instr' is ptr to assigning instr */
99 IR3_REG_ARRAY = 0x8000,
100
101 } flags;
102
103 bool merged : 1; /* half-regs conflict with full regs (ie >= a6xx) */
104
105 /* normal registers:
106 * the component is in the low two bits of the reg #, so
107 * rN.x becomes: (N << 2) | x
108 */
109 uint16_t num;
110 union {
111 /* immediate: */
112 int32_t iim_val;
113 uint32_t uim_val;
114 float fim_val;
115 /* relative: */
116 struct {
117 uint16_t id;
118 int16_t offset;
119 } array;
120 };
121
122 /* For IR3_REG_SSA, src registers contain ptr back to assigning
123 * instruction.
124 *
125 * For IR3_REG_ARRAY, the pointer is back to the last dependent
126 * array access (although the net effect is the same, it points
127 * back to a previous instruction that we depend on).
128 */
129 struct ir3_instruction *instr;
130
131 union {
132 /* used for cat5 instructions, but also for internal/IR level
133 * tracking of what registers are read/written by an instruction.
134 * wrmask may be a bad name since it is used to represent both
135 * src and dst that touch multiple adjacent registers.
136 */
137 unsigned wrmask;
138 /* for relative addressing, 32bits for array size is too small,
139 * but otoh we don't need to deal with disjoint sets, so instead
140 * use a simple size field (number of scalar components).
141 */
142 unsigned size;
143 };
144 };
145
146 /*
147 * Stupid/simple growable array implementation:
148 */
149 #define DECLARE_ARRAY(type, name) \
150 unsigned name ## _count, name ## _sz; \
151 type * name;
152
153 #define array_insert(ctx, arr, val) do { \
154 if (arr ## _count == arr ## _sz) { \
155 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
156 arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
157 } \
158 arr[arr ##_count++] = val; \
159 } while (0)
160
161 struct ir3_instruction {
162 struct ir3_block *block;
163 opc_t opc;
164 enum {
165 /* (sy) flag is set on first instruction, and after sample
166 * instructions (probably just on RAW hazard).
167 */
168 IR3_INSTR_SY = 0x001,
169 /* (ss) flag is set on first instruction, and first instruction
170 * to depend on the result of "long" instructions (RAW hazard):
171 *
172 * rcp, rsq, log2, exp2, sin, cos, sqrt
173 *
174 * It seems to synchronize until all in-flight instructions are
175 * completed, for example:
176 *
177 * rsq hr1.w, hr1.w
178 * add.f hr2.z, (neg)hr2.z, hc0.y
179 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
180 * rsq hr2.x, hr2.x
181 * (rpt1)nop
182 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
183 * nop
184 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
185 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
186 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
187 *
188 * The last mul.f does not have (ss) set, presumably because the
189 * (ss) on the previous instruction does the job.
190 *
191 * The blob driver also seems to set it on WAR hazards, although
192 * not really clear if this is needed or just blob compiler being
193 * sloppy. So far I haven't found a case where removing the (ss)
194 * causes problems for WAR hazard, but I could just be getting
195 * lucky:
196 *
197 * rcp r1.y, r3.y
198 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
199 *
200 */
201 IR3_INSTR_SS = 0x002,
202 /* (jp) flag is set on jump targets:
203 */
204 IR3_INSTR_JP = 0x004,
205 IR3_INSTR_UL = 0x008,
206 IR3_INSTR_3D = 0x010,
207 IR3_INSTR_A = 0x020,
208 IR3_INSTR_O = 0x040,
209 IR3_INSTR_P = 0x080,
210 IR3_INSTR_S = 0x100,
211 IR3_INSTR_S2EN = 0x200,
212 IR3_INSTR_G = 0x400,
213 IR3_INSTR_SAT = 0x800,
214 /* meta-flags, for intermediate stages of IR, ie.
215 * before register assignment is done:
216 */
217 IR3_INSTR_MARK = 0x1000,
218 IR3_INSTR_UNUSED= 0x2000,
219 } flags;
220 uint8_t repeat;
221 uint8_t nop;
222 #ifdef DEBUG
223 unsigned regs_max;
224 #endif
225 unsigned regs_count;
226 struct ir3_register **regs;
227 union {
228 struct {
229 char inv;
230 char comp;
231 int immed;
232 struct ir3_block *target;
233 } cat0;
234 struct {
235 type_t src_type, dst_type;
236 } cat1;
237 struct {
238 enum {
239 IR3_COND_LT = 0,
240 IR3_COND_LE = 1,
241 IR3_COND_GT = 2,
242 IR3_COND_GE = 3,
243 IR3_COND_EQ = 4,
244 IR3_COND_NE = 5,
245 } condition;
246 } cat2;
247 struct {
248 unsigned samp, tex;
249 type_t type;
250 } cat5;
251 struct {
252 type_t type;
253 int src_offset;
254 int dst_offset;
255 int iim_val : 3; /* for ldgb/stgb, # of components */
256 unsigned d : 3;
257 bool typed : 1;
258 } cat6;
259 struct {
260 unsigned w : 1; /* write */
261 unsigned r : 1; /* read */
262 unsigned l : 1; /* local */
263 unsigned g : 1; /* global */
264 } cat7;
265 /* for meta-instructions, just used to hold extra data
266 * before instruction scheduling, etc
267 */
268 struct {
269 int off; /* component/offset */
270 } split;
271 struct {
272 /* for output collects, this maps back to the entry in the
273 * ir3_shader_variant::outputs table.
274 */
275 int outidx;
276 } collect;
277 struct {
278 unsigned samp, tex;
279 unsigned input_offset;
280 } prefetch;
281 struct {
282 /* maps back to entry in ir3_shader_variant::inputs table: */
283 int inidx;
284 /* for sysvals, identifies the sysval type. Mostly so we can
285 * identify the special cases where a sysval should not be DCE'd
286 * (currently, just pre-fs texture fetch)
287 */
288 gl_system_value sysval;
289 } input;
290 };
291
292 /* transient values used during various algorithms: */
293 union {
294 /* The instruction depth is the max dependency distance to output.
295 *
296 * You can also think of it as the "cost", if we did any sort of
297 * optimization for register footprint. Ie. a value that is just
298 * result of moving a const to a reg would have a low cost, so to
299 * it could make sense to duplicate the instruction at various
300 * points where the result is needed to reduce register footprint.
