amd: assume CMASK is always rb/pipe_aligned, remove ac_surface.u.gfx9.cmask
[mesa.git] / src / freedreno / ir3 / ir3_legalize.c
1 /*
2 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include "util/ralloc.h"
28 #include "util/u_math.h"
29
30 #include "ir3.h"
31 #include "ir3_compiler.h"
32
33 /*
34 * Legalize:
35 *
36 * We currently require that scheduling ensures that we have enough nop's
37 * in all the right places. The legalize step mostly handles fixing up
38 * instruction flags ((ss)/(sy)/(ei)), and collapses sequences of nop's
39 * into fewer nop's w/ rpt flag.
40 */
41
42 struct ir3_legalize_ctx {
43 struct ir3_compiler *compiler;
44 struct ir3_shader_variant *so;
45 gl_shader_stage type;
46 int max_bary;
47 };
48
49 struct ir3_legalize_state {
50 regmask_t needs_ss;
51 regmask_t needs_ss_war; /* write after read */
52 regmask_t needs_sy;
53 };
54
55 struct ir3_legalize_block_data {
56 bool valid;
57 struct ir3_legalize_state state;
58 };
59
60 /* We want to evaluate each block from the position of any other
61 * predecessor block, in order that the flags set are the union of
62 * all possible program paths.
63 *
64 * To do this, we need to know the output state (needs_ss/ss_war/sy)
65 * of all predecessor blocks. The tricky thing is loops, which mean
66 * that we can't simply recursively process each predecessor block
67 * before legalizing the current block.
68 *
69 * How we handle that is by looping over all the blocks until the
70 * results converge. If the output state of a given block changes
71 * in a given pass, this means that all successor blocks are not
72 * yet fully legalized.
73 */
74
75 static bool
76 legalize_block(struct ir3_legalize_ctx *ctx, struct ir3_block *block)
77 {
78 struct ir3_legalize_block_data *bd = block->data;
79
80 if (bd->valid)
81 return false;
82
83 struct ir3_instruction *last_input = NULL;
84 struct ir3_instruction *last_rel = NULL;
85 struct ir3_instruction *last_n = NULL;
86 struct list_head instr_list;
87 struct ir3_legalize_state prev_state = bd->state;
88 struct ir3_legalize_state *state = &bd->state;
89 bool last_input_needs_ss = false;
90 bool has_tex_prefetch = false;
91
92 /* our input state is the OR of all predecessor blocks' state: */
93 set_foreach(block->predecessors, entry) {
94 struct ir3_block *predecessor = (struct ir3_block *)entry->key;
95 struct ir3_legalize_block_data *pbd = predecessor->data;
96 struct ir3_legalize_state *pstate = &pbd->state;
97
98 /* Our input (ss)/(sy) state is based on OR'ing the output
99 * state of all our predecessor blocks
100 */
101 regmask_or(&state->needs_ss,
102 &state->needs_ss, &pstate->needs_ss);
103 regmask_or(&state->needs_ss_war,
104 &state->needs_ss_war, &pstate->needs_ss_war);
105 regmask_or(&state->needs_sy,
106 &state->needs_sy, &pstate->needs_sy);
107 }
108
109 /* remove all the instructions from the list, we'll be adding
110 * them back in as we go
111 */
112 list_replace(&block->instr_list, &instr_list);
113 list_inithead(&block->instr_list);
114
115 foreach_instr_safe (n, &instr_list) {
116 struct ir3_register *reg;
117 unsigned i;
118
119 n->flags &= ~(IR3_INSTR_SS | IR3_INSTR_SY);
120
121 /* _meta::tex_prefetch instructions removed later in
122 * collect_tex_prefetches()
123 */
124 if (is_meta(n) && (n->opc != OPC_META_TEX_PREFETCH))
125 continue;
126
127 if (is_input(n)) {
128 struct ir3_register *inloc = n->regs[1];
129 assert(inloc->flags & IR3_REG_IMMED);
130 ctx->max_bary = MAX2(ctx->max_bary, inloc->iim_val);
131 }
132
133 if (last_n && is_barrier(last_n)) {
134 n->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
135 last_input_needs_ss = false;
136 regmask_init(&state->needs_ss_war);
137 regmask_init(&state->needs_ss);
138 regmask_init(&state->needs_sy);
139 }
140
141 if (last_n && (last_n->opc == OPC_PREDT)) {
142 n->flags |= IR3_INSTR_SS;
143 regmask_init(&state->needs_ss_war);
144 regmask_init(&state->needs_ss);
145 }
146
147 /* NOTE: consider dst register too.. it could happen that
148 * texture sample instruction (for example) writes some
149 * components which are unused. A subsequent instruction
150 * that writes the same register can race w/ the sam instr
151 * resulting in undefined results:
152 */
153 for (i = 0; i < n->regs_count; i++) {
154 reg = n->regs[i];
155
156 if (reg_gpr(reg)) {
157
158 /* TODO: we probably only need (ss) for alu
159 * instr consuming sfu result.. need to make
160 * some tests for both this and (sy)..
