freedreno/ir3: Refactor ir3_cp's lower_immed().
[mesa.git] / src / freedreno / ir3 / ir3_cp.c
1 /*
2 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include <math.h>
28 #include "util/half_float.h"
29 #include "util/u_math.h"
30
31 #include "ir3.h"
32 #include "ir3_compiler.h"
33 #include "ir3_shader.h"
34
35 #define swap(a, b) \
36 do { __typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
37
38 /*
39 * Copy Propagate:
40 */
41
42 struct ir3_cp_ctx {
43 struct ir3 *shader;
44 struct ir3_shader_variant *so;
45 bool progress;
46 };
47
48 /* is it a type preserving mov, with ok flags?
49 *
50 * @instr: the mov to consider removing
51 * @dst_instr: the instruction consuming the mov (instr)
52 *
53 * TODO maybe drop allow_flags since this is only false when dst is
54 * NULL (ie. outputs)
55 */
56 static bool is_eligible_mov(struct ir3_instruction *instr,
57 struct ir3_instruction *dst_instr, bool allow_flags)
58 {
59 if (is_same_type_mov(instr)) {
60 struct ir3_register *dst = instr->regs[0];
61 struct ir3_register *src = instr->regs[1];
62 struct ir3_instruction *src_instr = ssa(src);
63
64 /* only if mov src is SSA (not const/immed): */
65 if (!src_instr)
66 return false;
67
68 /* no indirect: */
69 if (dst->flags & IR3_REG_RELATIV)
70 return false;
71 if (src->flags & IR3_REG_RELATIV)
72 return false;
73
74 if (src->flags & IR3_REG_ARRAY)
75 return false;
76
77 if (!allow_flags)
78 if (src->flags & (IR3_REG_FABS | IR3_REG_FNEG |
79 IR3_REG_SABS | IR3_REG_SNEG | IR3_REG_BNOT))
80 return false;
81
82 /* If src is coming from fanout/split (ie. one component of a
83 * texture fetch, etc) and we have constraints on swizzle of
84 * destination, then skip it.
85 *
86 * We could possibly do a bit better, and copy-propagation if
87 * we can CP all components that are being fanned out.
88 */
89 if (src_instr->opc == OPC_META_SPLIT) {
90 if (!dst_instr)
91 return false;
92 if (dst_instr->opc == OPC_META_COLLECT)
93 return false;
94 if (dst_instr->cp.left || dst_instr->cp.right)
95 return false;
96 }
97
98 return true;
99 }
100 return false;
101 }
102
103 static unsigned cp_flags(unsigned flags)
104 {
105 /* only considering these flags (at least for now): */
106 flags &= (IR3_REG_CONST | IR3_REG_IMMED |
107 IR3_REG_FNEG | IR3_REG_FABS |
108 IR3_REG_SNEG | IR3_REG_SABS |
109 IR3_REG_BNOT | IR3_REG_RELATIV);
110 return flags;
111 }
112
113 static bool valid_flags(struct ir3_instruction *instr, unsigned n,
114 unsigned flags)
115 {
116 struct ir3_compiler *compiler = instr->block->shader->compiler;
117 unsigned valid_flags;
118
119 if ((flags & IR3_REG_HIGH) &&
120 (opc_cat(instr->opc) > 1) &&
121 (compiler->gpu_id >= 600))
122 return false;
123
124 flags = cp_flags(flags);
125
126 /* If destination is indirect, then source cannot be.. at least
127 * I don't think so..
