40ea78609ce4382a2c73505cb6eb5fe772f0986c
[mesa.git] / src / freedreno / ir3 / ir3_ra.c
1 /*
2 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include "util/u_math.h"
28 #include "util/register_allocate.h"
29 #include "util/ralloc.h"
30 #include "util/bitset.h"
31
32 #include "ir3.h"
33 #include "ir3_compiler.h"
34 #include "ir3_ra.h"
35
36
37 #ifdef DEBUG
38 #define RA_DEBUG (ir3_shader_debug & IR3_DBG_RAMSGS)
39 #else
40 #define RA_DEBUG 0
41 #endif
42 #define d(fmt, ...) do { if (RA_DEBUG) { \
43 printf("RA: "fmt"\n", ##__VA_ARGS__); \
44 } } while (0)
45
46 #define di(instr, fmt, ...) do { if (RA_DEBUG) { \
47 printf("RA: "fmt": ", ##__VA_ARGS__); \
48 ir3_print_instr(instr); \
49 } } while (0)
50
51 /*
52 * Register Assignment:
53 *
54 * Uses the register_allocate util, which implements graph coloring
55 * algo with interference classes. To handle the cases where we need
56 * consecutive registers (for example, texture sample instructions),
57 * we model these as larger (double/quad/etc) registers which conflict
58 * with the corresponding registers in other classes.
59 *
60 * Additionally we create additional classes for half-regs, which
61 * do not conflict with the full-reg classes. We do need at least
62 * sizes 1-4 (to deal w/ texture sample instructions output to half-
63 * reg). At the moment we don't create the higher order half-reg
64 * classes as half-reg frequently does not have enough precision
65 * for texture coords at higher resolutions.
66 *
67 * There are some additional cases that we need to handle specially,
68 * as the graph coloring algo doesn't understand "partial writes".
69 * For example, a sequence like:
70 *
71 * add r0.z, ...
72 * sam (f32)(xy)r0.x, ...
73 * ...
74 * sam (f32)(xyzw)r0.w, r0.x, ... ; 3d texture, so r0.xyz are coord
75 *
76 * In this scenario, we treat r0.xyz as class size 3, which is written
77 * (from a use/def perspective) at the 'add' instruction and ignore the
78 * subsequent partial writes to r0.xy. So the 'add r0.z, ...' is the
79 * defining instruction, as it is the first to partially write r0.xyz.
80 *
81 * To address the fragmentation that this can potentially cause, a
82 * two pass register allocation is used. After the first pass the
83 * assignment of scalars is discarded, but the assignment of vecN (for
84 * N > 1) is used to pre-color in the second pass, which considers
85 * only scalars.
86 *
87 * Arrays of arbitrary size are handled via pre-coloring a consecutive
88 * sequence of registers. Additional scalar (single component) reg
89 * names are allocated starting at ctx->class_base[total_class_count]
90 * (see arr->base), which are pre-colored. In the use/def graph direct
91 * access is treated as a single element use/def, and indirect access
92 * is treated as use or def of all array elements. (Only the first
93 * def is tracked, in case of multiple indirect writes, etc.)
94 *
95 * TODO arrays that fit in one of the pre-defined class sizes should
96 * not need to be pre-colored, but instead could be given a normal
97 * vreg name. (Ignoring this for now since it is a good way to work
98 * out the kinks with arbitrary sized arrays.)
99 *
100 * TODO might be easier for debugging to split this into two passes,
101 * the first assigning vreg names in a way that we could ir3_print()
102 * the result.
103 */
104
105
106 static struct ir3_instruction * name_to_instr(struct ir3_ra_ctx *ctx, unsigned name);
107
108 static bool name_is_array(struct ir3_ra_ctx *ctx, unsigned name);
109 static struct ir3_array * name_to_array(struct ir3_ra_ctx *ctx, unsigned name);
110
111 /* does it conflict? */
112 static inline bool
113 intersects(unsigned a_start, unsigned a_end, unsigned b_start, unsigned b_end)
114 {
115 return !((a_start >= b_end) || (b_start >= a_end));
116 }
117
118 static unsigned
119 reg_size_for_array(struct ir3_array *arr)
120 {
121 if (arr->half)
122 return DIV_ROUND_UP(arr->length, 2);
123
124 return arr->length;
125 }
126
127 static bool
128 instr_before(struct ir3_instruction *a, struct ir3_instruction *b)
129 {
130 if (a->flags & IR3_INSTR_UNUSED)
131 return false;
132 return (a->ip < b->ip);
133 }
134
135 static struct ir3_instruction *
136 get_definer(struct ir3_ra_ctx *ctx, struct ir3_instruction *instr,
137 int *sz, int *off)
138 {
139 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
140 struct ir3_instruction *d = NULL;
141
142 if (ctx->scalar_pass) {
143 id->defn = instr;
144 id->off = 0;
145 id->sz = 1; /* considering things as N scalar regs now */
146 }
147
148 if (id->defn) {
149 *sz = id->sz;
150 *off = id->off;
151 return id->defn;
152 }
153
154 if (instr->opc == OPC_META_COLLECT) {
155 /* What about the case where collect is subset of array, we
156 * need to find the distance between where actual array starts
157 * and collect.. that probably doesn't happen currently.
158 */
159 struct ir3_register *src;
160 int dsz, doff;
161
162 /* note: don't use foreach_ssa_src as this gets called once
163 * while assigning regs (which clears SSA flag)
164 */
165 foreach_src_n (src, n, instr) {
166 struct ir3_instruction *dd;
167 if (!src->instr)
168 continue;
169
170 dd = get_definer(ctx, src->instr, &dsz, &doff);
171
172 if ((!d) || instr_before(dd, d)) {
173 d = dd;
174 *sz = dsz;
175 *off = doff - n;
176 }
177 }
178
179 } else if (instr->cp.right || instr->cp.left) {
180 /* covers also the meta:fo case, which ends up w/ single
181 * scalar instructions for each component:
182 */
183 struct ir3_instruction *f = ir3_neighbor_first(instr);
184
185 /* by definition, the entire sequence forms one linked list
186 * of single scalar register nodes (even if some of them may
187 * be splits from a texture sample (for example) instr. We
188 * just need to walk the list finding the first element of
189 * the group defined (lowest ip)
190 */
191 int cnt = 0;
192
193 /* need to skip over unused in the group: */
194 while (f && (f->flags & IR3_INSTR_UNUSED)) {
195 f = f->cp.right;
196 cnt++;
197 }
198
199 while (f) {
200 if ((!d) || instr_before(f, d))
201 d = f;
202 if (f == instr)
203 *off = cnt;
204 f = f->cp.right;
205 cnt++;
206 }
207
208 *sz = cnt;
209
210 } else {
211 /* second case is looking directly at the instruction which
212 * produces multiple values (eg, texture sample), rather
213 * than the split nodes that point back to that instruction.