161 */
162 if (regmask_get(&state->needs_ss, reg)) {
163 n->flags |= IR3_INSTR_SS;
164 last_input_needs_ss = false;
165 regmask_init(&state->needs_ss_war);
166 regmask_init(&state->needs_ss);
167 }
168
169 if (regmask_get(&state->needs_sy, reg)) {
170 n->flags |= IR3_INSTR_SY;
171 regmask_init(&state->needs_sy);
172 }
173 }
174
175 /* TODO: is it valid to have address reg loaded from a
176 * relative src (ie. mova a0, c<a0.x+4>)? If so, the
177 * last_rel check below should be moved ahead of this:
178 */
179 if (reg->flags & IR3_REG_RELATIV)
180 last_rel = n;
181 }
182
183 if (n->regs_count > 0) {
184 reg = n->regs[0];
185 if (regmask_get(&state->needs_ss_war, reg)) {
186 n->flags |= IR3_INSTR_SS;
187 last_input_needs_ss = false;
188 regmask_init(&state->needs_ss_war);
189 regmask_init(&state->needs_ss);
190 }
191
192 if (last_rel && (reg->num == regid(REG_A0, 0))) {
193 last_rel->flags |= IR3_INSTR_UL;
194 last_rel = NULL;
195 }
196 }
197
198 /* cat5+ does not have an (ss) bit, if needed we need to
199 * insert a nop to carry the sync flag. Would be kinda
200 * clever if we were aware of this during scheduling, but
201 * this should be a pretty rare case:
202 */
203 if ((n->flags & IR3_INSTR_SS) && (opc_cat(n->opc) >= 5)) {
204 struct ir3_instruction *nop;
205 nop = ir3_NOP(block);
206 nop->flags |= IR3_INSTR_SS;
207 n->flags &= ~IR3_INSTR_SS;
208 }
209
210 /* need to be able to set (ss) on first instruction: */
211 if (list_is_empty(&block->instr_list) && (opc_cat(n->opc) >= 5))
212 ir3_NOP(block);
213
214 if (ctx->compiler->samgq_workaround &&
215 ctx->type == MESA_SHADER_VERTEX && n->opc == OPC_SAMGQ) {
216 struct ir3_instruction *samgp;
217
218 list_delinit(&n->node);
219
220 for (i = 0; i < 4; i++) {
221 samgp = ir3_instr_clone(n);
222 samgp->opc = OPC_SAMGP0 + i;
223 if (i > 1)
224 samgp->flags |= IR3_INSTR_SY;
225 }
226 } else {
227 list_addtail(&n->node, &block->instr_list);
228 }
229
230 if (n->opc == OPC_DSXPP_1 || n->opc == OPC_DSYPP_1) {
231 struct ir3_instruction *op_p = ir3_instr_clone(n);
232 op_p->flags = IR3_INSTR_P;
233
234 ctx->so->need_fine_derivatives = true;
235 }
236
237 if (is_sfu(n))
238 regmask_set(&state->needs_ss, n->regs[0]);
239
240 if (is_tex_or_prefetch(n)) {
241 regmask_set(&state->needs_sy, n->regs[0]);
242 if (n->opc == OPC_META_TEX_PREFETCH)
243 has_tex_prefetch = true;
244 } else if (n->opc == OPC_RESINFO) {
245 regmask_set(&state->needs_ss, n->regs[0]);
246 ir3_NOP(block)->flags |= IR3_INSTR_SS;
247 last_input_needs_ss = false;
248 } else if (is_load(n)) {
249 /* seems like ldlv needs (ss) bit instead?? which is odd but
250 * makes a bunch of flat-varying tests start working on a4xx.