128 */
129 if ((instr->regs[0]->flags & IR3_REG_RELATIV) &&
130 (flags & IR3_REG_RELATIV))
131 return false;
132
133 if (flags & IR3_REG_RELATIV) {
134 /* TODO need to test on earlier gens.. pretty sure the earlier
135 * problem was just that we didn't check that the src was from
136 * same block (since we can't propagate address register values
137 * across blocks currently)
138 */
139 if (compiler->gpu_id < 600)
140 return false;
141
142 /* NOTE in the special try_swap_mad_two_srcs() case we can be
143 * called on a src that has already had an indirect load folded
144 * in, in which case ssa() returns NULL
145 */
146 struct ir3_instruction *src = ssa(instr->regs[n+1]);
147 if (src && src->address->block != instr->block)
148 return false;
149 }
150
151 switch (opc_cat(instr->opc)) {
152 case 1:
153 valid_flags = IR3_REG_IMMED | IR3_REG_CONST | IR3_REG_RELATIV;
154 if (flags & ~valid_flags)
155 return false;
156 break;
157 case 2:
158 valid_flags = ir3_cat2_absneg(instr->opc) |
159 IR3_REG_CONST | IR3_REG_RELATIV;
160
161 if (ir3_cat2_int(instr->opc))
162 valid_flags |= IR3_REG_IMMED;
163
164 if (flags & ~valid_flags)
165 return false;
166
167 if (flags & (IR3_REG_CONST | IR3_REG_IMMED)) {
168 unsigned m = (n ^ 1) + 1;
169 /* cannot deal w/ const in both srcs:
170 * (note that some cat2 actually only have a single src)
171 */
172 if (m < instr->regs_count) {
173 struct ir3_register *reg = instr->regs[m];
174 if ((flags & IR3_REG_CONST) && (reg->flags & IR3_REG_CONST))
175 return false;
176 if ((flags & IR3_REG_IMMED) && (reg->flags & IR3_REG_IMMED))
177 return false;
178 }
179 }
180 break;
181 case 3:
182 valid_flags = ir3_cat3_absneg(instr->opc) |
183 IR3_REG_CONST | IR3_REG_RELATIV;
184
185 if (flags & ~valid_flags)
186 return false;
187
188 if (flags & (IR3_REG_CONST | IR3_REG_RELATIV)) {
189 /* cannot deal w/ const/relativ in 2nd src: */
190 if (n == 1)
191 return false;
192 }
193
194 break;
195 case 4:
196 /* seems like blob compiler avoids const as src.. */
197 /* TODO double check if this is still the case on a4xx */
198 if (flags & (IR3_REG_CONST | IR3_REG_IMMED))
199 return false;
200 if (flags & (IR3_REG_SABS | IR3_REG_SNEG))
201 return false;
202 break;
203 case 5:
204 /* no flags allowed */
205 if (flags)
206 return false;
207 break;
208 case 6:
209 valid_flags = IR3_REG_IMMED;
210 if (flags & ~valid_flags)
211 return false;
212
213 if (flags & IR3_REG_IMMED) {
214 /* doesn't seem like we can have immediate src for store
215 * instructions:
216 *
217 * TODO this restriction could also apply to load instructions,
218 * but for load instructions this arg is the address (and not
219 * really sure any good way to test a hard-coded immed addr src)
220 */
221 if (is_store(instr) && (n == 1))
222 return false;
223
224 if ((instr->opc == OPC_LDL) && (n == 0))
225 return false;
226
227 if ((instr->opc == OPC_STL) && (n != 2))
228 return false;
229
230 if (instr->opc == OPC_STLW && n == 0)
231 return false;
232
233 if (instr->opc == OPC_LDLW && n == 0)
234 return false;
235
236 /* disallow immediates in anything but the SSBO slot argument for
237 * cat6 instructions:
238 */
239 if (is_atomic(instr->opc) && (n != 0))
240 return false;
241
242 if (is_atomic(instr->opc) && !(instr->flags & IR3_INSTR_G))
243 return false;
244
245 if (instr->opc == OPC_STG && (instr->flags & IR3_INSTR_G) && (n != 2))
246 return false;
247
248 /* as with atomics, these cat6 instrs can only have an immediate
249 * for SSBO/IBO slot argument
250 */
251 switch (instr->opc) {
252 case OPC_LDIB:
253 case OPC_LDC:
254 case OPC_RESINFO:
255 if (n != 0)
256 return false;
257 break;
258 default:
259 break;
260 }
261 }
262
263 break;
264 }
265
266 return true;
267 }
268
269 /* propagate register flags from src to dst.. negates need special
270 * handling to cancel each other out.
