nir/lower_idiv: add new llvm-based path
[mesa.git] / src / freedreno / ir3 / ir3_a6xx.c
1 /*
2 * Copyright (C) 2017-2018 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #define GPU 600
28
29 #include "ir3_context.h"
30 #include "ir3_image.h"
31
32 /*
33 * Handlers for instructions changed/added in a6xx:
34 *
35 * Starting with a6xx, isam and stbi is used for SSBOs as well; stbi and the
36 * atomic instructions (used for both SSBO and image) use a new instruction
37 * encoding compared to a4xx/a5xx.
38 */
39
40
41 /* src[] = { buffer_index, offset }. No const_index */
42 static void
43 emit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
44 struct ir3_instruction **dst)
45 {
46 struct ir3_block *b = ctx->block;
47 struct ir3_instruction *offset;
48 struct ir3_instruction *ldib;
49
50 /* can this be non-const buffer_index? how do we handle that? */
51 int ibo_idx = ir3_ssbo_to_ibo(&ctx->so->image_mapping, nir_src_as_uint(intr->src[0]));
52
53 offset = ir3_get_src(ctx, &intr->src[2])[0];
54
55 ldib = ir3_LDIB(b, create_immed(b, ibo_idx), 0, offset, 0);
56 ldib->regs[0]->wrmask = MASK(intr->num_components);
57 ldib->cat6.iim_val = intr->num_components;
58 ldib->cat6.d = 1;
59 ldib->cat6.type = TYPE_U32;
60 ldib->barrier_class = IR3_BARRIER_BUFFER_R;
61 ldib->barrier_conflict = IR3_BARRIER_BUFFER_W;
62
63 ir3_split_dest(b, dst, ldib, 0, intr->num_components);
64 }
65
66 /* src[] = { value, block_index, offset }. const_index[] = { write_mask } */
67 static void
68 emit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
69 {
70 struct ir3_block *b = ctx->block;
71 struct ir3_instruction *stib, *val, *offset;
72 /* TODO handle wrmask properly, see _store_shared().. but I think
73 * it is more a PITA than that, since blob ends up loading the
74 * masked components and writing them back out.
75 */
76 unsigned wrmask = intr->const_index[0];
77 unsigned ncomp = ffs(~wrmask) - 1;
78
79 /* can this be non-const buffer_index? how do we handle that? */
80 int ibo_idx = ir3_ssbo_to_ibo(&ctx->so->image_mapping, nir_src_as_uint(intr->src[1]));
81
82 /* src0 is offset, src1 is value:
83 */
84 val = ir3_create_collect(ctx, ir3_get_src(ctx, &intr->src[0]), ncomp);
85 offset = ir3_get_src(ctx, &intr->src[3])[0];
86
87 stib = ir3_STIB(b, create_immed(b, ibo_idx), 0, offset, 0, val, 0);
88 stib->cat6.iim_val = ncomp;
89 stib->cat6.d = 1;
90 stib->cat6.type = TYPE_U32;
91 stib->barrier_class = IR3_BARRIER_BUFFER_W;
92 stib->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
93
94 array_insert(b, b->keeps, stib);
95 }
96
97 /*
98 * SSBO atomic intrinsics
99 *
100 * All of the SSBO atomic memory operations read a value from memory,
101 * compute a new value using one of the operations below, write the new
102 * value to memory, and return the original value read.
103 *
104 * All operations take 3 sources except CompSwap that takes 4. These
105 * sources represent:
106 *
107 * 0: The SSBO buffer index.
108 * 1: The offset into the SSBO buffer of the variable that the atomic
109 * operation will operate on.
110 * 2: The data parameter to the atomic function (i.e. the value to add
111 * in ssbo_atomic_add, etc).
112 * 3: For CompSwap only: the second data parameter.