301 */
302 int depth;
303 /* When we get to the RA stage, we no longer need depth, but
304 * we do need instruction's position/name:
305 */
306 struct {
307 uint16_t ip;
308 uint16_t name;
309 };
310 };
311
312 /* used for per-pass extra instruction data.
313 *
314 * TODO we should remove the per-pass data like this and 'use_count'
315 * and do something similar to what RA does w/ ir3_ra_instr_data..
316 * ie. use the ir3_count_instructions pass, and then use instr->ip
317 * to index into a table of pass-private data.
318 */
319 void *data;
320
321 int sun; /* Sethi–Ullman number, used by sched */
322 int use_count; /* currently just updated/used by cp */
323
324 /* Used during CP and RA stages. For collect and shader inputs/
325 * outputs where we need a sequence of consecutive registers,
326 * keep track of each src instructions left (ie 'n-1') and right
327 * (ie 'n+1') neighbor. The front-end must insert enough mov's
328 * to ensure that each instruction has at most one left and at
329 * most one right neighbor. During the copy-propagation pass,
330 * we only remove mov's when we can preserve this constraint.
331 * And during the RA stage, we use the neighbor information to
332 * allocate a block of registers in one shot.
333 *
334 * TODO: maybe just add something like:
335 * struct ir3_instruction_ref {
336 * struct ir3_instruction *instr;
337 * unsigned cnt;
338 * }
339 *
340 * Or can we get away without the refcnt stuff? It seems like
341 * it should be overkill.. the problem is if, potentially after
342 * already eliminating some mov's, if you have a single mov that
343 * needs to be grouped with it's neighbors in two different
344 * places (ex. shader output and a collect).
345 */
346 struct {
347 struct ir3_instruction *left, *right;
348 uint16_t left_cnt, right_cnt;
349 } cp;
350
351 /* an instruction can reference at most one address register amongst
352 * it's src/dst registers. Beyond that, you need to insert mov's.
353 *
354 * NOTE: do not write this directly, use ir3_instr_set_address()
355 */
356 struct ir3_instruction *address;
357
358 /* Tracking for additional dependent instructions. Used to handle
359 * barriers, WAR hazards for arrays/SSBOs/etc.
360 */
361 DECLARE_ARRAY(struct ir3_instruction *, deps);
362
363 /*
364 * From PoV of instruction scheduling, not execution (ie. ignores global/
365 * local distinction):
366 * shared image atomic SSBO everything
367 * barrier()/ - R/W R/W R/W R/W X
368 * groupMemoryBarrier()
369 * memoryBarrier() - R/W R/W
370 * (but only images declared coherent?)
371 * memoryBarrierAtomic() - R/W
372 * memoryBarrierBuffer() - R/W
373 * memoryBarrierImage() - R/W
374 * memoryBarrierShared() - R/W
375 *
376 * TODO I think for SSBO/image/shared, in cases where we can determine
377 * which variable is accessed, we don't need to care about accesses to
378 * different variables (unless declared coherent??)
379 */
380 enum {
381 IR3_BARRIER_EVERYTHING = 1 << 0,
382 IR3_BARRIER_SHARED_R = 1 << 1,
383 IR3_BARRIER_SHARED_W = 1 << 2,
384 IR3_BARRIER_IMAGE_R = 1 << 3,
385 IR3_BARRIER_IMAGE_W = 1 << 4,
386 IR3_BARRIER_BUFFER_R = 1 << 5,
387 IR3_BARRIER_BUFFER_W = 1 << 6,
388 IR3_BARRIER_ARRAY_R = 1 << 7,
389 IR3_BARRIER_ARRAY_W = 1 << 8,
390 } barrier_class, barrier_conflict;
391
392 /* Entry in ir3_block's instruction list: */
393 struct list_head node;
394
395 #ifdef DEBUG
396 uint32_t serialno;
397 #endif
398 };
399
400 static inline struct ir3_instruction *
401 ir3_neighbor_first(struct ir3_instruction *instr)
402 {
403 int cnt = 0;
404 while (instr->cp.left) {
405 instr = instr->cp.left;
406 if (++cnt > 0xffff) {
407 debug_assert(0);
408 break;
409 }
410 }
411 return instr;
412 }
413
414 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
415 {
416 int num = 1;
417
418 debug_assert(!instr->cp.left);
419
420 while (instr->cp.right) {
421 num++;
422 instr = instr->cp.right;
423 if (num > 0xffff) {
424 debug_assert(0);
425 break;
426 }
427 }
428
429 return num;
430 }
431
432 struct ir3 {
433 struct ir3_compiler *compiler;
434 gl_shader_stage type;
435
436 DECLARE_ARRAY(struct ir3_instruction *, inputs);
437 DECLARE_ARRAY(struct ir3_instruction *, outputs);
438
439 /* Track bary.f (and ldlv) instructions.. this is needed in
440 * scheduling to ensure that all varying fetches happen before
441 * any potential kill instructions. The hw gets grumpy if all
442 * threads in a group are killed before the last bary.f gets
443 * a chance to signal end of input (ei).
444 */
445 DECLARE_ARRAY(struct ir3_instruction *, baryfs);
446
447 /* Track all indirect instructions (read and write). To avoid
448 * deadlock scenario where an address register gets scheduled,
449 * but other dependent src instructions cannot be scheduled due
450 * to dependency on a *different* address register value, the
451 * scheduler needs to ensure that all dependencies other than
452 * the instruction other than the address register are scheduled
453 * before the one that writes the address register. Having a
454 * convenient list of instructions that reference some address
455 * register simplifies this.
