freedreno/ir3: Reuse glsl_get_sampler_dim_coordinate_components() in tex_info.
[mesa.git] / src / freedreno / ir3 / ir3_compiler_nir.c
1 /*
2 * Copyright (C) 2015 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include <stdarg.h>
28
29 #include "util/u_string.h"
30 #include "util/u_memory.h"
31 #include "util/u_math.h"
32
33 #include "ir3_compiler.h"
34 #include "ir3_image.h"
35 #include "ir3_shader.h"
36 #include "ir3_nir.h"
37
38 #include "instr-a3xx.h"
39 #include "ir3.h"
40 #include "ir3_context.h"
41
42
43 static struct ir3_instruction *
44 create_indirect_load(struct ir3_context *ctx, unsigned arrsz, int n,
45 struct ir3_instruction *address, struct ir3_instruction *collect)
46 {
47 struct ir3_block *block = ctx->block;
48 struct ir3_instruction *mov;
49 struct ir3_register *src;
50
51 mov = ir3_instr_create(block, OPC_MOV);
52 mov->cat1.src_type = TYPE_U32;
53 mov->cat1.dst_type = TYPE_U32;
54 __ssa_dst(mov);
55 src = __ssa_src(mov, collect, IR3_REG_RELATIV);
56 src->size = arrsz;
57 src->array.offset = n;
58
59 ir3_instr_set_address(mov, address);
60
61 return mov;
62 }
63
64 static struct ir3_instruction *
65 create_input(struct ir3_context *ctx, unsigned compmask)
66 {
67 struct ir3_instruction *in;
68
69 in = ir3_instr_create(ctx->in_block, OPC_META_INPUT);
70 in->input.sysval = ~0;
71 __ssa_dst(in)->wrmask = compmask;
72
73 array_insert(ctx->ir, ctx->ir->inputs, in);
74
75 return in;
76 }
77
78 static struct ir3_instruction *
79 create_frag_input(struct ir3_context *ctx, bool use_ldlv, unsigned n)
80 {
81 struct ir3_block *block = ctx->block;
82 struct ir3_instruction *instr;
83 /* packed inloc is fixed up later: */
84 struct ir3_instruction *inloc = create_immed(block, n);
85
86 if (use_ldlv) {
87 instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0);
88 instr->cat6.type = TYPE_U32;
89 instr->cat6.iim_val = 1;
90 } else {
91 instr = ir3_BARY_F(block, inloc, 0, ctx->ij_pixel, 0);
92 instr->regs[2]->wrmask = 0x3;
93 }
94
95 return instr;
96 }
97
98 static struct ir3_instruction *
99 create_driver_param(struct ir3_context *ctx, enum ir3_driver_param dp)
100 {
101 /* first four vec4 sysval's reserved for UBOs: */
102 /* NOTE: dp is in scalar, but there can be >4 dp components: */
103 struct ir3_const_state *const_state = &ctx->so->shader->const_state;
104 unsigned n = const_state->offsets.driver_param;
105 unsigned r = regid(n + dp / 4, dp % 4);
106 return create_uniform(ctx->block, r);
107 }
108
109 /*
110 * Adreno uses uint rather than having dedicated bool type,
111 * which (potentially) requires some conversion, in particular
112 * when using output of an bool instr to int input, or visa
113 * versa.
114 *
115 * | Adreno | NIR |
116 * -------+---------+-------+-
117 * true | 1 | ~0 |
118 * false | 0 | 0 |
119 *
120 * To convert from an adreno bool (uint) to nir, use:
121 *
122 * absneg.s dst, (neg)src
123 *
124 * To convert back in the other direction:
125 *
126 * absneg.s dst, (abs)arc
127 *
128 * The CP step can clean up the absneg.s that cancel each other
129 * out, and with a slight bit of extra cleverness (to recognize
130 * the instructions which produce either a 0 or 1) can eliminate
131 * the absneg.s's completely when an instruction that wants
132 * 0/1 consumes the result. For example, when a nir 'bcsel'
133 * consumes the result of 'feq'. So we should be able to get by
134 * without a boolean resolve step, and without incuring any
135 * extra penalty in instruction count.
136 */
137
138 /* NIR bool -> native (adreno): */
139 static struct ir3_instruction *
140 ir3_b2n(struct ir3_block *block, struct ir3_instruction *instr)
141 {
142 return ir3_ABSNEG_S(block, instr, IR3_REG_SABS);
143 }
144
145 /* native (adreno) -> NIR bool: */
146 static struct ir3_instruction *
147 ir3_n2b(struct ir3_block *block, struct ir3_instruction *instr)
148 {
149 return ir3_ABSNEG_S(block, instr, IR3_REG_SNEG);
150 }
151
152 /*
153 * alu/sfu instructions:
154 */
155
156 static struct ir3_instruction *
157 create_cov(struct ir3_context *ctx, struct ir3_instruction *src,
158 unsigned src_bitsize, nir_op op)
159 {
160 type_t src_type, dst_type;
161
162 switch (op) {
163 case nir_op_f2f32:
164 case nir_op_f2f16_rtne:
165 case nir_op_f2f16_rtz:
166 case nir_op_f2f16:
167 case nir_op_f2i32:
168 case nir_op_f2i16:
169 case nir_op_f2i8:
170 case nir_op_f2u32:
171 case nir_op_f2u16:
172 case nir_op_f2u8:
173 switch (src_bitsize) {
174 case 32:
175 src_type = TYPE_F32;
176 break;
177 case 16:
178 src_type = TYPE_F16;
179 break;
180 default:
181 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
182 }
183 break;
184
185 case nir_op_i2f32:
186 case nir_op_i2f16:
187 case nir_op_i2i32:
188 case nir_op_i2i16:
189 case nir_op_i2i8:
190 switch (src_bitsize) {
191 case 32:
192 src_type = TYPE_S32;
193 break;
194 case 16:
195 src_type = TYPE_S16;
196 break;
197 case 8:
198 src_type = TYPE_S8;
199 break;
200 default:
201 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
202 }
203 break;
204
205 case nir_op_u2f32:
206 case nir_op_u2f16:
207 case nir_op_u2u32:
208 case nir_op_u2u16:
209 case nir_op_u2u8:
210 switch (src_bitsize) {
211 case 32:
212 src_type = TYPE_U32;
213 break;
214 case 16:
215 src_type = TYPE_U16;
216 break;
217 case 8:
218 src_type = TYPE_U8;
219 break;
220 default:
221 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
222 }
223 break;
224
225 default:
226 ir3_context_error(ctx, "invalid conversion op: %u", op);
227 }
228
229 switch (op) {
230 case nir_op_f2f32:
231 case nir_op_i2f32:
232 case nir_op_u2f32:
233 dst_type = TYPE_F32;
234 break;
235
236 case nir_op_f2f16_rtne:
237 case nir_op_f2f16_rtz:
238 case nir_op_f2f16:
239 /* TODO how to handle rounding mode? */
240 case nir_op_i2f16:
241 case nir_op_u2f16:
242 dst_type = TYPE_F16;
243 break;
244
245 case nir_op_f2i32:
246 case nir_op_i2i32:
247 dst_type = TYPE_S32;
248 break;
249
250 case nir_op_f2i16:
251 case nir_op_i2i16:
252 dst_type = TYPE_S16;
253 break;
254
255 case nir_op_f2i8:
256 case nir_op_i2i8:
257 dst_type = TYPE_S8;
258 break;
259
260 case nir_op_f2u32:
261 case nir_op_u2u32:
262 dst_type = TYPE_U32;
263 break;
264
265 case nir_op_f2u16:
266 case nir_op_u2u16:
267 dst_type = TYPE_U16;
268 break;
269
270 case nir_op_f2u8:
271 case nir_op_u2u8:
272 dst_type = TYPE_U8;
273 break;
274
275 default:
276 ir3_context_error(ctx, "invalid conversion op: %u", op);
277 }
278
279 return ir3_COV(ctx->block, src, src_type, dst_type);
280 }
281
282 static void
283 emit_alu(struct ir3_context *ctx, nir_alu_instr *alu)
284 {
285 const nir_op_info *info = &nir_op_infos[alu->op];
286 struct ir3_instruction **dst, *src[info->num_inputs];
287 unsigned bs[info->num_inputs]; /* bit size */
288 struct ir3_block *b = ctx->block;
289 unsigned dst_sz, wrmask;
290 type_t dst_type = nir_dest_bit_size(alu->dest.dest) < 32 ?
291 TYPE_U16 : TYPE_U32;
292
293 if (alu->dest.dest.is_ssa) {
294 dst_sz = alu->dest.dest.ssa.num_components;
295 wrmask = (1 << dst_sz) - 1;
296 } else {
297 dst_sz = alu->dest.dest.reg.reg->num_components;
298 wrmask = alu->dest.write_mask;
299 }
300
301 dst = ir3_get_dst(ctx, &alu->dest.dest, dst_sz);
302
303 /* Vectors are special in that they have non-scalarized writemasks,
304 * and just take the first swizzle channel for each argument in
305 * order into each writemask channel.
306 */
307 if ((alu->op == nir_op_vec2) ||
308 (alu->op == nir_op_vec3) ||
309 (alu->op == nir_op_vec4)) {
310
311 for (int i = 0; i < info->num_inputs; i++) {
312 nir_alu_src *asrc = &alu->src[i];
313
314 compile_assert(ctx, !asrc->abs);
315 compile_assert(ctx, !asrc->negate);
316
317 src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[0]];
318 if (!src[i])
319 src[i] = create_immed_typed(ctx->block, 0, dst_type);
320 dst[i] = ir3_MOV(b, src[i], dst_type);
321 }
322
323 ir3_put_dst(ctx, &alu->dest.dest);
324 return;
325 }
326
327 /* We also get mov's with more than one component for mov's so
328 * handle those specially:
329 */
330 if (alu->op == nir_op_mov) {
331 nir_alu_src *asrc = &alu->src[0];
332 struct ir3_instruction *const *src0 = ir3_get_src(ctx, &asrc->src);
333
334 for (unsigned i = 0; i < dst_sz; i++) {
335 if (wrmask & (1 << i)) {
336 dst[i] = ir3_MOV(b, src0[asrc->swizzle[i]], dst_type);
337 } else {
338 dst[i] = NULL;
339 }
340 }
341
342 ir3_put_dst(ctx, &alu->dest.dest);
343 return;
344 }
345
346 /* General case: We can just grab the one used channel per src. */
347 for (int i = 0; i < info->num_inputs; i++) {
348 unsigned chan = ffs(alu->dest.write_mask) - 1;
349 nir_alu_src *asrc = &alu->src[i];
350
351 compile_assert(ctx, !asrc->abs);
352 compile_assert(ctx, !asrc->negate);
353
354 src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[chan]];
355 bs[i] = nir_src_bit_size(asrc->src);
356
357 compile_assert(ctx, src[i]);
358 }
359
360 switch (alu->op) {
361 case nir_op_f2f32:
362 case nir_op_f2f16_rtne:
363 case nir_op_f2f16_rtz:
364 case nir_op_f2f16:
365 case nir_op_f2i32:
366 case nir_op_f2i16:
367 case nir_op_f2i8:
368 case nir_op_f2u32:
369 case nir_op_f2u16:
370 case nir_op_f2u8:
371 case nir_op_i2f32:
372 case nir_op_i2f16:
373 case nir_op_i2i32:
374 case nir_op_i2i16:
375 case nir_op_i2i8:
376 case nir_op_u2f32:
377 case nir_op_u2f16:
378 case nir_op_u2u32:
379 case nir_op_u2u16:
380 case nir_op_u2u8:
381 dst[0] = create_cov(ctx, src[0], bs[0], alu->op);
382 break;
383 case nir_op_fquantize2f16:
384 dst[0] = create_cov(ctx,
385 create_cov(ctx, src[0], 32, nir_op_f2f16),
386 16, nir_op_f2f32);
387 break;
388 case nir_op_f2b16: {
389 struct ir3_instruction *zero = create_immed_typed(b, 0, TYPE_F16);
390 dst[0] = ir3_CMPS_F(b, src[0], 0, zero, 0);
391 dst[0]->cat2.condition = IR3_COND_NE;
392 break;
393 }
394 case nir_op_f2b32:
395 dst[0] = ir3_CMPS_F(b, src[0], 0, create_immed(b, fui(0.0)), 0);
396 dst[0]->cat2.condition = IR3_COND_NE;
397 break;
398 case nir_op_b2f16:
399 dst[0] = ir3_COV(b, ir3_b2n(b, src[0]), TYPE_U32, TYPE_F16);
400 break;
401 case nir_op_b2f32:
402 dst[0] = ir3_COV(b, ir3_b2n(b, src[0]), TYPE_U32, TYPE_F32);
403 break;
404 case nir_op_b2i8:
405 case nir_op_b2i16:
406 case nir_op_b2i32:
407 dst[0] = ir3_b2n(b, src[0]);
408 break;
409 case nir_op_i2b16: {
410 struct ir3_instruction *zero = create_immed_typed(b, 0, TYPE_S16);
411 dst[0] = ir3_CMPS_S(b, src[0], 0, zero, 0);
412 dst[0]->cat2.condition = IR3_COND_NE;
413 break;
414 }
415 case nir_op_i2b32:
416 dst[0] = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
417 dst[0]->cat2.condition = IR3_COND_NE;
418 break;
419
420 case nir_op_fneg:
421 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG);
422 break;
423 case nir_op_fabs:
424 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS);
425 break;
426 case nir_op_fmax:
427 dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0);
428 break;
429 case nir_op_fmin:
430 dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0);
431 break;
432 case nir_op_fsat:
433 /* if there is just a single use of the src, and it supports
434 * (sat) bit, we can just fold the (sat) flag back to the
435 * src instruction and create a mov. This is easier for cp
436 * to eliminate.
