freedreno/ir3: drop unneeded ir3_ra() args
[mesa.git] / src / freedreno / ir3 / ir3_ra.c
1 /*
2 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include "util/u_math.h"
28 #include "util/register_allocate.h"
29 #include "util/ralloc.h"
30 #include "util/bitset.h"
31
32 #include "ir3.h"
33 #include "ir3_compiler.h"
34
35 /*
36 * Register Assignment:
37 *
38 * Uses the register_allocate util, which implements graph coloring
39 * algo with interference classes. To handle the cases where we need
40 * consecutive registers (for example, texture sample instructions),
41 * we model these as larger (double/quad/etc) registers which conflict
42 * with the corresponding registers in other classes.
43 *
44 * Additionally we create additional classes for half-regs, which
45 * do not conflict with the full-reg classes. We do need at least
46 * sizes 1-4 (to deal w/ texture sample instructions output to half-
47 * reg). At the moment we don't create the higher order half-reg
48 * classes as half-reg frequently does not have enough precision
49 * for texture coords at higher resolutions.
50 *
51 * There are some additional cases that we need to handle specially,
52 * as the graph coloring algo doesn't understand "partial writes".
53 * For example, a sequence like:
54 *
55 * add r0.z, ...
56 * sam (f32)(xy)r0.x, ...
57 * ...
58 * sam (f32)(xyzw)r0.w, r0.x, ... ; 3d texture, so r0.xyz are coord
59 *
60 * In this scenario, we treat r0.xyz as class size 3, which is written
61 * (from a use/def perspective) at the 'add' instruction and ignore the
62 * subsequent partial writes to r0.xy. So the 'add r0.z, ...' is the
63 * defining instruction, as it is the first to partially write r0.xyz.
64 *
65 * Note i965 has a similar scenario, which they solve with a virtual
66 * LOAD_PAYLOAD instruction which gets turned into multiple MOV's after
67 * register assignment. But for us that is horrible from a scheduling
68 * standpoint. Instead what we do is use idea of 'definer' instruction.
69 * Ie. the first instruction (lowest ip) to write to the variable is the
70 * one we consider from use/def perspective when building interference
71 * graph. (Other instructions which write other variable components
72 * just define the variable some more.)
73 *
74 * Arrays of arbitrary size are handled via pre-coloring a consecutive
75 * sequence of registers. Additional scalar (single component) reg
76 * names are allocated starting at ctx->class_base[total_class_count]
77 * (see arr->base), which are pre-colored. In the use/def graph direct
78 * access is treated as a single element use/def, and indirect access
79 * is treated as use or def of all array elements. (Only the first
80 * def is tracked, in case of multiple indirect writes, etc.)
81 *
82 * TODO arrays that fit in one of the pre-defined class sizes should
83 * not need to be pre-colored, but instead could be given a normal
84 * vreg name. (Ignoring this for now since it is a good way to work
85 * out the kinks with arbitrary sized arrays.)
86 *
87 * TODO might be easier for debugging to split this into two passes,
88 * the first assigning vreg names in a way that we could ir3_print()
89 * the result.
90 */
91
92 static const unsigned class_sizes[] = {
93 1, 2, 3, 4,
94 4 + 4, /* txd + 1d/2d */
95 4 + 6, /* txd + 3d */
96 };
97 #define class_count ARRAY_SIZE(class_sizes)
98
99 static const unsigned half_class_sizes[] = {
100 1, 2, 3, 4,
101 };
102 #define half_class_count ARRAY_SIZE(half_class_sizes)
103
104 /* seems to just be used for compute shaders? Seems like vec1 and vec3
105 * are sufficient (for now?)
106 */
107 static const unsigned high_class_sizes[] = {
108 1, 3,
109 };
110 #define high_class_count ARRAY_SIZE(high_class_sizes)
111
112 #define total_class_count (class_count + half_class_count + high_class_count)
113
114 /* Below a0.x are normal regs. RA doesn't need to assign a0.x/p0.x. */
115 #define NUM_REGS (4 * 48) /* r0 to r47 */
116 #define NUM_HIGH_REGS (4 * 8) /* r48 to r55 */
117 #define FIRST_HIGH_REG (4 * 48)
118 /* Number of virtual regs in a given class: */
119 #define CLASS_REGS(i) (NUM_REGS - (class_sizes[i] - 1))
120 #define HALF_CLASS_REGS(i) (NUM_REGS - (half_class_sizes[i] - 1))
121 #define HIGH_CLASS_REGS(i) (NUM_HIGH_REGS - (high_class_sizes[i] - 1))
122
123 #define HALF_OFFSET (class_count)
124 #define HIGH_OFFSET (class_count + half_class_count)
125
126 /* register-set, created one time, used for all shaders: */
127 struct ir3_ra_reg_set {
128 struct ra_regs *regs;
129 unsigned int classes[class_count];
130 unsigned int half_classes[half_class_count];
131 unsigned int high_classes[high_class_count];
132 /* maps flat virtual register space to base gpr: */
133 uint16_t *ra_reg_to_gpr;
134 /* maps cls,gpr to flat virtual register space: */
135 uint16_t **gpr_to_ra_reg;
136 };
137
138 static void
139 build_q_values(unsigned int **q_values, unsigned off,
140 const unsigned *sizes, unsigned count)
141 {
142 for (unsigned i = 0; i < count; i++) {
143 q_values[i + off] = rzalloc_array(q_values, unsigned, total_class_count);
144
145 /* From register_allocate.c:
146 *
147 * q(B,C) (indexed by C, B is this register class) in
148 * Runeson/Nyström paper. This is "how many registers of B could
149 * the worst choice register from C conflict with".