214 * This isn't quite right, because it may be part of a larger
215 * group, such as:
216 *
217 * sam (f32)(xyzw)r0.x, ...
218 * add r1.x, ...
219 * add r1.y, ...
220 * sam (f32)(xyzw)r2.x, r0.w <-- (r0.w, r1.x, r1.y)
221 *
222 * need to come up with a better way to handle that case.
223 */
224 if (instr->address) {
225 *sz = instr->regs[0]->size;
226 } else {
227 *sz = util_last_bit(instr->regs[0]->wrmask);
228 }
229 *off = 0;
230 d = instr;
231 }
232
233 if (d->opc == OPC_META_SPLIT) {
234 struct ir3_instruction *dd;
235 int dsz, doff;
236
237 dd = get_definer(ctx, d->regs[1]->instr, &dsz, &doff);
238
239 /* by definition, should come before: */
240 debug_assert(instr_before(dd, d));
241
242 *sz = MAX2(*sz, dsz);
243
244 if (instr->opc == OPC_META_SPLIT)
245 *off = MAX2(*off, instr->split.off);
246
247 d = dd;
248 }
249
250 debug_assert(d->opc != OPC_META_SPLIT);
251
252 id->defn = d;
253 id->sz = *sz;
254 id->off = *off;
255
256 return d;
257 }
258
259 static void
260 ra_block_find_definers(struct ir3_ra_ctx *ctx, struct ir3_block *block)
261 {
262 foreach_instr (instr, &block->instr_list) {
263 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
264 if (instr->regs_count == 0)
265 continue;
266 /* couple special cases: */
267 if (writes_addr(instr) || writes_pred(instr)) {
268 id->cls = -1;
269 } else if (instr->regs[0]->flags & IR3_REG_ARRAY) {
270 id->cls = total_class_count;
271 } else {
272 /* and the normal case: */
273 id->defn = get_definer(ctx, instr, &id->sz, &id->off);
274 id->cls = ra_size_to_class(id->sz, is_half(id->defn), is_high(id->defn));
275
276 /* this is a bit of duct-tape.. if we have a scenario like:
277 *
278 * sam (f32)(x) out.x, ...
279 * sam (f32)(x) out.y, ...
280 *
281 * Then the fanout/split meta instructions for the two different
282 * tex instructions end up grouped as left/right neighbors. The
283 * upshot is that in when you get_definer() on one of the meta:fo's
284 * you get definer as the first sam with sz=2, but when you call
285 * get_definer() on the either of the sam's you get itself as the
286 * definer with sz=1.
287 *
288 * (We actually avoid this scenario exactly, the neighbor links
289 * prevent one of the output mov's from being eliminated, so this
290 * hack should be enough. But probably we need to rethink how we
291 * find the "defining" instruction.)
292 *
293 * TODO how do we figure out offset properly...
294 */
295 if (id->defn != instr) {
296 struct ir3_ra_instr_data *did = &ctx->instrd[id->defn->ip];
297 if (did->sz < id->sz) {
298 did->sz = id->sz;
299 did->cls = id->cls;
300 }
301 }
302 }
303 }
304 }
305
306 /* give each instruction a name (and ip), and count up the # of names
307 * of each class
308 */
309 static void
310 ra_block_name_instructions(struct ir3_ra_ctx *ctx, struct ir3_block *block)
311 {
312 foreach_instr (instr, &block->instr_list) {
313 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
314
315 #ifdef DEBUG
316 instr->name = ~0;
317 #endif
318
319 ctx->instr_cnt++;
320
321 if (!writes_gpr(instr))
322 continue;
323
324 if (id->defn != instr)
325 continue;
326
327 /* In scalar pass, collect/split don't get their own names,
328 * but instead inherit them from their src(s):
329 *
330 * Possibly we don't need this because of scalar_name(), but
331 * it does make the ir3_print() dumps easier to read.
332 */
333 if (ctx->scalar_pass) {
334 if (instr->opc == OPC_META_SPLIT) {
335 instr->name = instr->regs[1]->instr->name + instr->split.off;
336 continue;
337 }
338
339 if (instr->opc == OPC_META_COLLECT) {
340 instr->name = instr->regs[1]->instr->name;
341 continue;
342 }
343 }
344
345 /* arrays which don't fit in one of the pre-defined class
346 * sizes are pre-colored:
347 */
348 if ((id->cls >= 0) && (id->cls < total_class_count)) {
349 /* in the scalar pass, we generate a name for each
350 * scalar component, instr->name is the name of the
351 * first component.
352 */
353 unsigned n = ctx->scalar_pass ? dest_regs(instr) : 1;
354 instr->name = ctx->class_alloc_count[id->cls];
355 ctx->class_alloc_count[id->cls] += n;
356 ctx->alloc_count += n;
357 }
358 }
359 }
360
361 /**
362 * Set a value for max register target.
363 *
364 * Currently this just rounds up to a multiple of full-vec4 (ie. the
365 * granularity that we configure the hw for.. there is no point to
366 * using r3.x if you aren't going to make r3.yzw available). But
367 * in reality there seems to be multiple thresholds that affect the
368 * number of waves.. and we should round up the target to the next
369 * threshold when we round-robin registers, to give postsched more
370 * options. When we understand that better, this is where we'd
371 * implement that.
372 */
373 static void
374 ra_set_register_target(struct ir3_ra_ctx *ctx, unsigned max_target)
375 {
376 const unsigned hvec4 = 4;
377 const unsigned vec4 = 2 * hvec4;
378
379 ctx->max_target = align(max_target, vec4);
380
381 d("New max_target=%u", ctx->max_target);
382 }
383
384 static int
385 pick_in_range(BITSET_WORD *regs, unsigned min, unsigned max)
386 {
387 for (unsigned i = min; i <= max; i++) {
388 if (BITSET_TEST(regs, i)) {
389 return i;
390 }
391 }
392 return -1;
393 }
394
395 static int
396 pick_in_range_rev(BITSET_WORD *regs, int min, int max)
397 {
398 for (int i = max; i >= min; i--) {
399 if (BITSET_TEST(regs, i)) {
400 return i;
401 }
402 }
403 return -1;
404 }
405
406 /* register selector for the a6xx+ merged register file: */
407 static unsigned int
408 ra_select_reg_merged(unsigned int n, BITSET_WORD *regs, void *data)
409 {
410 struct ir3_ra_ctx *ctx = data;
411 unsigned int class = ra_get_node_class(ctx->g, n);
412 bool half, high;
413 int sz = ra_class_to_size(class, &half, &high);
414
415 assert (sz > 0);
416
417 /* dimensions within the register class: */
418 unsigned max_target, start;
419
420 /* the regs bitset will include *all* of the virtual regs, but we lay
421 * out the different classes consecutively in the virtual register
422 * space. So we just need to think about the base offset of a given
423 * class within the virtual register space, and offset the register
424 * space we search within by that base offset.