437 *
438 * TODO probably opc_cat==4 is ok too
439 */
440 if (alu->src[0].src.is_ssa &&
441 (list_length(&alu->src[0].src.ssa->uses) == 1) &&
442 ((opc_cat(src[0]->opc) == 2) || (opc_cat(src[0]->opc) == 3))) {
443 src[0]->flags |= IR3_INSTR_SAT;
444 dst[0] = ir3_MOV(b, src[0], dst_type);
445 } else {
446 /* otherwise generate a max.f that saturates.. blob does
447 * similar (generating a cat2 mov using max.f)
448 */
449 dst[0] = ir3_MAX_F(b, src[0], 0, src[0], 0);
450 dst[0]->flags |= IR3_INSTR_SAT;
451 }
452 break;
453 case nir_op_fmul:
454 dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0);
455 break;
456 case nir_op_fadd:
457 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0);
458 break;
459 case nir_op_fsub:
460 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG);
461 break;
462 case nir_op_ffma:
463 dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0);
464 break;
465 case nir_op_fddx:
466 case nir_op_fddx_coarse:
467 dst[0] = ir3_DSX(b, src[0], 0);
468 dst[0]->cat5.type = TYPE_F32;
469 break;
470 case nir_op_fddx_fine:
471 dst[0] = ir3_DSXPP_1(b, src[0], 0);
472 dst[0]->cat5.type = TYPE_F32;
473 break;
474 case nir_op_fddy:
475 case nir_op_fddy_coarse:
476 dst[0] = ir3_DSY(b, src[0], 0);
477 dst[0]->cat5.type = TYPE_F32;
478 break;
479 break;
480 case nir_op_fddy_fine:
481 dst[0] = ir3_DSYPP_1(b, src[0], 0);
482 dst[0]->cat5.type = TYPE_F32;
483 break;
484 case nir_op_flt16:
485 case nir_op_flt32:
486 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
487 dst[0]->cat2.condition = IR3_COND_LT;
488 break;
489 case nir_op_fge16:
490 case nir_op_fge32:
491 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
492 dst[0]->cat2.condition = IR3_COND_GE;
493 break;
494 case nir_op_feq16:
495 case nir_op_feq32:
496 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
497 dst[0]->cat2.condition = IR3_COND_EQ;
498 break;
499 case nir_op_fne16:
500 case nir_op_fne32:
501 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
502 dst[0]->cat2.condition = IR3_COND_NE;
503 break;
504 case nir_op_fceil:
505 dst[0] = ir3_CEIL_F(b, src[0], 0);
506 break;
507 case nir_op_ffloor:
508 dst[0] = ir3_FLOOR_F(b, src[0], 0);
509 break;
510 case nir_op_ftrunc:
511 dst[0] = ir3_TRUNC_F(b, src[0], 0);
512 break;
513 case nir_op_fround_even:
514 dst[0] = ir3_RNDNE_F(b, src[0], 0);
515 break;
516 case nir_op_fsign:
517 dst[0] = ir3_SIGN_F(b, src[0], 0);
518 break;
519
520 case nir_op_fsin:
521 dst[0] = ir3_SIN(b, src[0], 0);
522 break;
523 case nir_op_fcos:
524 dst[0] = ir3_COS(b, src[0], 0);
525 break;
526 case nir_op_frsq:
527 dst[0] = ir3_RSQ(b, src[0], 0);
528 break;
529 case nir_op_frcp:
530 dst[0] = ir3_RCP(b, src[0], 0);
531 break;
532 case nir_op_flog2:
533 dst[0] = ir3_LOG2(b, src[0], 0);
534 break;
535 case nir_op_fexp2:
536 dst[0] = ir3_EXP2(b, src[0], 0);
537 break;
538 case nir_op_fsqrt:
539 dst[0] = ir3_SQRT(b, src[0], 0);
540 break;
541
542 case nir_op_iabs:
543 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS);
544 break;
545 case nir_op_iadd:
546 dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
547 break;
548 case nir_op_iand:
549 dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0);
550 break;
551 case nir_op_imax:
552 dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0);
553 break;
554 case nir_op_umax:
555 dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0);
556 break;
557 case nir_op_imin:
558 dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0);
559 break;
560 case nir_op_umin:
561 dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0);
562 break;
563 case nir_op_umul_low:
564 dst[0] = ir3_MULL_U(b, src[0], 0, src[1], 0);
565 break;
566 case nir_op_imadsh_mix16:
567 dst[0] = ir3_MADSH_M16(b, src[0], 0, src[1], 0, src[2], 0);
568 break;
569 case nir_op_imad24_ir3:
570 dst[0] = ir3_MAD_S24(b, src[0], 0, src[1], 0, src[2], 0);
571 break;
572 case nir_op_imul24:
573 dst[0] = ir3_MUL_S24(b, src[0], 0, src[1], 0);
574 break;
575 case nir_op_ineg:
576 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
577 break;
578 case nir_op_inot:
579 dst[0] = ir3_NOT_B(b, src[0], 0);
580 break;
581 case nir_op_ior:
582 dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0);
583 break;
584 case nir_op_ishl:
585 dst[0] = ir3_SHL_B(b, src[0], 0, src[1], 0);
586 break;
587 case nir_op_ishr:
588 dst[0] = ir3_ASHR_B(b, src[0], 0, src[1], 0);
589 break;
590 case nir_op_isub:
591 dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0);
592 break;
593 case nir_op_ixor:
594 dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0);
595 break;
596 case nir_op_ushr:
597 dst[0] = ir3_SHR_B(b, src[0], 0, src[1], 0);
598 break;
599 case nir_op_ilt16:
600 case nir_op_ilt32:
601 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
602 dst[0]->cat2.condition = IR3_COND_LT;
603 break;
604 case nir_op_ige16:
605 case nir_op_ige32:
606 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
607 dst[0]->cat2.condition = IR3_COND_GE;
608 break;
609 case nir_op_ieq16:
610 case nir_op_ieq32:
611 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
612 dst[0]->cat2.condition = IR3_COND_EQ;
613 break;
614 case nir_op_ine16:
615 case nir_op_ine32:
616 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
617 dst[0]->cat2.condition = IR3_COND_NE;
618 break;
619 case nir_op_ult16:
620 case nir_op_ult32:
621 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
622 dst[0]->cat2.condition = IR3_COND_LT;
623 break;
624 case nir_op_uge16:
625 case nir_op_uge32:
626 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
627 dst[0]->cat2.condition = IR3_COND_GE;
628 break;
629
630 case nir_op_b16csel:
631 case nir_op_b32csel: {
632 struct ir3_instruction *cond = ir3_b2n(b, src[0]);
633
634 if ((src[0]->regs[0]->flags & IR3_REG_HALF))
635 cond->regs[0]->flags |= IR3_REG_HALF;
636
637 compile_assert(ctx, bs[1] == bs[2]);
638 /* Make sure the boolean condition has the same bit size as the other
639 * two arguments, adding a conversion if necessary.
640 */
641 if (bs[1] < bs[0])
642 cond = ir3_COV(b, cond, TYPE_U32, TYPE_U16);
643 else if (bs[1] > bs[0])
644 cond = ir3_COV(b, cond, TYPE_U16, TYPE_U32);
645
646 if (bs[1] > 16)
647 dst[0] = ir3_SEL_B32(b, src[1], 0, cond, 0, src[2], 0);
648 else
649 dst[0] = ir3_SEL_B16(b, src[1], 0, cond, 0, src[2], 0);
650 break;
651 }
652 case nir_op_bit_count: {
653 // TODO, we need to do this 16b at a time on a5xx+a6xx.. need to
654 // double check on earlier gen's. Once half-precision support is
655 // in place, this should probably move to a NIR lowering pass:
656 struct ir3_instruction *hi, *lo;
657
658 hi = ir3_COV(b, ir3_SHR_B(b, src[0], 0, create_immed(b, 16), 0),
659 TYPE_U32, TYPE_U16);
660 lo = ir3_COV(b, src[0], TYPE_U32, TYPE_U16);
661
662 hi = ir3_CBITS_B(b, hi, 0);
663 lo = ir3_CBITS_B(b, lo, 0);
664
665 // TODO maybe the builders should default to making dst half-precision
666 // if the src's were half precision, to make this less awkward.. otoh
667 // we should probably just do this lowering in NIR.
668 hi->regs[0]->flags |= IR3_REG_HALF;
669 lo->regs[0]->flags |= IR3_REG_HALF;
670
671 dst[0] = ir3_ADD_S(b, hi, 0, lo, 0);
672 dst[0]->regs[0]->flags |= IR3_REG_HALF;
673 dst[0] = ir3_COV(b, dst[0], TYPE_U16, TYPE_U32);
674 break;
675 }
676 case nir_op_ifind_msb: {
677 struct ir3_instruction *cmp;
678 dst[0] = ir3_CLZ_S(b, src[0], 0);
679 cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0);
680 cmp->cat2.condition = IR3_COND_GE;
681 dst[0] = ir3_SEL_B32(b,
682 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
683 cmp, 0, dst[0], 0);
684 break;
685 }
686 case nir_op_ufind_msb:
687 dst[0] = ir3_CLZ_B(b, src[0], 0);
688 dst[0] = ir3_SEL_B32(b,
689 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
690 src[0], 0, dst[0], 0);
691 break;
692 case nir_op_find_lsb:
693 dst[0] = ir3_BFREV_B(b, src[0], 0);
694 dst[0] = ir3_CLZ_B(b, dst[0], 0);
695 break;
696 case nir_op_bitfield_reverse:
697 dst[0] = ir3_BFREV_B(b, src[0], 0);
698 break;
699
700 default:
701 ir3_context_error(ctx, "Unhandled ALU op: %s\n",
702 nir_op_infos[alu->op].name);
703 break;
704 }
705
706 if (nir_alu_type_get_base_type(info->output_type) == nir_type_bool) {
707 assert(dst_sz == 1);
708
709 if (nir_dest_bit_size(alu->dest.dest) < 32)
710 dst[0]->regs[0]->flags |= IR3_REG_HALF;
711
712 dst[0] = ir3_n2b(b, dst[0]);
713 }
714
715 if (nir_dest_bit_size(alu->dest.dest) < 32) {
716 for (unsigned i = 0; i < dst_sz; i++) {
717 dst[i]->regs[0]->flags |= IR3_REG_HALF;
718 }
719 }
720
721 ir3_put_dst(ctx, &alu->dest.dest);
722 }
723
724 /* handles direct/indirect UBO reads: */
725 static void
726 emit_intrinsic_load_ubo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
727 struct ir3_instruction **dst)
728 {
729 struct ir3_block *b = ctx->block;
730 struct ir3_instruction *base_lo, *base_hi, *addr, *src0, *src1;
731 /* UBO addresses are the first driver params, but subtract 2 here to
732 * account for nir_lower_uniforms_to_ubo rebasing the UBOs such that UBO 0
733 * is the uniforms: */
734 struct ir3_const_state *const_state = &ctx->so->shader->const_state;
735 unsigned ubo = regid(const_state->offsets.ubo, 0) - 2;
736 const unsigned ptrsz = ir3_pointer_size(ctx->compiler);
737
738 int off = 0;
739
740 /* First src is ubo index, which could either be an immed or not: */
741 src0 = ir3_get_src(ctx, &intr->src[0])[0];
742 if (is_same_type_mov(src0) &&
743 (src0->regs[1]->flags & IR3_REG_IMMED)) {
744 base_lo = create_uniform(b, ubo + (src0->regs[1]->iim_val * ptrsz));
745 base_hi = create_uniform(b, ubo + (src0->regs[1]->iim_val * ptrsz) + 1);
746 } else {
747 base_lo = create_uniform_indirect(b, ubo, ir3_get_addr(ctx, src0, ptrsz));
748 base_hi = create_uniform_indirect(b, ubo + 1, ir3_get_addr(ctx, src0, ptrsz));
749
750 /* NOTE: since relative addressing is used, make sure constlen is
751 * at least big enough to cover all the UBO addresses, since the
752 * assembler won't know what the max address reg is.
753 */
754 ctx->so->constlen = MAX2(ctx->so->constlen,
755 const_state->offsets.ubo + (ctx->s->info.num_ubos * ptrsz));
756 }
757
758 /* note: on 32bit gpu's base_hi is ignored and DCE'd */
759 addr = base_lo;
760
761 if (nir_src_is_const(intr->src[1])) {
762 off += nir_src_as_uint(intr->src[1]);
763 } else {
764 /* For load_ubo_indirect, second src is indirect offset: */
765 src1 = ir3_get_src(ctx, &intr->src[1])[0];
766
767 /* and add offset to addr: */
768 addr = ir3_ADD_S(b, addr, 0, src1, 0);
769 }
770
771 /* if offset is to large to encode in the ldg, split it out: */
772 if ((off + (intr->num_components * 4)) > 1024) {
773 /* split out the minimal amount to improve the odds that
774 * cp can fit the immediate in the add.s instruction:
775 */
776 unsigned off2 = off + (intr->num_components * 4) - 1024;
777 addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0);
778 off -= off2;
779 }
780
781 if (ptrsz == 2) {
782 struct ir3_instruction *carry;
783
784 /* handle 32b rollover, ie:
785 * if (addr < base_lo)
786 * base_hi++
787 */
788 carry = ir3_CMPS_U(b, addr, 0, base_lo, 0);
789 carry->cat2.condition = IR3_COND_LT;
790 base_hi = ir3_ADD_S(b, base_hi, 0, carry, 0);
791
792 addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){ addr, base_hi }, 2);
793 }
794
795 for (int i = 0; i < intr->num_components; i++) {
796 struct ir3_instruction *load =
797 ir3_LDG(b, addr, 0, create_immed(b, 1), 0, /* num components */
798 create_immed(b, off + i * 4), 0);
799 load->cat6.type = TYPE_U32;
800 dst[i] = load;
801 }
802 }
803
804 /* src[] = { block_index } */
805 static void
806 emit_intrinsic_ssbo_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
807 struct ir3_instruction **dst)
808 {
809 /* SSBO size stored as a const starting at ssbo_sizes: */
810 struct ir3_const_state *const_state = &ctx->so->shader->const_state;
811 unsigned blk_idx = nir_src_as_uint(intr->src[0]);
812 unsigned idx = regid(const_state->offsets.ssbo_sizes, 0) +
813 const_state->ssbo_size.off[blk_idx];
814
815 debug_assert(const_state->ssbo_size.mask & (1 << blk_idx));
816
817 dst[0] = create_uniform(ctx->block, idx);
818 }
819
820 /* src[] = { offset }. const_index[] = { base } */
821 static void
822 emit_intrinsic_load_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr,
823 struct ir3_instruction **dst)
824 {
825 struct ir3_block *b = ctx->block;
826 struct ir3_instruction *ldl, *offset;
827 unsigned base;
828
829 offset = ir3_get_src(ctx, &intr->src[0])[0];
830 base = nir_intrinsic_base(intr);
831
832 ldl = ir3_LDL(b, offset, 0,
833 create_immed(b, intr->num_components), 0,
834 create_immed(b, base), 0);
835
836 ldl->cat6.type = utype_dst(intr->dest);
837 ldl->regs[0]->wrmask = MASK(intr->num_components);
838
839 ldl->barrier_class = IR3_BARRIER_SHARED_R;
840 ldl->barrier_conflict = IR3_BARRIER_SHARED_W;
841
842 ir3_split_dest(b, dst, ldl, 0, intr->num_components);
843 }
844
845 /* src[] = { value, offset }. const_index[] = { base, write_mask } */
846 static void
847 emit_intrinsic_store_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
848 {
849 struct ir3_block *b = ctx->block;
850 struct ir3_instruction *stl, *offset;
851 struct ir3_instruction * const *value;
852 unsigned base, wrmask;
853
854 value = ir3_get_src(ctx, &intr->src[0]);
855 offset = ir3_get_src(ctx, &intr->src[1])[0];
856
857 base = nir_intrinsic_base(intr);
858 wrmask = nir_intrinsic_write_mask(intr);
859
860 /* Combine groups of consecutive enabled channels in one write
861 * message. We use ffs to find the first enabled channel and then ffs on
862 * the bit-inverse, down-shifted writemask to determine the length of
863 * the block of enabled bits.
864 *
865 * (trick stolen from i965's fs_visitor::nir_emit_cs_intrinsic())
866 */
867 while (wrmask) {
868 unsigned first_component = ffs(wrmask) - 1;
869 unsigned length = ffs(~(wrmask >> first_component)) - 1;
870
871 stl = ir3_STL(b, offset, 0,
872 ir3_create_collect(ctx, &value[first_component], length), 0,
873 create_immed(b, length), 0);
874 stl->cat6.dst_offset = first_component + base;
875 stl->cat6.type = utype_src(intr->src[0]);
876 stl->barrier_class = IR3_BARRIER_SHARED_W;
877 stl->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
878
879 array_insert(b, b->keeps, stl);
880
881 /* Clear the bits in the writemask that we just wrote, then try
882 * again to see if more channels are left.
883 */
884 wrmask &= (15 << (first_component + length));
885 }
886 }
887
888 /* src[] = { offset }. const_index[] = { base } */
889 static void
890 emit_intrinsic_load_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr,
891 struct ir3_instruction **dst)
892 {
893 struct ir3_block *b = ctx->block;
894 struct ir3_instruction *load, *offset;
895 unsigned base;
896
897 offset = ir3_get_src(ctx, &intr->src[0])[0];
898 base = nir_intrinsic_base(intr);
899
900 load = ir3_LDLW(b, offset, 0,
901 create_immed(b, intr->num_components), 0,
902 create_immed(b, base), 0);
903
904 load->cat6.type = utype_dst(intr->dest);
905 load->regs[0]->wrmask = MASK(intr->num_components);
906
907 load->barrier_class = IR3_BARRIER_SHARED_R;
908 load->barrier_conflict = IR3_BARRIER_SHARED_W;
909
910 ir3_split_dest(b, dst, load, 0, intr->num_components);
911 }
912
913 /* src[] = { value, offset }. const_index[] = { base, write_mask } */
914 static void
915 emit_intrinsic_store_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr)
916 {
917 struct ir3_block *b = ctx->block;
918 struct ir3_instruction *store, *offset;
919 struct ir3_instruction * const *value;
920 unsigned base, wrmask;
921
922 value = ir3_get_src(ctx, &intr->src[0]);
923 offset = ir3_get_src(ctx, &intr->src[1])[0];
924
925 base = nir_intrinsic_base(intr);
926 wrmask = nir_intrinsic_write_mask(intr);
927
928 /* Combine groups of consecutive enabled channels in one write
929 * message. We use ffs to find the first enabled channel and then ffs on
930 * the bit-inverse, down-shifted writemask to determine the length of
931 * the block of enabled bits.
932 *
933 * (trick stolen from i965's fs_visitor::nir_emit_cs_intrinsic())
934 */
935 while (wrmask) {
936 unsigned first_component = ffs(wrmask) - 1;
937 unsigned length = ffs(~(wrmask >> first_component)) - 1;
938
939 store = ir3_STLW(b, offset, 0,
940 ir3_create_collect(ctx, &value[first_component], length), 0,
941 create_immed(b, length), 0);
942
943 store->cat6.dst_offset = first_component + base;
944 store->cat6.type = utype_src(intr->src[0]);
945 store->barrier_class = IR3_BARRIER_SHARED_W;
946 store->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
947
948 array_insert(b, b->keeps, store);
949
950 /* Clear the bits in the writemask that we just wrote, then try
951 * again to see if more channels are left.
952 */
953 wrmask &= (15 << (first_component + length));
954 }
955 }
956
957 /*
958 * CS shared variable atomic intrinsics
959 *
960 * All of the shared variable atomic memory operations read a value from
961 * memory, compute a new value using one of the operations below, write the
962 * new value to memory, and return the original value read.
963 *
964 * All operations take 2 sources except CompSwap that takes 3. These
965 * sources represent:
966 *
967 * 0: The offset into the shared variable storage region that the atomic
968 * operation will operate on.
969 * 1: The data parameter to the atomic function (i.e. the value to add
970 * in shared_atomic_add, etc).
971 * 2: For CompSwap only: the second data parameter.