271 */
272 static void combine_flags(unsigned *dstflags, struct ir3_instruction *src)
273 {
274 unsigned srcflags = src->regs[1]->flags;
275
276 /* if what we are combining into already has (abs) flags,
277 * we can drop (neg) from src:
278 */
279 if (*dstflags & IR3_REG_FABS)
280 srcflags &= ~IR3_REG_FNEG;
281 if (*dstflags & IR3_REG_SABS)
282 srcflags &= ~IR3_REG_SNEG;
283
284 if (srcflags & IR3_REG_FABS)
285 *dstflags |= IR3_REG_FABS;
286 if (srcflags & IR3_REG_SABS)
287 *dstflags |= IR3_REG_SABS;
288 if (srcflags & IR3_REG_FNEG)
289 *dstflags ^= IR3_REG_FNEG;
290 if (srcflags & IR3_REG_SNEG)
291 *dstflags ^= IR3_REG_SNEG;
292 if (srcflags & IR3_REG_BNOT)
293 *dstflags ^= IR3_REG_BNOT;
294
295 *dstflags &= ~IR3_REG_SSA;
296 *dstflags |= srcflags & IR3_REG_SSA;
297 *dstflags |= srcflags & IR3_REG_CONST;
298 *dstflags |= srcflags & IR3_REG_IMMED;
299 *dstflags |= srcflags & IR3_REG_RELATIV;
300 *dstflags |= srcflags & IR3_REG_ARRAY;
301 *dstflags |= srcflags & IR3_REG_HIGH;
302
303 /* if src of the src is boolean we can drop the (abs) since we know
304 * the source value is already a postitive integer. This cleans
305 * up the absnegs that get inserted when converting between nir and
306 * native boolean (see ir3_b2n/n2b)
307 */
308 struct ir3_instruction *srcsrc = ssa(src->regs[1]);
309 if (srcsrc && is_bool(srcsrc))
310 *dstflags &= ~IR3_REG_SABS;
311 }
312
313 /* Tries lowering an immediate register argument to a const buffer access by
314 * adding to the list of immediates to be pushed to the const buffer when
315 * switching to this shader.
316 */
317 static bool
318 lower_immed(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr, unsigned n,
319 struct ir3_register *reg, unsigned new_flags)
320 {
321 if (!(new_flags & IR3_REG_IMMED))
322 return false;
323
324 new_flags &= ~IR3_REG_IMMED;
325 new_flags |= IR3_REG_CONST;
326
327 if (!valid_flags(instr, n, new_flags))
328 return false;
329
330 unsigned swiz, idx, i;
331
332 reg = ir3_reg_clone(ctx->shader, reg);
333
334 /* Half constant registers seems to handle only 32-bit values
335 * within floating-point opcodes. So convert back to 32-bit values.
336 */
337 bool f_opcode = (is_cat2_float(instr->opc) ||
338 is_cat3_float(instr->opc)) ? true : false;
339 if (f_opcode && (new_flags & IR3_REG_HALF))
340 reg->uim_val = fui(_mesa_half_to_float(reg->uim_val));
341
342 /* in some cases, there are restrictions on (abs)/(neg) plus const..