425 */
426 unsigned base;
427
428 /* TODO I think eventually we want to round-robin in vector pass
429 * as well, but needs some more work to calculate # of live vals
430 * for this. (Maybe with some work, we could just figure out
431 * the scalar target and use that, since that is what we care
432 * about in the end.. but that would mean setting up use-def/
433 * liveranges for scalar pass before doing vector pass.)
434 *
435 * For now, in the vector class, just move assignments for scalar
436 * vals higher to hopefully prevent them from limiting where vecN
437 * values can be placed. Since the scalar values are re-assigned
438 * in the 2nd pass, we don't really care where they end up in the
439 * vector pass.
440 */
441 if (!ctx->scalar_pass) {
442 base = ctx->set->gpr_to_ra_reg[class][0];
443 if (high) {
444 max_target = HIGH_CLASS_REGS(sz);
445 } else if (half) {
446 max_target = HALF_CLASS_REGS(sz);
447 } else {
448 max_target = CLASS_REGS(sz);
449 }
450
451 if ((sz == 1) && !high) {
452 return pick_in_range_rev(regs, base, base + max_target);
453 } else {
454 return pick_in_range(regs, base, base + max_target);
455 }
456 } else {
457 assert(sz == 1);
458 }
459
460 /* NOTE: this is only used in scalar pass, so the register
461 * class will be one of the scalar classes (ie. idx==0):
462 */
463 base = ctx->set->gpr_to_ra_reg[class][0];
464 if (high) {
465 max_target = HIGH_CLASS_REGS(0);
466 start = 0;
467 } else if (half) {
468 max_target = ctx->max_target;
469 start = ctx->start_search_reg;
470 } else {
471 max_target = ctx->max_target / 2;
472 start = ctx->start_search_reg;
473 }
474
475 /* For cat4 instructions, if the src reg is already assigned, and
476 * avail to pick, use it. Because this doesn't introduce unnecessary
477 * dependencies, and it potentially avoids needing (ss) syncs to
478 * for write after read hazards:
479 */
480 struct ir3_instruction *instr = name_to_instr(ctx, n);
481 if (is_sfu(instr) && instr->regs[1]->instr) {
482 struct ir3_instruction *src = instr->regs[1]->instr;
483 unsigned src_n = scalar_name(ctx, src, 0);
484
485 unsigned reg = ra_get_node_reg(ctx->g, src_n);
486
487 /* Check if the src register has been assigned yet: */
488 if (reg != NO_REG) {
489 if (BITSET_TEST(regs, reg)) {
490 return reg;
491 }
492 }
493 } else if (is_tex_or_prefetch(instr)) {
494 /* we could have a tex fetch w/ wrmask .z, for example.. these
495 * cannot land in r0.x since that would underflow when we
496 * subtract the offset. Ie. if we pick r0.z, and subtract
497 * the offset, the register encoded for dst will be r0.x
498 */
499 unsigned n = ffs(instr->regs[0]->wrmask);
500 debug_assert(n > 0);
501 unsigned offset = n - 1;
502 if (!half)
503 offset *= 2;
504 base += offset;
505 max_target -= offset;
506 }
507
508 int r = pick_in_range(regs, base + start, base + max_target);
509 if (r < 0) {
510 /* wrap-around: */
511 r = pick_in_range(regs, base, base + start);
512 }
513
514 if (r < 0) {
515 /* overflow, we need to increase max_target: */
516 ra_set_register_target(ctx, ctx->max_target + 1);
517 return ra_select_reg_merged(n, regs, data);
518 }
519
520 if (class == ctx->set->half_classes[0]) {
521 int n = r - base;
522 ctx->start_search_reg = (n + 1) % ctx->max_target;
523 } else if (class == ctx->set->classes[0]) {
524 int n = (r - base) * 2;
525 ctx->start_search_reg = (n + 1) % ctx->max_target;
526 }
527
528 return r;
529 }
530
531 static void
532 ra_init(struct ir3_ra_ctx *ctx)
533 {
534 unsigned n, base;
535
536 ir3_clear_mark(ctx->ir);
537 n = ir3_count_instructions(ctx->ir);
538
539 ctx->instrd = rzalloc_array(NULL, struct ir3_ra_instr_data, n);
540
541 foreach_block (block, &ctx->ir->block_list) {
542 ra_block_find_definers(ctx, block);
543 }
544
545 foreach_block (block, &ctx->ir->block_list) {
546 ra_block_name_instructions(ctx, block);
547 }
548
549 /* figure out the base register name for each class. The
550 * actual ra name is class_base[cls] + instr->name;
551 */
552 ctx->class_base[0] = 0;
553 for (unsigned i = 1; i <= total_class_count; i++) {
554 ctx->class_base[i] = ctx->class_base[i-1] +
555 ctx->class_alloc_count[i-1];
556 }
557
558 /* and vreg names for array elements: */
559 base = ctx->class_base[total_class_count];
560 foreach_array (arr, &ctx->ir->array_list) {
561 arr->base = base;
562 ctx->class_alloc_count[total_class_count] += reg_size_for_array(arr);
563 base += reg_size_for_array(arr);
564 }
565 ctx->alloc_count += ctx->class_alloc_count[total_class_count];
566
567 ctx->g = ra_alloc_interference_graph(ctx->set->regs, ctx->alloc_count);
568 ralloc_steal(ctx->g, ctx->instrd);
569 ctx->def = rzalloc_array(ctx->g, unsigned, ctx->alloc_count);
570 ctx->use = rzalloc_array(ctx->g, unsigned, ctx->alloc_count);
571
572 /* TODO add selector callback for split (pre-a6xx) register file: */
573 if (ctx->ir->compiler->gpu_id >= 600) {
574 ra_set_select_reg_callback(ctx->g, ra_select_reg_merged, ctx);
575
576 if (ctx->scalar_pass) {
577 ctx->name_to_instr = _mesa_hash_table_create(ctx->g,
578 _mesa_hash_int, _mesa_key_int_equal);
579 }
580 }
581 }
582
583 /* Map the name back to instruction: */
584 static struct ir3_instruction *
585 name_to_instr(struct ir3_ra_ctx *ctx, unsigned name)
586 {
587 assert(!name_is_array(ctx, name));
588 struct hash_entry *entry = _mesa_hash_table_search(ctx->name_to_instr, &name);
589 if (entry)
590 return entry->data;
591 unreachable("invalid instr name");
592 return NULL;
593 }
594
595 static bool
596 name_is_array(struct ir3_ra_ctx *ctx, unsigned name)
597 {
598 return name >= ctx->class_base[total_class_count];
599 }
600
601 static struct ir3_array *
602 name_to_array(struct ir3_ra_ctx *ctx, unsigned name)
603 {
604 assert(name_is_array(ctx, name));
605 foreach_array (arr, &ctx->ir->array_list) {
606 unsigned sz = reg_size_for_array(arr);
607 if (name < (arr->base + sz))
608 return arr;
609 }
610 unreachable("invalid array name");
611 return NULL;
612 }
613
614 static void
615 ra_destroy(struct ir3_ra_ctx *ctx)
616 {
617 ralloc_free(ctx->g);
618 }
619
620 static void
621 __def(struct ir3_ra_ctx *ctx, struct ir3_ra_block_data *bd, unsigned name,
622 struct ir3_instruction *instr)
623 {
624 debug_assert(name < ctx->alloc_count);
625
626 /* split/collect do not actually define any real value */