972 */
973 static struct ir3_instruction *
974 emit_intrinsic_atomic_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
975 {
976 struct ir3_block *b = ctx->block;
977 struct ir3_instruction *atomic, *src0, *src1;
978 type_t type = TYPE_U32;
979
980 src0 = ir3_get_src(ctx, &intr->src[0])[0]; /* offset */
981 src1 = ir3_get_src(ctx, &intr->src[1])[0]; /* value */
982
983 switch (intr->intrinsic) {
984 case nir_intrinsic_shared_atomic_add:
985 atomic = ir3_ATOMIC_ADD(b, src0, 0, src1, 0);
986 break;
987 case nir_intrinsic_shared_atomic_imin:
988 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
989 type = TYPE_S32;
990 break;
991 case nir_intrinsic_shared_atomic_umin:
992 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
993 break;
994 case nir_intrinsic_shared_atomic_imax:
995 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
996 type = TYPE_S32;
997 break;
998 case nir_intrinsic_shared_atomic_umax:
999 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1000 break;
1001 case nir_intrinsic_shared_atomic_and:
1002 atomic = ir3_ATOMIC_AND(b, src0, 0, src1, 0);
1003 break;
1004 case nir_intrinsic_shared_atomic_or:
1005 atomic = ir3_ATOMIC_OR(b, src0, 0, src1, 0);
1006 break;
1007 case nir_intrinsic_shared_atomic_xor:
1008 atomic = ir3_ATOMIC_XOR(b, src0, 0, src1, 0);
1009 break;
1010 case nir_intrinsic_shared_atomic_exchange:
1011 atomic = ir3_ATOMIC_XCHG(b, src0, 0, src1, 0);
1012 break;
1013 case nir_intrinsic_shared_atomic_comp_swap:
1014 /* for cmpxchg, src1 is [ui]vec2(data, compare): */
1015 src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1016 ir3_get_src(ctx, &intr->src[2])[0],
1017 src1,
1018 }, 2);
1019 atomic = ir3_ATOMIC_CMPXCHG(b, src0, 0, src1, 0);
1020 break;
1021 default:
1022 unreachable("boo");
1023 }
1024
1025 atomic->cat6.iim_val = 1;
1026 atomic->cat6.d = 1;
1027 atomic->cat6.type = type;
1028 atomic->barrier_class = IR3_BARRIER_SHARED_W;
1029 atomic->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1030
1031 /* even if nothing consume the result, we can't DCE the instruction: */
1032 array_insert(b, b->keeps, atomic);
1033
1034 return atomic;
1035 }
1036
1037 /* TODO handle actual indirect/dynamic case.. which is going to be weird
1038 * to handle with the image_mapping table..
1039 */
1040 static struct ir3_instruction *
1041 get_image_samp_tex_src(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1042 {
1043 unsigned slot = ir3_get_image_slot(nir_src_as_deref(intr->src[0]));
1044 unsigned tex_idx = ir3_image_to_tex(&ctx->so->image_mapping, slot);
1045 struct ir3_instruction *texture, *sampler;
1046
1047 texture = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
1048 sampler = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
1049
1050 return ir3_create_collect(ctx, (struct ir3_instruction*[]){
1051 sampler,
1052 texture,
1053 }, 2);
1054 }
1055
1056 /* src[] = { deref, coord, sample_index }. const_index[] = {} */
1057 static void
1058 emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1059 struct ir3_instruction **dst)
1060 {
1061 struct ir3_block *b = ctx->block;
1062 const nir_variable *var = nir_intrinsic_get_var(intr, 0);
1063 struct ir3_instruction *samp_tex = get_image_samp_tex_src(ctx, intr);
1064 struct ir3_instruction *sam;
1065 struct ir3_instruction * const *src0 = ir3_get_src(ctx, &intr->src[1]);
1066 struct ir3_instruction *coords[4];
1067 unsigned flags, ncoords = ir3_get_image_coords(var, &flags);
1068 type_t type = ir3_get_image_type(var);
1069
1070 /* hmm, this seems a bit odd, but it is what blob does and (at least
1071 * a5xx) just faults on bogus addresses otherwise:
1072 */
1073 if (flags & IR3_INSTR_3D) {
1074 flags &= ~IR3_INSTR_3D;
1075 flags |= IR3_INSTR_A;
1076 }
1077
1078 for (unsigned i = 0; i < ncoords; i++)
1079 coords[i] = src0[i];
1080
1081 if (ncoords == 1)
1082 coords[ncoords++] = create_immed(b, 0);
1083
1084 sam = ir3_SAM(b, OPC_ISAM, type, 0b1111, flags,
1085 samp_tex, ir3_create_collect(ctx, coords, ncoords), NULL);
1086
1087 sam->barrier_class = IR3_BARRIER_IMAGE_R;
1088 sam->barrier_conflict = IR3_BARRIER_IMAGE_W;
1089
1090 ir3_split_dest(b, dst, sam, 0, 4);
1091 }
1092
1093 static void
1094 emit_intrinsic_image_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1095 struct ir3_instruction **dst)
1096 {
1097 struct ir3_block *b = ctx->block;
1098 const nir_variable *var = nir_intrinsic_get_var(intr, 0);
1099 struct ir3_instruction *samp_tex = get_image_samp_tex_src(ctx, intr);
1100 struct ir3_instruction *sam, *lod;
1101 unsigned flags, ncoords = ir3_get_image_coords(var, &flags);
1102 type_t dst_type = nir_dest_bit_size(intr->dest) < 32 ?
1103 TYPE_U16 : TYPE_U32;
1104
1105 lod = create_immed(b, 0);
1106 sam = ir3_SAM(b, OPC_GETSIZE, dst_type, 0b1111, flags,
1107 samp_tex, lod, NULL);
1108
1109 /* Array size actually ends up in .w rather than .z. This doesn't
1110 * matter for miplevel 0, but for higher mips the value in z is
1111 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
1112 * returned, which means that we have to add 1 to it for arrays for
1113 * a3xx.
1114 *
1115 * Note use a temporary dst and then copy, since the size of the dst
1116 * array that is passed in is based on nir's understanding of the
1117 * result size, not the hardware's
1118 */
1119 struct ir3_instruction *tmp[4];
1120
1121 ir3_split_dest(b, tmp, sam, 0, 4);
1122
1123 /* get_size instruction returns size in bytes instead of texels
1124 * for imageBuffer, so we need to divide it by the pixel size
1125 * of the image format.
1126 *
1127 * TODO: This is at least true on a5xx. Check other gens.
1128 */
1129 enum glsl_sampler_dim dim =
1130 glsl_get_sampler_dim(glsl_without_array(var->type));
1131 if (dim == GLSL_SAMPLER_DIM_BUF) {
1132 /* Since all the possible values the divisor can take are
1133 * power-of-two (4, 8, or 16), the division is implemented
1134 * as a shift-right.
1135 * During shader setup, the log2 of the image format's
1136 * bytes-per-pixel should have been emitted in 2nd slot of
1137 * image_dims. See ir3_shader::emit_image_dims().
1138 */
1139 struct ir3_const_state *const_state = &ctx->so->shader->const_state;
1140 unsigned cb = regid(const_state->offsets.image_dims, 0) +
1141 const_state->image_dims.off[var->data.driver_location];
1142 struct ir3_instruction *aux = create_uniform(b, cb + 1);
1143
1144 tmp[0] = ir3_SHR_B(b, tmp[0], 0, aux, 0);
1145 }
1146
1147 for (unsigned i = 0; i < ncoords; i++)
1148 dst[i] = tmp[i];
1149
1150 if (flags & IR3_INSTR_A) {
1151 if (ctx->compiler->levels_add_one) {
1152 dst[ncoords-1] = ir3_ADD_U(b, tmp[3], 0, create_immed(b, 1), 0);
1153 } else {
1154 dst[ncoords-1] = ir3_MOV(b, tmp[3], TYPE_U32);
1155 }
1156 }
1157 }
1158
1159 static void
1160 emit_intrinsic_barrier(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1161 {
1162 struct ir3_block *b = ctx->block;
1163 struct ir3_instruction *barrier;
1164
1165 switch (intr->intrinsic) {
1166 case nir_intrinsic_control_barrier:
1167 barrier = ir3_BAR(b);
1168 barrier->cat7.g = true;
1169 barrier->cat7.l = true;
1170 barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY;
1171 barrier->barrier_class = IR3_BARRIER_EVERYTHING;
1172 break;
1173 case nir_intrinsic_memory_barrier:
1174 barrier = ir3_FENCE(b);
1175 barrier->cat7.g = true;
1176 barrier->cat7.r = true;
1177 barrier->cat7.w = true;
1178 barrier->cat7.l = true;
1179 barrier->barrier_class = IR3_BARRIER_IMAGE_W |
1180 IR3_BARRIER_BUFFER_W;
1181 barrier->barrier_conflict =
1182 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
1183 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1184 break;
1185 case nir_intrinsic_memory_barrier_buffer:
1186 barrier = ir3_FENCE(b);
1187 barrier->cat7.g = true;
1188 barrier->cat7.r = true;
1189 barrier->cat7.w = true;
1190 barrier->barrier_class = IR3_BARRIER_BUFFER_W;
1191 barrier->barrier_conflict = IR3_BARRIER_BUFFER_R |
1192 IR3_BARRIER_BUFFER_W;
1193 break;
1194 case nir_intrinsic_memory_barrier_image:
1195 // TODO double check if this should have .g set
1196 barrier = ir3_FENCE(b);
1197 barrier->cat7.g = true;
1198 barrier->cat7.r = true;
1199 barrier->cat7.w = true;
1200 barrier->barrier_class = IR3_BARRIER_IMAGE_W;
1201 barrier->barrier_conflict = IR3_BARRIER_IMAGE_R |
1202 IR3_BARRIER_IMAGE_W;
1203 break;
1204 case nir_intrinsic_memory_barrier_shared:
1205 barrier = ir3_FENCE(b);
1206 barrier->cat7.g = true;
1207 barrier->cat7.l = true;
1208 barrier->cat7.r = true;
1209 barrier->cat7.w = true;
1210 barrier->barrier_class = IR3_BARRIER_SHARED_W;
1211 barrier->barrier_conflict = IR3_BARRIER_SHARED_R |
1212 IR3_BARRIER_SHARED_W;
1213 break;
1214 case nir_intrinsic_group_memory_barrier:
1215 barrier = ir3_FENCE(b);
1216 barrier->cat7.g = true;
1217 barrier->cat7.l = true;
1218 barrier->cat7.r = true;
1219 barrier->cat7.w = true;
1220 barrier->barrier_class = IR3_BARRIER_SHARED_W |
1221 IR3_BARRIER_IMAGE_W |
1222 IR3_BARRIER_BUFFER_W;
1223 barrier->barrier_conflict =
1224 IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W |
1225 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
1226 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1227 break;
1228 default:
1229 unreachable("boo");
1230 }
1231
1232 /* make sure barrier doesn't get DCE'd */
1233 array_insert(b, b->keeps, barrier);
1234 }
1235
1236 static void add_sysval_input_compmask(struct ir3_context *ctx,
1237 gl_system_value slot, unsigned compmask,
1238 struct ir3_instruction *instr)
1239 {
1240 struct ir3_shader_variant *so = ctx->so;
1241 unsigned n = so->inputs_count++;
1242
1243 assert(instr->opc == OPC_META_INPUT);
1244 instr->input.inidx = n;
1245 instr->input.sysval = slot;
1246
1247 so->inputs[n].sysval = true;
1248 so->inputs[n].slot = slot;
1249 so->inputs[n].compmask = compmask;
1250 so->inputs[n].interpolate = INTERP_MODE_FLAT;
1251 so->total_in++;
1252 }
1253
1254 static struct ir3_instruction *
1255 create_sysval_input(struct ir3_context *ctx, gl_system_value slot,
1256 unsigned compmask)
1257 {
1258 assert(compmask);
1259 struct ir3_instruction *sysval = create_input(ctx, compmask);
1260 add_sysval_input_compmask(ctx, slot, compmask, sysval);
1261 return sysval;
1262 }
1263
1264 static struct ir3_instruction *
1265 get_barycentric_centroid(struct ir3_context *ctx)
1266 {
1267 if (!ctx->ij_centroid) {
1268 struct ir3_instruction *xy[2];
1269 struct ir3_instruction *ij;
1270
1271 ij = create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID, 0x3);
1272 ir3_split_dest(ctx->block, xy, ij, 0, 2);
1273
1274 ctx->ij_centroid = ir3_create_collect(ctx, xy, 2);
1275 }
1276
1277 return ctx->ij_centroid;
1278 }
1279
1280 static struct ir3_instruction *
1281 get_barycentric_sample(struct ir3_context *ctx)
1282 {
1283 if (!ctx->ij_sample) {
1284 struct ir3_instruction *xy[2];
1285 struct ir3_instruction *ij;
1286
1287 ij = create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE, 0x3);
1288 ir3_split_dest(ctx->block, xy, ij, 0, 2);
1289
1290 ctx->ij_sample = ir3_create_collect(ctx, xy, 2);
1291 }
1292
1293 return ctx->ij_sample;
1294 }
1295
1296 static struct ir3_instruction *
1297 get_barycentric_pixel(struct ir3_context *ctx)
1298 {
1299 /* TODO when tgsi_to_nir supports "new-style" FS inputs switch
1300 * this to create ij_pixel only on demand:
1301 */
1302 return ctx->ij_pixel;
1303 }
1304
1305 static struct ir3_instruction *
1306 get_frag_coord(struct ir3_context *ctx)
1307 {
1308 if (!ctx->frag_coord) {
1309 struct ir3_block *b = ctx->in_block;
1310 struct ir3_instruction *xyzw[4];
1311 struct ir3_instruction *hw_frag_coord;
1312
1313 hw_frag_coord = create_sysval_input(ctx, SYSTEM_VALUE_FRAG_COORD, 0xf);
1314 ir3_split_dest(b, xyzw, hw_frag_coord, 0, 4);
1315
1316 /* for frag_coord.xy, we get unsigned values.. we need
1317 * to subtract (integer) 8 and divide by 16 (right-
1318 * shift by 4) then convert to float:
1319 *
1320 * sub.s tmp, src, 8
1321 * shr.b tmp, tmp, 4
1322 * mov.u32f32 dst, tmp
1323 *
1324 */
1325 for (int i = 0; i < 2; i++) {
1326 xyzw[i] = ir3_SUB_S(b, xyzw[i], 0,
1327 create_immed(b, 8), 0);
1328 xyzw[i] = ir3_SHR_B(b, xyzw[i], 0,
1329 create_immed(b, 4), 0);
1330 xyzw[i] = ir3_COV(b, xyzw[i], TYPE_U32, TYPE_F32);
1331 }
1332
1333 ctx->frag_coord = ir3_create_collect(ctx, xyzw, 4);
1334 ctx->so->frag_coord = true;
1335 }
1336
1337 return ctx->frag_coord;
1338 }
1339
1340 static void
1341 emit_intrinsic(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1342 {
1343 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1344 struct ir3_instruction **dst;
1345 struct ir3_instruction * const *src;
1346 struct ir3_block *b = ctx->block;
1347 int idx, comp;
1348
1349 if (info->has_dest) {
1350 unsigned n = nir_intrinsic_dest_components(intr);
1351 dst = ir3_get_dst(ctx, &intr->dest, n);
1352 } else {
1353 dst = NULL;
1354 }
1355
1356 const unsigned primitive_param = ctx->so->shader->const_state.offsets.primitive_param * 4;
1357 const unsigned primitive_map = ctx->so->shader->const_state.offsets.primitive_map * 4;
1358
1359 switch (intr->intrinsic) {
1360 case nir_intrinsic_load_uniform:
1361 idx = nir_intrinsic_base(intr);
1362 if (nir_src_is_const(intr->src[0])) {
1363 idx += nir_src_as_uint(intr->src[0]);
1364 for (int i = 0; i < intr->num_components; i++) {
1365 dst[i] = create_uniform_typed(b, idx + i,
1366 nir_dest_bit_size(intr->dest) < 32 ? TYPE_F16 : TYPE_F32);
1367 }
1368 } else {
1369 src = ir3_get_src(ctx, &intr->src[0]);
1370 for (int i = 0; i < intr->num_components; i++) {
1371 dst[i] = create_uniform_indirect(b, idx + i,
1372 ir3_get_addr(ctx, src[0], 1));
1373 }
1374 /* NOTE: if relative addressing is used, we set
1375 * constlen in the compiler (to worst-case value)
1376 * since we don't know in the assembler what the max
1377 * addr reg value can be:
1378 */
1379 ctx->so->constlen = MAX2(ctx->so->constlen,
1380 ctx->so->shader->ubo_state.size / 16);
1381 }
1382 break;
1383
1384 case nir_intrinsic_load_vs_primitive_stride_ir3:
1385 dst[0] = create_uniform(b, primitive_param + 0);
1386 break;
1387 case nir_intrinsic_load_vs_vertex_stride_ir3:
1388 dst[0] = create_uniform(b, primitive_param + 1);
1389 break;
1390 case nir_intrinsic_load_hs_patch_stride_ir3:
1391 dst[0] = create_uniform(b, primitive_param + 2);
1392 break;
1393 case nir_intrinsic_load_patch_vertices_in:
1394 dst[0] = create_uniform(b, primitive_param + 3);
1395 break;
1396 case nir_intrinsic_load_tess_param_base_ir3:
1397 dst[0] = create_uniform(b, primitive_param + 4);
1398 dst[1] = create_uniform(b, primitive_param + 5);
1399 break;
1400 case nir_intrinsic_load_tess_factor_base_ir3:
1401 dst[0] = create_uniform(b, primitive_param + 6);
1402 dst[1] = create_uniform(b, primitive_param + 7);
1403 break;
1404
1405 case nir_intrinsic_load_primitive_location_ir3:
1406 idx = nir_intrinsic_driver_location(intr);
1407 dst[0] = create_uniform(b, primitive_map + idx);
1408 break;
1409
1410 case nir_intrinsic_load_gs_header_ir3:
1411 dst[0] = ctx->gs_header;
1412 break;
1413 case nir_intrinsic_load_tcs_header_ir3:
1414 dst[0] = ctx->tcs_header;
1415 break;
1416
1417 case nir_intrinsic_load_primitive_id:
1418 dst[0] = ctx->primitive_id;
1419 break;
1420
1421 case nir_intrinsic_load_tess_coord:
1422 if (!ctx->tess_coord) {
1423 ctx->tess_coord =
1424 create_sysval_input(ctx, SYSTEM_VALUE_TESS_COORD, 0x3);
1425 }
1426 ir3_split_dest(b, dst, ctx->tess_coord, 0, 2);
1427
1428 /* Unused, but ir3_put_dst() below wants to free something */
1429 dst[2] = create_immed(b, 0);
1430 break;
1431
1432 case nir_intrinsic_end_patch_ir3:
1433 assert(ctx->so->type == MESA_SHADER_TESS_CTRL);
1434 struct ir3_instruction *end = ir3_ENDIF(b);
1435 array_insert(b, b->keeps, end);
1436
1437 end->barrier_class = IR3_BARRIER_EVERYTHING;
1438 end->barrier_conflict = IR3_BARRIER_EVERYTHING;
1439 break;
1440
1441 case nir_intrinsic_store_global_ir3: {
1442 struct ir3_instruction *value, *addr, *offset;
1443
1444 addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1445 ir3_get_src(ctx, &intr->src[1])[0],
1446 ir3_get_src(ctx, &intr->src[1])[1]
1447 }, 2);
1448
1449 offset = ir3_get_src(ctx, &intr->src[2])[0];
1450
1451 value = ir3_create_collect(ctx, ir3_get_src(ctx, &intr->src[0]),
1452 intr->num_components);
1453
1454 struct ir3_instruction *stg =
1455 ir3_STG_G(ctx->block, addr, 0, value, 0,
1456 create_immed(ctx->block, intr->num_components), 0, offset, 0);
1457 stg->cat6.type = TYPE_U32;
1458 stg->cat6.iim_val = 1;
1459
1460 array_insert(b, b->keeps, stg);
1461
1462 stg->barrier_class = IR3_BARRIER_BUFFER_W;
1463 stg->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1464 break;
1465 }
1466
1467 case nir_intrinsic_load_global_ir3: {
1468 struct ir3_instruction *addr, *offset;
1469
1470 addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1471 ir3_get_src(ctx, &intr->src[0])[0],
1472 ir3_get_src(ctx, &intr->src[0])[1]
1473 }, 2);
1474
1475 offset = ir3_get_src(ctx, &intr->src[1])[0];
1476
1477 struct ir3_instruction *load =
1478 ir3_LDG(b, addr, 0, create_immed(ctx->block, intr->num_components),
1479 0, offset, 0);
1480 load->cat6.type = TYPE_U32;
1481 load->regs[0]->wrmask = MASK(intr->num_components);
1482
1483 load->barrier_class = IR3_BARRIER_BUFFER_R;
1484 load->barrier_conflict = IR3_BARRIER_BUFFER_W;
1485
1486 ir3_split_dest(b, dst, load, 0, intr->num_components);
1487 break;
1488 }
1489
1490 case nir_intrinsic_load_ubo:
1491 emit_intrinsic_load_ubo(ctx, intr, dst);
1492 break;
1493 case nir_intrinsic_load_frag_coord:
1494 ir3_split_dest(b, dst, get_frag_coord(ctx), 0, 4);
1495 break;
1496 case nir_intrinsic_load_sample_pos_from_id: {
1497 /* NOTE: blob seems to always use TYPE_F16 and then cov.f16f32,
1498 * but that doesn't seem necessary.