150 *
151 * If we just let the register allocation algorithm compute these
152 * values, is extremely expensive. However, since all of our
153 * registers are laid out, we can very easily compute them
154 * ourselves. View the register from C as fixed starting at GRF n
155 * somewhere in the middle, and the register from B as sliding back
156 * and forth. Then the first register to conflict from B is the
157 * one starting at n - class_size[B] + 1 and the last register to
158 * conflict will start at n + class_size[B] - 1. Therefore, the
159 * number of conflicts from B is class_size[B] + class_size[C] - 1.
160 *
161 * +-+-+-+-+-+-+ +-+-+-+-+-+-+
162 * B | | | | | |n| --> | | | | | | |
163 * +-+-+-+-+-+-+ +-+-+-+-+-+-+
164 * +-+-+-+-+-+
165 * C |n| | | | |
166 * +-+-+-+-+-+
167 *
168 * (Idea copied from brw_fs_reg_allocate.cpp)
169 */
170 for (unsigned j = 0; j < count; j++)
171 q_values[i + off][j + off] = sizes[i] + sizes[j] - 1;
172 }
173 }
174
175 /* One-time setup of RA register-set, which describes all the possible
176 * "virtual" registers and their interferences. Ie. double register
177 * occupies (and conflicts with) two single registers, and so forth.
178 * Since registers do not need to be aligned to their class size, they
179 * can conflict with other registers in the same class too. Ie:
180 *
181 * Single (base) | Double
182 * --------------+---------------
183 * R0 | D0
184 * R1 | D0 D1
185 * R2 | D1 D2
186 * R3 | D2
187 * .. and so on..
188 *
189 * (NOTE the disassembler uses notation like r0.x/y/z/w but those are
190 * really just four scalar registers. Don't let that confuse you.)
191 */
192 struct ir3_ra_reg_set *
193 ir3_ra_alloc_reg_set(struct ir3_compiler *compiler)
194 {
195 struct ir3_ra_reg_set *set = rzalloc(compiler, struct ir3_ra_reg_set);
196 unsigned ra_reg_count, reg, first_half_reg, first_high_reg, base;
197 unsigned int **q_values;
198
199 /* calculate # of regs across all classes: */
200 ra_reg_count = 0;
201 for (unsigned i = 0; i < class_count; i++)
202 ra_reg_count += CLASS_REGS(i);
203 for (unsigned i = 0; i < half_class_count; i++)
204 ra_reg_count += HALF_CLASS_REGS(i);
205 for (unsigned i = 0; i < high_class_count; i++)
206 ra_reg_count += HIGH_CLASS_REGS(i);
207
208 /* allocate and populate q_values: */
209 q_values = ralloc_array(set, unsigned *, total_class_count);
210
211 build_q_values(q_values, 0, class_sizes, class_count);
212 build_q_values(q_values, HALF_OFFSET, half_class_sizes, half_class_count);
213 build_q_values(q_values, HIGH_OFFSET, high_class_sizes, high_class_count);
214
215 /* allocate the reg-set.. */
216 set->regs = ra_alloc_reg_set(set, ra_reg_count, true);
217 set->ra_reg_to_gpr = ralloc_array(set, uint16_t, ra_reg_count);
218 set->gpr_to_ra_reg = ralloc_array(set, uint16_t *, total_class_count);
219
220 /* .. and classes */
221 reg = 0;
222 for (unsigned i = 0; i < class_count; i++) {
223 set->classes[i] = ra_alloc_reg_class(set->regs);
224
225 set->gpr_to_ra_reg[i] = ralloc_array(set, uint16_t, CLASS_REGS(i));
226
227 for (unsigned j = 0; j < CLASS_REGS(i); j++) {
228 ra_class_add_reg(set->regs, set->classes[i], reg);
229
230 set->ra_reg_to_gpr[reg] = j;
231 set->gpr_to_ra_reg[i][j] = reg;
232
233 for (unsigned br = j; br < j + class_sizes[i]; br++)
234 ra_add_transitive_reg_conflict(set->regs, br, reg);
235
236 reg++;
237 }
238 }
239
240 first_half_reg = reg;
241 base = HALF_OFFSET;
242
243 for (unsigned i = 0; i < half_class_count; i++) {
244 set->half_classes[i] = ra_alloc_reg_class(set->regs);
245
246 set->gpr_to_ra_reg[base + i] =
247 ralloc_array(set, uint16_t, HALF_CLASS_REGS(i));
248
249 for (unsigned j = 0; j < HALF_CLASS_REGS(i); j++) {
250 ra_class_add_reg(set->regs, set->half_classes[i], reg);
251
252 set->ra_reg_to_gpr[reg] = j;
253 set->gpr_to_ra_reg[base + i][j] = reg;
254
255 for (unsigned br = j; br < j + half_class_sizes[i]; br++)
256 ra_add_transitive_reg_conflict(set->regs, br + first_half_reg, reg);
257
258 reg++;
259 }
260 }
261
262 first_high_reg = reg;
263 base = HIGH_OFFSET;
264
265 for (unsigned i = 0; i < high_class_count; i++) {
266 set->high_classes[i] = ra_alloc_reg_class(set->regs);
267
268 set->gpr_to_ra_reg[base + i] =
269 ralloc_array(set, uint16_t, HIGH_CLASS_REGS(i));
270
271 for (unsigned j = 0; j < HIGH_CLASS_REGS(i); j++) {
272 ra_class_add_reg(set->regs, set->high_classes[i], reg);
273
274 set->ra_reg_to_gpr[reg] = j;