456 */
457 DECLARE_ARRAY(struct ir3_instruction *, indirects);
458
459 /* and same for instructions that consume predicate register: */
460 DECLARE_ARRAY(struct ir3_instruction *, predicates);
461
462 /* Track texture sample instructions which need texture state
463 * patched in (for astc-srgb workaround):
464 */
465 DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
466
467 /* List of blocks: */
468 struct list_head block_list;
469
470 /* List of ir3_array's: */
471 struct list_head array_list;
472
473 unsigned max_sun; /* max Sethi–Ullman number */
474
475 #ifdef DEBUG
476 unsigned block_count, instr_count;
477 #endif
478 };
479
480 struct ir3_array {
481 struct list_head node;
482 unsigned length;
483 unsigned id;
484
485 struct nir_register *r;
486
487 /* To avoid array write's from getting DCE'd, keep track of the
488 * most recent write. Any array access depends on the most
489 * recent write. This way, nothing depends on writes after the
490 * last read. But all the writes that happen before that have
491 * something depending on them
492 */
493 struct ir3_instruction *last_write;
494
495 /* extra stuff used in RA pass: */
496 unsigned base; /* base vreg name */
497 unsigned reg; /* base physical reg */
498 uint16_t start_ip, end_ip;
499 };
500
501 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
502
503 struct ir3_block {
504 struct list_head node;
505 struct ir3 *shader;
506
507 const struct nir_block *nblock;
508
509 struct list_head instr_list; /* list of ir3_instruction */
510
511 /* each block has either one or two successors.. in case of
512 * two successors, 'condition' decides which one to follow.
513 * A block preceding an if/else has two successors.
514 */
515 struct ir3_instruction *condition;
516 struct ir3_block *successors[2];
517
518 struct set *predecessors; /* set of ir3_block */
519
520 uint16_t start_ip, end_ip;
521
522 /* Track instructions which do not write a register but other-
523 * wise must not be discarded (such as kill, stg, etc)
524 */
525 DECLARE_ARRAY(struct ir3_instruction *, keeps);
526
527 /* used for per-pass extra block data. Mainly used right
528 * now in RA step to track livein/liveout.
529 */
530 void *data;
531
532 #ifdef DEBUG
533 uint32_t serialno;
534 #endif
535 };
536
537 static inline uint32_t
538 block_id(struct ir3_block *block)
539 {
540 #ifdef DEBUG
541 return block->serialno;
542 #else
543 return (uint32_t)(unsigned long)block;
544 #endif
545 }
546
547 struct ir3 * ir3_create(struct ir3_compiler *compiler, gl_shader_stage type);
548 void ir3_destroy(struct ir3 *shader);
549 void * ir3_assemble(struct ir3 *shader,
550 struct ir3_info *info, uint32_t gpu_id);
551 void * ir3_alloc(struct ir3 *shader, int sz);
552
553 struct ir3_block * ir3_block_create(struct ir3 *shader);
554
555 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
556 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
557 opc_t opc, int nreg);
558 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
559 void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
560 const char *ir3_instr_name(struct ir3_instruction *instr);
561
562 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
563 int num, int flags);
564 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
565 struct ir3_register *reg);
566
567 void ir3_instr_set_address(struct ir3_instruction *instr,
568 struct ir3_instruction *addr);
569
570 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
571 {
572 if (instr->flags & IR3_INSTR_MARK)
573 return true; /* already visited */
574 instr->flags |= IR3_INSTR_MARK;
575 return false;
576 }
577
578 void ir3_block_clear_mark(struct ir3_block *block);
579 void ir3_clear_mark(struct ir3 *shader);
580
581 unsigned ir3_count_instructions(struct ir3 *ir);
582
583 static inline int ir3_instr_regno(struct ir3_instruction *instr,
584 struct ir3_register *reg)
585 {
586 unsigned i;
587 for (i = 0; i < instr->regs_count; i++)
588 if (reg == instr->regs[i])
589 return i;
590 return -1;
591 }
592
593
594 #define MAX_ARRAYS 16
595
596 /* comp:
597 * 0 - x
598 * 1 - y
599 * 2 - z
600 * 3 - w
601 */
602 static inline uint32_t regid(int num, int comp)
603 {
604 return (num << 2) | (comp & 0x3);
605 }
606
607 static inline uint32_t reg_num(struct ir3_register *reg)
608 {
609 return reg->num >> 2;
610 }
611
612 static inline uint32_t reg_comp(struct ir3_register *reg)
613 {
614 return reg->num & 0x3;
615 }
616
617 #define INVALID_REG regid(63, 0)
618 #define VALIDREG(r) ((r) != INVALID_REG)
619 #define CONDREG(r, val) COND(VALIDREG(r), (val))
620
621 static inline bool is_flow(struct ir3_instruction *instr)
622 {
623 return (opc_cat(instr->opc) == 0);
624 }
625
626 static inline bool is_kill(struct ir3_instruction *instr)
627 {
628 return instr->opc == OPC_KILL || instr->opc == OPC_CONDEND;
629 }
630
631 static inline bool is_nop(struct ir3_instruction *instr)
632 {
633 return instr->opc == OPC_NOP;
634 }
635
636 static inline bool is_same_type_reg(struct ir3_register *reg1,
637 struct ir3_register *reg2)
638 {
639 unsigned type_reg1 = (reg1->flags & (IR3_REG_HIGH | IR3_REG_HALF));
640 unsigned type_reg2 = (reg2->flags & (IR3_REG_HIGH | IR3_REG_HALF));
641
642 if (type_reg1 ^ type_reg2)
643 return false;
644 else
645 return true;
646 }
647
648 /* Is it a non-transformative (ie. not type changing) mov? This can
649 * also include absneg.s/absneg.f, which for the most part can be
650 * treated as a mov (single src argument).
651 */
652 static inline bool is_same_type_mov(struct ir3_instruction *instr)
653 {
654 struct ir3_register *dst;
655
656 switch (instr->opc) {
657 case OPC_MOV:
658 if (instr->cat1.src_type != instr->cat1.dst_type)
659 return false;
660 /* If the type of dest reg and src reg are different,
661 * it shouldn't be considered as same type mov
662 */
663 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
664 return false;
665 break;
666 case OPC_ABSNEG_F:
667 case OPC_ABSNEG_S:
668 if (instr->flags & IR3_INSTR_SAT)
669 return false;
670 /* If the type of dest reg and src reg are different,
671 * it shouldn't be considered as same type mov
672 */
673 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
674 return false;
675 break;
676 default:
677 return false;
678 }
679
680 dst = instr->regs[0];
681
682 /* mov's that write to a0.x or p0.x are special: */
683 if (dst->num == regid(REG_P0, 0))
684 return false;
685 if (dst->num == regid(REG_A0, 0))
686 return false;
687
688 if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
689 return false;
690
691 return true;
692 }
693
694 static inline bool is_alu(struct ir3_instruction *instr)
695 {
696 return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
697 }
698
699 static inline bool is_sfu(struct ir3_instruction *instr)
700 {
701 return (opc_cat(instr->opc) == 4);
702 }
703
704 static inline bool is_tex(struct ir3_instruction *instr)
705 {
706 return (opc_cat(instr->opc) == 5);
707 }
708
709 static inline bool is_mem(struct ir3_instruction *instr)
710 {
711 return (opc_cat(instr->opc) == 6);
712 }
713
714 static inline bool is_barrier(struct ir3_instruction *instr)
715 {
716 return (opc_cat(instr->opc) == 7);
717 }
718
719 static inline bool
720 is_store(struct ir3_instruction *instr)
721 {
722 /* these instructions, the "destination" register is
723 * actually a source, the address to store to.