1499 */
1500 struct ir3_instruction *offset =
1501 ir3_RGETPOS(b, ir3_get_src(ctx, &intr->src[0])[0], 0);
1502 offset->regs[0]->wrmask = 0x3;
1503 offset->cat5.type = TYPE_F32;
1504
1505 ir3_split_dest(b, dst, offset, 0, 2);
1506
1507 break;
1508 }
1509 case nir_intrinsic_load_size_ir3:
1510 if (!ctx->ij_size) {
1511 ctx->ij_size =
1512 create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE, 0x1);
1513 }
1514 dst[0] = ctx->ij_size;
1515 break;
1516 case nir_intrinsic_load_barycentric_centroid:
1517 ir3_split_dest(b, dst, get_barycentric_centroid(ctx), 0, 2);
1518 break;
1519 case nir_intrinsic_load_barycentric_sample:
1520 if (ctx->so->key.msaa) {
1521 ir3_split_dest(b, dst, get_barycentric_sample(ctx), 0, 2);
1522 } else {
1523 ir3_split_dest(b, dst, get_barycentric_pixel(ctx), 0, 2);
1524 }
1525 break;
1526 case nir_intrinsic_load_barycentric_pixel:
1527 ir3_split_dest(b, dst, get_barycentric_pixel(ctx), 0, 2);
1528 break;
1529 case nir_intrinsic_load_interpolated_input:
1530 idx = nir_intrinsic_base(intr);
1531 comp = nir_intrinsic_component(intr);
1532 src = ir3_get_src(ctx, &intr->src[0]);
1533 if (nir_src_is_const(intr->src[1])) {
1534 struct ir3_instruction *coord = ir3_create_collect(ctx, src, 2);
1535 idx += nir_src_as_uint(intr->src[1]);
1536 for (int i = 0; i < intr->num_components; i++) {
1537 unsigned inloc = idx * 4 + i + comp;
1538 if (ctx->so->inputs[idx].bary &&
1539 !ctx->so->inputs[idx].use_ldlv) {
1540 dst[i] = ir3_BARY_F(b, create_immed(b, inloc), 0, coord, 0);
1541 } else {
1542 /* for non-varyings use the pre-setup input, since
1543 * that is easier than mapping things back to a
1544 * nir_variable to figure out what it is.
1545 */
1546 dst[i] = ctx->inputs[inloc];
1547 }
1548 }
1549 } else {
1550 ir3_context_error(ctx, "unhandled");
1551 }
1552 break;
1553 case nir_intrinsic_load_input:
1554 idx = nir_intrinsic_base(intr);
1555 comp = nir_intrinsic_component(intr);
1556 if (nir_src_is_const(intr->src[0])) {
1557 idx += nir_src_as_uint(intr->src[0]);
1558 for (int i = 0; i < intr->num_components; i++) {
1559 unsigned n = idx * 4 + i + comp;
1560 dst[i] = ctx->inputs[n];
1561 compile_assert(ctx, ctx->inputs[n]);
1562 }
1563 } else {
1564 src = ir3_get_src(ctx, &intr->src[0]);
1565 struct ir3_instruction *collect =
1566 ir3_create_collect(ctx, ctx->ir->inputs, ctx->ninputs);
1567 struct ir3_instruction *addr = ir3_get_addr(ctx, src[0], 4);
1568 for (int i = 0; i < intr->num_components; i++) {
1569 unsigned n = idx * 4 + i + comp;
1570 dst[i] = create_indirect_load(ctx, ctx->ninputs,
1571 n, addr, collect);
1572 }
1573 }
1574 break;
1575 /* All SSBO intrinsics should have been lowered by 'lower_io_offsets'
1576 * pass and replaced by an ir3-specifc version that adds the
1577 * dword-offset in the last source.
1578 */
1579 case nir_intrinsic_load_ssbo_ir3:
1580 ctx->funcs->emit_intrinsic_load_ssbo(ctx, intr, dst);
1581 break;
1582 case nir_intrinsic_store_ssbo_ir3:
1583 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1584 !ctx->s->info.fs.early_fragment_tests)
1585 ctx->so->no_earlyz = true;
1586 ctx->funcs->emit_intrinsic_store_ssbo(ctx, intr);
1587 break;
1588 case nir_intrinsic_get_buffer_size:
1589 emit_intrinsic_ssbo_size(ctx, intr, dst);
1590 break;
1591 case nir_intrinsic_ssbo_atomic_add_ir3:
1592 case nir_intrinsic_ssbo_atomic_imin_ir3:
1593 case nir_intrinsic_ssbo_atomic_umin_ir3:
1594 case nir_intrinsic_ssbo_atomic_imax_ir3:
1595 case nir_intrinsic_ssbo_atomic_umax_ir3:
1596 case nir_intrinsic_ssbo_atomic_and_ir3:
1597 case nir_intrinsic_ssbo_atomic_or_ir3:
1598 case nir_intrinsic_ssbo_atomic_xor_ir3:
1599 case nir_intrinsic_ssbo_atomic_exchange_ir3:
1600 case nir_intrinsic_ssbo_atomic_comp_swap_ir3:
1601 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1602 !ctx->s->info.fs.early_fragment_tests)
1603 ctx->so->no_earlyz = true;
1604 dst[0] = ctx->funcs->emit_intrinsic_atomic_ssbo(ctx, intr);
1605 break;
1606 case nir_intrinsic_load_shared:
1607 emit_intrinsic_load_shared(ctx, intr, dst);
1608 break;
1609 case nir_intrinsic_store_shared:
1610 emit_intrinsic_store_shared(ctx, intr);
1611 break;
1612 case nir_intrinsic_shared_atomic_add:
1613 case nir_intrinsic_shared_atomic_imin:
1614 case nir_intrinsic_shared_atomic_umin:
1615 case nir_intrinsic_shared_atomic_imax:
1616 case nir_intrinsic_shared_atomic_umax:
1617 case nir_intrinsic_shared_atomic_and:
1618 case nir_intrinsic_shared_atomic_or:
1619 case nir_intrinsic_shared_atomic_xor:
1620 case nir_intrinsic_shared_atomic_exchange:
1621 case nir_intrinsic_shared_atomic_comp_swap:
1622 dst[0] = emit_intrinsic_atomic_shared(ctx, intr);
1623 break;
1624 case nir_intrinsic_image_deref_load:
1625 emit_intrinsic_load_image(ctx, intr, dst);
1626 break;
1627 case nir_intrinsic_image_deref_store:
1628 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1629 !ctx->s->info.fs.early_fragment_tests)
1630 ctx->so->no_earlyz = true;
1631 ctx->funcs->emit_intrinsic_store_image(ctx, intr);
1632 break;
1633 case nir_intrinsic_image_deref_size:
1634 emit_intrinsic_image_size(ctx, intr, dst);
1635 break;
1636 case nir_intrinsic_image_deref_atomic_add:
1637 case nir_intrinsic_image_deref_atomic_imin:
1638 case nir_intrinsic_image_deref_atomic_umin:
1639 case nir_intrinsic_image_deref_atomic_imax:
1640 case nir_intrinsic_image_deref_atomic_umax:
1641 case nir_intrinsic_image_deref_atomic_and:
1642 case nir_intrinsic_image_deref_atomic_or:
1643 case nir_intrinsic_image_deref_atomic_xor:
1644 case nir_intrinsic_image_deref_atomic_exchange:
1645 case nir_intrinsic_image_deref_atomic_comp_swap:
1646 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1647 !ctx->s->info.fs.early_fragment_tests)
1648 ctx->so->no_earlyz = true;
1649 dst[0] = ctx->funcs->emit_intrinsic_atomic_image(ctx, intr);
1650 break;
1651 case nir_intrinsic_control_barrier:
1652 case nir_intrinsic_memory_barrier:
1653 case nir_intrinsic_group_memory_barrier:
1654 case nir_intrinsic_memory_barrier_buffer:
1655 case nir_intrinsic_memory_barrier_image:
1656 case nir_intrinsic_memory_barrier_shared:
1657 emit_intrinsic_barrier(ctx, intr);
1658 /* note that blk ptr no longer valid, make that obvious: */
1659 b = NULL;
1660 break;
1661 case nir_intrinsic_store_output:
1662 idx = nir_intrinsic_base(intr);
1663 comp = nir_intrinsic_component(intr);
1664 compile_assert(ctx, nir_src_is_const(intr->src[1]));
1665 idx += nir_src_as_uint(intr->src[1]);
1666
1667 src = ir3_get_src(ctx, &intr->src[0]);
1668 for (int i = 0; i < intr->num_components; i++) {
1669 unsigned n = idx * 4 + i + comp;
1670 ctx->outputs[n] = src[i];
1671 }
1672 break;
1673 case nir_intrinsic_load_base_vertex:
1674 case nir_intrinsic_load_first_vertex:
1675 if (!ctx->basevertex) {
1676 ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE);
1677 }
1678 dst[0] = ctx->basevertex;
1679 break;
1680 case nir_intrinsic_load_base_instance:
1681 if (!ctx->base_instance) {
1682 ctx->base_instance = create_driver_param(ctx, IR3_DP_INSTID_BASE);
1683 }
1684 dst[0] = ctx->base_instance;
1685 break;
1686 case nir_intrinsic_load_vertex_id_zero_base:
1687 case nir_intrinsic_load_vertex_id:
1688 if (!ctx->vertex_id) {
1689 gl_system_value sv = (intr->intrinsic == nir_intrinsic_load_vertex_id) ?
1690 SYSTEM_VALUE_VERTEX_ID : SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
1691 ctx->vertex_id = create_sysval_input(ctx, sv, 0x1);
1692 }
1693 dst[0] = ctx->vertex_id;
1694 break;
1695 case nir_intrinsic_load_instance_id:
1696 if (!ctx->instance_id) {
1697 ctx->instance_id = create_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID, 0x1);
1698 }
1699 dst[0] = ctx->instance_id;
1700 break;
1701 case nir_intrinsic_load_sample_id:
1702 ctx->so->per_samp = true;
1703 /* fall-thru */
1704 case nir_intrinsic_load_sample_id_no_per_sample:
1705 if (!ctx->samp_id) {
1706 ctx->samp_id = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_ID, 0x1);
1707 ctx->samp_id->regs[0]->flags |= IR3_REG_HALF;
1708 }
1709 dst[0] = ir3_COV(b, ctx->samp_id, TYPE_U16, TYPE_U32);
1710 break;
1711 case nir_intrinsic_load_sample_mask_in:
1712 if (!ctx->samp_mask_in) {
1713 ctx->samp_mask_in = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_MASK_IN, 0x1);
1714 }
1715 dst[0] = ctx->samp_mask_in;
1716 break;
1717 case nir_intrinsic_load_user_clip_plane:
1718 idx = nir_intrinsic_ucp_id(intr);
1719 for (int i = 0; i < intr->num_components; i++) {
1720 unsigned n = idx * 4 + i;
1721 dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n);
1722 }
1723 break;
1724 case nir_intrinsic_load_front_face:
1725 if (!ctx->frag_face) {
1726 ctx->so->frag_face = true;
1727 ctx->frag_face = create_sysval_input(ctx, SYSTEM_VALUE_FRONT_FACE, 0x1);
1728 ctx->frag_face->regs[0]->flags |= IR3_REG_HALF;
1729 }
1730 /* for fragface, we get -1 for back and 0 for front. However this is
1731 * the inverse of what nir expects (where ~0 is true).