275 set->gpr_to_ra_reg[base + i][j] = reg;
276
277 for (unsigned br = j; br < j + high_class_sizes[i]; br++)
278 ra_add_transitive_reg_conflict(set->regs, br + first_high_reg, reg);
279
280 reg++;
281 }
282 }
283
284 /* starting a6xx, half precision regs conflict w/ full precision regs: */
285 if (compiler->gpu_id >= 600) {
286 /* because of transitivity, we can get away with just setting up
287 * conflicts between the first class of full and half regs:
288 */
289 for (unsigned i = 0; i < half_class_count; i++) {
290 /* NOTE there are fewer half class sizes, but they match the
291 * first N full class sizes.. but assert in case that ever
292 * accidentially changes:
293 */
294 debug_assert(class_sizes[i] == half_class_sizes[i]);
295 for (unsigned j = 0; j < CLASS_REGS(i) / 2; j++) {
296 unsigned freg = set->gpr_to_ra_reg[i][j];
297 unsigned hreg0 = set->gpr_to_ra_reg[i + HALF_OFFSET][(j * 2) + 0];
298 unsigned hreg1 = set->gpr_to_ra_reg[i + HALF_OFFSET][(j * 2) + 1];
299
300 ra_add_transitive_reg_conflict(set->regs, freg, hreg0);
301 ra_add_transitive_reg_conflict(set->regs, freg, hreg1);
302 }
303 }
304
305 // TODO also need to update q_values, but for now:
306 ra_set_finalize(set->regs, NULL);
307 } else {
308 ra_set_finalize(set->regs, q_values);
309 }
310
311 ralloc_free(q_values);
312
313 return set;
314 }
315
316 /* additional block-data (per-block) */
317 struct ir3_ra_block_data {
318 BITSET_WORD *def; /* variables defined before used in block */
319 BITSET_WORD *use; /* variables used before defined in block */
320 BITSET_WORD *livein; /* which defs reach entry point of block */
321 BITSET_WORD *liveout; /* which defs reach exit point of block */
322 };
323
324 /* additional instruction-data (per-instruction) */
325 struct ir3_ra_instr_data {
326 /* cached instruction 'definer' info: */
327 struct ir3_instruction *defn;
328 int off, sz, cls;
329 };
330
331 /* register-assign context, per-shader */
332 struct ir3_ra_ctx {
333 struct ir3 *ir;
334
335 struct ir3_ra_reg_set *set;
336 struct ra_graph *g;
337 unsigned alloc_count;
338 /* one per class, plus one slot for arrays: */
339 unsigned class_alloc_count[total_class_count + 1];
340 unsigned class_base[total_class_count + 1];
341 unsigned instr_cnt;
342 unsigned *def, *use; /* def/use table */
343 struct ir3_ra_instr_data *instrd;
344 };
345
346 /* does it conflict? */
347 static inline bool
348 intersects(unsigned a_start, unsigned a_end, unsigned b_start, unsigned b_end)
349 {
350 return !((a_start >= b_end) || (b_start >= a_end));
351 }
352
353 static bool
354 is_half(struct ir3_instruction *instr)
355 {
356 return !!(instr->regs[0]->flags & IR3_REG_HALF);
357 }
358
359 static bool
360 is_high(struct ir3_instruction *instr)
361 {
362 return !!(instr->regs[0]->flags & IR3_REG_HIGH);
363 }
364
365 static int
366 size_to_class(unsigned sz, bool half, bool high)
367 {
368 if (high) {
369 for (unsigned i = 0; i < high_class_count; i++)
370 if (high_class_sizes[i] >= sz)
371 return i + HIGH_OFFSET;
372 } else if (half) {
373 for (unsigned i = 0; i < half_class_count; i++)
374 if (half_class_sizes[i] >= sz)
375 return i + HALF_OFFSET;
376 } else {
377 for (unsigned i = 0; i < class_count; i++)
378 if (class_sizes[i] >= sz)
379 return i;
380 }
381 debug_assert(0);
382 return -1;
383 }
384
385 static bool
386 writes_gpr(struct ir3_instruction *instr)
387 {
388 if (is_store(instr))
389 return false;
390 /* is dest a normal temp register: */
391 struct ir3_register *reg = instr->regs[0];
392 if (reg->flags & (IR3_REG_CONST | IR3_REG_IMMED))
393 return false;
394 if ((reg->num == regid(REG_A0, 0)) ||
395 (reg->num == regid(REG_P0, 0)))
396 return false;
397 return true;
398 }
399
400 static bool
401 instr_before(struct ir3_instruction *a, struct ir3_instruction *b)
402 {
403 if (a->flags & IR3_INSTR_UNUSED)
404 return false;
405 return (a->ip < b->ip);
406 }
407
408 static struct ir3_instruction *
409 get_definer(struct ir3_ra_ctx *ctx, struct ir3_instruction *instr,
410 int *sz, int *off)
411 {
412 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
413 struct ir3_instruction *d = NULL;
414
415 if (id->defn) {
416 *sz = id->sz;
417 *off = id->off;
418 return id->defn;
419 }
420
421 if (instr->opc == OPC_META_FI) {
422 /* What about the case where collect is subset of array, we
423 * need to find the distance between where actual array starts
424 * and fanin.. that probably doesn't happen currently.