724 */
725 switch (instr->opc) {
726 case OPC_STG:
727 case OPC_STGB:
728 case OPC_STIB:
729 case OPC_STP:
730 case OPC_STL:
731 case OPC_STLW:
732 case OPC_L2G:
733 case OPC_G2L:
734 return true;
735 default:
736 return false;
737 }
738 }
739
740 static inline bool is_load(struct ir3_instruction *instr)
741 {
742 switch (instr->opc) {
743 case OPC_LDG:
744 case OPC_LDGB:
745 case OPC_LDIB:
746 case OPC_LDL:
747 case OPC_LDP:
748 case OPC_L2G:
749 case OPC_LDLW:
750 case OPC_LDC:
751 case OPC_LDLV:
752 /* probably some others too.. */
753 return true;
754 default:
755 return false;
756 }
757 }
758
759 static inline bool is_input(struct ir3_instruction *instr)
760 {
761 /* in some cases, ldlv is used to fetch varying without
762 * interpolation.. fortunately inloc is the first src
763 * register in either case
764 */
765 switch (instr->opc) {
766 case OPC_LDLV:
767 case OPC_BARY_F:
768 return true;
769 default:
770 return false;
771 }
772 }
773
774 static inline bool is_bool(struct ir3_instruction *instr)
775 {
776 switch (instr->opc) {
777 case OPC_CMPS_F:
778 case OPC_CMPS_S:
779 case OPC_CMPS_U:
780 return true;
781 default:
782 return false;
783 }
784 }
785
786 static inline bool is_meta(struct ir3_instruction *instr)
787 {
788 return (opc_cat(instr->opc) == -1);
789 }
790
791 static inline unsigned dest_regs(struct ir3_instruction *instr)
792 {
793 if ((instr->regs_count == 0) || is_store(instr))
794 return 0;
795
796 return util_last_bit(instr->regs[0]->wrmask);
797 }
798
799 static inline bool writes_addr(struct ir3_instruction *instr)
800 {
801 if (instr->regs_count > 0) {
802 struct ir3_register *dst = instr->regs[0];
803 return reg_num(dst) == REG_A0;
804 }
805 return false;
806 }
807
808 static inline bool writes_pred(struct ir3_instruction *instr)
809 {
810 if (instr->regs_count > 0) {
811 struct ir3_register *dst = instr->regs[0];
812 return reg_num(dst) == REG_P0;
813 }
814 return false;
815 }
816
817 /* returns defining instruction for reg */
818 /* TODO better name */
819 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
820 {
821 if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
822 return reg->instr;
823 }
824 return NULL;
825 }
826
827 static inline bool conflicts(struct ir3_instruction *a,
828 struct ir3_instruction *b)
829 {
830 return (a && b) && (a != b);
831 }
832
833 static inline bool reg_gpr(struct ir3_register *r)
834 {
835 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
836 return false;
837 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
838 return false;
839 return true;
840 }
841
842 static inline type_t half_type(type_t type)
843 {
844 switch (type) {
845 case TYPE_F32: return TYPE_F16;
846 case TYPE_U32: return TYPE_U16;
847 case TYPE_S32: return TYPE_S16;
848 case TYPE_F16:
849 case TYPE_U16:
850 case TYPE_S16:
851 return type;
852 default:
853 assert(0);
854 return ~0;
855 }
856 }
857
858 /* some cat2 instructions (ie. those which are not float) can embed an
859 * immediate:
860 */
861 static inline bool ir3_cat2_int(opc_t opc)
862 {
863 switch (opc) {
864 case OPC_ADD_U:
865 case OPC_ADD_S:
866 case OPC_SUB_U:
867 case OPC_SUB_S:
868 case OPC_CMPS_U:
869 case OPC_CMPS_S:
870 case OPC_MIN_U:
871 case OPC_MIN_S:
872 case OPC_MAX_U:
873 case OPC_MAX_S:
874 case OPC_CMPV_U:
875 case OPC_CMPV_S:
876 case OPC_MUL_U24:
877 case OPC_MUL_S24:
878 case OPC_MULL_U:
879 case OPC_CLZ_S:
880 case OPC_ABSNEG_S:
881 case OPC_AND_B:
882 case OPC_OR_B:
883 case OPC_NOT_B:
884 case OPC_XOR_B:
885 case OPC_BFREV_B:
886 case OPC_CLZ_B:
887 case OPC_SHL_B:
888 case OPC_SHR_B:
889 case OPC_ASHR_B:
890 case OPC_MGEN_B:
891 case OPC_GETBIT_B:
892 case OPC_CBITS_B:
893 case OPC_BARY_F:
894 return true;
895
896 default:
897 return false;
898 }
899 }
900
901 static inline bool ir3_cat2_float(opc_t opc)
902 {
903 switch (opc) {
904 case OPC_ADD_F:
905 case OPC_MIN_F:
906 case OPC_MAX_F:
907 case OPC_MUL_F:
908 case OPC_SIGN_F:
909 case OPC_CMPS_F:
910 case OPC_ABSNEG_F:
911 case OPC_CMPV_F:
912 case OPC_FLOOR_F:
913 case OPC_CEIL_F:
914 case OPC_RNDNE_F:
915 case OPC_RNDAZ_F:
916 case OPC_TRUNC_F:
917 return true;
918
919 default:
920 return false;
921 }
922 }
923
924 static inline bool ir3_cat3_float(opc_t opc)
925 {
926 switch (opc) {
927 case OPC_MAD_F16:
928 case OPC_MAD_F32:
929 case OPC_SEL_F16:
930 case OPC_SEL_F32:
931 return true;
932 default:
933 return false;
934 }
935 }
936
937 /* map cat2 instruction to valid abs/neg flags: */
938 static inline unsigned ir3_cat2_absneg(opc_t opc)
939 {
940 switch (opc) {
941 case OPC_ADD_F:
942 case OPC_MIN_F:
943 case OPC_MAX_F:
944 case OPC_MUL_F:
945 case OPC_SIGN_F:
946 case OPC_CMPS_F:
947 case OPC_ABSNEG_F:
948 case OPC_CMPV_F:
949 case OPC_FLOOR_F:
950 case OPC_CEIL_F:
951 case OPC_RNDNE_F:
952 case OPC_RNDAZ_F:
953 case OPC_TRUNC_F:
954 case OPC_BARY_F:
955 return IR3_REG_FABS | IR3_REG_FNEG;
956
957 case OPC_ADD_U:
958 case OPC_ADD_S:
959 case OPC_SUB_U:
960 case OPC_SUB_S:
961 case OPC_CMPS_U:
962 case OPC_CMPS_S:
963 case OPC_MIN_U:
964 case OPC_MIN_S:
965 case OPC_MAX_U:
966 case OPC_MAX_S:
967 case OPC_CMPV_U:
968 case OPC_CMPV_S:
969 case OPC_MUL_U24:
970 case OPC_MUL_S24:
971 case OPC_MULL_U:
972 case OPC_CLZ_S:
973 return 0;
974
975 case OPC_ABSNEG_S:
976 return IR3_REG_SABS | IR3_REG_SNEG;
977
978 case OPC_AND_B:
979 case OPC_OR_B:
980 case OPC_NOT_B:
981 case OPC_XOR_B:
982 case OPC_BFREV_B:
983 case OPC_CLZ_B:
984 case OPC_SHL_B:
985 case OPC_SHR_B:
986 case OPC_ASHR_B:
987 case OPC_MGEN_B:
988 case OPC_GETBIT_B:
989 case OPC_CBITS_B:
990 return IR3_REG_BNOT;
991
992 default:
993 return 0;
994 }
995 }
996
997 /* map cat3 instructions to valid abs/neg flags: */
998 static inline unsigned ir3_cat3_absneg(opc_t opc)
999 {
1000 switch (opc) {
1001 case OPC_MAD_F16:
1002 case OPC_MAD_F32:
1003 case OPC_SEL_F16:
1004 case OPC_SEL_F32:
1005 return IR3_REG_FNEG;
1006
1007 case OPC_MAD_U16:
1008 case OPC_MADSH_U16:
1009 case OPC_MAD_S16:
1010 case OPC_MADSH_M16:
1011 case OPC_MAD_U24:
1012 case OPC_MAD_S24:
1013 case OPC_SEL_S16:
1014 case OPC_SEL_S32:
1015 case OPC_SAD_S16:
1016 case OPC_SAD_S32:
1017 /* neg *may* work on 3rd src.. */
1018
1019 case OPC_SEL_B16:
1020 case OPC_SEL_B32:
1021
1022 default:
1023 return 0;
1024 }
1025 }
1026
1027 #define MASK(n) ((1 << (n)) - 1)
1028
1029 /* iterator for an instructions's sources (reg), also returns src #: */
1030 #define foreach_src_n(__srcreg, __n, __instr) \
1031 if ((__instr)->regs_count) \
1032 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
1033 if ((__srcreg = (__instr)->regs[__n + 1]))
1034
1035 /* iterator for an instructions's sources (reg): */
1036 #define foreach_src(__srcreg, __instr) \
1037 foreach_src_n(__srcreg, __i, __instr)
1038
1039 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
1040 {
1041 unsigned cnt = instr->regs_count + instr->deps_count;
1042 if (instr->address)
1043 cnt++;
1044 return cnt;
1045 }
1046
1047 static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
1048 {
1049 if (n == (instr->regs_count + instr->deps_count))
1050 return instr->address;
1051 if (n >= instr->regs_count)
1052 return instr->deps[n - instr->regs_count];
1053 return ssa(instr->regs[n]);
1054 }
1055
1056 static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
1057 {
1058 if (n == (instr->regs_count + instr->deps_count))
1059 return false;
1060 if (n >= instr->regs_count)
1061 return true;
1062 return false;
1063 }
1064
1065 #define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
1066
1067 /* iterator for an instruction's SSA sources (instr), also returns src #: */
1068 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
1069 for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
1070 if ((__srcinst = __ssa_src_n(__instr, __n)))
1071
1072 /* iterator for an instruction's SSA sources (instr): */
1073 #define foreach_ssa_src(__srcinst, __instr) \
1074 foreach_ssa_src_n(__srcinst, __i, __instr)
1075
1076 /* iterators for shader inputs: */
1077 #define foreach_input_n(__ininstr, __cnt, __ir) \
1078 for (unsigned __cnt = 0; __cnt < (__ir)->inputs_count; __cnt++) \
1079 if ((__ininstr = (__ir)->inputs[__cnt]))
1080 #define foreach_input(__ininstr, __ir) \
1081 foreach_input_n(__ininstr, __i, __ir)
1082
1083 /* iterators for shader outputs: */
1084 #define foreach_output_n(__outinstr, __cnt, __ir) \
1085 for (unsigned __cnt = 0; __cnt < (__ir)->outputs_count; __cnt++) \
1086 if ((__outinstr = (__ir)->outputs[__cnt]))
1087 #define foreach_output(__outinstr, __ir) \
1088 foreach_output_n(__outinstr, __i, __ir)
1089
1090 /* dump: */
1091 void ir3_print(struct ir3 *ir);
1092 void ir3_print_instr(struct ir3_instruction *instr);
1093
1094 /* depth calculation: */
1095 struct ir3_shader_variant;
1096 int ir3_delayslots(struct ir3_instruction *assigner,
1097 struct ir3_instruction *consumer, unsigned n);
1098 void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
1099 void ir3_depth(struct ir3 *ir, struct ir3_shader_variant *so);
1100
1101 /* copy-propagate: */
1102 void ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
1103
1104 /* group neighbors and insert mov's to resolve conflicts: */
1105 void ir3_group(struct ir3 *ir);
1106
1107 /* Sethi–Ullman numbering: */
1108 void ir3_sun(struct ir3 *ir);
1109
1110 /* scheduling: */
1111 void ir3_sched_add_deps(struct ir3 *ir);
1112 int ir3_sched(struct ir3 *ir);
1113