1732 */
1733 dst[0] = ir3_COV(b, ctx->frag_face, TYPE_S16, TYPE_S32);
1734 dst[0] = ir3_NOT_B(b, dst[0], 0);
1735 break;
1736 case nir_intrinsic_load_local_invocation_id:
1737 if (!ctx->local_invocation_id) {
1738 ctx->local_invocation_id =
1739 create_sysval_input(ctx, SYSTEM_VALUE_LOCAL_INVOCATION_ID, 0x7);
1740 }
1741 ir3_split_dest(b, dst, ctx->local_invocation_id, 0, 3);
1742 break;
1743 case nir_intrinsic_load_work_group_id:
1744 if (!ctx->work_group_id) {
1745 ctx->work_group_id =
1746 create_sysval_input(ctx, SYSTEM_VALUE_WORK_GROUP_ID, 0x7);
1747 ctx->work_group_id->regs[0]->flags |= IR3_REG_HIGH;
1748 }
1749 ir3_split_dest(b, dst, ctx->work_group_id, 0, 3);
1750 break;
1751 case nir_intrinsic_load_num_work_groups:
1752 for (int i = 0; i < intr->num_components; i++) {
1753 dst[i] = create_driver_param(ctx, IR3_DP_NUM_WORK_GROUPS_X + i);
1754 }
1755 break;
1756 case nir_intrinsic_load_local_group_size:
1757 for (int i = 0; i < intr->num_components; i++) {
1758 dst[i] = create_driver_param(ctx, IR3_DP_LOCAL_GROUP_SIZE_X + i);
1759 }
1760 break;
1761 case nir_intrinsic_discard_if:
1762 case nir_intrinsic_discard: {
1763 struct ir3_instruction *cond, *kill;
1764
1765 if (intr->intrinsic == nir_intrinsic_discard_if) {
1766 /* conditional discard: */
1767 src = ir3_get_src(ctx, &intr->src[0]);
1768 cond = ir3_b2n(b, src[0]);
1769 } else {
1770 /* unconditional discard: */
1771 cond = create_immed(b, 1);
1772 }
1773
1774 /* NOTE: only cmps.*.* can write p0.x: */
1775 cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
1776 cond->cat2.condition = IR3_COND_NE;
1777
1778 /* condition always goes in predicate register: */
1779 cond->regs[0]->num = regid(REG_P0, 0);
1780 cond->regs[0]->flags &= ~IR3_REG_SSA;
1781
1782 kill = ir3_KILL(b, cond, 0);
1783 kill->regs[1]->num = regid(REG_P0, 0);
1784 array_insert(ctx->ir, ctx->ir->predicates, kill);
1785
1786 array_insert(b, b->keeps, kill);
1787 ctx->so->no_earlyz = true;
1788
1789 break;
1790 }
1791
1792 case nir_intrinsic_cond_end_ir3: {
1793 struct ir3_instruction *cond, *kill;
1794
1795 src = ir3_get_src(ctx, &intr->src[0]);
1796 cond = ir3_b2n(b, src[0]);
1797
1798 /* NOTE: only cmps.*.* can write p0.x: */
1799 cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
1800 cond->cat2.condition = IR3_COND_NE;
1801
1802 /* condition always goes in predicate register: */
1803 cond->regs[0]->num = regid(REG_P0, 0);
1804
1805 kill = ir3_IF(b, cond, 0);
1806
1807 kill->barrier_class = IR3_BARRIER_EVERYTHING;
1808 kill->barrier_conflict = IR3_BARRIER_EVERYTHING;
1809
1810 array_insert(ctx->ir, ctx->ir->predicates, kill);
1811 array_insert(b, b->keeps, kill);
1812 break;
1813 }
1814
1815 case nir_intrinsic_load_shared_ir3:
1816 emit_intrinsic_load_shared_ir3(ctx, intr, dst);
1817 break;
1818 case nir_intrinsic_store_shared_ir3:
1819 emit_intrinsic_store_shared_ir3(ctx, intr);
1820 break;
1821 default:
1822 ir3_context_error(ctx, "Unhandled intrinsic type: %s\n",
1823 nir_intrinsic_infos[intr->intrinsic].name);
1824 break;
1825 }
1826
1827 if (info->has_dest)
1828 ir3_put_dst(ctx, &intr->dest);
1829 }
1830
1831 static void
1832 emit_load_const(struct ir3_context *ctx, nir_load_const_instr *instr)
1833 {
1834 struct ir3_instruction **dst = ir3_get_dst_ssa(ctx, &instr->def,
1835 instr->def.num_components);
1836
1837 if (instr->def.bit_size < 32) {
1838 for (int i = 0; i < instr->def.num_components; i++)
1839 dst[i] = create_immed_typed(ctx->block,
1840 instr->value[i].u16,
1841 TYPE_U16);
1842 } else {
1843 for (int i = 0; i < instr->def.num_components; i++)
1844 dst[i] = create_immed_typed(ctx->block,
1845 instr->value[i].u32,
1846 TYPE_U32);
1847 }
1848
1849 }
1850
1851 static void
1852 emit_undef(struct ir3_context *ctx, nir_ssa_undef_instr *undef)
1853 {
1854 struct ir3_instruction **dst = ir3_get_dst_ssa(ctx, &undef->def,
1855 undef->def.num_components);
1856 type_t type = (undef->def.bit_size < 32) ? TYPE_U16 : TYPE_U32;
1857
1858 /* backend doesn't want undefined instructions, so just plug
1859 * in 0.0..
1860 */
1861 for (int i = 0; i < undef->def.num_components; i++)
1862 dst[i] = create_immed_typed(ctx->block, fui(0.0), type);
1863 }
1864
1865 /*
1866 * texture fetch/sample instructions:
1867 */
1868
1869 static type_t
1870 get_tex_dest_type(nir_tex_instr *tex)
1871 {
1872 type_t type;
1873
1874 switch (nir_alu_type_get_base_type(tex->dest_type)) {
1875 case nir_type_invalid:
1876 case nir_type_float:
1877 type = nir_dest_bit_size(tex->dest) < 32 ? TYPE_F16 : TYPE_F32;
1878 break;
1879 case nir_type_int:
1880 type = nir_dest_bit_size(tex->dest) < 32 ? TYPE_S16 : TYPE_S32;
1881 break;
1882 case nir_type_uint:
1883 case nir_type_bool:
1884 type = nir_dest_bit_size(tex->dest) < 32 ? TYPE_U16 : TYPE_U32;
1885 break;
1886 default:
1887 unreachable("bad dest_type");
1888 }
1889
1890 return type;
1891 }
1892
1893 static void
1894 tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp)
1895 {
1896 unsigned coords = glsl_get_sampler_dim_coordinate_components(tex->sampler_dim);
1897 unsigned flags = 0;
1898
1899 /* note: would use tex->coord_components.. except txs.. also,
1900 * since array index goes after shadow ref, we don't want to
1901 * count it:
1902 */
1903 if (coords == 3)
1904 flags |= IR3_INSTR_3D;
1905
1906 if (tex->is_shadow && tex->op != nir_texop_lod)
1907 flags |= IR3_INSTR_S;
1908
1909 if (tex->is_array && tex->op != nir_texop_lod)
1910 flags |= IR3_INSTR_A;
1911
1912 *flagsp = flags;
1913 *coordsp = coords;
1914 }
1915
1916 /* Gets the sampler/texture idx as a hvec2. Which could either be dynamic
1917 * or immediate (in which case it will get lowered later to a non .s2en
1918 * version of the tex instruction which encode tex/samp as immediates:
1919 */
1920 static struct ir3_instruction *
1921 get_tex_samp_tex_src(struct ir3_context *ctx, nir_tex_instr *tex)
1922 {
1923 int texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_offset);
1924 int sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset);
1925 struct ir3_instruction *texture, *sampler;
1926
1927 if (texture_idx >= 0) {
1928 texture = ir3_get_src(ctx, &tex->src[texture_idx].src)[0];
1929 texture = ir3_COV(ctx->block, texture, TYPE_U32, TYPE_U16);
1930 } else {
1931 /* TODO what to do for dynamic case? I guess we only need the
1932 * max index for astc srgb workaround so maybe not a problem
1933 * to worry about if we don't enable indirect samplers for
1934 * a4xx?
1935 */
1936 ctx->max_texture_index = MAX2(ctx->max_texture_index, tex->texture_index);
1937 texture = create_immed_typed(ctx->block, tex->texture_index, TYPE_U16);
1938 }
1939
1940 if (sampler_idx >= 0) {
1941 sampler = ir3_get_src(ctx, &tex->src[sampler_idx].src)[0];
1942 sampler = ir3_COV(ctx->block, sampler, TYPE_U32, TYPE_U16);
1943 } else {
1944 sampler = create_immed_typed(ctx->block, tex->sampler_index, TYPE_U16);
1945 }
1946
1947 return ir3_create_collect(ctx, (struct ir3_instruction*[]){
1948 sampler,
1949 texture,
1950 }, 2);
1951 }
1952
1953 static void
1954 emit_tex(struct ir3_context *ctx, nir_tex_instr *tex)
1955 {
1956 struct ir3_block *b = ctx->block;
1957 struct ir3_instruction **dst, *sam, *src0[12], *src1[4];
1958 struct ir3_instruction * const *coord, * const *off, * const *ddx, * const *ddy;
1959 struct ir3_instruction *lod, *compare, *proj, *sample_index;
1960 bool has_bias = false, has_lod = false, has_proj = false, has_off = false;
1961 unsigned i, coords, flags, ncomp;
1962 unsigned nsrc0 = 0, nsrc1 = 0;
1963 type_t type;
1964 opc_t opc = 0;
1965
1966 ncomp = nir_dest_num_components(tex->dest);
1967
1968 coord = off = ddx = ddy = NULL;
1969 lod = proj = compare = sample_index = NULL;
1970
1971 dst = ir3_get_dst(ctx, &tex->dest, ncomp);
1972
1973 for (unsigned i = 0; i < tex->num_srcs; i++) {
1974 switch (tex->src[i].src_type) {
1975 case nir_tex_src_coord:
1976 coord = ir3_get_src(ctx, &tex->src[i].src);
1977 break;
1978 case nir_tex_src_bias:
1979 lod = ir3_get_src(ctx, &tex->src[i].src)[0];
1980 has_bias = true;
1981 break;
1982 case nir_tex_src_lod:
1983 lod = ir3_get_src(ctx, &tex->src[i].src)[0];
1984 has_lod = true;
1985 break;
1986 case nir_tex_src_comparator: /* shadow comparator */
1987 compare = ir3_get_src(ctx, &tex->src[i].src)[0];
1988 break;
1989 case nir_tex_src_projector:
1990 proj = ir3_get_src(ctx, &tex->src[i].src)[0];
1991 has_proj = true;
1992 break;
1993 case nir_tex_src_offset:
1994 off = ir3_get_src(ctx, &tex->src[i].src);
1995 has_off = true;
1996 break;
1997 case nir_tex_src_ddx:
1998 ddx = ir3_get_src(ctx, &tex->src[i].src);
1999 break;
2000 case nir_tex_src_ddy:
2001 ddy = ir3_get_src(ctx, &tex->src[i].src);
2002 break;
2003 case nir_tex_src_ms_index:
2004 sample_index = ir3_get_src(ctx, &tex->src[i].src)[0];
2005 break;
2006 case nir_tex_src_texture_offset:
2007 case nir_tex_src_sampler_offset:
2008 /* handled in get_tex_samp_src() */
2009 break;
2010 default:
2011 ir3_context_error(ctx, "Unhandled NIR tex src type: %d\n",
2012 tex->src[i].src_type);
2013 return;
2014 }
2015 }
2016
2017 switch (tex->op) {
2018 case nir_texop_tex_prefetch:
2019 compile_assert(ctx, !has_bias);
2020 compile_assert(ctx, !has_lod);
2021 compile_assert(ctx, !compare);
2022 compile_assert(ctx, !has_proj);
2023 compile_assert(ctx, !has_off);
2024 compile_assert(ctx, !ddx);
2025 compile_assert(ctx, !ddy);
2026 compile_assert(ctx, !sample_index);
2027 compile_assert(ctx, nir_tex_instr_src_index(tex, nir_tex_src_texture_offset) < 0);
2028 compile_assert(ctx, nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset) < 0);
2029
2030 if (ctx->so->num_sampler_prefetch < IR3_MAX_SAMPLER_PREFETCH) {
2031 opc = OPC_META_TEX_PREFETCH;
2032 ctx->so->num_sampler_prefetch++;
2033 break;
2034 }
2035 /* fallthru */
2036 case nir_texop_tex: opc = has_lod ? OPC_SAML : OPC_SAM; break;
2037 case nir_texop_txb: opc = OPC_SAMB; break;
2038 case nir_texop_txl: opc = OPC_SAML; break;
2039 case nir_texop_txd: opc = OPC_SAMGQ; break;
2040 case nir_texop_txf: opc = OPC_ISAML; break;
2041 case nir_texop_lod: opc = OPC_GETLOD; break;
2042 case nir_texop_tg4:
2043 /* NOTE: a4xx might need to emulate gather w/ txf (this is
2044 * what blob does, seems gather is broken?), and a3xx did
2045 * not support it (but probably could also emulate).
2046 */
2047 switch (tex->component) {
2048 case 0: opc = OPC_GATHER4R; break;
2049 case 1: opc = OPC_GATHER4G; break;
2050 case 2: opc = OPC_GATHER4B; break;
2051 case 3: opc = OPC_GATHER4A; break;
2052 }
2053 break;
2054 case nir_texop_txf_ms_fb:
2055 case nir_texop_txf_ms: opc = OPC_ISAMM; break;
2056 default:
2057 ir3_context_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
2058 return;
2059 }
2060
2061 tex_info(tex, &flags, &coords);
2062
2063 /*
2064 * lay out the first argument in the proper order:
2065 * - actual coordinates first
2066 * - shadow reference
2067 * - array index
2068 * - projection w
2069 * - starting at offset 4, dpdx.xy, dpdy.xy
2070 *
2071 * bias/lod go into the second arg
2072 */
2073
2074 /* insert tex coords: */
2075 for (i = 0; i < coords; i++)
2076 src0[i] = coord[i];
2077
2078 nsrc0 = i;
2079
2080 /* scale up integer coords for TXF based on the LOD */
2081 if (ctx->compiler->unminify_coords && (opc == OPC_ISAML)) {
2082 assert(has_lod);
2083 for (i = 0; i < coords; i++)
2084 src0[i] = ir3_SHL_B(b, src0[i], 0, lod, 0);
2085 }
2086
2087 if (coords == 1) {
2088 /* hw doesn't do 1d, so we treat it as 2d with
2089 * height of 1, and patch up the y coord.
2090 */
2091 if (is_isam(opc)) {
2092 src0[nsrc0++] = create_immed(b, 0);
2093 } else {
2094 src0[nsrc0++] = create_immed(b, fui(0.5));
2095 }
2096 }
2097
2098 if (tex->is_shadow && tex->op != nir_texop_lod)
2099 src0[nsrc0++] = compare;
2100
2101 if (tex->is_array && tex->op != nir_texop_lod) {
2102 struct ir3_instruction *idx = coord[coords];
2103
2104 /* the array coord for cube arrays needs 0.5 added to it */
2105 if (ctx->compiler->array_index_add_half && !is_isam(opc))
2106 idx = ir3_ADD_F(b, idx, 0, create_immed(b, fui(0.5)), 0);
2107
2108 src0[nsrc0++] = idx;
2109 }
2110
2111 if (has_proj) {
2112 src0[nsrc0++] = proj;
2113 flags |= IR3_INSTR_P;
2114 }
2115
2116 /* pad to 4, then ddx/ddy: */
2117 if (tex->op == nir_texop_txd) {
2118 while (nsrc0 < 4)
2119 src0[nsrc0++] = create_immed(b, fui(0.0));
2120 for (i = 0; i < coords; i++)
2121 src0[nsrc0++] = ddx[i];
2122 if (coords < 2)
2123 src0[nsrc0++] = create_immed(b, fui(0.0));
2124 for (i = 0; i < coords; i++)
2125 src0[nsrc0++] = ddy[i];
2126 if (coords < 2)
2127 src0[nsrc0++] = create_immed(b, fui(0.0));
2128 }
2129
2130 /* NOTE a3xx (and possibly a4xx?) might be different, using isaml
2131 * with scaled x coord according to requested sample:
2132 */
2133 if (opc == OPC_ISAMM) {
2134 if (ctx->compiler->txf_ms_with_isaml) {
2135 /* the samples are laid out in x dimension as
2136 * 0 1 2 3
2137 * x_ms = (x << ms) + sample_index;
2138 */
2139 struct ir3_instruction *ms;
2140 ms = create_immed(b, (ctx->samples >> (2 * tex->texture_index)) & 3);
2141
2142 src0[0] = ir3_SHL_B(b, src0[0], 0, ms, 0);
2143 src0[0] = ir3_ADD_U(b, src0[0], 0, sample_index, 0);
2144
2145 opc = OPC_ISAML;
2146 } else {
2147 src0[nsrc0++] = sample_index;
2148 }
2149 }
2150
2151 /*
2152 * second argument (if applicable):
2153 * - offsets
2154 * - lod
2155 * - bias
2156 */
2157 if (has_off | has_lod | has_bias) {
2158 if (has_off) {
2159 unsigned off_coords = coords;
2160 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2161 off_coords--;
2162 for (i = 0; i < off_coords; i++)
2163 src1[nsrc1++] = off[i];
2164 if (off_coords < 2)
2165 src1[nsrc1++] = create_immed(b, fui(0.0));
2166 flags |= IR3_INSTR_O;
2167 }
2168
2169 if (has_lod | has_bias)
2170 src1[nsrc1++] = lod;
2171 }
2172
2173 type = get_tex_dest_type(tex);
2174
2175 if (opc == OPC_GETLOD)
2176 type = TYPE_S32;
2177
2178 struct ir3_instruction *samp_tex;
2179
2180 if (tex->op == nir_texop_txf_ms_fb) {
2181 /* only expect a single txf_ms_fb per shader: */
2182 compile_assert(ctx, !ctx->so->fb_read);
2183 compile_assert(ctx, ctx->so->type == MESA_SHADER_FRAGMENT);
2184
2185 ctx->so->fb_read = true;
2186 samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
2187 create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16),
2188 create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16),
2189 }, 2);
2190
2191 ctx->so->num_samp++;
2192 } else {
2193 samp_tex = get_tex_samp_tex_src(ctx, tex);
2194 }
2195
2196 struct ir3_instruction *col0 = ir3_create_collect(ctx, src0, nsrc0);
2197 struct ir3_instruction *col1 = ir3_create_collect(ctx, src1, nsrc1);
2198
2199 if (opc == OPC_META_TEX_PREFETCH) {
2200 int idx = nir_tex_instr_src_index(tex, nir_tex_src_coord);
2201
2202 compile_assert(ctx, tex->src[idx].src.is_ssa);
2203
2204 sam = ir3_META_TEX_PREFETCH(b);
2205 __ssa_dst(sam)->wrmask = MASK(ncomp); /* dst */
2206 sam->prefetch.input_offset =
2207 ir3_nir_coord_offset(tex->src[idx].src.ssa);
2208 sam->prefetch.tex = tex->texture_index;
2209 sam->prefetch.samp = tex->sampler_index;
2210 } else {
2211 sam = ir3_SAM(b, opc, type, MASK(ncomp), flags,
2212 samp_tex, col0, col1);
2213 }
2214
2215 if ((ctx->astc_srgb & (1 << tex->texture_index)) && !nir_tex_instr_is_query(tex)) {
2216 assert(opc != OPC_META_TEX_PREFETCH);
2217
2218 /* only need first 3 components: */
2219 sam->regs[0]->wrmask = 0x7;
2220 ir3_split_dest(b, dst, sam, 0, 3);
2221
2222 /* we need to sample the alpha separately with a non-ASTC
2223 * texture state:
2224 */
2225 sam = ir3_SAM(b, opc, type, 0b1000, flags,
2226 samp_tex, col0, col1);
2227
2228 array_insert(ctx->ir, ctx->ir->astc_srgb, sam);
2229
2230 /* fixup .w component: */
2231 ir3_split_dest(b, &dst[3], sam, 3, 1);
2232 } else {
2233 /* normal (non-workaround) case: */
2234 ir3_split_dest(b, dst, sam, 0, ncomp);
2235 }
2236
2237 /* GETLOD returns results in 4.8 fixed point */
2238 if (opc == OPC_GETLOD) {
2239 struct ir3_instruction *factor = create_immed(b, fui(1.0 / 256));
2240
2241 compile_assert(ctx, tex->dest_type == nir_type_float);
2242 for (i = 0; i < 2; i++) {
2243 dst[i] = ir3_MUL_F(b, ir3_COV(b, dst[i], TYPE_S32, TYPE_F32), 0,
2244 factor, 0);
2245 }
2246 }
2247
2248 ir3_put_dst(ctx, &tex->dest);
2249 }
2250
2251 static void
2252 emit_tex_info(struct ir3_context *ctx, nir_tex_instr *tex, unsigned idx)
2253 {
2254 struct ir3_block *b = ctx->block;
2255 struct ir3_instruction **dst, *sam;
2256 type_t dst_type = get_tex_dest_type(tex);
2257
2258 dst = ir3_get_dst(ctx, &tex->dest, 1);
2259
2260 sam = ir3_SAM(b, OPC_GETINFO, dst_type, 1 << idx, 0,
2261 get_tex_samp_tex_src(ctx, tex), NULL, NULL);
2262
2263 /* even though there is only one component, since it ends
2264 * up in .y/.z/.w rather than .x, we need a split_dest()
2265 */
2266 if (idx)
2267 ir3_split_dest(b, dst, sam, 0, idx + 1);
2268
2269 /* The # of levels comes from getinfo.z. We need to add 1 to it, since
2270 * the value in TEX_CONST_0 is zero-based.