425 */
426 struct ir3_register *src;
427 int dsz, doff;
428
429 /* note: don't use foreach_ssa_src as this gets called once
430 * while assigning regs (which clears SSA flag)
431 */
432 foreach_src_n(src, n, instr) {
433 struct ir3_instruction *dd;
434 if (!src->instr)
435 continue;
436
437 dd = get_definer(ctx, src->instr, &dsz, &doff);
438
439 if ((!d) || instr_before(dd, d)) {
440 d = dd;
441 *sz = dsz;
442 *off = doff - n;
443 }
444 }
445
446 } else if (instr->cp.right || instr->cp.left) {
447 /* covers also the meta:fo case, which ends up w/ single
448 * scalar instructions for each component:
449 */
450 struct ir3_instruction *f = ir3_neighbor_first(instr);
451
452 /* by definition, the entire sequence forms one linked list
453 * of single scalar register nodes (even if some of them may
454 * be fanouts from a texture sample (for example) instr. We
455 * just need to walk the list finding the first element of
456 * the group defined (lowest ip)
457 */
458 int cnt = 0;
459
460 /* need to skip over unused in the group: */
461 while (f && (f->flags & IR3_INSTR_UNUSED)) {
462 f = f->cp.right;
463 cnt++;
464 }
465
466 while (f) {
467 if ((!d) || instr_before(f, d))
468 d = f;
469 if (f == instr)
470 *off = cnt;
471 f = f->cp.right;
472 cnt++;
473 }
474
475 *sz = cnt;
476
477 } else {
478 /* second case is looking directly at the instruction which
479 * produces multiple values (eg, texture sample), rather
480 * than the fanout nodes that point back to that instruction.
481 * This isn't quite right, because it may be part of a larger
482 * group, such as:
483 *
484 * sam (f32)(xyzw)r0.x, ...
485 * add r1.x, ...
486 * add r1.y, ...
487 * sam (f32)(xyzw)r2.x, r0.w <-- (r0.w, r1.x, r1.y)
488 *
489 * need to come up with a better way to handle that case.
490 */
491 if (instr->address) {
492 *sz = instr->regs[0]->size;
493 } else {
494 *sz = util_last_bit(instr->regs[0]->wrmask);
495 }
496 *off = 0;
497 d = instr;
498 }
499
500 if (d->opc == OPC_META_FO) {
501 struct ir3_instruction *dd;
502 int dsz, doff;
503
504 dd = get_definer(ctx, d->regs[1]->instr, &dsz, &doff);
505
506 /* by definition, should come before: */
507 debug_assert(instr_before(dd, d));
508
509 *sz = MAX2(*sz, dsz);
510
511 if (instr->opc == OPC_META_FO)
512 *off = MAX2(*off, instr->fo.off);
513
514 d = dd;
515 }
516
517 debug_assert(d->opc != OPC_META_FO);
518
519 id->defn = d;
520 id->sz = *sz;
521 id->off = *off;
522
523 return d;
524 }
525
526 static void
527 ra_block_find_definers(struct ir3_ra_ctx *ctx, struct ir3_block *block)
528 {
529 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
530 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
531 if (instr->regs_count == 0)
532 continue;
533 /* couple special cases: */
534 if (writes_addr(instr) || writes_pred(instr)) {
535 id->cls = -1;
536 } else if (instr->regs[0]->flags & IR3_REG_ARRAY) {
537 id->cls = total_class_count;
538 } else {
539 /* and the normal case: */
540 id->defn = get_definer(ctx, instr, &id->sz, &id->off);
541 id->cls = size_to_class(id->sz, is_half(id->defn), is_high(id->defn));
542
543 /* this is a bit of duct-tape.. if we have a scenario like:
544 *
545 * sam (f32)(x) out.x, ...
546 * sam (f32)(x) out.y, ...
547 *
548 * Then the fanout/split meta instructions for the two different
549 * tex instructions end up grouped as left/right neighbors. The
550 * upshot is that in when you get_definer() on one of the meta:fo's
551 * you get definer as the first sam with sz=2, but when you call
552 * get_definer() on the either of the sam's you get itself as the
553 * definer with sz=1.