343 * so just evaluate those and clear the flags:
344 */
345 if (new_flags & IR3_REG_SABS) {
346 reg->iim_val = abs(reg->iim_val);
347 new_flags &= ~IR3_REG_SABS;
348 }
349
350 if (new_flags & IR3_REG_FABS) {
351 reg->fim_val = fabs(reg->fim_val);
352 new_flags &= ~IR3_REG_FABS;
353 }
354
355 if (new_flags & IR3_REG_SNEG) {
356 reg->iim_val = -reg->iim_val;
357 new_flags &= ~IR3_REG_SNEG;
358 }
359
360 if (new_flags & IR3_REG_FNEG) {
361 reg->fim_val = -reg->fim_val;
362 new_flags &= ~IR3_REG_FNEG;
363 }
364
365 /* Reallocate for 4 more elements whenever it's necessary */
366 struct ir3_const_state *const_state = &ctx->so->shader->const_state;
367 if (const_state->immediate_idx == const_state->immediates_size * 4) {
368 const_state->immediates_size += 4;
369 const_state->immediates = realloc (const_state->immediates,
370 const_state->immediates_size * sizeof(const_state->immediates[0]));
371
372 for (int i = const_state->immediate_idx; i < const_state->immediates_size * 4; i++)
373 const_state->immediates[i / 4].val[i % 4] = 0xd0d0d0d0;
374 }
375
376 for (i = 0; i < const_state->immediate_idx; i++) {
377 swiz = i % 4;
378 idx = i / 4;
379
380 if (const_state->immediates[idx].val[swiz] == reg->uim_val) {
381 break;
382 }
383 }
384
385 if (i == const_state->immediate_idx) {
386 /* need to generate a new immediate: */
387 swiz = i % 4;
388 idx = i / 4;
389
390 const_state->immediates[idx].val[swiz] = reg->uim_val;
391 const_state->immediates_count = idx + 1;
392 const_state->immediate_idx++;
393 }
394
395 reg->flags = new_flags;
396 reg->num = i + (4 * const_state->offsets.immediate);
397
398 instr->regs[n + 1] = reg;
399
400 return true;
401 }
402
403 static void
404 unuse(struct ir3_instruction *instr)
405 {
406 debug_assert(instr->use_count > 0);
407
408 if (--instr->use_count == 0) {
409 struct ir3_block *block = instr->block;
410
411 instr->barrier_class = 0;
412 instr->barrier_conflict = 0;
413
414 /* we don't want to remove anything in keeps (which could
415 * be things like array store's)
416 */
417 for (unsigned i = 0; i < block->keeps_count; i++) {
418 debug_assert(block->keeps[i] != instr);
419 }
420 }
421 }
422
423 /**
424 * Handles the special case of the 2nd src (n == 1) to "normal" mad
425 * instructions, which cannot reference a constant. See if it is
426 * possible to swap the 1st and 2nd sources.
427 */
428 static bool
429 try_swap_mad_two_srcs(struct ir3_instruction *instr, unsigned new_flags)
430 {
431 if (!is_mad(instr->opc))
432 return false;
433
434 /* NOTE: pre-swap first two src's before valid_flags(),
435 * which might try to dereference the n'th src:
436 */
437 swap(instr->regs[0 + 1], instr->regs[1 + 1]);
438
439 /* cat3 doesn't encode immediate, but we can lower immediate
440 * to const if that helps:
441 */
442 if (new_flags & IR3_REG_IMMED) {
443 new_flags &= ~IR3_REG_IMMED;
444 new_flags |= IR3_REG_CONST;
445 }
446
447 bool valid_swap =
448 /* can we propagate mov if we move 2nd src to first? */
449 valid_flags(instr, 0, new_flags) &&
450 /* and does first src fit in second slot? */
451 valid_flags(instr, 1, instr->regs[1 + 1]->flags);
452
453 if (!valid_swap) {
454 /* put things back the way they were: */
455 swap(instr->regs[0 + 1], instr->regs[1 + 1]);
456 } /* otherwise leave things swapped */
457
458 return valid_swap;
459 }
460
461 /**
462 * Handle cp for a given src register. This additionally handles
463 * the cases of collapsing immedate/const (which replace the src
464 * register with a non-ssa src) or collapsing mov's from relative
465 * src (which needs to also fixup the address src reference by the
466 * instruction).