627 if ((instr->opc == OPC_META_SPLIT) || (instr->opc == OPC_META_COLLECT))
628 return;
629
630 /* defined on first write: */
631 if (!ctx->def[name])
632 ctx->def[name] = instr->ip;
633 ctx->use[name] = MAX2(ctx->use[name], instr->ip);
634 BITSET_SET(bd->def, name);
635 }
636
637 static void
638 __use(struct ir3_ra_ctx *ctx, struct ir3_ra_block_data *bd, unsigned name,
639 struct ir3_instruction *instr)
640 {
641 debug_assert(name < ctx->alloc_count);
642 ctx->use[name] = MAX2(ctx->use[name], instr->ip);
643 if (!BITSET_TEST(bd->def, name))
644 BITSET_SET(bd->use, name);
645 }
646
647 static void
648 ra_block_compute_live_ranges(struct ir3_ra_ctx *ctx, struct ir3_block *block)
649 {
650 struct ir3_ra_block_data *bd;
651 unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);
652
653 #define def(name, instr) __def(ctx, bd, name, instr)
654 #define use(name, instr) __use(ctx, bd, name, instr)
655
656 bd = rzalloc(ctx->g, struct ir3_ra_block_data);
657
658 bd->def = rzalloc_array(bd, BITSET_WORD, bitset_words);
659 bd->use = rzalloc_array(bd, BITSET_WORD, bitset_words);
660 bd->livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
661 bd->liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
662
663 block->data = bd;
664
665 struct ir3_instruction *first_non_input = NULL;
666 foreach_instr (instr, &block->instr_list) {
667 if (instr->opc != OPC_META_INPUT) {
668 first_non_input = instr;
669 break;
670 }
671 }
672
673 foreach_instr (instr, &block->instr_list) {
674 foreach_def (name, ctx, instr) {
675 if (name_is_array(ctx, name)) {
676 struct ir3_array *arr = name_to_array(ctx, name);
677
678 arr->start_ip = MIN2(arr->start_ip, instr->ip);
679 arr->end_ip = MAX2(arr->end_ip, instr->ip);
680
681 for (unsigned i = 0; i < arr->length; i++) {
682 unsigned name = arr->base + i;
683 if(arr->half)
684 ra_set_node_class(ctx->g, name, ctx->set->half_classes[0]);
685 else
686 ra_set_node_class(ctx->g, name, ctx->set->classes[0]);
687 }
688 } else {
689 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
690 if (is_high(instr)) {
691 ra_set_node_class(ctx->g, name,
692 ctx->set->high_classes[id->cls - HIGH_OFFSET]);
693 } else if (is_half(instr)) {
694 ra_set_node_class(ctx->g, name,
695 ctx->set->half_classes[id->cls - HALF_OFFSET]);
696 } else {
697 ra_set_node_class(ctx->g, name,
698 ctx->set->classes[id->cls]);
699 }
700 }
701
702 def(name, instr);
703
704 if ((instr->opc == OPC_META_INPUT) && first_non_input)
705 use(name, first_non_input);
706 }
707
708 foreach_use (name, ctx, instr) {
709 if (name_is_array(ctx, name)) {
710 struct ir3_array *arr = name_to_array(ctx, name);
711
712 arr->start_ip = MIN2(arr->start_ip, instr->ip);
713 arr->end_ip = MAX2(arr->end_ip, instr->ip);
714
715 /* NOTE: arrays are not SSA so unconditionally
716 * set use bit:
717 */
718 BITSET_SET(bd->use, name);
719 }
720
721 use(name, instr);
722 }
723
724 foreach_name (name, ctx, instr) {
725 /* split/collect instructions have duplicate names
726 * as real instructions, so they skip the hashtable:
727 */
728 if (ctx->name_to_instr && !((instr->opc == OPC_META_SPLIT) ||
729 (instr->opc == OPC_META_COLLECT))) {
730 /* this is slightly annoying, we can't just use an
731 * integer on the stack
732 */
733 unsigned *key = ralloc(ctx->name_to_instr, unsigned);
734 *key = name;
735 debug_assert(!_mesa_hash_table_search(ctx->name_to_instr, key));
736 _mesa_hash_table_insert(ctx->name_to_instr, key, instr);
737 }
738 }
739 }
740 }
741
742 static bool
743 ra_compute_livein_liveout(struct ir3_ra_ctx *ctx)
744 {
745 unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);
746 bool progress = false;
747
748 foreach_block (block, &ctx->ir->block_list) {
749 struct ir3_ra_block_data *bd = block->data;
750
751 /* update livein: */
752 for (unsigned i = 0; i < bitset_words; i++) {
753 /* anything used but not def'd within a block is
754 * by definition a live value coming into the block:
755 */
756 BITSET_WORD new_livein =
757 (bd->use[i] | (bd->liveout[i] & ~bd->def[i]));
758
759 if (new_livein & ~bd->livein[i]) {
760 bd->livein[i] |= new_livein;
761 progress = true;
762 }
763 }
764
765 /* update liveout: */
766 for (unsigned j = 0; j < ARRAY_SIZE(block->successors); j++) {
767 struct ir3_block *succ = block->successors[j];
768 struct ir3_ra_block_data *succ_bd;
769
770 if (!succ)
771 continue;
772
773 succ_bd = succ->data;
774
775 for (unsigned i = 0; i < bitset_words; i++) {
776 /* add anything that is livein in a successor block
777 * to our liveout:
778 */
779 BITSET_WORD new_liveout =
780 (succ_bd->livein[i] & ~bd->liveout[i]);
781
782 if (new_liveout) {
783 bd->liveout[i] |= new_liveout;
784 progress = true;
785 }
786 }
787 }
788 }
789
790 return progress;
791 }
792
793 static void
794 print_bitset(const char *name, BITSET_WORD *bs, unsigned cnt)
795 {
796 bool first = true;
797 debug_printf("RA: %s:", name);
798 for (unsigned i = 0; i < cnt; i++) {
799 if (BITSET_TEST(bs, i)) {
800 if (!first)
801 debug_printf(",");
802 debug_printf(" %04u", i);
803 first = false;
804 }
805 }
806 debug_printf("\n");
807 }
808
809 /* size of one component of instruction result, ie. half vs full: */
810 static unsigned
811 live_size(struct ir3_instruction *instr)
812 {
813 if (is_half(instr)) {
814 return 1;
815 } else if (is_high(instr)) {
816 /* doesn't count towards footprint */
817 return 0;
818 } else {
819 return 2;
820 }
821 }
822
823 static unsigned
824 name_size(struct ir3_ra_ctx *ctx, unsigned name)
825 {
826 if (name_is_array(ctx, name)) {
827 struct ir3_array *arr = name_to_array(ctx, name);
828 return arr->half ? 1 : 2;
829 } else {
830 struct ir3_instruction *instr = name_to_instr(ctx, name);
831 /* in scalar pass, each name represents on scalar value,
832 * half or full precision
833 */
834 return live_size(instr);
835 }
836 }
837
838 static unsigned
839 ra_calc_block_live_values(struct ir3_ra_ctx *ctx, struct ir3_block *block)
840 {
841 struct ir3_ra_block_data *bd = block->data;
842 unsigned name;
843
844 assert(ctx->name_to_instr);
845
846 /* TODO this gets a bit more complicated in non-scalar pass.. but
847 * possibly a lowball estimate is fine to start with if we do
848 * round-robin in non-scalar pass? Maybe we just want to handle
849 * that in a different fxn?