554 *
555 * (We actually avoid this scenario exactly, the neighbor links
556 * prevent one of the output mov's from being eliminated, so this
557 * hack should be enough. But probably we need to rethink how we
558 * find the "defining" instruction.)
559 *
560 * TODO how do we figure out offset properly...
561 */
562 if (id->defn != instr) {
563 struct ir3_ra_instr_data *did = &ctx->instrd[id->defn->ip];
564 if (did->sz < id->sz) {
565 did->sz = id->sz;
566 did->cls = id->cls;
567 }
568 }
569 }
570 }
571 }
572
573 /* give each instruction a name (and ip), and count up the # of names
574 * of each class
575 */
576 static void
577 ra_block_name_instructions(struct ir3_ra_ctx *ctx, struct ir3_block *block)
578 {
579 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
580 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
581
582 #ifdef DEBUG
583 instr->name = ~0;
584 #endif
585
586 ctx->instr_cnt++;
587
588 if (instr->regs_count == 0)
589 continue;
590
591 if (!writes_gpr(instr))
592 continue;
593
594 if (id->defn != instr)
595 continue;
596
597 /* arrays which don't fit in one of the pre-defined class
598 * sizes are pre-colored:
599 */
600 if ((id->cls >= 0) && (id->cls < total_class_count)) {
601 instr->name = ctx->class_alloc_count[id->cls]++;
602 ctx->alloc_count++;
603 }
604 }
605 }
606
607 static void
608 ra_init(struct ir3_ra_ctx *ctx)
609 {
610 unsigned n, base;
611
612 ir3_clear_mark(ctx->ir);
613 n = ir3_count_instructions(ctx->ir);
614
615 ctx->instrd = rzalloc_array(NULL, struct ir3_ra_instr_data, n);
616
617 list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
618 ra_block_find_definers(ctx, block);
619 }
620
621 list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
622 ra_block_name_instructions(ctx, block);
623 }
624
625 /* figure out the base register name for each class. The
626 * actual ra name is class_base[cls] + instr->name;
627 */
628 ctx->class_base[0] = 0;
629 for (unsigned i = 1; i <= total_class_count; i++) {
630 ctx->class_base[i] = ctx->class_base[i-1] +
631 ctx->class_alloc_count[i-1];
632 }
633
634 /* and vreg names for array elements: */
635 base = ctx->class_base[total_class_count];
636 list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
637 arr->base = base;
638 ctx->class_alloc_count[total_class_count] += arr->length;
639 base += arr->length;
640 }
641 ctx->alloc_count += ctx->class_alloc_count[total_class_count];
642
643 ctx->g = ra_alloc_interference_graph(ctx->set->regs, ctx->alloc_count);
644 ralloc_steal(ctx->g, ctx->instrd);
645 ctx->def = rzalloc_array(ctx->g, unsigned, ctx->alloc_count);
646 ctx->use = rzalloc_array(ctx->g, unsigned, ctx->alloc_count);
647 }
648
649 static unsigned
650 __ra_name(struct ir3_ra_ctx *ctx, int cls, struct ir3_instruction *defn)
651 {
652 unsigned name;
653 debug_assert(cls >= 0);
654 debug_assert(cls < total_class_count); /* we shouldn't get arrays here.. */
655 name = ctx->class_base[cls] + defn->name;
656 debug_assert(name < ctx->alloc_count);
657 return name;
658 }
659
660 static int
661 ra_name(struct ir3_ra_ctx *ctx, struct ir3_ra_instr_data *id)
662 {
663 /* TODO handle name mapping for arrays */
664 return __ra_name(ctx, id->cls, id->defn);
665 }
666
667 static void
668 ra_destroy(struct ir3_ra_ctx *ctx)
669 {
670 ralloc_free(ctx->g);
671 }
672
673 static void
674 ra_block_compute_live_ranges(struct ir3_ra_ctx *ctx, struct ir3_block *block)
675 {
676 struct ir3_ra_block_data *bd;
677 unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);
678
679 #define def(name, instr) \
680 do { \
681 /* defined on first write: */ \
682 if (!ctx->def[name]) \
683 ctx->def[name] = instr->ip; \
684 ctx->use[name] = instr->ip; \
685 BITSET_SET(bd->def, name); \
686 } while(0);
687
688 #define use(name, instr) \
689 do { \
690 ctx->use[name] = MAX2(ctx->use[name], instr->ip); \
691 if (!BITSET_TEST(bd->def, name)) \
692 BITSET_SET(bd->use, name); \
693 } while(0);
694
695 bd = rzalloc(ctx->g, struct ir3_ra_block_data);
696
697 bd->def = rzalloc_array(bd, BITSET_WORD, bitset_words);
698 bd->use = rzalloc_array(bd, BITSET_WORD, bitset_words);
699 bd->livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
700 bd->liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
701
702 block->data = bd;
703
704 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
705 struct ir3_instruction *src;
706 struct ir3_register *reg;
707
708 if (instr->regs_count == 0)
709 continue;
710
711 /* There are a couple special cases to deal with here:
712 *
713 * fanout: used to split values from a higher class to a lower
714 * class, for example split the results of a texture fetch
715 * into individual scalar values; We skip over these from
716 * a 'def' perspective, and for a 'use' we walk the chain
717 * up to the defining instruction.