251 */
252 if ((n->opc == OPC_LDLV) || (n->opc == OPC_LDL) || (n->opc == OPC_LDLW))
253 regmask_set(&state->needs_ss, n->regs[0]);
254 else
255 regmask_set(&state->needs_sy, n->regs[0]);
256 } else if (is_atomic(n->opc)) {
257 if (n->flags & IR3_INSTR_G) {
258 if (ctx->compiler->gpu_id >= 600) {
259 /* New encoding, returns result via second src: */
260 regmask_set(&state->needs_sy, n->regs[3]);
261 } else {
262 regmask_set(&state->needs_sy, n->regs[0]);
263 }
264 } else {
265 regmask_set(&state->needs_ss, n->regs[0]);
266 }
267 }
268
269 if (is_ssbo(n->opc) || (is_atomic(n->opc) && (n->flags & IR3_INSTR_G)))
270 ctx->so->has_ssbo = true;
271
272 /* both tex/sfu appear to not always immediately consume
273 * their src register(s):
274 */
275 if (is_tex(n) || is_sfu(n) || is_mem(n)) {
276 foreach_src (reg, n) {
277 if (reg_gpr(reg))
278 regmask_set(&state->needs_ss_war, reg);
279 }
280 }
281
282 if (is_input(n)) {
283 last_input = n;
284 last_input_needs_ss |= (n->opc == OPC_LDLV);
285 }
286
287 last_n = n;
288 }
289
290 if (last_input) {
291 assert(block == list_first_entry(&block->shader->block_list,
292 struct ir3_block, node));
293 /* special hack.. if using ldlv to bypass interpolation,
294 * we need to insert a dummy bary.f on which we can set
295 * the (ei) flag:
296 */
297 if (is_mem(last_input) && (last_input->opc == OPC_LDLV)) {
298 struct ir3_instruction *baryf;
299
300 /* (ss)bary.f (ei)r63.x, 0, r0.x */
301 baryf = ir3_instr_create(block, OPC_BARY_F);
302 ir3_reg_create(baryf, regid(63, 0), 0);
303 ir3_reg_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
304 ir3_reg_create(baryf, regid(0, 0), 0);
305
306 /* insert the dummy bary.f after last_input: */
307 list_delinit(&baryf->node);
308 list_add(&baryf->node, &last_input->node);
309
310 last_input = baryf;
311
312 /* by definition, we need (ss) since we are inserting
313 * the dummy bary.f immediately after the ldlv:
314 */
315 last_input_needs_ss = true;
316 }
317 last_input->regs[0]->flags |= IR3_REG_EI;
318 if (last_input_needs_ss)
319 last_input->flags |= IR3_INSTR_SS;
320 } else if (has_tex_prefetch) {
321 /* texture prefetch, but *no* inputs.. we need to insert a
322 * dummy bary.f at the top of the shader to unblock varying
323 * storage:
324 */
325 struct ir3_instruction *baryf;
326
327 /* (ss)bary.f (ei)r63.x, 0, r0.x */
328 baryf = ir3_instr_create(block, OPC_BARY_F);
329 ir3_reg_create(baryf, regid(63, 0), 0)->flags |= IR3_REG_EI;
330 ir3_reg_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
331 ir3_reg_create(baryf, regid(0, 0), 0);
332
333 /* insert the dummy bary.f at head: */
334 list_delinit(&baryf->node);
335 list_add(&baryf->node, &block->instr_list);
336 }
337
338 if (last_rel)
339 last_rel->flags |= IR3_INSTR_UL;
340
341 bd->valid = true;
342
343 if (memcmp(&prev_state, state, sizeof(*state))) {
344 /* our output state changed, this invalidates all of our
345 * successors:
346 */
347 for (unsigned i = 0; i < ARRAY_SIZE(block->successors); i++) {
348 if (!block->successors[i])
349 break;
350 struct ir3_legalize_block_data *pbd = block->successors[i]->data;
351 pbd->valid = false;
352 }
353 }
354
355 return true;
356 }
357
358 /* NOTE: branch instructions are always the last instruction(s)
359 * in the block. We take advantage of this as we resolve the
360 * branches, since "if (foo) break;" constructs turn into
361 * something like:
362 *
363 * block3 {
364 * ...