850 */
851 assert(ctx->scalar_pass);
852
853 BITSET_WORD *live =
854 rzalloc_array(bd, BITSET_WORD, BITSET_WORDS(ctx->alloc_count));
855
856 /* Add the live input values: */
857 unsigned livein = 0;
858 BITSET_FOREACH_SET (name, bd->livein, ctx->alloc_count) {
859 livein += name_size(ctx, name);
860 BITSET_SET(live, name);
861 }
862
863 d("---------------------");
864 d("block%u: LIVEIN: %u", block_id(block), livein);
865
866 unsigned max = livein;
867 int cur_live = max;
868
869 /* Now that we know the live inputs to the block, iterate the
870 * instructions adjusting the current # of live values as we
871 * see their last use:
872 */
873 foreach_instr (instr, &block->instr_list) {
874 if (RA_DEBUG)
875 print_bitset("LIVE", live, ctx->alloc_count);
876 di(instr, "CALC");
877
878 unsigned new_live = 0; /* newly live values */
879 unsigned new_dead = 0; /* newly no-longer live values */
880 unsigned next_dead = 0; /* newly dead following this instr */
881
882 foreach_def (name, ctx, instr) {
883 /* NOTE: checking ctx->def filters out things like split/
884 * collect which are just redefining existing live names
885 * or array writes to already live array elements:
886 */
887 if (ctx->def[name] != instr->ip)
888 continue;
889 new_live += live_size(instr);
890 d("NEW_LIVE: %u (new_live=%u, use=%u)", name, new_live, ctx->use[name]);
891 BITSET_SET(live, name);
892 /* There can be cases where this is *also* the last use
893 * of a value, for example instructions that write multiple
894 * values, only some of which are used. These values are
895 * dead *after* (rather than during) this instruction.
896 */
897 if (ctx->use[name] != instr->ip)
898 continue;
899 next_dead += live_size(instr);
900 d("NEXT_DEAD: %u (next_dead=%u)", name, next_dead);
901 BITSET_CLEAR(live, name);
902 }
903
904 /* To be more resilient against special cases where liverange
905 * is extended (like first_non_input), rather than using the
906 * foreach_use() iterator, we iterate the current live values
907 * instead:
908 */
909 BITSET_FOREACH_SET (name, live, ctx->alloc_count) {
910 /* Is this the last use? */
911 if (ctx->use[name] != instr->ip)
912 continue;
913 new_dead += name_size(ctx, name);
914 d("NEW_DEAD: %u (new_dead=%u)", name, new_dead);
915 BITSET_CLEAR(live, name);
916 }
917
918 cur_live += new_live;
919 cur_live -= new_dead;
920
921 assert(cur_live >= 0);
922 d("CUR_LIVE: %u", cur_live);
923
924 max = MAX2(max, cur_live);
925
926 /* account for written values which are not used later,
927 * but after updating max (since they are for one cycle
928 * live)
929 */
930 cur_live -= next_dead;
931 assert(cur_live >= 0);
932
933 if (RA_DEBUG) {
934 unsigned cnt = 0;
935 BITSET_FOREACH_SET (name, live, ctx->alloc_count) {
936 cnt += name_size(ctx, name);
937 }
938 assert(cur_live == cnt);
939 }
940 }
941
942 d("block%u max=%u", block_id(block), max);
943
944 /* the remaining live should match liveout (for extra sanity testing): */
945 if (RA_DEBUG) {
946 unsigned liveout = 0;
947 BITSET_FOREACH_SET (name, bd->liveout, ctx->alloc_count) {
948 liveout += name_size(ctx, name);
949 BITSET_CLEAR(live, name);
950 }
951
952 if (cur_live != liveout) {
953 print_bitset("LEAKED", live, ctx->alloc_count);
954 /* TODO there are a few edge cases where live-range extension
955 * tells us a value is livein. But not used by the block or
956 * liveout for the block. Possibly a bug in the liverange
957 * extension. But for now leave the assert disabled:
958 assert(cur_live == liveout);
959 */
960 }
961 }
962
963 ralloc_free(live);
964
965 return max;
966 }
967
968 static unsigned
969 ra_calc_max_live_values(struct ir3_ra_ctx *ctx)
970 {
971 unsigned max = 0;
972
973 foreach_block (block, &ctx->ir->block_list) {
974 unsigned block_live = ra_calc_block_live_values(ctx, block);
975 max = MAX2(max, block_live);
976 }
977
978 return max;
979 }
980
981 static void
982 ra_add_interference(struct ir3_ra_ctx *ctx)
983 {
984 struct ir3 *ir = ctx->ir;
985
986 /* initialize array live ranges: */
987 foreach_array (arr, &ir->array_list) {
988 arr->start_ip = ~0;
989 arr->end_ip = 0;
990 }
991
992 /* compute live ranges (use/def) on a block level, also updating
993 * block's def/use bitmasks (used below to calculate per-block
994 * livein/liveout):
995 */
996 foreach_block (block, &ir->block_list) {
997 ra_block_compute_live_ranges(ctx, block);
998 }
999
1000 /* update per-block livein/liveout: */
1001 while (ra_compute_livein_liveout(ctx)) {}
1002
1003 if (RA_DEBUG) {
1004 d("AFTER LIVEIN/OUT:");
1005 foreach_block (block, &ir->block_list) {
1006 struct ir3_ra_block_data *bd = block->data;
1007 d("block%u:", block_id(block));
1008 print_bitset(" def", bd->def, ctx->alloc_count);
1009 print_bitset(" use", bd->use, ctx->alloc_count);
1010 print_bitset(" l/i", bd->livein, ctx->alloc_count);
1011 print_bitset(" l/o", bd->liveout, ctx->alloc_count);
1012 }
1013 foreach_array (arr, &ir->array_list) {
1014 d("array%u:", arr->id);
1015 d(" length: %u", arr->length);
1016 d(" start_ip: %u", arr->start_ip);
1017 d(" end_ip: %u", arr->end_ip);
1018 }
1019 d("INSTRUCTION VREG NAMES:");
1020 foreach_block (block, &ctx->ir->block_list) {
1021 foreach_instr (instr, &block->instr_list) {
1022 if (!ctx->instrd[instr->ip].defn)