113 */
114 static struct ir3_instruction *
115 emit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
116 {
117 struct ir3_block *b = ctx->block;
118 struct ir3_instruction *atomic, *ibo, *src0, *src1, *data, *dummy;
119 type_t type = TYPE_U32;
120
121 /* can this be non-const buffer_index? how do we handle that? */
122 int ibo_idx = ir3_ssbo_to_ibo(&ctx->so->image_mapping, nir_src_as_uint(intr->src[0]));
123 ibo = create_immed(b, ibo_idx);
124
125 data = ir3_get_src(ctx, &intr->src[2])[0];
126
127 /* So this gets a bit creative:
128 *
129 * src0 - vecN offset/coords
130 * src1.x - is actually destination register
131 * src1.y - is 'data' except for cmpxchg where src2.y is 'compare'
132 * src1.z - is 'data' for cmpxchg
133 *
134 * The combining src and dest kinda doesn't work out so well with how
135 * scheduling and RA work. So for now we create a dummy src2.x, and
136 * then in a later fixup path, insert an extra MOV out of src1.x.
137 * See ir3_a6xx_fixup_atomic_dests().
138 *
139 * Note that nir already multiplies the offset by four
140 */
141 dummy = create_immed(b, 0);
142
143 if (intr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap_ir3) {
144 src0 = ir3_get_src(ctx, &intr->src[4])[0];
145 struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[3])[0];
146 src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
147 dummy, compare, data
148 }, 3);
149 } else {
150 src0 = ir3_get_src(ctx, &intr->src[3])[0];
151 src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
152 dummy, data
153 }, 2);
154 }
155
156 switch (intr->intrinsic) {
157 case nir_intrinsic_ssbo_atomic_add_ir3:
158 atomic = ir3_ATOMIC_ADD_G(b, ibo, 0, src0, 0, src1, 0);
159 break;
160 case nir_intrinsic_ssbo_atomic_imin_ir3:
161 atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0);
162 type = TYPE_S32;
163 break;
164 case nir_intrinsic_ssbo_atomic_umin_ir3:
165 atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0);
166 break;
167 case nir_intrinsic_ssbo_atomic_imax_ir3:
168 atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0);
169 type = TYPE_S32;
170 break;
171 case nir_intrinsic_ssbo_atomic_umax_ir3:
172 atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0);
173 break;
174 case nir_intrinsic_ssbo_atomic_and_ir3:
175 atomic = ir3_ATOMIC_AND_G(b, ibo, 0, src0, 0, src1, 0);
176 break;
177 case nir_intrinsic_ssbo_atomic_or_ir3:
178 atomic = ir3_ATOMIC_OR_G(b, ibo, 0, src0, 0, src1, 0);
179 break;
180 case nir_intrinsic_ssbo_atomic_xor_ir3:
181 atomic = ir3_ATOMIC_XOR_G(b, ibo, 0, src0, 0, src1, 0);
182 break;
183 case nir_intrinsic_ssbo_atomic_exchange_ir3:
184 atomic = ir3_ATOMIC_XCHG_G(b, ibo, 0, src0, 0, src1, 0);
185 break;
186 case nir_intrinsic_ssbo_atomic_comp_swap_ir3:
187 atomic = ir3_ATOMIC_CMPXCHG_G(b, ibo, 0, src0, 0, src1, 0);
188 break;
189 default:
190 unreachable("boo");
191 }
192
193 atomic->cat6.iim_val = 1;
194 atomic->cat6.d = 1;
195 atomic->cat6.type = type;
196 atomic->barrier_class = IR3_BARRIER_BUFFER_W;
197 atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
198
199 /* even if nothing consume the result, we can't DCE the instruction: */
200 array_insert(b, b->keeps, atomic);
201
202 return atomic;
203 }
204
205 /* src[] = { deref, coord, sample_index, value }. const_index[] = {} */
206 static void
207 emit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
208 {
209 struct ir3_block *b = ctx->block;
210 const nir_variable *var = nir_intrinsic_get_var(intr, 0);
211 struct ir3_instruction *stib;
212 struct ir3_instruction * const *value = ir3_get_src(ctx, &intr->src[3]);
213 struct ir3_instruction * const *coords = ir3_get_src(ctx, &intr->src[1]);
214 unsigned ncoords = ir3_get_image_coords(var, NULL);
215 unsigned slot = ir3_get_image_slot(nir_src_as_deref(intr->src[0]));
216 unsigned ibo_idx = ir3_image_to_ibo(&ctx->so->image_mapping, slot);
217 unsigned ncomp = ir3_get_num_components_for_glformat(var->data.image.format);
218
219 /* src0 is offset, src1 is value:
220 */
221 stib = ir3_STIB(b, create_immed(b, ibo_idx), 0,
222 ir3_create_collect(ctx, coords, ncoords), 0,
223 ir3_create_collect(ctx, value, ncomp), 0);