365 * 0029:021: mov.s32s32 r62.x, r1.y
366 * 0082:022: br !p0.x, target=block5
367 * 0083:023: br p0.x, target=block4
368 * // succs: if _[0029:021: mov.s32s32] block4; else block5;
369 * }
370 * block4 {
371 * 0084:024: jump, target=block6
372 * // succs: block6;
373 * }
374 * block5 {
375 * 0085:025: jump, target=block7
376 * // succs: block7;
377 * }
378 *
379 * ie. only instruction in block4/block5 is a jump, so when
380 * resolving branches we can easily detect this by checking
381 * that the first instruction in the target block is itself
382 * a jump, and setup the br directly to the jump's target
383 * (and strip back out the now unreached jump)
384 *
385 * TODO sometimes we end up with things like:
386 *
387 * br !p0.x, #2
388 * br p0.x, #12
389 * add.u r0.y, r0.y, 1
390 *
391 * If we swapped the order of the branches, we could drop one.
392 */
393 static struct ir3_block *
394 resolve_dest_block(struct ir3_block *block)
395 {
396 /* special case for last block: */
397 if (!block->successors[0])
398 return block;
399
400 /* NOTE that we may or may not have inserted the jump
401 * in the target block yet, so conditions to resolve
402 * the dest to the dest block's successor are:
403 *
404 * (1) successor[1] == NULL &&
405 * (2) (block-is-empty || only-instr-is-jump)
406 */
407 if (block->successors[1] == NULL) {
408 if (list_is_empty(&block->instr_list)) {
409 return block->successors[0];
410 } else if (list_length(&block->instr_list) == 1) {
411 struct ir3_instruction *instr = list_first_entry(
412 &block->instr_list, struct ir3_instruction, node);
413 if (instr->opc == OPC_JUMP)
414 return block->successors[0];
415 }
416 }
417 return block;
418 }
419
420 static void
421 remove_unused_block(struct ir3_block *old_target)
422 {
423 list_delinit(&old_target->node);
424
425 /* cleanup dangling predecessors: */
426 for (unsigned i = 0; i < ARRAY_SIZE(old_target->successors); i++) {
427 if (old_target->successors[i]) {
428 struct ir3_block *succ = old_target->successors[i];
429 _mesa_set_remove_key(succ->predecessors, old_target);
430 }
431 }
432 }
433
434 static void
435 retarget_jump(struct ir3_instruction *instr, struct ir3_block *new_target)
436 {
437 struct ir3_block *old_target = instr->cat0.target;
438 struct ir3_block *cur_block = instr->block;
439
440 /* update current blocks successors to reflect the retargetting: */
441 if (cur_block->successors[0] == old_target) {
442 cur_block->successors[0] = new_target;
443 } else {
444 debug_assert(cur_block->successors[1] == old_target);
445 cur_block->successors[1] = new_target;
446 }
447
448 /* update new target's predecessors: */
449 _mesa_set_add(new_target->predecessors, cur_block);
450
451 /* and remove old_target's predecessor: */
452 debug_assert(_mesa_set_search(old_target->predecessors, cur_block));
453 _mesa_set_remove_key(old_target->predecessors, cur_block);
454
455 if (old_target->predecessors->entries == 0)
456 remove_unused_block(old_target);
457
458 instr->cat0.target = new_target;
459 }
460
461 static bool
462 resolve_jump(struct ir3_instruction *instr)
463 {
464 struct ir3_block *tblock =
465 resolve_dest_block(instr->cat0.target);
466 struct ir3_instruction *target;
467
468 if (tblock != instr->cat0.target) {
469 retarget_jump(instr, tblock);
470 return true;
471 }
472
473 target = list_first_entry(&tblock->instr_list,
474 struct ir3_instruction, node);
475
476 /* TODO maybe a less fragile way to do this. But we are expecting
477 * a pattern from sched_block() that looks like:
478 *
479 * br !p0.x, #else-block
480 * br p0.x, #if-block
481 *
482 * if the first branch target is +2, or if 2nd branch target is +1
483 * then we can just drop the jump.