1023 continue;
1024 if (!writes_gpr(instr))
1025 continue;
1026 di(instr, "%04u", scalar_name(ctx, instr, 0));
1027 }
1028 }
1029 d("ARRAY VREG NAMES:");
1030 foreach_array (arr, &ctx->ir->array_list) {
1031 d("%04u: arr%u", arr->base, arr->id);
1032 }
1033 }
1034
1035 /* extend start/end ranges based on livein/liveout info from cfg: */
1036 foreach_block (block, &ir->block_list) {
1037 struct ir3_ra_block_data *bd = block->data;
1038
1039 for (unsigned i = 0; i < ctx->alloc_count; i++) {
1040 if (BITSET_TEST(bd->livein, i)) {
1041 ctx->def[i] = MIN2(ctx->def[i], block->start_ip);
1042 ctx->use[i] = MAX2(ctx->use[i], block->start_ip);
1043 }
1044
1045 if (BITSET_TEST(bd->liveout, i)) {
1046 ctx->def[i] = MIN2(ctx->def[i], block->end_ip);
1047 ctx->use[i] = MAX2(ctx->use[i], block->end_ip);
1048 }
1049 }
1050
1051 foreach_array (arr, &ctx->ir->array_list) {
1052 for (unsigned i = 0; i < arr->length; i++) {
1053 if (BITSET_TEST(bd->livein, i + arr->base)) {
1054 arr->start_ip = MIN2(arr->start_ip, block->start_ip);
1055 }
1056 if (BITSET_TEST(bd->liveout, i + arr->base)) {
1057 arr->end_ip = MAX2(arr->end_ip, block->end_ip);
1058 }
1059 }
1060 }
1061 }
1062
1063 if (ctx->name_to_instr) {
1064 unsigned max = ra_calc_max_live_values(ctx);
1065 ra_set_register_target(ctx, max);
1066 }
1067
1068 for (unsigned i = 0; i < ctx->alloc_count; i++) {
1069 for (unsigned j = 0; j < ctx->alloc_count; j++) {
1070 if (intersects(ctx->def[i], ctx->use[i],
1071 ctx->def[j], ctx->use[j])) {
1072 ra_add_node_interference(ctx->g, i, j);
1073 }
1074 }
1075 }
1076 }
1077
1078 /* some instructions need fix-up if dst register is half precision: */
1079 static void fixup_half_instr_dst(struct ir3_instruction *instr)
1080 {
1081 switch (opc_cat(instr->opc)) {
1082 case 1: /* move instructions */
1083 instr->cat1.dst_type = half_type(instr->cat1.dst_type);
1084 break;
1085 case 4:
1086 switch (instr->opc) {
1087 case OPC_RSQ:
1088 instr->opc = OPC_HRSQ;
1089 break;
1090 case OPC_LOG2:
1091 instr->opc = OPC_HLOG2;
1092 break;
1093 case OPC_EXP2:
1094 instr->opc = OPC_HEXP2;
1095 break;
1096 default:
1097 break;
1098 }
1099 break;
1100 case 5:
1101 instr->cat5.type = half_type(instr->cat5.type);
1102 break;
1103 }
1104 }
1105 /* some instructions need fix-up if src register is half precision: */
1106 static void fixup_half_instr_src(struct ir3_instruction *instr)
1107 {
1108 switch (instr->opc) {
1109 case OPC_MOV:
1110 instr->cat1.src_type = half_type(instr->cat1.src_type);
1111 break;
1112 case OPC_MAD_F32:
1113 instr->opc = OPC_MAD_F16;
1114 break;
1115 case OPC_SEL_B32:
1116 instr->opc = OPC_SEL_B16;
1117 break;
1118 case OPC_SEL_S32:
1119 instr->opc = OPC_SEL_S16;
1120 break;
1121 case OPC_SEL_F32:
1122 instr->opc = OPC_SEL_F16;
1123 break;
1124 case OPC_SAD_S32:
1125 instr->opc = OPC_SAD_S16;
1126 break;
1127 default:
1128 break;
1129 }
1130 }
1131
1132 /* NOTE: instr could be NULL for IR3_REG_ARRAY case, for the first
1133 * array access(es) which do not have any previous access to depend
1134 * on from scheduling point of view
1135 */
1136 static void
1137 reg_assign(struct ir3_ra_ctx *ctx, struct ir3_register *reg,
1138 struct ir3_instruction *instr)
1139 {
1140 struct ir3_ra_instr_data *id;
1141
1142 if (reg->flags & IR3_REG_ARRAY) {
1143 struct ir3_array *arr =
1144 ir3_lookup_array(ctx->ir, reg->array.id);
1145 unsigned name = arr->base + reg->array.offset;
1146 unsigned r = ra_get_node_reg(ctx->g, name);
1147 unsigned num = ctx->set->ra_reg_to_gpr[r];
1148
1149 if (reg->flags & IR3_REG_RELATIV) {
1150 reg->array.offset = num;
1151 } else {
1152 reg->num = num;
1153 reg->flags &= ~IR3_REG_SSA;
1154 }
1155
1156 reg->flags &= ~IR3_REG_ARRAY;
1157 } else if ((id = &ctx->instrd[instr->ip]) && id->defn) {
1158 unsigned first_component = 0;
1159
1160 /* Special case for tex instructions, which may use the wrmask
1161 * to mask off the first component(s). In the scalar pass,
1162 * this means the masked off component(s) are not def'd/use'd,
1163 * so we get a bogus value when we ask the register_allocate
1164 * algo to get the assigned reg for the unused/untouched
1165 * component. So we need to consider the first used component:
1166 */
1167 if (ctx->scalar_pass && is_tex_or_prefetch(id->defn)) {
1168 unsigned n = ffs(id->defn->regs[0]->wrmask);
1169 debug_assert(n > 0);
1170 first_component = n - 1;
1171 }
1172
1173 unsigned name = scalar_name(ctx, id->defn, first_component);
1174 unsigned r = ra_get_node_reg(ctx->g, name);
1175 unsigned num = ctx->set->ra_reg_to_gpr[r] + id->off;
1176
1177 debug_assert(!(reg->flags & IR3_REG_RELATIV));
1178
1179 debug_assert(num >= first_component);
1180
1181 if (is_high(id->defn))
1182 num += FIRST_HIGH_REG;
1183
1184 reg->num = num - first_component;
1185
1186 reg->flags &= ~IR3_REG_SSA;
1187
1188 if (is_half(id->defn))
1189 reg->flags |= IR3_REG_HALF;
1190 }
1191 }
1192
1193 /* helper to determine which regs to assign in which pass: */
1194 static bool
1195 should_assign(struct ir3_ra_ctx *ctx, struct ir3_instruction *instr)
1196 {
1197 if ((instr->opc == OPC_META_SPLIT) &&
1198 (util_bitcount(instr->regs[1]->wrmask) > 1))
1199 return !ctx->scalar_pass;
1200 if ((instr->opc == OPC_META_COLLECT) &&
1201 (util_bitcount(instr->regs[0]->wrmask) > 1))