467 */
468 static bool
469 reg_cp(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr,
470 struct ir3_register *reg, unsigned n)
471 {
472 struct ir3_instruction *src = ssa(reg);
473
474 if (is_eligible_mov(src, instr, true)) {
475 /* simple case, no immed/const/relativ, only mov's w/ ssa src: */
476 struct ir3_register *src_reg = src->regs[1];
477 unsigned new_flags = reg->flags;
478
479 combine_flags(&new_flags, src);
480
481 if (valid_flags(instr, n, new_flags)) {
482 if (new_flags & IR3_REG_ARRAY) {
483 debug_assert(!(reg->flags & IR3_REG_ARRAY));
484 reg->array = src_reg->array;
485 }
486 reg->flags = new_flags;
487 reg->instr = ssa(src_reg);
488
489 instr->barrier_class |= src->barrier_class;
490 instr->barrier_conflict |= src->barrier_conflict;
491
492 unuse(src);
493 reg->instr->use_count++;
494
495 return true;
496 }
497 } else if ((is_same_type_mov(src) || is_const_mov(src)) &&
498 /* cannot collapse const/immed/etc into meta instrs: */
499 !is_meta(instr)) {
500 /* immed/const/etc cases, which require some special handling: */
501 struct ir3_register *src_reg = src->regs[1];
502 unsigned new_flags = reg->flags;
503
504 combine_flags(&new_flags, src);
505
506 if (!valid_flags(instr, n, new_flags)) {
507 /* See if lowering an immediate to const would help. */
508 if (lower_immed(ctx, instr, n, src_reg, new_flags))
509 return true;
510
511 /* special case for "normal" mad instructions, we can
512 * try swapping the first two args if that fits better.
513 *
514 * the "plain" MAD's (ie. the ones that don't shift first
515 * src prior to multiply) can swap their first two srcs if
516 * src[0] is !CONST and src[1] is CONST:
517 */
518 if ((n == 1) && try_swap_mad_two_srcs(instr, new_flags)) {
519 return true;
520 } else {
521 return false;
522 }
523 }
524
525 /* Here we handle the special case of mov from
526 * CONST and/or RELATIV. These need to be handled
527 * specially, because in the case of move from CONST
528 * there is no src ir3_instruction so we need to
529 * replace the ir3_register. And in the case of
530 * RELATIV we need to handle the address register
531 * dependency.
532 */
533 if (src_reg->flags & IR3_REG_CONST) {
534 /* an instruction cannot reference two different
535 * address registers:
536 */
537 if ((src_reg->flags & IR3_REG_RELATIV) &&
538 conflicts(instr->address, reg->instr->address))
539 return false;
540
541 /* This seems to be a hw bug, or something where the timings
542 * just somehow don't work out. This restriction may only
543 * apply if the first src is also CONST.
544 */
545 if ((opc_cat(instr->opc) == 3) && (n == 2) &&
546 (src_reg->flags & IR3_REG_RELATIV) &&
547 (src_reg->array.offset == 0))
548 return false;
549
550 /* When narrowing constant from 32b to 16b, it seems
551 * to work only for float. So we should do this only with
552 * float opcodes.
553 */
554 if (src->cat1.dst_type == TYPE_F16) {
555 if (instr->opc == OPC_MOV && !type_float(instr->cat1.src_type))
556 return false;
557 if (!is_cat2_float(instr->opc) && !is_cat3_float(instr->opc))
558 return false;
559 }
560
561 src_reg = ir3_reg_clone(instr->block->shader, src_reg);
562 src_reg->flags = new_flags;
563 instr->regs[n+1] = src_reg;
564
565 if (src_reg->flags & IR3_REG_RELATIV)
566 ir3_instr_set_address(instr, reg->instr->address);
567
568 return true;
569 }
570
571 if ((src_reg->flags & IR3_REG_RELATIV) &&
572 !conflicts(instr->address, reg->instr->address)) {
573 src_reg = ir3_reg_clone(instr->block->shader, src_reg);
574 src_reg->flags = new_flags;
575 instr->regs[n+1] = src_reg;
576 ir3_instr_set_address(instr, reg->instr->address);
577
578 return true;
579 }
580
581 /* NOTE: seems we can only do immed integers, so don't
582 * need to care about float. But we do need to handle
583 * abs/neg *before* checking that the immediate requires
584 * few enough bits to encode:
585 *
586 * TODO: do we need to do something to avoid accidentally
587 * catching a float immed?