224 stib->cat6.iim_val = ncomp;
225 stib->cat6.d = ncoords;
226 stib->cat6.type = ir3_get_image_type(var);
227 stib->cat6.typed = true;
228 stib->barrier_class = IR3_BARRIER_IMAGE_W;
229 stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
230
231 array_insert(b, b->keeps, stib);
232 }
233
234 /* src[] = { deref, coord, sample_index, value, compare }. const_index[] = {} */
235 static struct ir3_instruction *
236 emit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
237 {
238 struct ir3_block *b = ctx->block;
239 const nir_variable *var = nir_intrinsic_get_var(intr, 0);
240 struct ir3_instruction *atomic, *ibo, *src0, *src1, *dummy;
241 struct ir3_instruction * const *coords = ir3_get_src(ctx, &intr->src[1]);
242 struct ir3_instruction *value = ir3_get_src(ctx, &intr->src[3])[0];
243 unsigned ncoords = ir3_get_image_coords(var, NULL);
244 unsigned slot = ir3_get_image_slot(nir_src_as_deref(intr->src[0]));
245 unsigned ibo_idx = ir3_image_to_ibo(&ctx->so->image_mapping, slot);
246
247 ibo = create_immed(b, ibo_idx);
248
249 /* So this gets a bit creative:
250 *
251 * src0 - vecN offset/coords
252 * src1.x - is actually destination register
253 * src1.y - is 'value' except for cmpxchg where src2.y is 'compare'
254 * src1.z - is 'value' for cmpxchg
255 *
256 * The combining src and dest kinda doesn't work out so well with how
257 * scheduling and RA work. So for now we create a dummy src2.x, and
258 * then in a later fixup path, insert an extra MOV out of src1.x.
259 * See ir3_a6xx_fixup_atomic_dests().
260 */
261 dummy = create_immed(b, 0);
262 src0 = ir3_create_collect(ctx, coords, ncoords);
263
264 if (intr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap) {
265 struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[4])[0];
266 src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
267 dummy, compare, value
268 }, 3);
269 } else {
270 src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
271 dummy, value
272 }, 2);
273 }
274
275 switch (intr->intrinsic) {
276 case nir_intrinsic_image_deref_atomic_add:
277 atomic = ir3_ATOMIC_ADD_G(b, ibo, 0, src0, 0, src1, 0);
278 break;
279 case nir_intrinsic_image_deref_atomic_imin:
280 case nir_intrinsic_image_deref_atomic_umin:
281 atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0);
282 break;
283 case nir_intrinsic_image_deref_atomic_imax:
284 case nir_intrinsic_image_deref_atomic_umax:
285 atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0);
286 break;
287 case nir_intrinsic_image_deref_atomic_and:
288 atomic = ir3_ATOMIC_AND_G(b, ibo, 0, src0, 0, src1, 0);
289 break;
290 case nir_intrinsic_image_deref_atomic_or:
291 atomic = ir3_ATOMIC_OR_G(b, ibo, 0, src0, 0, src1, 0);
292 break;
293 case nir_intrinsic_image_deref_atomic_xor:
294 atomic = ir3_ATOMIC_XOR_G(b, ibo, 0, src0, 0, src1, 0);
295 break;
296 case nir_intrinsic_image_deref_atomic_exchange:
297 atomic = ir3_ATOMIC_XCHG_G(b, ibo, 0, src0, 0, src1, 0);
298 break;
299 case nir_intrinsic_image_deref_atomic_comp_swap:
300 atomic = ir3_ATOMIC_CMPXCHG_G(b, ibo, 0, src0, 0, src1, 0);
301 break;
302 default:
303 unreachable("boo");
304 }
305
306 atomic->cat6.iim_val = 1;
307 atomic->cat6.d = ncoords;
308 atomic->cat6.type = ir3_get_image_type(var);
309 atomic->cat6.typed = true;
310 atomic->barrier_class = IR3_BARRIER_IMAGE_W;
311 atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
312
313 /* even if nothing consume the result, we can't DCE the instruction: */
314 array_insert(b, b->keeps, atomic);
315
316 return atomic;
317 }
318
319 const struct ir3_context_funcs ir3_a6xx_funcs = {
320 .emit_intrinsic_load_ssbo = emit_intrinsic_load_ssbo,
321 .emit_intrinsic_store_ssbo = emit_intrinsic_store_ssbo,
322 .emit_intrinsic_atomic_ssbo = emit_intrinsic_atomic_ssbo,
323 .emit_intrinsic_store_image = emit_intrinsic_store_image,
324 .emit_intrinsic_atomic_image = emit_intrinsic_atomic_image,
325 };
326
327 /*
328 * Special pass to run after instruction scheduling to insert an
329 * extra mov from src1.x to dst. This way the other compiler passes
330 * can ignore this quirk of the new instruction encoding.