1202 return !ctx->scalar_pass;
1203 return ctx->scalar_pass;
1204 }
1205
1206 static void
1207 ra_block_alloc(struct ir3_ra_ctx *ctx, struct ir3_block *block)
1208 {
1209 foreach_instr (instr, &block->instr_list) {
1210 struct ir3_register *reg;
1211
1212 if (writes_gpr(instr)) {
1213 if (should_assign(ctx, instr)) {
1214 reg_assign(ctx, instr->regs[0], instr);
1215 if (instr->regs[0]->flags & IR3_REG_HALF)
1216 fixup_half_instr_dst(instr);
1217 }
1218 }
1219
1220 foreach_src_n (reg, n, instr) {
1221 struct ir3_instruction *src = reg->instr;
1222
1223 if (src && !should_assign(ctx, src) && !should_assign(ctx, instr))
1224 continue;
1225
1226 if (src && should_assign(ctx, instr))
1227 reg_assign(ctx, src->regs[0], src);
1228
1229 /* Note: reg->instr could be null for IR3_REG_ARRAY */
1230 if (src || (reg->flags & IR3_REG_ARRAY))
1231 reg_assign(ctx, instr->regs[n+1], src);
1232
1233 if (instr->regs[n+1]->flags & IR3_REG_HALF)
1234 fixup_half_instr_src(instr);
1235 }
1236 }
1237
1238 /* We need to pre-color outputs for the scalar pass in
1239 * ra_precolor_assigned(), so we need to actually assign
1240 * them in the first pass:
1241 */
1242 if (!ctx->scalar_pass) {
1243 struct ir3_instruction *in, *out;
1244
1245 foreach_input (in, ctx->ir) {
1246 reg_assign(ctx, in->regs[0], in);
1247 }
1248 foreach_output (out, ctx->ir) {
1249 reg_assign(ctx, out->regs[0], out);
1250 }
1251 }
1252 }
1253
1254 /* handle pre-colored registers. This includes "arrays" (which could be of
1255 * length 1, used for phi webs lowered to registers in nir), as well as
1256 * special shader input values that need to be pinned to certain registers.
1257 */
1258 static void
1259 ra_precolor(struct ir3_ra_ctx *ctx, struct ir3_instruction **precolor, unsigned nprecolor)
1260 {
1261 unsigned num_precolor = 0;
1262 for (unsigned i = 0; i < nprecolor; i++) {
1263 if (precolor[i] && !(precolor[i]->flags & IR3_INSTR_UNUSED)) {
1264 struct ir3_instruction *instr = precolor[i];
1265
1266 if (instr->regs[0]->num == INVALID_REG)
1267 continue;
1268
1269 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
1270
1271 debug_assert(!(instr->regs[0]->flags & (IR3_REG_HALF | IR3_REG_HIGH)));
1272
1273 /* only consider the first component: */
1274 if (id->off > 0)
1275 continue;
1276
1277 if (ctx->scalar_pass && !should_assign(ctx, instr))
1278 continue;
1279
1280 /* 'base' is in scalar (class 0) but we need to map that
1281 * the conflicting register of the appropriate class (ie.
1282 * input could be vec2/vec3/etc)
1283 *
1284 * Note that the higher class (larger than scalar) regs
1285 * are setup to conflict with others in the same class,
1286 * so for example, R1 (scalar) is also the first component
1287 * of D1 (vec2/double):
1288 *
1289 * Single (base) | Double
1290 * --------------+---------------
1291 * R0 | D0
1292 * R1 | D0 D1
1293 * R2 | D1 D2
1294 * R3 | D2
1295 * .. and so on..
1296 */
1297 unsigned regid = instr->regs[0]->num;
1298 unsigned reg = ctx->set->gpr_to_ra_reg[id->cls][regid];
1299 unsigned name = ra_name(ctx, id);
1300 ra_set_node_reg(ctx->g, name, reg);
1301 num_precolor = MAX2(regid, num_precolor);
1302 }
1303 }
1304
1305 /* pre-assign array elements:
1306 *
1307 * TODO this is going to need some work for half-precision.. possibly
1308 * this is easier on a6xx, where we can just divide array size by two?
1309 * But on a5xx and earlier it will need to track two bases.
1310 */
1311 foreach_array (arr, &ctx->ir->array_list) {
1312 unsigned base = 0;
1313
1314 if (arr->end_ip == 0)
1315 continue;
1316
1317 /* figure out what else we conflict with which has already
1318 * been assigned:
1319 */
1320 retry:
1321 foreach_array (arr2, &ctx->ir->array_list) {
1322 if (arr2 == arr)
1323 break;
1324 if (arr2->end_ip == 0)
1325 continue;
1326 /* if it intersects with liverange AND register range.. */
1327 if (intersects(arr->start_ip, arr->end_ip,
1328 arr2->start_ip, arr2->end_ip) &&
1329 intersects(base, base + reg_size_for_array(arr),
1330 arr2->reg, arr2->reg + reg_size_for_array(arr2))) {
1331 base = MAX2(base, arr2->reg + reg_size_for_array(arr2));
1332 goto retry;
1333 }
1334 }
1335
1336 /* also need to not conflict with any pre-assigned inputs: */
1337 for (unsigned i = 0; i < nprecolor; i++) {
1338 struct ir3_instruction *instr = precolor[i];
1339
1340 if (!instr || (instr->flags & IR3_INSTR_UNUSED))
1341 continue;
1342
1343 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
1344
1345 /* only consider the first component: */
1346 if (id->off > 0)
1347 continue;
1348
1349 unsigned name = ra_name(ctx, id);
1350 unsigned regid = instr->regs[0]->num;
1351
1352 /* Check if array intersects with liverange AND register
1353 * range of the input:
1354 */
1355 if (intersects(arr->start_ip, arr->end_ip,
1356 ctx->def[name], ctx->use[name]) &&
1357 intersects(base, base + reg_size_for_array(arr),
1358 regid, regid + class_sizes[id->cls])) {
1359 base = MAX2(base, regid + class_sizes[id->cls]);
1360 goto retry;
1361 }
1362 }
1363
1364 arr->reg = base;
1365
1366 for (unsigned i = 0; i < arr->length; i++) {
1367 unsigned name, reg;
1368
1369 if (arr->half) {
1370 /* Doesn't need to do this on older generations than a6xx,
1371 * since there's no conflict between full regs and half regs
1372 * on them.