718 *
719 * fanin: used to collect values from lower class and assemble
720 * them together into a higher class, for example arguments
721 * to texture sample instructions; We consider these to be
722 * defined at the earliest fanin source.
723 *
724 * Most of this is handled in the get_definer() helper.
725 *
726 * In either case, we trace the instruction back to the original
727 * definer and consider that as the def/use ip.
728 */
729
730 if (writes_gpr(instr)) {
731 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
732 struct ir3_register *dst = instr->regs[0];
733
734 if (dst->flags & IR3_REG_ARRAY) {
735 struct ir3_array *arr =
736 ir3_lookup_array(ctx->ir, dst->array.id);
737 unsigned i;
738
739 arr->start_ip = MIN2(arr->start_ip, instr->ip);
740 arr->end_ip = MAX2(arr->end_ip, instr->ip);
741
742 /* set the node class now.. in case we don't encounter
743 * this array dst again. From register_alloc algo's
744 * perspective, these are all single/scalar regs:
745 */
746 for (i = 0; i < arr->length; i++) {
747 unsigned name = arr->base + i;
748 ra_set_node_class(ctx->g, name, ctx->set->classes[0]);
749 }
750
751 /* indirect write is treated like a write to all array
752 * elements, since we don't know which one is actually
753 * written:
754 */
755 if (dst->flags & IR3_REG_RELATIV) {
756 for (i = 0; i < arr->length; i++) {
757 unsigned name = arr->base + i;
758 def(name, instr);
759 }
760 } else {
761 unsigned name = arr->base + dst->array.offset;
762 def(name, instr);
763 }
764
765 } else if (id->defn == instr) {
766 unsigned name = ra_name(ctx, id);
767
768 /* since we are in SSA at this point: */
769 debug_assert(!BITSET_TEST(bd->use, name));
770
771 def(name, id->defn);
772
773 if (is_high(id->defn)) {
774 ra_set_node_class(ctx->g, name,
775 ctx->set->high_classes[id->cls - HIGH_OFFSET]);
776 } else if (is_half(id->defn)) {
777 ra_set_node_class(ctx->g, name,
778 ctx->set->half_classes[id->cls - HALF_OFFSET]);
779 } else {
780 ra_set_node_class(ctx->g, name,
781 ctx->set->classes[id->cls]);
782 }
783 }
784 }
785
786 foreach_src(reg, instr) {
787 if (reg->flags & IR3_REG_ARRAY) {
788 struct ir3_array *arr =
789 ir3_lookup_array(ctx->ir, reg->array.id);
790 arr->start_ip = MIN2(arr->start_ip, instr->ip);
791 arr->end_ip = MAX2(arr->end_ip, instr->ip);
792
793 /* indirect read is treated like a read fromall array
794 * elements, since we don't know which one is actually
795 * read:
796 */
797 if (reg->flags & IR3_REG_RELATIV) {
798 unsigned i;
799 for (i = 0; i < arr->length; i++) {
800 unsigned name = arr->base + i;
801 use(name, instr);
802 }
803 } else {
804 unsigned name = arr->base + reg->array.offset;
805 use(name, instr);
806 /* NOTE: arrays are not SSA so unconditionally
807 * set use bit:
808 */
809 BITSET_SET(bd->use, name);
810 debug_assert(reg->array.offset < arr->length);
811 }
812 } else if ((src = ssa(reg)) && writes_gpr(src)) {
813 unsigned name = ra_name(ctx, &ctx->instrd[src->ip]);
814 use(name, instr);
815 }
816 }
817 }
818 }
819
820 static bool
821 ra_compute_livein_liveout(struct ir3_ra_ctx *ctx)
822 {
823 unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);
824 bool progress = false;
825
826 list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
827 struct ir3_ra_block_data *bd = block->data;
828
829 /* update livein: */
830 for (unsigned i = 0; i < bitset_words; i++) {
831 BITSET_WORD new_livein =
832 (bd->use[i] | (bd->liveout[i] & ~bd->def[i]));
833
834 if (new_livein & ~bd->livein[i]) {
835 bd->livein[i] |= new_livein;
836 progress = true;
837 }
838 }
839
840 /* update liveout: */
841 for (unsigned j = 0; j < ARRAY_SIZE(block->successors); j++) {
842 struct ir3_block *succ = block->successors[j];
843 struct ir3_ra_block_data *succ_bd;
844
845 if (!succ)
846 continue;
847
848 succ_bd = succ->data;
849
850 for (unsigned i = 0; i < bitset_words; i++) {
851 BITSET_WORD new_liveout =
852 (succ_bd->livein[i] & ~bd->liveout[i]);
853
854 if (new_liveout) {
855 bd->liveout[i] |= new_liveout;
856 progress = true;
857 }
858 }
859 }
860 }
861