2271 */
2272 if (ctx->compiler->levels_add_one)
2273 dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0);
2274
2275 ir3_put_dst(ctx, &tex->dest);
2276 }
2277
2278 static void
2279 emit_tex_txs(struct ir3_context *ctx, nir_tex_instr *tex)
2280 {
2281 struct ir3_block *b = ctx->block;
2282 struct ir3_instruction **dst, *sam;
2283 struct ir3_instruction *lod;
2284 unsigned flags, coords;
2285 type_t dst_type = get_tex_dest_type(tex);
2286
2287 tex_info(tex, &flags, &coords);
2288
2289 /* Actually we want the number of dimensions, not coordinates. This
2290 * distinction only matters for cubes.
2291 */
2292 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2293 coords = 2;
2294
2295 dst = ir3_get_dst(ctx, &tex->dest, 4);
2296
2297 compile_assert(ctx, tex->num_srcs == 1);
2298 compile_assert(ctx, tex->src[0].src_type == nir_tex_src_lod);
2299
2300 lod = ir3_get_src(ctx, &tex->src[0].src)[0];
2301
2302 sam = ir3_SAM(b, OPC_GETSIZE, dst_type, 0b1111, flags,
2303 get_tex_samp_tex_src(ctx, tex), lod, NULL);
2304
2305 ir3_split_dest(b, dst, sam, 0, 4);
2306
2307 /* Array size actually ends up in .w rather than .z. This doesn't
2308 * matter for miplevel 0, but for higher mips the value in z is
2309 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
2310 * returned, which means that we have to add 1 to it for arrays.
2311 */
2312 if (tex->is_array) {
2313 if (ctx->compiler->levels_add_one) {
2314 dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0);
2315 } else {
2316 dst[coords] = ir3_MOV(b, dst[3], TYPE_U32);
2317 }
2318 }
2319
2320 ir3_put_dst(ctx, &tex->dest);
2321 }
2322
2323 static void
2324 emit_jump(struct ir3_context *ctx, nir_jump_instr *jump)
2325 {
2326 switch (jump->type) {
2327 case nir_jump_break:
2328 case nir_jump_continue:
2329 case nir_jump_return:
2330 /* I *think* we can simply just ignore this, and use the
2331 * successor block link to figure out where we need to
2332 * jump to for break/continue
2333 */
2334 break;
2335 default:
2336 ir3_context_error(ctx, "Unhandled NIR jump type: %d\n", jump->type);
2337 break;
2338 }
2339 }
2340
2341 static void
2342 emit_instr(struct ir3_context *ctx, nir_instr *instr)
2343 {
2344 switch (instr->type) {
2345 case nir_instr_type_alu:
2346 emit_alu(ctx, nir_instr_as_alu(instr));
2347 break;
2348 case nir_instr_type_deref:
2349 /* ignored, handled as part of the intrinsic they are src to */
2350 break;
2351 case nir_instr_type_intrinsic:
2352 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
2353 break;
2354 case nir_instr_type_load_const:
2355 emit_load_const(ctx, nir_instr_as_load_const(instr));
2356 break;
2357 case nir_instr_type_ssa_undef:
2358 emit_undef(ctx, nir_instr_as_ssa_undef(instr));
2359 break;
2360 case nir_instr_type_tex: {
2361 nir_tex_instr *tex = nir_instr_as_tex(instr);
2362 /* couple tex instructions get special-cased:
2363 */
2364 switch (tex->op) {
2365 case nir_texop_txs:
2366 emit_tex_txs(ctx, tex);
2367 break;
2368 case nir_texop_query_levels:
2369 emit_tex_info(ctx, tex, 2);
2370 break;
2371 case nir_texop_texture_samples:
2372 emit_tex_info(ctx, tex, 3);
2373 break;
2374 default:
2375 emit_tex(ctx, tex);
2376 break;
2377 }
2378 break;
2379 }
2380 case nir_instr_type_jump:
2381 emit_jump(ctx, nir_instr_as_jump(instr));
2382 break;
2383 case nir_instr_type_phi:
2384 /* we have converted phi webs to regs in NIR by now */
2385 ir3_context_error(ctx, "Unexpected NIR instruction type: %d\n", instr->type);
2386 break;
2387 case nir_instr_type_call:
2388 case nir_instr_type_parallel_copy:
2389 ir3_context_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type);
2390 break;
2391 }
2392 }
2393
2394 static struct ir3_block *
2395 get_block(struct ir3_context *ctx, const nir_block *nblock)
2396 {
2397 struct ir3_block *block;
2398 struct hash_entry *hentry;
2399
2400 hentry = _mesa_hash_table_search(ctx->block_ht, nblock);
2401 if (hentry)
2402 return hentry->data;
2403
2404 block = ir3_block_create(ctx->ir);
2405 block->nblock = nblock;
2406 _mesa_hash_table_insert(ctx->block_ht, nblock, block);
2407
2408 block->predecessors = _mesa_pointer_set_create(block);
2409 set_foreach(nblock->predecessors, sentry) {
2410 _mesa_set_add(block->predecessors, get_block(ctx, sentry->key));
2411 }
2412
2413 return block;
2414 }
2415
2416 static void
2417 emit_block(struct ir3_context *ctx, nir_block *nblock)
2418 {
2419 struct ir3_block *block = get_block(ctx, nblock);
2420
2421 for (int i = 0; i < ARRAY_SIZE(block->successors); i++) {
2422 if (nblock->successors[i]) {
2423 block->successors[i] =
2424 get_block(ctx, nblock->successors[i]);
2425 }
2426 }
2427
2428 ctx->block = block;
2429 list_addtail(&block->node, &ctx->ir->block_list);
2430
2431 /* re-emit addr register in each block if needed: */
2432 for (int i = 0; i < ARRAY_SIZE(ctx->addr_ht); i++) {
2433 _mesa_hash_table_destroy(ctx->addr_ht[i], NULL);
2434 ctx->addr_ht[i] = NULL;
2435 }
2436
2437 nir_foreach_instr(instr, nblock) {
2438 ctx->cur_instr = instr;
2439 emit_instr(ctx, instr);
2440 ctx->cur_instr = NULL;
2441 if (ctx->error)
2442 return;
2443 }
2444 }
2445
2446 static void emit_cf_list(struct ir3_context *ctx, struct exec_list *list);
2447
2448 static void
2449 emit_if(struct ir3_context *ctx, nir_if *nif)
2450 {
2451 struct ir3_instruction *condition = ir3_get_src(ctx, &nif->condition)[0];
2452
2453 ctx->block->condition =
2454 ir3_get_predicate(ctx, ir3_b2n(condition->block, condition));
2455
2456 emit_cf_list(ctx, &nif->then_list);
2457 emit_cf_list(ctx, &nif->else_list);
2458 }
2459
2460 static void
2461 emit_loop(struct ir3_context *ctx, nir_loop *nloop)
2462 {
2463 emit_cf_list(ctx, &nloop->body);
2464 ctx->so->loops++;
2465 }
2466
2467 static void
2468 stack_push(struct ir3_context *ctx)
2469 {
2470 ctx->stack++;
2471 ctx->max_stack = MAX2(ctx->max_stack, ctx->stack);
2472 }
2473
2474 static void
2475 stack_pop(struct ir3_context *ctx)
2476 {
2477 compile_assert(ctx, ctx->stack > 0);
2478 ctx->stack--;
2479 }
2480
2481 static void
2482 emit_cf_list(struct ir3_context *ctx, struct exec_list *list)
2483 {
2484 foreach_list_typed(nir_cf_node, node, node, list) {
2485 switch (node->type) {
2486 case nir_cf_node_block:
2487 emit_block(ctx, nir_cf_node_as_block(node));
2488 break;
2489 case nir_cf_node_if:
2490 stack_push(ctx);
2491 emit_if(ctx, nir_cf_node_as_if(node));
2492 stack_pop(ctx);
2493 break;
2494 case nir_cf_node_loop:
2495 stack_push(ctx);
2496 emit_loop(ctx, nir_cf_node_as_loop(node));
2497 stack_pop(ctx);
2498 break;
2499 case nir_cf_node_function:
2500 ir3_context_error(ctx, "TODO\n");
2501 break;
2502 }
2503 }
2504 }
2505
2506 /* emit stream-out code. At this point, the current block is the original
2507 * (nir) end block, and nir ensures that all flow control paths terminate
2508 * into the end block. We re-purpose the original end block to generate
2509 * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional
2510 * block holding stream-out write instructions, followed by the new end
2511 * block:
2512 *
2513 * blockOrigEnd {
2514 * p0.x = (vtxcnt < maxvtxcnt)
2515 * // succs: blockStreamOut, blockNewEnd
2516 * }
2517 * blockStreamOut {
2518 * ... stream-out instructions ...
2519 * // succs: blockNewEnd
2520 * }
2521 * blockNewEnd {
2522 * }
2523 */
2524 static void
2525 emit_stream_out(struct ir3_context *ctx)
2526 {
2527 struct ir3 *ir = ctx->ir;
2528 struct ir3_stream_output_info *strmout =
2529 &ctx->so->shader->stream_output;
2530 struct ir3_block *orig_end_block, *stream_out_block, *new_end_block;
2531 struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond;
2532 struct ir3_instruction *bases[IR3_MAX_SO_BUFFERS];
2533
2534 /* create vtxcnt input in input block at top of shader,
2535 * so that it is seen as live over the entire duration
2536 * of the shader:
2537 */
2538 vtxcnt = create_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, 0x1);
2539 maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX);
2540
2541 /* at this point, we are at the original 'end' block,
2542 * re-purpose this block to stream-out condition, then
2543 * append stream-out block and new-end block
2544 */
2545 orig_end_block = ctx->block;
2546
2547 // TODO these blocks need to update predecessors..
2548 // maybe w/ store_global intrinsic, we could do this
2549 // stuff in nir->nir pass
2550
2551 stream_out_block = ir3_block_create(ir);
2552 list_addtail(&stream_out_block->node, &ir->block_list);
2553
2554 new_end_block = ir3_block_create(ir);
2555 list_addtail(&new_end_block->node, &ir->block_list);
2556
2557 orig_end_block->successors[0] = stream_out_block;
2558 orig_end_block->successors[1] = new_end_block;
2559 stream_out_block->successors[0] = new_end_block;
2560
2561 /* setup 'if (vtxcnt < maxvtxcnt)' condition: */
2562 cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0);
2563 cond->regs[0]->num = regid(REG_P0, 0);
2564 cond->regs[0]->flags &= ~IR3_REG_SSA;
2565 cond->cat2.condition = IR3_COND_LT;
2566
2567 /* condition goes on previous block to the conditional,
2568 * since it is used to pick which of the two successor
2569 * paths to take:
2570 */
2571 orig_end_block->condition = cond;
2572
2573 /* switch to stream_out_block to generate the stream-out
2574 * instructions:
2575 */
2576 ctx->block = stream_out_block;
2577
2578 /* Calculate base addresses based on vtxcnt. Instructions
2579 * generated for bases not used in following loop will be
2580 * stripped out in the backend.
2581 */
2582 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
2583 struct ir3_const_state *const_state = &ctx->so->shader->const_state;
2584 unsigned stride = strmout->stride[i];
2585 struct ir3_instruction *base, *off;
2586
2587 base = create_uniform(ctx->block, regid(const_state->offsets.tfbo, i));
2588
2589 /* 24-bit should be enough: */
2590 off = ir3_MUL_U24(ctx->block, vtxcnt, 0,
2591 create_immed(ctx->block, stride * 4), 0);
2592
2593 bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0);
2594 }
2595
2596 /* Generate the per-output store instructions: */
2597 for (unsigned i = 0; i < strmout->num_outputs; i++) {
2598 for (unsigned j = 0; j < strmout->output[i].num_components; j++) {
2599 unsigned c = j + strmout->output[i].start_component;
2600 struct ir3_instruction *base, *out, *stg;
2601
2602 base = bases[strmout->output[i].output_buffer];
2603 out = ctx->ir->outputs[regid(strmout->output[i].register_index, c)];
2604
2605 stg = ir3_STG(ctx->block, base, 0, out, 0,
2606 create_immed(ctx->block, 1), 0);
2607 stg->cat6.type = TYPE_U32;
2608 stg->cat6.dst_offset = (strmout->output[i].dst_offset + j) * 4;
2609
2610 array_insert(ctx->block, ctx->block->keeps, stg);
2611 }
2612 }
2613
2614 /* and finally switch to the new_end_block: */
2615 ctx->block = new_end_block;
2616 }
2617
2618 static void
2619 emit_function(struct ir3_context *ctx, nir_function_impl *impl)
2620 {
2621 nir_metadata_require(impl, nir_metadata_block_index);
2622
2623 compile_assert(ctx, ctx->stack == 0);
2624
2625 emit_cf_list(ctx, &impl->body);
2626 emit_block(ctx, impl->end_block);
2627
2628 compile_assert(ctx, ctx->stack == 0);
2629
2630 /* at this point, we should have a single empty block,
2631 * into which we emit the 'end' instruction.
2632 */
2633 compile_assert(ctx, list_is_empty(&ctx->block->instr_list));
2634
2635 /* If stream-out (aka transform-feedback) enabled, emit the
2636 * stream-out instructions, followed by a new empty block (into
2637 * which the 'end' instruction lands).
2638 *
2639 * NOTE: it is done in this order, rather than inserting before
2640 * we emit end_block, because NIR guarantees that all blocks
2641 * flow into end_block, and that end_block has no successors.
2642 * So by re-purposing end_block as the first block of stream-
2643 * out, we guarantee that all exit paths flow into the stream-
2644 * out instructions.
2645 */
2646 if ((ctx->compiler->gpu_id < 500) &&
2647 (ctx->so->shader->stream_output.num_outputs > 0) &&
2648 !ctx->so->binning_pass) {
2649 debug_assert(ctx->so->type == MESA_SHADER_VERTEX);
2650 emit_stream_out(ctx);
2651 }
2652
2653 /* Vertex shaders in a tessellation or geometry pipeline treat END as a
2654 * NOP and has an epilogue that writes the VS outputs to local storage, to
2655 * be read by the HS. Then it resets execution mask (chmask) and chains
2656 * to the next shader (chsh).