484 */
485 unsigned next_block;
486 if (instr->cat0.inv == true)
487 next_block = 2;
488 else
489 next_block = 1;
490
491 if (target->ip == (instr->ip + next_block)) {
492 list_delinit(&instr->node);
493 return true;
494 } else {
495 instr->cat0.immed =
496 (int)target->ip - (int)instr->ip;
497 }
498 return false;
499 }
500
501 /* resolve jumps, removing jumps/branches to immediately following
502 * instruction which we end up with from earlier stages. Since
503 * removing an instruction can invalidate earlier instruction's
504 * branch offsets, we need to do this iteratively until no more
505 * branches are removed.
506 */
507 static bool
508 resolve_jumps(struct ir3 *ir)
509 {
510 foreach_block (block, &ir->block_list)
511 foreach_instr (instr, &block->instr_list)
512 if (is_flow(instr) && instr->cat0.target)
513 if (resolve_jump(instr))
514 return true;
515
516 return false;
517 }
518
519 static void mark_jp(struct ir3_block *block)
520 {
521 struct ir3_instruction *target = list_first_entry(&block->instr_list,
522 struct ir3_instruction, node);
523 target->flags |= IR3_INSTR_JP;
524 }
525
526 /* Mark points where control flow converges or diverges.
527 *
528 * Divergence points could actually be re-convergence points where
529 * "parked" threads are recoverged with threads that took the opposite
530 * path last time around. Possibly it is easier to think of (jp) as
531 * "the execution mask might have changed".
532 */
533 static void
534 mark_xvergence_points(struct ir3 *ir)
535 {
536 foreach_block (block, &ir->block_list) {
537 if (block->predecessors->entries > 1) {
538 /* if a block has more than one possible predecessor, then
539 * the first instruction is a convergence point.
540 */
541 mark_jp(block);
542 } else if (block->predecessors->entries == 1) {
543 /* If a block has one predecessor, which has multiple possible
544 * successors, it is a divergence point.
545 */
546 set_foreach(block->predecessors, entry) {
547 struct ir3_block *predecessor = (struct ir3_block *)entry->key;
548 if (predecessor->successors[1]) {
549 mark_jp(block);
550 }
551 }
552 }
553 }
554 }
555
556 /* Insert the branch/jump instructions for flow control between blocks.
557 * Initially this is done naively, without considering if the successor
558 * block immediately follows the current block (ie. so no jump required),
559 * but that is cleaned up in resolve_jumps().
560 *
561 * TODO what ensures that the last write to p0.x in a block is the
562 * branch condition? Have we been getting lucky all this time?
563 */
564 static void
565 block_sched(struct ir3 *ir)
566 {
567 foreach_block (block, &ir->block_list) {
568 if (block->successors[1]) {
569 /* if/else, conditional branches to "then" or "else": */
570 struct ir3_instruction *br;
571
572 debug_assert(block->condition);
573
574 /* create "else" branch first (since "then" block should
575 * frequently/always end up being a fall-thru):
576 */
577 br = ir3_B(block, block->condition, 0);
578 br->cat0.inv = true;
579 br->cat0.target = block->successors[1];
580
581 /* "then" branch: */
582 br = ir3_B(block, block->condition, 0);
583 br->cat0.target = block->successors[0];
584
585 } else if (block->successors[0]) {
586 /* otherwise unconditional jump to next block: */
587 struct ir3_instruction *jmp;
588
589 jmp = ir3_JUMP(block);
590 jmp->cat0.target = block->successors[0];
591 }
592 }
593 }
594
595 /* Here we workaround the fact that kill doesn't actually kill the thread as
596 * GL expects. The last instruction always needs to be an end instruction,
597 * which means that if we're stuck in a loop where kill is the only way out,
598 * then we may have to jump out to the end. kill may also have the d3d
599 * semantics of converting the thread to a helper thread, rather than setting
600 * the exec mask to 0, in which case the helper thread could get stuck in an
601 * infinite loop.
602 *
603 * We do this late, both to give the scheduler the opportunity to reschedule
604 * kill instructions earlier and to avoid having to create a separate basic
605 * block.
606 *
607 * TODO: Assuming that the wavefront doesn't stop as soon as all threads are
608 * killed, we might benefit by doing this more aggressively when the remaining
609 * part of the program after the kill is large, since that would let us
610 * skip over the instructions when there are no non-killed threads left.