1114 void ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so);
1115
1116 /* register assignment: */
1117 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(struct ir3_compiler *compiler);
1118 int ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor, unsigned nprecolor);
1119
1120 /* legalize: */
1121 void ir3_legalize(struct ir3 *ir, bool *has_ssbo, bool *need_pixlod, int *max_bary);
1122
1123 /* ************************************************************************* */
1124 /* instruction helpers */
1125
1126 /* creates SSA src of correct type (ie. half vs full precision) */
1127 static inline struct ir3_register * __ssa_src(struct ir3_instruction *instr,
1128 struct ir3_instruction *src, unsigned flags)
1129 {
1130 struct ir3_register *reg;
1131 if (src->regs[0]->flags & IR3_REG_HALF)
1132 flags |= IR3_REG_HALF;
1133 reg = ir3_reg_create(instr, 0, IR3_REG_SSA | flags);
1134 reg->instr = src;
1135 reg->wrmask = src->regs[0]->wrmask;
1136 return reg;
1137 }
1138
1139 static inline struct ir3_register * __ssa_dst(struct ir3_instruction *instr)
1140 {
1141 struct ir3_register *reg = ir3_reg_create(instr, 0, 0);
1142 reg->flags |= IR3_REG_SSA;
1143 return reg;
1144 }
1145
1146 static inline struct ir3_instruction *
1147 create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
1148 {
1149 struct ir3_instruction *mov;
1150 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1151
1152 mov = ir3_instr_create(block, OPC_MOV);
1153 mov->cat1.src_type = type;
1154 mov->cat1.dst_type = type;
1155 __ssa_dst(mov)->flags |= flags;
1156 ir3_reg_create(mov, 0, IR3_REG_IMMED)->uim_val = val;
1157
1158 return mov;
1159 }
1160
1161 static inline struct ir3_instruction *
1162 create_immed(struct ir3_block *block, uint32_t val)
1163 {
1164 return create_immed_typed(block, val, TYPE_U32);
1165 }
1166
1167 static inline struct ir3_instruction *
1168 create_uniform_typed(struct ir3_block *block, unsigned n, type_t type)
1169 {
1170 struct ir3_instruction *mov;
1171 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1172
1173 mov = ir3_instr_create(block, OPC_MOV);
1174 mov->cat1.src_type = type;
1175 mov->cat1.dst_type = type;
1176 __ssa_dst(mov)->flags |= flags;
1177 ir3_reg_create(mov, n, IR3_REG_CONST | flags);
1178
1179 return mov;
1180 }
1181
1182 static inline struct ir3_instruction *
1183 create_uniform(struct ir3_block *block, unsigned n)
1184 {
1185 return create_uniform_typed(block, n, TYPE_F32);
1186 }
1187
1188 static inline struct ir3_instruction *
1189 create_uniform_indirect(struct ir3_block *block, int n,
1190 struct ir3_instruction *address)
1191 {
1192 struct ir3_instruction *mov;
1193
1194 mov = ir3_instr_create(block, OPC_MOV);
1195 mov->cat1.src_type = TYPE_U32;
1196 mov->cat1.dst_type = TYPE_U32;
1197 __ssa_dst(mov);
1198 ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
1199
1200 ir3_instr_set_address(mov, address);
1201
1202 return mov;
1203 }
1204
1205 static inline struct ir3_instruction *
1206 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
1207 {
1208 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1209 __ssa_dst(instr);
1210 if (src->regs[0]->flags & IR3_REG_ARRAY) {
1211 struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY);
1212 src_reg->array = src->regs[0]->array;
1213 } else {
1214 __ssa_src(instr, src, src->regs[0]->flags & IR3_REG_HIGH);
1215 }
1216 debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
1217 instr->cat1.src_type = type;
1218 instr->cat1.dst_type = type;
1219 return instr;
1220 }
1221
1222 static inline struct ir3_instruction *
1223 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
1224 type_t src_type, type_t dst_type)
1225 {
1226 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1227 unsigned dst_flags = (type_size(dst_type) < 32) ? IR3_REG_HALF : 0;
1228 unsigned src_flags = (type_size(src_type) < 32) ? IR3_REG_HALF : 0;
1229
1230 debug_assert((src->regs[0]->flags & IR3_REG_HALF) == src_flags);
1231
1232 __ssa_dst(instr)->flags |= dst_flags;
1233 __ssa_src(instr, src, 0);
1234 instr->cat1.src_type = src_type;
1235 instr->cat1.dst_type = dst_type;
1236 debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
1237 return instr;
1238 }
1239
1240 static inline struct ir3_instruction *
1241 ir3_NOP(struct ir3_block *block)
1242 {
1243 return ir3_instr_create(block, OPC_NOP);
1244 }
1245
1246 #define IR3_INSTR_0 0
1247
1248 #define __INSTR0(flag, name, opc) \
1249 static inline struct ir3_instruction * \
1250 ir3_##name(struct ir3_block *block) \
1251 { \
1252 struct ir3_instruction *instr = \
1253 ir3_instr_create(block, opc); \
1254 instr->flags |= flag; \
1255 return instr; \
1256 }