2657 */
2658 if ((ctx->so->type == MESA_SHADER_VERTEX &&
2659 (ctx->so->key.has_gs || ctx->so->key.tessellation)) ||
2660 (ctx->so->type == MESA_SHADER_TESS_EVAL && ctx->so->key.has_gs)) {
2661 struct ir3_instruction *chmask =
2662 ir3_CHMASK(ctx->block);
2663 chmask->barrier_class = IR3_BARRIER_EVERYTHING;
2664 chmask->barrier_conflict = IR3_BARRIER_EVERYTHING;
2665
2666 struct ir3_instruction *chsh =
2667 ir3_CHSH(ctx->block);
2668 chsh->barrier_class = IR3_BARRIER_EVERYTHING;
2669 chsh->barrier_conflict = IR3_BARRIER_EVERYTHING;
2670 } else {
2671 ir3_END(ctx->block);
2672 }
2673 }
2674
2675 static void
2676 setup_input(struct ir3_context *ctx, nir_variable *in)
2677 {
2678 struct ir3_shader_variant *so = ctx->so;
2679 unsigned ncomp = glsl_get_components(in->type);
2680 unsigned n = in->data.driver_location;
2681 unsigned frac = in->data.location_frac;
2682 unsigned slot = in->data.location;
2683
2684 /* Inputs are loaded using ldlw or ldg for these stages. */
2685 if (ctx->so->type == MESA_SHADER_TESS_CTRL ||
2686 ctx->so->type == MESA_SHADER_TESS_EVAL ||
2687 ctx->so->type == MESA_SHADER_GEOMETRY)
2688 return;
2689
2690 /* skip unread inputs, we could end up with (for example), unsplit
2691 * matrix/etc inputs in the case they are not read, so just silently
2692 * skip these.
2693 */
2694 if (ncomp > 4)
2695 return;
2696
2697 so->inputs[n].slot = slot;
2698 so->inputs[n].compmask |= (1 << (ncomp + frac)) - 1;
2699 so->inputs_count = MAX2(so->inputs_count, n + 1);
2700 so->inputs[n].interpolate = in->data.interpolation;
2701
2702 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
2703
2704 /* if any varyings have 'sample' qualifer, that triggers us
2705 * to run in per-sample mode:
2706 */
2707 so->per_samp |= in->data.sample;
2708
2709 for (int i = 0; i < ncomp; i++) {
2710 struct ir3_instruction *instr = NULL;
2711 unsigned idx = (n * 4) + i + frac;
2712
2713 if (slot == VARYING_SLOT_POS) {
2714 ir3_context_error(ctx, "fragcoord should be a sysval!\n");
2715 } else if (slot == VARYING_SLOT_PNTC) {
2716 /* see for example st_nir_fixup_varying_slots().. this is
2717 * maybe a bit mesa/st specific. But we need things to line
2718 * up for this in fdN_program:
2719 * unsigned texmask = 1 << (slot - VARYING_SLOT_VAR0);
2720 * if (emit->sprite_coord_enable & texmask) {
2721 * ...
2722 * }
2723 */
2724 so->inputs[n].slot = VARYING_SLOT_VAR8;
2725 so->inputs[n].bary = true;
2726 instr = create_frag_input(ctx, false, idx);
2727 } else {
2728 /* detect the special case for front/back colors where
2729 * we need to do flat vs smooth shading depending on
2730 * rast state:
2731 */
2732 if (in->data.interpolation == INTERP_MODE_NONE) {
2733 switch (slot) {
2734 case VARYING_SLOT_COL0:
2735 case VARYING_SLOT_COL1:
2736 case VARYING_SLOT_BFC0:
2737 case VARYING_SLOT_BFC1:
2738 so->inputs[n].rasterflat = true;
2739 break;
2740 default:
2741 break;
2742 }
2743 }
2744
2745 if (ctx->compiler->flat_bypass) {
2746 if ((so->inputs[n].interpolate == INTERP_MODE_FLAT) ||
2747 (so->inputs[n].rasterflat && ctx->so->key.rasterflat))
2748 so->inputs[n].use_ldlv = true;
2749 }
2750
2751 so->inputs[n].bary = true;
2752
2753 instr = create_frag_input(ctx, so->inputs[n].use_ldlv, idx);
2754 }
2755
2756 compile_assert(ctx, idx < ctx->ninputs);
2757
2758 ctx->inputs[idx] = instr;
2759 }
2760 } else if (ctx->so->type == MESA_SHADER_VERTEX) {
2761 struct ir3_instruction *input = NULL, *in;
2762 struct ir3_instruction *components[4];
2763 unsigned mask = (1 << (ncomp + frac)) - 1;
2764
2765 foreach_input(in, ctx->ir) {
2766 if (in->input.inidx == n) {
2767 input = in;
2768 break;
2769 }
2770 }
2771
2772 if (!input) {
2773 input = create_input(ctx, mask);
2774 input->input.inidx = n;
2775 } else {
2776 input->regs[0]->wrmask |= mask;
2777 }
2778
2779 ir3_split_dest(ctx->block, components, input, frac, ncomp);
2780
2781 for (int i = 0; i < ncomp; i++) {
2782 unsigned idx = (n * 4) + i + frac;
2783 compile_assert(ctx, idx < ctx->ninputs);
2784 ctx->inputs[idx] = components[i];
2785 }
2786 } else {
2787 ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type);
2788 }
2789
2790 if (so->inputs[n].bary || (ctx->so->type == MESA_SHADER_VERTEX)) {
2791 so->total_in += ncomp;
2792 }
2793 }
2794
2795 /* Initially we assign non-packed inloc's for varyings, as we don't really
2796 * know up-front which components will be unused. After all the compilation
2797 * stages we scan the shader to see which components are actually used, and
2798 * re-pack the inlocs to eliminate unneeded varyings.
2799 */
2800 static void
2801 pack_inlocs(struct ir3_context *ctx)
2802 {
2803 struct ir3_shader_variant *so = ctx->so;
2804 uint8_t used_components[so->inputs_count];
2805
2806 memset(used_components, 0, sizeof(used_components));
2807
2808 /*
2809 * First Step: scan shader to find which bary.f/ldlv remain:
2810 */
2811
2812 foreach_block (block, &ctx->ir->block_list) {
2813 foreach_instr (instr, &block->instr_list) {
2814 if (is_input(instr)) {
2815 unsigned inloc = instr->regs[1]->iim_val;
2816 unsigned i = inloc / 4;
2817 unsigned j = inloc % 4;
2818
2819 compile_assert(ctx, instr->regs[1]->flags & IR3_REG_IMMED);
2820 compile_assert(ctx, i < so->inputs_count);
2821
2822 used_components[i] |= 1 << j;
2823 } else if (instr->opc == OPC_META_TEX_PREFETCH) {
2824 for (int n = 0; n < 2; n++) {
2825 unsigned inloc = instr->prefetch.input_offset + n;
2826 unsigned i = inloc / 4;
2827 unsigned j = inloc % 4;
2828
2829 compile_assert(ctx, i < so->inputs_count);
2830
2831 used_components[i] |= 1 << j;
2832 }
2833 }
2834 }
2835 }
2836
2837 /*
2838 * Second Step: reassign varying inloc/slots:
2839 */
2840
2841 unsigned actual_in = 0;
2842 unsigned inloc = 0;
2843
2844 for (unsigned i = 0; i < so->inputs_count; i++) {
2845 unsigned compmask = 0, maxcomp = 0;
2846
2847 so->inputs[i].inloc = inloc;
2848 so->inputs[i].bary = false;
2849
2850 for (unsigned j = 0; j < 4; j++) {
2851 if (!(used_components[i] & (1 << j)))
2852 continue;
2853
2854 compmask |= (1 << j);
2855 actual_in++;
2856 maxcomp = j + 1;
2857
2858 /* at this point, since used_components[i] mask is only
2859 * considering varyings (ie. not sysvals) we know this
2860 * is a varying:
2861 */
2862 so->inputs[i].bary = true;
2863 }
2864
2865 if (so->inputs[i].bary) {
2866 so->varying_in++;
2867 so->inputs[i].compmask = (1 << maxcomp) - 1;
2868 inloc += maxcomp;
2869 }
2870 }
2871
2872 /*
2873 * Third Step: reassign packed inloc's:
2874 */
2875
2876 foreach_block (block, &ctx->ir->block_list) {
2877 foreach_instr (instr, &block->instr_list) {
2878 if (is_input(instr)) {
2879 unsigned inloc = instr->regs[1]->iim_val;
2880 unsigned i = inloc / 4;
2881 unsigned j = inloc % 4;
2882
2883 instr->regs[1]->iim_val = so->inputs[i].inloc + j;
2884 } else if (instr->opc == OPC_META_TEX_PREFETCH) {
2885 unsigned i = instr->prefetch.input_offset / 4;
2886 unsigned j = instr->prefetch.input_offset % 4;
2887 instr->prefetch.input_offset = so->inputs[i].inloc + j;
2888 }
2889 }
2890 }
2891 }
2892
2893 static void
2894 setup_output(struct ir3_context *ctx, nir_variable *out)
2895 {
2896 struct ir3_shader_variant *so = ctx->so;
2897 unsigned ncomp = glsl_get_components(out->type);
2898 unsigned n = out->data.driver_location;
2899 unsigned frac = out->data.location_frac;
2900 unsigned slot = out->data.location;
2901 unsigned comp = 0;
2902
2903 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
2904 switch (slot) {
2905 case FRAG_RESULT_DEPTH:
2906 comp = 2; /* tgsi will write to .z component */
2907 so->writes_pos = true;
2908 break;
2909 case FRAG_RESULT_COLOR:
2910 so->color0_mrt = 1;
2911 break;
2912 case FRAG_RESULT_SAMPLE_MASK:
2913 so->writes_smask = true;
2914 break;
2915 default:
2916 if (slot >= FRAG_RESULT_DATA0)
2917 break;
2918 ir3_context_error(ctx, "unknown FS output name: %s\n",
2919 gl_frag_result_name(slot));
2920 }
2921 } else if (ctx->so->type == MESA_SHADER_VERTEX ||
2922 ctx->so->type == MESA_SHADER_TESS_EVAL ||
2923 ctx->so->type == MESA_SHADER_GEOMETRY) {
2924 switch (slot) {
2925 case VARYING_SLOT_POS:
2926 so->writes_pos = true;
2927 break;
2928 case VARYING_SLOT_PSIZ:
2929 so->writes_psize = true;
2930 break;
2931 case VARYING_SLOT_PRIMITIVE_ID:
2932 case VARYING_SLOT_LAYER:
2933 case VARYING_SLOT_GS_VERTEX_FLAGS_IR3:
2934 debug_assert(ctx->so->type == MESA_SHADER_GEOMETRY);
2935 /* fall through */
2936 case VARYING_SLOT_COL0:
2937 case VARYING_SLOT_COL1:
2938 case VARYING_SLOT_BFC0:
2939 case VARYING_SLOT_BFC1:
2940 case VARYING_SLOT_FOGC:
2941 case VARYING_SLOT_CLIP_DIST0:
2942 case VARYING_SLOT_CLIP_DIST1:
2943 case VARYING_SLOT_CLIP_VERTEX:
2944 break;
2945 default:
2946 if (slot >= VARYING_SLOT_VAR0)
2947 break;
2948 if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7))
2949 break;
2950 ir3_context_error(ctx, "unknown %s shader output name: %s\n",
2951 _mesa_shader_stage_to_string(ctx->so->type),
2952 gl_varying_slot_name(slot));
2953 }
2954 } else if (ctx->so->type == MESA_SHADER_TESS_CTRL) {
2955 /* output lowered to buffer writes. */
2956 return;
2957 } else {
2958 ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type);
2959 }
2960
2961 compile_assert(ctx, n < ARRAY_SIZE(so->outputs));
2962
2963 so->outputs[n].slot = slot;
2964 so->outputs[n].regid = regid(n, comp);
2965 so->outputs_count = MAX2(so->outputs_count, n + 1);
2966
2967 for (int i = 0; i < ncomp; i++) {
2968 unsigned idx = (n * 4) + i + frac;
2969 compile_assert(ctx, idx < ctx->noutputs);
2970 ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
2971 }
2972
2973 /* if varying packing doesn't happen, we could end up in a situation
2974 * with "holes" in the output, and since the per-generation code that
2975 * sets up varying linkage registers doesn't expect to have more than
2976 * one varying per vec4 slot, pad the holes.
2977 *
2978 * Note that this should probably generate a performance warning of
2979 * some sort.
2980 */
2981 for (int i = 0; i < frac; i++) {
2982 unsigned idx = (n * 4) + i;
2983 if (!ctx->outputs[idx]) {
2984 ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
2985 }
2986 }
2987 }
2988
2989 static int
2990 max_drvloc(struct exec_list *vars)
2991 {
2992 int drvloc = -1;
2993 nir_foreach_variable(var, vars) {
2994 drvloc = MAX2(drvloc, (int)var->data.driver_location);
2995 }
2996 return drvloc;
2997 }
2998
2999 static void
3000 emit_instructions(struct ir3_context *ctx)
3001 {
3002 nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s);
3003
3004 ctx->ninputs = (max_drvloc(&ctx->s->inputs) + 1) * 4;
3005 ctx->noutputs = (max_drvloc(&ctx->s->outputs) + 1) * 4;
3006
3007 ctx->inputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->ninputs);
3008 ctx->outputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->noutputs);
3009
3010 ctx->ir = ir3_create(ctx->compiler, ctx->so->type);
3011
3012 /* Create inputs in first block: */
3013 ctx->block = get_block(ctx, nir_start_block(fxn));
3014 ctx->in_block = ctx->block;
3015 list_addtail(&ctx->block->node, &ctx->ir->block_list);
3016
3017 /* for fragment shader, the vcoord input register is used as the
3018 * base for bary.f varying fetch instrs:
3019 *
3020 * TODO defer creating ctx->ij_pixel and corresponding sysvals
3021 * until emit_intrinsic when we know they are actually needed.
3022 * For now, we defer creating ctx->ij_centroid, etc, since we
3023 * only need ij_pixel for "old style" varying inputs (ie.
3024 * tgsi_to_nir)
3025 */
3026 struct ir3_instruction *vcoord = NULL;
3027 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
3028 struct ir3_instruction *xy[2];
3029
3030 vcoord = create_input(ctx, 0x3);
3031 ir3_split_dest(ctx->block, xy, vcoord, 0, 2);
3032
3033 ctx->ij_pixel = ir3_create_collect(ctx, xy, 2);
3034 }
3035
3036 /* Setup inputs: */
3037 nir_foreach_variable(var, &ctx->s->inputs) {
3038 setup_input(ctx, var);
3039 }
3040
3041 /* Defer add_sysval_input() stuff until after setup_inputs(),
3042 * because sysvals need to be appended after varyings:
3043 */
3044 if (vcoord) {
3045 add_sysval_input_compmask(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL,
3046 0x3, vcoord);
3047 }
3048
3049
3050 /* Tesselation shaders always need primitive ID for indexing the
3051 * BO. Geometry shaders don't always need it but when they do it has be
3052 * delivered and unclobbered in the VS. To make things easy, we always
3053 * make room for it in VS/DS.
3054 */
3055 bool has_tess = ctx->so->key.tessellation != IR3_TESS_NONE;
3056 bool has_gs = ctx->so->key.has_gs;
3057 switch (ctx->so->type) {
3058 case MESA_SHADER_VERTEX:
3059 if (has_tess) {
3060 ctx->tcs_header = create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
3061 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3062 } else if (has_gs) {
3063 ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3064 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3065 }
3066 break;
3067 case MESA_SHADER_TESS_CTRL:
3068 ctx->tcs_header = create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
3069 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3070 break;
3071 case MESA_SHADER_TESS_EVAL:
3072 if (has_gs)
3073 ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3074 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3075 break;
3076 case MESA_SHADER_GEOMETRY:
3077 ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3078 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3079 break;
3080 default:
3081 break;
3082 }
3083
3084 /* Setup outputs: */
3085 nir_foreach_variable(var, &ctx->s->outputs) {
3086 setup_output(ctx, var);
3087 }
3088
3089 /* Find # of samplers: */
3090 nir_foreach_variable(var, &ctx->s->uniforms) {
3091 ctx->so->num_samp += glsl_type_get_sampler_count(var->type);
3092 /* just assume that we'll be reading from images.. if it
3093 * is write-only we don't have to count it, but not sure
3094 * if there is a good way to know?
3095 */
3096 ctx->so->num_samp += glsl_type_get_image_count(var->type);
3097 }
3098
3099 /* NOTE: need to do something more clever when we support >1 fxn */
3100 nir_foreach_register(reg, &fxn->registers) {
3101 ir3_declare_array(ctx, reg);
3102 }
3103 /* And emit the body: */
3104 ctx->impl = fxn;
3105 emit_function(ctx, fxn);
3106 }
3107
3108 /* Fixup tex sampler state for astc/srgb workaround instructions. We
3109 * need to assign the tex state indexes for these after we know the
3110 * max tex index.