611 */
612 static void
613 kill_sched(struct ir3 *ir, struct ir3_shader_variant *so)
614 {
615 /* True if we know that this block will always eventually lead to the end
616 * block:
617 */
618 bool always_ends = true;
619 bool added = false;
620 struct ir3_block *last_block =
621 list_last_entry(&ir->block_list, struct ir3_block, node);
622
623 foreach_block_rev (block, &ir->block_list) {
624 for (unsigned i = 0; i < 2 && block->successors[i]; i++) {
625 if (block->successors[i]->start_ip <= block->end_ip)
626 always_ends = false;
627 }
628
629 if (always_ends)
630 continue;
631
632 foreach_instr_safe (instr, &block->instr_list) {
633 if (instr->opc != OPC_KILL)
634 continue;
635
636 struct ir3_instruction *br = ir3_instr_create(block, OPC_B);
637 br->regs[1] = instr->regs[1];
638 br->cat0.target =
639 list_last_entry(&ir->block_list, struct ir3_block, node);
640
641 list_del(&br->node);
642 list_add(&br->node, &instr->node);
643
644 added = true;
645 }
646 }
647
648 if (added) {
649 /* I'm not entirely sure how the branchstack works, but we probably
650 * need to add at least one entry for the divergence which is resolved
651 * at the end:
652 */
653 so->branchstack++;
654
655 /* We don't update predecessors/successors, so we have to do this
656 * manually:
657 */
658 mark_jp(last_block);
659 }
660 }
661
662 /* Insert nop's required to make this a legal/valid shader program: */
663 static void
664 nop_sched(struct ir3 *ir)
665 {
666 foreach_block (block, &ir->block_list) {
667 struct ir3_instruction *last = NULL;
668 struct list_head instr_list;
669
670 /* remove all the instructions from the list, we'll be adding
671 * them back in as we go
672 */
673 list_replace(&block->instr_list, &instr_list);
674 list_inithead(&block->instr_list);
675
676 foreach_instr_safe (instr, &instr_list) {
677 unsigned delay = ir3_delay_calc(block, instr, false, true);
678
679 /* NOTE: I think the nopN encoding works for a5xx and
680 * probably a4xx, but not a3xx. So far only tested on
681 * a6xx.
682 */
683
684 if ((delay > 0) && (ir->compiler->gpu_id >= 600) && last &&
685 ((opc_cat(last->opc) == 2) || (opc_cat(last->opc) == 3))) {
686 /* the previous cat2/cat3 instruction can encode at most 3 nop's: */
687 unsigned transfer = MIN2(delay, 3 - last->nop);
688 last->nop += transfer;
689 delay -= transfer;
690 }
691
692 if ((delay > 0) && last && (last->opc == OPC_NOP)) {
693 /* the previous nop can encode at most 5 repeats: */
694 unsigned transfer = MIN2(delay, 5 - last->repeat);
695 last->repeat += transfer;
696 delay -= transfer;
697 }
698
699 if (delay > 0) {
700 debug_assert(delay <= 6);
701 ir3_NOP(block)->repeat = delay - 1;
702 }
703
704 list_addtail(&instr->node, &block->instr_list);
705 last = instr;
706 }
707 }
708 }
709
710 void
711 ir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary)
712 {
713 struct ir3_legalize_ctx *ctx = rzalloc(ir, struct ir3_legalize_ctx);
714 bool progress;
715
716 ctx->so = so;
717 ctx->max_bary = -1;
718 ctx->compiler = ir->compiler;
719 ctx->type = ir->type;
720
721 /* allocate per-block data: */
722 foreach_block (block, &ir->block_list) {
723 block->data = rzalloc(ctx, struct ir3_legalize_block_data);
724 }
725
726 ir3_remove_nops(ir);
727
728 /* process each block: */
729 do {
730 progress = false;
731 foreach_block (block, &ir->block_list) {
732 progress |= legalize_block(ctx, block);
733 }
734 } while (progress);
735
736 *max_bary = ctx->max_bary;
737
738 block_sched(ir);
739 if (so->type == MESA_SHADER_FRAGMENT)
740 kill_sched(ir, so);
741 nop_sched(ir);
742
743 do {
744 ir3_count_instructions(ir);
745 } while(resolve_jumps(ir));
746
747 mark_xvergence_points(ir);
748
749 ralloc_free(ctx);
750 }