1257 #define INSTR0F(f, name) __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name)
1258 #define INSTR0(name) __INSTR0(0, name, OPC_##name)
1259
1260 #define __INSTR1(flag, name, opc) \
1261 static inline struct ir3_instruction * \
1262 ir3_##name(struct ir3_block *block, \
1263 struct ir3_instruction *a, unsigned aflags) \
1264 { \
1265 struct ir3_instruction *instr = \
1266 ir3_instr_create(block, opc); \
1267 __ssa_dst(instr); \
1268 __ssa_src(instr, a, aflags); \
1269 instr->flags |= flag; \
1270 return instr; \
1271 }
1272 #define INSTR1F(f, name) __INSTR1(IR3_INSTR_##f, name##_##f, OPC_##name)
1273 #define INSTR1(name) __INSTR1(0, name, OPC_##name)
1274
1275 #define __INSTR2(flag, name, opc) \
1276 static inline struct ir3_instruction * \
1277 ir3_##name(struct ir3_block *block, \
1278 struct ir3_instruction *a, unsigned aflags, \
1279 struct ir3_instruction *b, unsigned bflags) \
1280 { \
1281 struct ir3_instruction *instr = \
1282 ir3_instr_create(block, opc); \
1283 __ssa_dst(instr); \
1284 __ssa_src(instr, a, aflags); \
1285 __ssa_src(instr, b, bflags); \
1286 instr->flags |= flag; \
1287 return instr; \
1288 }
1289 #define INSTR2F(f, name) __INSTR2(IR3_INSTR_##f, name##_##f, OPC_##name)
1290 #define INSTR2(name) __INSTR2(0, name, OPC_##name)
1291
1292 #define __INSTR3(flag, name, opc) \
1293 static inline struct ir3_instruction * \
1294 ir3_##name(struct ir3_block *block, \
1295 struct ir3_instruction *a, unsigned aflags, \
1296 struct ir3_instruction *b, unsigned bflags, \
1297 struct ir3_instruction *c, unsigned cflags) \
1298 { \
1299 struct ir3_instruction *instr = \
1300 ir3_instr_create2(block, opc, 4); \
1301 __ssa_dst(instr); \
1302 __ssa_src(instr, a, aflags); \
1303 __ssa_src(instr, b, bflags); \
1304 __ssa_src(instr, c, cflags); \
1305 instr->flags |= flag; \
1306 return instr; \
1307 }
1308 #define INSTR3F(f, name) __INSTR3(IR3_INSTR_##f, name##_##f, OPC_##name)
1309 #define INSTR3(name) __INSTR3(0, name, OPC_##name)
1310
1311 #define __INSTR4(flag, name, opc) \
1312 static inline struct ir3_instruction * \
1313 ir3_##name(struct ir3_block *block, \
1314 struct ir3_instruction *a, unsigned aflags, \
1315 struct ir3_instruction *b, unsigned bflags, \
1316 struct ir3_instruction *c, unsigned cflags, \
1317 struct ir3_instruction *d, unsigned dflags) \
1318 { \
1319 struct ir3_instruction *instr = \
1320 ir3_instr_create2(block, opc, 5); \
1321 __ssa_dst(instr); \
1322 __ssa_src(instr, a, aflags); \
1323 __ssa_src(instr, b, bflags); \
1324 __ssa_src(instr, c, cflags); \
1325 __ssa_src(instr, d, dflags); \
1326 instr->flags |= flag; \
1327 return instr; \
1328 }
1329 #define INSTR4F(f, name) __INSTR4(IR3_INSTR_##f, name##_##f, OPC_##name)
1330 #define INSTR4(name) __INSTR4(0, name, OPC_##name)
1331
1332 /* cat0 instructions: */
1333 INSTR0(BR)
1334 INSTR0(JUMP)
1335 INSTR1(KILL)
1336 INSTR0(END)
1337 INSTR0(CHSH)
1338 INSTR0(CHMASK)
1339 INSTR1(CONDEND)
1340 INSTR0(ENDPATCH)
1341
1342 /* cat2 instructions, most 2 src but some 1 src: */
1343 INSTR2(ADD_F)
1344 INSTR2(MIN_F)
1345 INSTR2(MAX_F)
1346 INSTR2(MUL_F)
1347 INSTR1(SIGN_F)
1348 INSTR2(CMPS_F)
1349 INSTR1(ABSNEG_F)
1350 INSTR2(CMPV_F)
1351 INSTR1(FLOOR_F)
1352 INSTR1(CEIL_F)
1353 INSTR1(RNDNE_F)
1354 INSTR1(RNDAZ_F)
1355 INSTR1(TRUNC_F)
1356 INSTR2(ADD_U)
1357 INSTR2(ADD_S)
1358 INSTR2(SUB_U)
1359 INSTR2(SUB_S)
1360 INSTR2(CMPS_U)
1361 INSTR2(CMPS_S)
1362 INSTR2(MIN_U)
1363 INSTR2(MIN_S)
1364 INSTR2(MAX_U)
1365 INSTR2(MAX_S)
1366 INSTR1(ABSNEG_S)
1367 INSTR2(AND_B)
1368 INSTR2(OR_B)
1369 INSTR1(NOT_B)
1370 INSTR2(XOR_B)
1371 INSTR2(CMPV_U)
1372 INSTR2(CMPV_S)
1373 INSTR2(MUL_U24)
1374 INSTR2(MUL_S24)
1375 INSTR2(MULL_U)
1376 INSTR1(BFREV_B)
1377 INSTR1(CLZ_S)
1378 INSTR1(CLZ_B)
1379 INSTR2(SHL_B)
1380 INSTR2(SHR_B)
1381 INSTR2(ASHR_B)
1382 INSTR2(BARY_F)
1383 INSTR2(MGEN_B)
1384 INSTR2(GETBIT_B)
1385 INSTR1(SETRM)
1386 INSTR1(CBITS_B)
1387 INSTR2(SHB)
1388 INSTR2(MSAD)
1389
1390 /* cat3 instructions: */
1391 INSTR3(MAD_U16)
1392 INSTR3(MADSH_U16)
1393 INSTR3(MAD_S16)
1394 INSTR3(MADSH_M16)
1395 INSTR3(MAD_U24)
1396 INSTR3(MAD_S24)
1397 INSTR3(MAD_F16)
1398 INSTR3(MAD_F32)
1399 INSTR3(SEL_B16)
1400 INSTR3(SEL_B32)
1401 INSTR3(SEL_S16)
1402 INSTR3(SEL_S32)
1403 INSTR3(SEL_F16)
1404 INSTR3(SEL_F32)
1405 INSTR3(SAD_S16)
1406 INSTR3(SAD_S32)
1407
1408 /* cat4 instructions: */
1409 INSTR1(RCP)
1410 INSTR1(RSQ)
1411 INSTR1(LOG2)
1412 INSTR1(EXP2)
1413 INSTR1(SIN)
1414 INSTR1(COS)
1415 INSTR1(SQRT)
1416
1417 /* cat5 instructions: */
1418 INSTR1(DSX)
1419 INSTR1(DSY)
1420 INSTR1F(3D, DSX)
1421 INSTR1F(3D, DSY)
1422 INSTR1(RGETPOS)
1423
1424 static inline struct ir3_instruction *