331 *
332 * This might cause extra complication in the future when we support
333 * spilling, as I think we'd want to re-run the scheduling pass. One
334 * possible alternative might be to do this in the RA pass after
335 * ra_allocate() but before destroying the SSA links. (Ie. we do
336 * want to know if anything consumes the result of the atomic instr,
337 * if there is no consumer then inserting the extra mov is pointless.
338 */
339
340 static struct ir3_instruction *
341 get_atomic_dest_mov(struct ir3_instruction *atomic)
342 {
343 /* if we've already created the mov-out, then re-use it: */
344 if (atomic->data)
345 return atomic->data;
346
347 /* extract back out the 'dummy' which serves as stand-in for dest: */
348 struct ir3_instruction *src = ssa(atomic->regs[3]);
349 debug_assert(src->opc == OPC_META_FI);
350 struct ir3_instruction *dummy = ssa(src->regs[1]);
351
352 struct ir3_instruction *mov = ir3_MOV(atomic->block, dummy, TYPE_U32);
353
354 mov->flags |= IR3_INSTR_SY;
355
356 if (atomic->regs[0]->flags & IR3_REG_ARRAY) {
357 mov->regs[0]->flags |= IR3_REG_ARRAY;
358 mov->regs[0]->array = atomic->regs[0]->array;
359 }
360
361 /* it will have already been appended to the end of the block, which
362 * isn't where we want it, so fix-up the location:
363 */
364 list_delinit(&mov->node);
365 list_add(&mov->node, &atomic->node);
366
367 /* And because this is after instruction scheduling, we don't really
368 * have a good way to know if extra delay slots are needed. For
369 * example, if the result is consumed by an stib (storeImage()) there
370 * would be no extra delay slots in place already, but 5 are needed.
371 * Just plan for the worst and hope nobody looks at the resulting
372 * code that is generated :-(
373 */
374 struct ir3_instruction *nop = ir3_NOP(atomic->block);
375 nop->repeat = 5;
376
377 list_delinit(&nop->node);
378 list_add(&nop->node, &mov->node);
379
380 return atomic->data = mov;
381 }
382
383 void
384 ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so)
385 {
386 if (so->image_mapping.num_ibo == 0)
387 return;
388
389 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
390 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
391 instr->data = NULL;
392 }
393 }
394
395 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
396 list_for_each_entry_safe (struct ir3_instruction, instr, &block->instr_list, node) {
397 struct ir3_register *reg;
398
399 foreach_src(reg, instr) {
400 struct ir3_instruction *src = ssa(reg);
401
402 if (!src)
403 continue;
404
405 if (is_atomic(src->opc) && (src->flags & IR3_INSTR_G))
406 reg->instr = get_atomic_dest_mov(src);
407 }
408 }
409
410 /* we also need to fixup shader outputs: */
411 for (unsigned i = 0; i < ir->noutputs; i++) {
412 if (!ir->outputs[i])
413 continue;
414 if (is_atomic(ir->outputs[i]->opc) && (ir->outputs[i]->flags & IR3_INSTR_G))
415 ir->outputs[i] = get_atomic_dest_mov(ir->outputs[i]);
416 }
417 }
418
419 }