588 */
589 if (src_reg->flags & IR3_REG_IMMED) {
590 int32_t iim_val = src_reg->iim_val;
591
592 debug_assert((opc_cat(instr->opc) == 1) ||
593 (opc_cat(instr->opc) == 6) ||
594 ir3_cat2_int(instr->opc) ||
595 (is_mad(instr->opc) && (n == 0)));
596
597 if (new_flags & IR3_REG_SABS)
598 iim_val = abs(iim_val);
599
600 if (new_flags & IR3_REG_SNEG)
601 iim_val = -iim_val;
602
603 if (new_flags & IR3_REG_BNOT)
604 iim_val = ~iim_val;
605
606 /* other than category 1 (mov) we can only encode up to 10 bits: */
607 if (valid_flags(instr, n, new_flags) &&
608 ((instr->opc == OPC_MOV) ||
609 !((iim_val & ~0x3ff) && (-iim_val & ~0x3ff)))) {
610 new_flags &= ~(IR3_REG_SABS | IR3_REG_SNEG | IR3_REG_BNOT);
611 src_reg = ir3_reg_clone(instr->block->shader, src_reg);
612 src_reg->flags = new_flags;
613 src_reg->iim_val = iim_val;
614 instr->regs[n+1] = src_reg;
615
616 return true;
617 } else if (lower_immed(ctx, instr, n, src_reg, new_flags)) {
618 /* Fell back to loading the immediate as a const */
619 return true;
620 }
621 }
622 }
623
624 return false;
625 }
626
627 /* Handle special case of eliminating output mov, and similar cases where
628 * there isn't a normal "consuming" instruction. In this case we cannot
629 * collapse flags (ie. output mov from const, or w/ abs/neg flags, cannot
630 * be eliminated)
631 */
632 static struct ir3_instruction *
633 eliminate_output_mov(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr)
634 {
635 if (is_eligible_mov(instr, NULL, false)) {
636 struct ir3_register *reg = instr->regs[1];
637 if (!(reg->flags & IR3_REG_ARRAY)) {
638 struct ir3_instruction *src_instr = ssa(reg);
639 debug_assert(src_instr);
640 ctx->progress = true;
641 return src_instr;
642 }
643 }
644 return instr;
645 }
646
647 /**
648 * Find instruction src's which are mov's that can be collapsed, replacing
649 * the mov dst with the mov src
650 */
651 static void
652 instr_cp(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr)
653 {
654 if (instr->regs_count == 0)
655 return;
656
657 if (ir3_instr_check_mark(instr))
658 return;
659
660 /* walk down the graph from each src: */
661 bool progress;
662 do {
663 progress = false;
664 foreach_src_n (reg, n, instr) {
665 struct ir3_instruction *src = ssa(reg);
666
667 if (!src)
668 continue;
669
670 instr_cp(ctx, src);
671
672 /* TODO non-indirect access we could figure out which register
673 * we actually want and allow cp..
674 */
675 if (reg->flags & IR3_REG_ARRAY)
676 continue;
677
678 /* Don't CP absneg into meta instructions, that won't end well: */
679 if (is_meta(instr) && (src->opc != OPC_MOV))
680 continue;
681
682 progress |= reg_cp(ctx, instr, reg, n);
683 ctx->progress |= progress;
684 }
685 } while (progress);
686
687 if (instr->regs[0]->flags & IR3_REG_ARRAY) {
688 struct ir3_instruction *src = ssa(instr->regs[0]);
689 if (src)
690 instr_cp(ctx, src);
691 }
692
693 if (instr->address) {
694 instr_cp(ctx, instr->address);
695 ir3_instr_set_address(instr, eliminate_output_mov(ctx, instr->address));
696 }
697
698 /* we can end up with extra cmps.s from frontend, which uses a
699 *
700 * cmps.s p0.x, cond, 0
701 *
702 * as a way to mov into the predicate register. But frequently 'cond'
703 * is itself a cmps.s/cmps.f/cmps.u. So detect this special case and
704 * just re-write the instruction writing predicate register to get rid
705 * of the double cmps.