1425 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1426 unsigned wrmask, unsigned flags, struct ir3_instruction *samp_tex,
1427 struct ir3_instruction *src0, struct ir3_instruction *src1)
1428 {
1429 struct ir3_instruction *sam;
1430
1431 sam = ir3_instr_create(block, opc);
1432 sam->flags |= flags | IR3_INSTR_S2EN;
1433 __ssa_dst(sam)->wrmask = wrmask;
1434 __ssa_src(sam, samp_tex, IR3_REG_HALF);
1435 if (src0) {
1436 __ssa_src(sam, src0, 0)->wrmask = (1 << (src0->regs_count - 1)) - 1;
1437 }
1438 if (src1) {
1439 __ssa_src(sam, src1, 0)->wrmask =(1 << (src1->regs_count - 1)) - 1;
1440 }
1441 sam->cat5.type = type;
1442
1443 return sam;
1444 }
1445
1446 /* cat6 instructions: */
1447 INSTR2(LDLV)
1448 INSTR3(LDG)
1449 INSTR3(LDL)
1450 INSTR3(LDLW)
1451 INSTR3(STG)
1452 INSTR3(STL)
1453 INSTR3(STLW)
1454 INSTR1(RESINFO)
1455 INSTR1(RESFMT)
1456 INSTR2(ATOMIC_ADD)
1457 INSTR2(ATOMIC_SUB)
1458 INSTR2(ATOMIC_XCHG)
1459 INSTR2(ATOMIC_INC)
1460 INSTR2(ATOMIC_DEC)
1461 INSTR2(ATOMIC_CMPXCHG)
1462 INSTR2(ATOMIC_MIN)
1463 INSTR2(ATOMIC_MAX)
1464 INSTR2(ATOMIC_AND)
1465 INSTR2(ATOMIC_OR)
1466 INSTR2(ATOMIC_XOR)
1467 #if GPU >= 600
1468 INSTR3(STIB);
1469 INSTR2(LDIB);
1470 INSTR3F(G, ATOMIC_ADD)
1471 INSTR3F(G, ATOMIC_SUB)
1472 INSTR3F(G, ATOMIC_XCHG)
1473 INSTR3F(G, ATOMIC_INC)
1474 INSTR3F(G, ATOMIC_DEC)
1475 INSTR3F(G, ATOMIC_CMPXCHG)
1476 INSTR3F(G, ATOMIC_MIN)
1477 INSTR3F(G, ATOMIC_MAX)
1478 INSTR3F(G, ATOMIC_AND)
1479 INSTR3F(G, ATOMIC_OR)
1480 INSTR3F(G, ATOMIC_XOR)
1481 #elif GPU >= 400
1482 INSTR3(LDGB)
1483 INSTR4(STGB)
1484 INSTR4(STIB)
1485 INSTR4F(G, ATOMIC_ADD)
1486 INSTR4F(G, ATOMIC_SUB)
1487 INSTR4F(G, ATOMIC_XCHG)
1488 INSTR4F(G, ATOMIC_INC)
1489 INSTR4F(G, ATOMIC_DEC)
1490 INSTR4F(G, ATOMIC_CMPXCHG)
1491 INSTR4F(G, ATOMIC_MIN)
1492 INSTR4F(G, ATOMIC_MAX)
1493 INSTR4F(G, ATOMIC_AND)
1494 INSTR4F(G, ATOMIC_OR)
1495 INSTR4F(G, ATOMIC_XOR)
1496 #endif
1497
1498 INSTR4F(G, STG)
1499
1500 /* cat7 instructions: */
1501 INSTR0(BAR)
1502 INSTR0(FENCE)
1503
1504 /* meta instructions: */
1505 INSTR0(META_TEX_PREFETCH);
1506
1507 /* ************************************************************************* */
1508 /* split this out or find some helper to use.. like main/bitset.h.. */
1509
1510 #include <string.h>
1511
1512 #define MAX_REG 256
1513
1514 typedef uint8_t regmask_t[2 * MAX_REG / 8];
1515
1516 static inline unsigned regmask_idx(struct ir3_register *reg)
1517 {
1518 unsigned num = (reg->flags & IR3_REG_RELATIV) ? reg->array.offset : reg->num;
1519 debug_assert(num < MAX_REG);
1520 if (reg->flags & IR3_REG_HALF) {
1521 if (reg->merged) {
1522 num /= 2;
1523 } else {
1524 num += MAX_REG;
1525 }
1526 }
1527 return num;
1528 }
1529
1530 static inline void regmask_init(regmask_t *regmask)
1531 {
1532 memset(regmask, 0, sizeof(*regmask));
1533 }
1534
1535 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1536 {
1537 unsigned idx = regmask_idx(reg);
1538 if (reg->flags & IR3_REG_RELATIV) {
1539 unsigned i;
1540 for (i = 0; i < reg->size; i++, idx++)
1541 (*regmask)[idx / 8] |= 1 << (idx % 8);
1542 } else {
1543 unsigned mask;
1544 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1545 if (mask & 1)
1546 (*regmask)[idx / 8] |= 1 << (idx % 8);
1547 }
1548 }
1549
1550 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1551 {
1552 unsigned i;
1553 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1554 (*dst)[i] = (*a)[i] | (*b)[i];
1555 }
1556
1557 /* set bits in a if not set in b, conceptually:
1558 * a |= (reg & ~b)
1559 */
1560 static inline void regmask_set_if_not(regmask_t *a,
1561 struct ir3_register *reg, regmask_t *b)
1562 {
1563 unsigned idx = regmask_idx(reg);
1564 if (reg->flags & IR3_REG_RELATIV) {
1565 unsigned i;
1566 for (i = 0; i < reg->size; i++, idx++)
1567 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1568 (*a)[idx / 8] |= 1 << (idx % 8);
1569 } else {
1570 unsigned mask;
1571 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1572 if (mask & 1)
1573 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1574 (*a)[idx / 8] |= 1 << (idx % 8);
1575 }
1576 }
1577
1578 static inline bool regmask_get(regmask_t *regmask,
1579 struct ir3_register *reg)
1580 {
1581 unsigned idx = regmask_idx(reg);
1582 if (reg->flags & IR3_REG_RELATIV) {
1583 unsigned i;
1584 for (i = 0; i < reg->size; i++, idx++)
1585 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1586 return true;
1587 } else {
1588 unsigned mask;
1589 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1590 if (mask & 1)
1591 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1592 return true;
1593 }
1594 return false;
1595 }
1596
1597 /* ************************************************************************* */
1598
1599 #endif /* IR3_H_ */