3111 */
3112 static void
3113 fixup_astc_srgb(struct ir3_context *ctx)
3114 {
3115 struct ir3_shader_variant *so = ctx->so;
3116 /* indexed by original tex idx, value is newly assigned alpha sampler
3117 * state tex idx. Zero is invalid since there is at least one sampler
3118 * if we get here.
3119 */
3120 unsigned alt_tex_state[16] = {0};
3121 unsigned tex_idx = ctx->max_texture_index + 1;
3122 unsigned idx = 0;
3123
3124 so->astc_srgb.base = tex_idx;
3125
3126 for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) {
3127 struct ir3_instruction *sam = ctx->ir->astc_srgb[i];
3128
3129 compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
3130
3131 if (alt_tex_state[sam->cat5.tex] == 0) {
3132 /* assign new alternate/alpha tex state slot: */
3133 alt_tex_state[sam->cat5.tex] = tex_idx++;
3134 so->astc_srgb.orig_idx[idx++] = sam->cat5.tex;
3135 so->astc_srgb.count++;
3136 }
3137
3138 sam->cat5.tex = alt_tex_state[sam->cat5.tex];
3139 }
3140 }
3141
3142 static void
3143 fixup_binning_pass(struct ir3_context *ctx)
3144 {
3145 struct ir3_shader_variant *so = ctx->so;
3146 struct ir3 *ir = ctx->ir;
3147 unsigned i, j;
3148
3149 /* first pass, remove unused outputs from the IR level outputs: */
3150 for (i = 0, j = 0; i < ir->outputs_count; i++) {
3151 struct ir3_instruction *out = ir->outputs[i];
3152 assert(out->opc == OPC_META_COLLECT);
3153 unsigned outidx = out->collect.outidx;
3154 unsigned slot = so->outputs[outidx].slot;
3155
3156 /* throw away everything but first position/psize */
3157 if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
3158 ir->outputs[j] = ir->outputs[i];
3159 j++;
3160 }
3161 }
3162 ir->outputs_count = j;
3163
3164 /* second pass, cleanup the unused slots in ir3_shader_variant::outputs
3165 * table:
3166 */
3167 for (i = 0, j = 0; i < so->outputs_count; i++) {
3168 unsigned slot = so->outputs[i].slot;
3169
3170 /* throw away everything but first position/psize */
3171 if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
3172 so->outputs[j] = so->outputs[i];
3173
3174 /* fixup outidx to point to new output table entry: */
3175 struct ir3_instruction *out;
3176 foreach_output(out, ir) {
3177 if (out->collect.outidx == i) {
3178 out->collect.outidx = j;
3179 break;
3180 }
3181 }
3182
3183 j++;
3184 }
3185 }
3186 so->outputs_count = j;
3187 }
3188
3189 static void
3190 collect_tex_prefetches(struct ir3_context *ctx, struct ir3 *ir)
3191 {
3192 unsigned idx = 0;
3193
3194 /* Collect sampling instructions eligible for pre-dispatch. */
3195 foreach_block (block, &ir->block_list) {
3196 foreach_instr_safe (instr, &block->instr_list) {
3197 if (instr->opc == OPC_META_TEX_PREFETCH) {
3198 assert(idx < ARRAY_SIZE(ctx->so->sampler_prefetch));
3199 struct ir3_sampler_prefetch *fetch =
3200 &ctx->so->sampler_prefetch[idx];
3201 idx++;
3202
3203 fetch->cmd = IR3_SAMPLER_PREFETCH_CMD;
3204 fetch->wrmask = instr->regs[0]->wrmask;
3205 fetch->tex_id = instr->prefetch.tex;
3206 fetch->samp_id = instr->prefetch.samp;
3207 fetch->dst = instr->regs[0]->num;
3208 fetch->src = instr->prefetch.input_offset;
3209
3210 ctx->so->total_in =
3211 MAX2(ctx->so->total_in, instr->prefetch.input_offset + 2);
3212
3213 /* Disable half precision until supported. */
3214 fetch->half_precision = !!(instr->regs[0]->flags & IR3_REG_HALF);
3215
3216 /* Remove the prefetch placeholder instruction: */
3217 list_delinit(&instr->node);
3218 }
3219 }
3220 }
3221 }
3222
3223 int
3224 ir3_compile_shader_nir(struct ir3_compiler *compiler,
3225 struct ir3_shader_variant *so)
3226 {
3227 struct ir3_context *ctx;
3228 struct ir3 *ir;
3229 int ret = 0, max_bary;
3230
3231 assert(!so->ir);
3232
3233 ctx = ir3_context_init(compiler, so);
3234 if (!ctx) {
3235 DBG("INIT failed!");
3236 ret = -1;
3237 goto out;
3238 }
3239
3240 emit_instructions(ctx);
3241
3242 if (ctx->error) {
3243 DBG("EMIT failed!");
3244 ret = -1;
3245 goto out;
3246 }
3247
3248 ir = so->ir = ctx->ir;
3249
3250 assert((ctx->noutputs % 4) == 0);
3251
3252 /* Setup IR level outputs, which are "collects" that gather
3253 * the scalar components of outputs.
3254 */
3255 for (unsigned i = 0; i < ctx->noutputs; i += 4) {
3256 unsigned ncomp = 0;
3257 /* figure out the # of components written:
3258 *
3259 * TODO do we need to handle holes, ie. if .x and .z
3260 * components written, but .y component not written?
3261 */
3262 for (unsigned j = 0; j < 4; j++) {
3263 if (!ctx->outputs[i + j])
3264 break;
3265 ncomp++;
3266 }
3267
3268 /* Note that in some stages, like TCS, store_output is
3269 * lowered to memory writes, so no components of the
3270 * are "written" from the PoV of traditional store-
3271 * output instructions:
3272 */
3273 if (!ncomp)
3274 continue;
3275
3276 struct ir3_instruction *out =
3277 ir3_create_collect(ctx, &ctx->outputs[i], ncomp);
3278
3279 int outidx = i / 4;
3280 assert(outidx < so->outputs_count);
3281
3282 /* stash index into so->outputs[] so we can map the
3283 * output back to slot/etc later:
3284 */
3285 out->collect.outidx = outidx;
3286
3287 array_insert(ir, ir->outputs, out);
3288 }
3289
3290 /* Set up the gs header as an output for the vertex shader so it won't
3291 * clobber it for the tess ctrl shader.
3292 *
3293 * TODO this could probably be done more cleanly in a nir pass.
3294 */
3295 if (ctx->so->type == MESA_SHADER_VERTEX ||
3296 (ctx->so->key.has_gs && ctx->so->type == MESA_SHADER_TESS_EVAL)) {
3297 if (ctx->primitive_id) {
3298 unsigned n = so->outputs_count++;
3299 so->outputs[n].slot = VARYING_SLOT_PRIMITIVE_ID;
3300
3301 struct ir3_instruction *out =
3302 ir3_create_collect(ctx, &ctx->primitive_id, 1);
3303 out->collect.outidx = n;
3304 array_insert(ir, ir->outputs, out);
3305 }
3306
3307 if (ctx->gs_header) {
3308 unsigned n = so->outputs_count++;
3309 so->outputs[n].slot = VARYING_SLOT_GS_HEADER_IR3;
3310 struct ir3_instruction *out =
3311 ir3_create_collect(ctx, &ctx->gs_header, 1);
3312 out->collect.outidx = n;
3313 array_insert(ir, ir->outputs, out);
3314 }
3315
3316 if (ctx->tcs_header) {
3317 unsigned n = so->outputs_count++;
3318 so->outputs[n].slot = VARYING_SLOT_TCS_HEADER_IR3;
3319 struct ir3_instruction *out =
3320 ir3_create_collect(ctx, &ctx->tcs_header, 1);
3321 out->collect.outidx = n;
3322 array_insert(ir, ir->outputs, out);
3323 }
3324 }
3325
3326 /* at this point, for binning pass, throw away unneeded outputs: */
3327 if (so->binning_pass && (ctx->compiler->gpu_id < 600))
3328 fixup_binning_pass(ctx);
3329
3330 ir3_debug_print(ir, "BEFORE CF");
3331
3332 ir3_cf(ir);
3333
3334 ir3_debug_print(ir, "BEFORE CP");
3335
3336 ir3_cp(ir, so);
3337
3338 /* at this point, for binning pass, throw away unneeded outputs:
3339 * Note that for a6xx and later, we do this after ir3_cp to ensure
3340 * that the uniform/constant layout for BS and VS matches, so that
3341 * we can re-use same VS_CONST state group.
3342 */
3343 if (so->binning_pass && (ctx->compiler->gpu_id >= 600))
3344 fixup_binning_pass(ctx);
3345
3346 /* for a6xx+, binning and draw pass VS use same VBO state, so we
3347 * need to make sure not to remove any inputs that are used by
3348 * the nonbinning VS.
3349 */
3350 if (ctx->compiler->gpu_id >= 600 && so->binning_pass &&
3351 so->type == MESA_SHADER_VERTEX) {
3352 for (int i = 0; i < ctx->ninputs; i++) {
3353 struct ir3_instruction *in = ctx->inputs[i];
3354
3355 if (!in)
3356 continue;
3357
3358 unsigned n = i / 4;
3359 unsigned c = i % 4;
3360
3361 debug_assert(n < so->nonbinning->inputs_count);
3362
3363 if (so->nonbinning->inputs[n].sysval)
3364 continue;
3365
3366 /* be sure to keep inputs, even if only used in VS */
3367 if (so->nonbinning->inputs[n].compmask & (1 << c))
3368 array_insert(in->block, in->block->keeps, in);
3369 }
3370 }
3371
3372 ir3_debug_print(ir, "BEFORE GROUPING");
3373
3374 ir3_sched_add_deps(ir);
3375
3376 /* Group left/right neighbors, inserting mov's where needed to
3377 * solve conflicts:
3378 */
3379 ir3_group(ir);
3380
3381 ir3_debug_print(ir, "AFTER GROUPING");
3382
3383 ir3_depth(ir, so);
3384
3385 ir3_debug_print(ir, "AFTER DEPTH");
3386
3387 /* do Sethi–Ullman numbering before scheduling: */
3388 ir3_sun(ir);
3389
3390 ret = ir3_sched(ir);
3391 if (ret) {
3392 DBG("SCHED failed!");
3393 goto out;
3394 }
3395
3396 ir3_debug_print(ir, "AFTER SCHED");
3397
3398 /* Pre-assign VS inputs on a6xx+ binning pass shader, to align
3399 * with draw pass VS, so binning and draw pass can both use the
3400 * same VBO state.
3401 *
3402 * Note that VS inputs are expected to be full precision.
3403 */
3404 bool pre_assign_inputs = (ir->compiler->gpu_id >= 600) &&
3405 (ir->type == MESA_SHADER_VERTEX) &&
3406 so->binning_pass;
3407
3408 if (pre_assign_inputs) {
3409 for (unsigned i = 0; i < ctx->ninputs; i++) {
3410 struct ir3_instruction *instr = ctx->inputs[i];
3411
3412 if (!instr)
3413 continue;
3414
3415 unsigned n = i / 4;
3416 unsigned c = i % 4;
3417 unsigned regid = so->nonbinning->inputs[n].regid + c;
3418
3419 instr->regs[0]->num = regid;
3420 }
3421
3422 ret = ir3_ra(so, ctx->inputs, ctx->ninputs);
3423 } else if (ctx->tcs_header) {
3424 /* We need to have these values in the same registers between VS and TCS
3425 * since the VS chains to TCS and doesn't get the sysvals redelivered.
3426 */
3427
3428 ctx->tcs_header->regs[0]->num = regid(0, 0);
3429 ctx->primitive_id->regs[0]->num = regid(0, 1);
3430 struct ir3_instruction *precolor[] = { ctx->tcs_header, ctx->primitive_id };
3431 ret = ir3_ra(so, precolor, ARRAY_SIZE(precolor));
3432 } else if (ctx->gs_header) {
3433 /* We need to have these values in the same registers between producer
3434 * (VS or DS) and GS since the producer chains to GS and doesn't get
3435 * the sysvals redelivered.
3436 */
3437
3438 ctx->gs_header->regs[0]->num = regid(0, 0);
3439 ctx->primitive_id->regs[0]->num = regid(0, 1);
3440 struct ir3_instruction *precolor[] = { ctx->gs_header, ctx->primitive_id };
3441 ret = ir3_ra(so, precolor, ARRAY_SIZE(precolor));
3442 } else if (so->num_sampler_prefetch) {
3443 assert(so->type == MESA_SHADER_FRAGMENT);
3444 struct ir3_instruction *instr, *precolor[2];
3445 int idx = 0;
3446
3447 foreach_input(instr, ir) {
3448 if (instr->input.sysval != SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL)
3449 continue;
3450
3451 assert(idx < ARRAY_SIZE(precolor));
3452
3453 precolor[idx] = instr;
3454 instr->regs[0]->num = idx;
3455
3456 idx++;
3457 }
3458 ret = ir3_ra(so, precolor, idx);
3459 } else {
3460 ret = ir3_ra(so, NULL, 0);
3461 }
3462
3463 if (ret) {
3464 DBG("RA failed!");
3465 goto out;
3466 }
3467
3468 ir3_postsched(ctx);
3469 ir3_debug_print(ir, "AFTER POSTSCHED");
3470
3471 if (compiler->gpu_id >= 600) {
3472 if (ir3_a6xx_fixup_atomic_dests(ir, so)) {
3473 ir3_debug_print(ir, "AFTER ATOMIC FIXUP");
3474 }
3475 }
3476
3477 if (so->type == MESA_SHADER_FRAGMENT)
3478 pack_inlocs(ctx);
3479
3480 /*
3481 * Fixup inputs/outputs to point to the actual registers assigned:
3482 *
3483 * 1) initialize to r63.x (invalid/unused)
3484 * 2) iterate IR level inputs/outputs and update the variants
3485 * inputs/outputs table based on the assigned registers for
3486 * the remaining inputs/outputs.
3487 */
3488
3489 for (unsigned i = 0; i < so->inputs_count; i++)
3490 so->inputs[i].regid = INVALID_REG;
3491 for (unsigned i = 0; i < so->outputs_count; i++)
3492 so->outputs[i].regid = INVALID_REG;
3493
3494 struct ir3_instruction *out;
3495 foreach_output(out, ir) {
3496 assert(out->opc == OPC_META_COLLECT);
3497 unsigned outidx = out->collect.outidx;
3498
3499 so->outputs[outidx].regid = out->regs[0]->num;
3500 so->outputs[outidx].half = !!(out->regs[0]->flags & IR3_REG_HALF);
3501 }
3502
3503 struct ir3_instruction *in;
3504 foreach_input(in, ir) {
3505 assert(in->opc == OPC_META_INPUT);
3506 unsigned inidx = in->input.inidx;
3507
3508 if (pre_assign_inputs && !so->inputs[inidx].sysval) {
3509 if (VALIDREG(so->nonbinning->inputs[inidx].regid)) {
3510 compile_assert(ctx, in->regs[0]->num ==
3511 so->nonbinning->inputs[inidx].regid);
3512 compile_assert(ctx, !!(in->regs[0]->flags & IR3_REG_HALF) ==
3513 so->nonbinning->inputs[inidx].half);
3514 }
3515 so->inputs[inidx].regid = so->nonbinning->inputs[inidx].regid;
3516 so->inputs[inidx].half = so->nonbinning->inputs[inidx].half;
3517 } else {
3518 so->inputs[inidx].regid = in->regs[0]->num;
3519 so->inputs[inidx].half = !!(in->regs[0]->flags & IR3_REG_HALF);
3520 }
3521 }
3522
3523 if (ctx->astc_srgb)
3524 fixup_astc_srgb(ctx);
3525
3526 /* We need to do legalize after (for frag shader's) the "bary.f"
3527 * offsets (inloc) have been assigned.
3528 */
3529 ir3_legalize(ir, so, &max_bary);
3530
3531 ir3_debug_print(ir, "AFTER LEGALIZE");
3532
3533 /* Set (ss)(sy) on first TCS and GEOMETRY instructions, since we don't
3534 * know what we might have to wait on when coming in from VS chsh.
3535 */
3536 if (so->type == MESA_SHADER_TESS_CTRL ||
3537 so->type == MESA_SHADER_GEOMETRY ) {
3538 foreach_block (block, &ir->block_list) {
3539 foreach_instr (instr, &block->instr_list) {
3540 instr->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
3541 break;
3542 }
3543 }
3544 }
3545
3546 so->branchstack = ctx->max_stack;
3547
3548 /* Note that actual_in counts inputs that are not bary.f'd for FS: */
3549 if (so->type == MESA_SHADER_FRAGMENT)
3550 so->total_in = max_bary + 1;
3551
3552 so->max_sun = ir->max_sun;
3553
3554 /* Collect sampling instructions eligible for pre-dispatch. */
3555 collect_tex_prefetches(ctx, ir);
3556
3557 out:
3558 if (ret) {
3559 if (so->ir)
3560 ir3_destroy(so->ir);
3561 so->ir = NULL;
3562 }
3563 ir3_context_free(ctx);
3564
3565 return ret;
3566 }