706 */
707 if ((instr->opc == OPC_CMPS_S) &&
708 (instr->regs[0]->num == regid(REG_P0, 0)) &&
709 ssa(instr->regs[1]) &&
710 (instr->regs[2]->flags & IR3_REG_IMMED) &&
711 (instr->regs[2]->iim_val == 0) &&
712 (instr->cat2.condition == IR3_COND_NE)) {
713 struct ir3_instruction *cond = ssa(instr->regs[1]);
714 switch (cond->opc) {
715 case OPC_CMPS_S:
716 case OPC_CMPS_F:
717 case OPC_CMPS_U:
718 instr->opc = cond->opc;
719 instr->flags = cond->flags;
720 instr->cat2 = cond->cat2;
721 ir3_instr_set_address(instr, cond->address);
722 instr->regs[1] = cond->regs[1];
723 instr->regs[2] = cond->regs[2];
724 instr->barrier_class |= cond->barrier_class;
725 instr->barrier_conflict |= cond->barrier_conflict;
726 unuse(cond);
727 ctx->progress = true;
728 break;
729 default:
730 break;
731 }
732 }
733
734 /* Handle converting a sam.s2en (taking samp/tex idx params via register)
735 * into a normal sam (encoding immediate samp/tex idx) if they are
736 * immediate. This saves some instructions and regs in the common case
737 * where we know samp/tex at compile time. This needs to be done in the
738 * frontend for bindless tex, though, so don't replicate it here.
739 */
740 if (is_tex(instr) && (instr->flags & IR3_INSTR_S2EN) &&
741 !(instr->flags & IR3_INSTR_B) &&
742 !(ir3_shader_debug & IR3_DBG_FORCES2EN)) {
743 /* The first src will be a collect, if both of it's
744 * two sources are mov from imm, then we can
745 */
746 struct ir3_instruction *samp_tex = ssa(instr->regs[1]);
747
748 debug_assert(samp_tex->opc == OPC_META_COLLECT);
749
750 struct ir3_instruction *samp = ssa(samp_tex->regs[1]);
751 struct ir3_instruction *tex = ssa(samp_tex->regs[2]);
752
753 if ((samp->opc == OPC_MOV) &&
754 (samp->regs[1]->flags & IR3_REG_IMMED) &&
755 (tex->opc == OPC_MOV) &&
756 (tex->regs[1]->flags & IR3_REG_IMMED)) {
757 instr->flags &= ~IR3_INSTR_S2EN;
758 instr->cat5.samp = samp->regs[1]->iim_val;
759 instr->cat5.tex = tex->regs[1]->iim_val;
760
761 /* shuffle around the regs to remove the first src: */
762 instr->regs_count--;
763 for (unsigned i = 1; i < instr->regs_count; i++) {
764 instr->regs[i] = instr->regs[i + 1];
765 }
766
767 ctx->progress = true;
768 }
769 }
770 }
771
772 bool
773 ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so)
774 {
775 struct ir3_cp_ctx ctx = {
776 .shader = ir,
777 .so = so,
778 };
779
780 /* This is a bit annoying, and probably wouldn't be necessary if we
781 * tracked a reverse link from producing instruction to consumer.
782 * But we need to know when we've eliminated the last consumer of
783 * a mov, so we need to do a pass to first count consumers of a
784 * mov.
785 */
786 foreach_block (block, &ir->block_list) {
787 foreach_instr (instr, &block->instr_list) {
788
789 /* by the way, we don't account for false-dep's, so the CP
790 * pass should always happen before false-dep's are inserted
791 */
792 debug_assert(instr->deps_count == 0);
793
794 foreach_ssa_src (src, instr) {
795 src->use_count++;
796 }
797 }
798 }
799
800 ir3_clear_mark(ir);
801
802 foreach_output_n (out, n, ir) {
803 instr_cp(&ctx, out);
804 ir->outputs[n] = eliminate_output_mov(&ctx, out);
805 }
806
807 foreach_block (block, &ir->block_list) {
808 if (block->condition) {
809 instr_cp(&ctx, block->condition);
810 block->condition = eliminate_output_mov(&ctx, block->condition);
811 }
812
813 for (unsigned i = 0; i < block->keeps_count; i++) {
814 instr_cp(&ctx, block->keeps[i]);
815 block->keeps[i] = eliminate_output_mov(&ctx, block->keeps[i]);
816 }
817 }
818
819 return ctx.progress;
820 }