862 return progress;
863 }
864
865 static void
866 print_bitset(const char *name, BITSET_WORD *bs, unsigned cnt)
867 {
868 bool first = true;
869 debug_printf(" %s:", name);
870 for (unsigned i = 0; i < cnt; i++) {
871 if (BITSET_TEST(bs, i)) {
872 if (!first)
873 debug_printf(",");
874 debug_printf(" %04u", i);
875 first = false;
876 }
877 }
878 debug_printf("\n");
879 }
880
881 static void
882 ra_add_interference(struct ir3_ra_ctx *ctx)
883 {
884 struct ir3 *ir = ctx->ir;
885
886 /* initialize array live ranges: */
887 list_for_each_entry (struct ir3_array, arr, &ir->array_list, node) {
888 arr->start_ip = ~0;
889 arr->end_ip = 0;
890 }
891
892 /* compute live ranges (use/def) on a block level, also updating
893 * block's def/use bitmasks (used below to calculate per-block
894 * livein/liveout):
895 */
896 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
897 ra_block_compute_live_ranges(ctx, block);
898 }
899
900 /* update per-block livein/liveout: */
901 while (ra_compute_livein_liveout(ctx)) {}
902
903 if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
904 debug_printf("AFTER LIVEIN/OUT:\n");
905 ir3_print(ir);
906 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
907 struct ir3_ra_block_data *bd = block->data;
908 debug_printf("block%u:\n", block_id(block));
909 print_bitset(" def", bd->def, ctx->alloc_count);
910 print_bitset(" use", bd->use, ctx->alloc_count);
911 print_bitset(" l/i", bd->livein, ctx->alloc_count);
912 print_bitset(" l/o", bd->liveout, ctx->alloc_count);
913 }
914 list_for_each_entry (struct ir3_array, arr, &ir->array_list, node) {
915 debug_printf("array%u:\n", arr->id);
916 debug_printf(" length: %u\n", arr->length);
917 debug_printf(" start_ip: %u\n", arr->start_ip);
918 debug_printf(" end_ip: %u\n", arr->end_ip);
919 }
920 }
921
922 /* extend start/end ranges based on livein/liveout info from cfg: */
923 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
924 struct ir3_ra_block_data *bd = block->data;
925
926 for (unsigned i = 0; i < ctx->alloc_count; i++) {
927 if (BITSET_TEST(bd->livein, i)) {
928 ctx->def[i] = MIN2(ctx->def[i], block->start_ip);
929 ctx->use[i] = MAX2(ctx->use[i], block->start_ip);
930 }
931
932 if (BITSET_TEST(bd->liveout, i)) {
933 ctx->def[i] = MIN2(ctx->def[i], block->end_ip);
934 ctx->use[i] = MAX2(ctx->use[i], block->end_ip);
935 }
936 }
937
938 list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
939 for (unsigned i = 0; i < arr->length; i++) {
940 if (BITSET_TEST(bd->livein, i + arr->base)) {
941 arr->start_ip = MIN2(arr->start_ip, block->start_ip);
942 }
943 if (BITSET_TEST(bd->livein, i + arr->base)) {
944 arr->end_ip = MAX2(arr->end_ip, block->end_ip);
945 }
946 }
947 }
948 }
949
950 /* need to fix things up to keep outputs live: */
951 for (unsigned i = 0; i < ir->noutputs; i++) {
952 struct ir3_instruction *instr = ir->outputs[i];
953 if (!instr)
954 continue;
955 unsigned name = ra_name(ctx, &ctx->instrd[instr->ip]);
956 ctx->use[name] = ctx->instr_cnt;
957 }
958
959 for (unsigned i = 0; i < ctx->alloc_count; i++) {
960 for (unsigned j = 0; j < ctx->alloc_count; j++) {
961 if (intersects(ctx->def[i], ctx->use[i],
962 ctx->def[j], ctx->use[j])) {
963 ra_add_node_interference(ctx->g, i, j);
964 }
965 }
966 }
967 }
968
969 /* some instructions need fix-up if dst register is half precision: */
970 static void fixup_half_instr_dst(struct ir3_instruction *instr)
971 {
972 switch (opc_cat(instr->opc)) {
973 case 1: /* move instructions */
974 instr->cat1.dst_type = half_type(instr->cat1.dst_type);
975 break;
976 case 3:
977 switch (instr->opc) {
978 case OPC_MAD_F32:
979 instr->opc = OPC_MAD_F16;
980 break;
981 case OPC_SEL_B32:
982 instr->opc = OPC_SEL_B16;
983 break;
984 case OPC_SEL_S32:
985 instr->opc = OPC_SEL_S16;
986 break;
987 case OPC_SEL_F32:
988 instr->opc = OPC_SEL_F16;
989 break;
990 case OPC_SAD_S32:
991 instr->opc = OPC_SAD_S16;
992 break;
993 /* instructions may already be fixed up: */
994 case OPC_MAD_F16:
995 case OPC_SEL_B16:
996 case OPC_SEL_S16:
997 case OPC_SEL_F16:
998 case OPC_SAD_S16:
999 break;
1000 default:
1001 assert(0);
1002 break;
1003 }
1004 break;
1005 case 5:
1006 instr->cat5.type = half_type(instr->cat5.type);
1007 break;
1008 }
1009 }
1010 /* some instructions need fix-up if src register is half precision: */
1011 static void fixup_half_instr_src(struct ir3_instruction *instr)
1012 {
1013 switch (instr->opc) {
1014 case OPC_MOV:
1015 instr->cat1.src_type = half_type(instr->cat1.src_type);
1016 break;
1017 default:
1018 break;
1019 }
1020 }
1021
1022 /* NOTE: instr could be NULL for IR3_REG_ARRAY case, for the first
1023 * array access(es) which do not have any previous access to depend
1024 * on from scheduling point of view
1025 */
1026 static void
1027 reg_assign(struct ir3_ra_ctx *ctx, struct ir3_register *reg,
1028 struct ir3_instruction *instr)
1029 {
1030 struct ir3_ra_instr_data *id;
1031
1032 if (reg->flags & IR3_REG_ARRAY) {
1033 struct ir3_array *arr =
1034 ir3_lookup_array(ctx->ir, reg->array.id);
1035 unsigned name = arr->base + reg->array.offset;
1036 unsigned r = ra_get_node_reg(ctx->g, name);
1037 unsigned num = ctx->set->ra_reg_to_gpr[r];
1038
1039 if (reg->flags & IR3_REG_RELATIV) {
1040 reg->array.offset = num;
1041 } else {
1042 reg->num = num;
1043 reg->flags &= ~IR3_REG_SSA;
1044 }
1045
1046 reg->flags &= ~IR3_REG_ARRAY;
1047 } else if ((id = &ctx->instrd[instr->ip]) && id->defn) {
1048 unsigned name = ra_name(ctx, id);
1049 unsigned r = ra_get_node_reg(ctx->g, name);
1050 unsigned num = ctx->set->ra_reg_to_gpr[r] + id->off;
1051
1052 debug_assert(!(reg->flags & IR3_REG_RELATIV));
1053
1054 if (is_high(id->defn))
1055 num += FIRST_HIGH_REG;
1056
1057 reg->num = num;
1058 reg->flags &= ~IR3_REG_SSA;
1059
1060 if (is_half(id->defn))
1061 reg->flags |= IR3_REG_HALF;
1062 }
1063 }
1064
1065 static void
1066 ra_block_alloc(struct ir3_ra_ctx *ctx, struct ir3_block *block)
1067 {
1068 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
1069 struct ir3_register *reg;
1070
1071 if (instr->regs_count == 0)
1072 continue;
1073
1074 if (writes_gpr(instr)) {
1075 reg_assign(ctx, instr->regs[0], instr);
1076 if (instr->regs[0]->flags & IR3_REG_HALF)
1077 fixup_half_instr_dst(instr);
1078 }
1079
1080 foreach_src_n(reg, n, instr) {
1081 struct ir3_instruction *src = reg->instr;
1082 /* Note: reg->instr could be null for IR3_REG_ARRAY */
1083 if (src || (reg->flags & IR3_REG_ARRAY))
1084 reg_assign(ctx, instr->regs[n+1], src);
1085 if (instr->regs[n+1]->flags & IR3_REG_HALF)
1086 fixup_half_instr_src(instr);
1087 }
1088 }
1089 }
1090
1091 static int
1092 ra_alloc(struct ir3_ra_ctx *ctx)
1093 {
1094 /* pre-assign array elements:
1095 */
1096 list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
1097 unsigned base = 0;
1098
1099 if (arr->end_ip == 0)
1100 continue;
1101
1102 /* figure out what else we conflict with which has already
1103 * been assigned:
1104 */
1105 retry:
1106 list_for_each_entry (struct ir3_array, arr2, &ctx->ir->array_list, node) {
1107 if (arr2 == arr)
1108 break;
1109 if (arr2->end_ip == 0)
1110 continue;
1111 /* if it intersects with liverange AND register range.. */
1112 if (intersects(arr->start_ip, arr->end_ip,
1113 arr2->start_ip, arr2->end_ip) &&
1114 intersects(base, base + arr->length,
1115 arr2->reg, arr2->reg + arr2->length)) {
1116 base = MAX2(base, arr2->reg + arr2->length);
1117 goto retry;
1118 }
1119 }
1120
1121 arr->reg = base;
1122
1123 for (unsigned i = 0; i < arr->length; i++) {
1124 unsigned name, reg;
1125
1126 name = arr->base + i;
1127 reg = ctx->set->gpr_to_ra_reg[0][base++];
1128
1129 ra_set_node_reg(ctx->g, name, reg);
1130 }
1131 }
1132
1133 if (!ra_allocate(ctx->g))
1134 return -1;
1135
1136 list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
1137 ra_block_alloc(ctx, block);
1138 }
1139
1140 return 0;
1141 }
1142
1143 int ir3_ra(struct ir3 *ir)
1144 {
1145 struct ir3_ra_ctx ctx = {
1146 .ir = ir,
1147 .set = ir->compiler->set,
1148 };
1149 int ret;
1150
1151 ra_init(&ctx);
1152 ra_add_interference(&ctx);
1153 ret = ra_alloc(&ctx);
1154 ra_destroy(&ctx);
1155
1156 return ret;
1157 }