1373 *
1374 * TODO Presumably "base" could start from 0 respectively
1375 * for half regs of arrays on older generations.
1376 */
1377 unsigned base_half = base * 2 + i;
1378 reg = ctx->set->gpr_to_ra_reg[0+HALF_OFFSET][base_half];
1379 base = base_half / 2 + 1;
1380 } else {
1381 reg = ctx->set->gpr_to_ra_reg[0][base++];
1382 }
1383
1384 name = arr->base + i;
1385 ra_set_node_reg(ctx->g, name, reg);
1386 }
1387 }
1388
1389 if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
1390 foreach_array (arr, &ctx->ir->array_list) {
1391 unsigned first = arr->reg;
1392 unsigned last = arr->reg + arr->length - 1;
1393 debug_printf("arr[%d] at r%d.%c->r%d.%c\n", arr->id,
1394 (first >> 2), "xyzw"[first & 0x3],
1395 (last >> 2), "xyzw"[last & 0x3]);
1396 }
1397 }
1398 }
1399
1400 static void
1401 precolor(struct ir3_ra_ctx *ctx, struct ir3_instruction *instr)
1402 {
1403 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
1404 unsigned n = dest_regs(instr);
1405 for (unsigned i = 0; i < n; i++) {
1406 /* tex instructions actually have a wrmask, and
1407 * don't touch masked out components. So we
1408 * shouldn't precolor them::
1409 */
1410 if (is_tex_or_prefetch(instr) &&
1411 !(instr->regs[0]->wrmask & (1 << i)))
1412 continue;
1413
1414 unsigned name = scalar_name(ctx, instr, i);
1415 unsigned regid = instr->regs[0]->num + i;
1416
1417 if (instr->regs[0]->flags & IR3_REG_HIGH)
1418 regid -= FIRST_HIGH_REG;
1419
1420 unsigned vreg = ctx->set->gpr_to_ra_reg[id->cls][regid];
1421 ra_set_node_reg(ctx->g, name, vreg);
1422 }
1423 }
1424
1425 /* pre-color non-scalar registers based on the registers assigned in previous
1426 * pass. Do this by looking actually at the fanout instructions.
1427 */
1428 static void
1429 ra_precolor_assigned(struct ir3_ra_ctx *ctx)
1430 {
1431 debug_assert(ctx->scalar_pass);
1432
1433 foreach_block (block, &ctx->ir->block_list) {
1434 foreach_instr (instr, &block->instr_list) {
1435
1436 if (!writes_gpr(instr))
1437 continue;
1438
1439 if (should_assign(ctx, instr))
1440 continue;
1441
1442 precolor(ctx, instr);
1443
1444 struct ir3_register *src;
1445 foreach_src (src, instr) {
1446 if (!src->instr)
1447 continue;
1448 precolor(ctx, src->instr);
1449 }
1450 }
1451 }
1452 }
1453
1454 static int
1455 ra_alloc(struct ir3_ra_ctx *ctx)
1456 {
1457 if (!ra_allocate(ctx->g))
1458 return -1;
1459
1460 foreach_block (block, &ctx->ir->block_list) {
1461 ra_block_alloc(ctx, block);
1462 }
1463
1464 return 0;
1465 }
1466
1467 /* if we end up with split/collect instructions with non-matching src
1468 * and dest regs, that means something has gone wrong. Which makes it
1469 * a pretty good sanity check.
1470 */
1471 static void
1472 ra_sanity_check(struct ir3 *ir)
1473 {
1474 foreach_block (block, &ir->block_list) {
1475 foreach_instr (instr, &block->instr_list) {
1476 if (instr->opc == OPC_META_SPLIT) {
1477 struct ir3_register *dst = instr->regs[0];
1478 struct ir3_register *src = instr->regs[1];
1479 debug_assert(dst->num == (src->num + instr->split.off));
1480 } else if (instr->opc == OPC_META_COLLECT) {
1481 struct ir3_register *dst = instr->regs[0];
1482 struct ir3_register *src;
1483
1484 foreach_src_n (src, n, instr) {
1485 debug_assert(dst->num == (src->num - n));
1486 }
1487 }
1488 }
1489 }
1490 }
1491
1492 static int
1493 ir3_ra_pass(struct ir3_shader_variant *v, struct ir3_instruction **precolor,
1494 unsigned nprecolor, bool scalar_pass)
1495 {
1496 struct ir3_ra_ctx ctx = {
1497 .v = v,
1498 .ir = v->ir,
1499 .set = v->ir->compiler->set,
1500 .scalar_pass = scalar_pass,
1501 };
1502 int ret;
1503
1504 ra_init(&ctx);
1505 ra_add_interference(&ctx);
1506 ra_precolor(&ctx, precolor, nprecolor);
1507 if (scalar_pass)
1508 ra_precolor_assigned(&ctx);
1509 ret = ra_alloc(&ctx);
1510 ra_destroy(&ctx);
1511
1512 return ret;
1513 }
1514
1515 int
1516 ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor,
1517 unsigned nprecolor)
1518 {
1519 int ret;
1520
1521 /* First pass, assign the vecN (non-scalar) registers: */
1522 ret = ir3_ra_pass(v, precolor, nprecolor, false);
1523 if (ret)
1524 return ret;
1525
1526 if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
1527 printf("AFTER RA (1st pass):\n");
1528 ir3_print(v->ir);
1529 }
1530
1531 /* Second pass, assign the scalar registers: */
1532 ret = ir3_ra_pass(v, precolor, nprecolor, true);
1533 if (ret)
1534 return ret;
1535
1536 if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
1537 printf("AFTER RA (2nd pass):\n");
1538 ir3_print(v->ir);
1539 }
1540
1541 #ifdef DEBUG
1542 # define SANITY_CHECK DEBUG
1543 #else
1544 # define SANITY_CHECK 0
1545 #endif
1546 if (SANITY_CHECK)
1547 ra_sanity_check(v->ir);
1548
1549 return ret;
1550 }