tu: Add multiview lowering pass
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "adreno_pm4.xml.h"
31 #include "adreno_common.xml.h"
32
33 #include "vk_format.h"
34 #include "vk_util.h"
35
36 #include "tu_cs.h"
37
38 void
39 tu_bo_list_init(struct tu_bo_list *list)
40 {
41 list->count = list->capacity = 0;
42 list->bo_infos = NULL;
43 }
44
45 void
46 tu_bo_list_destroy(struct tu_bo_list *list)
47 {
48 free(list->bo_infos);
49 }
50
51 void
52 tu_bo_list_reset(struct tu_bo_list *list)
53 {
54 list->count = 0;
55 }
56
57 /**
58 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
59 */
60 static uint32_t
61 tu_bo_list_add_info(struct tu_bo_list *list,
62 const struct drm_msm_gem_submit_bo *bo_info)
63 {
64 assert(bo_info->handle != 0);
65
66 for (uint32_t i = 0; i < list->count; ++i) {
67 if (list->bo_infos[i].handle == bo_info->handle) {
68 assert(list->bo_infos[i].presumed == bo_info->presumed);
69 list->bo_infos[i].flags |= bo_info->flags;
70 return i;
71 }
72 }
73
74 /* grow list->bo_infos if needed */
75 if (list->count == list->capacity) {
76 uint32_t new_capacity = MAX2(2 * list->count, 16);
77 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
78 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
79 if (!new_bo_infos)
80 return TU_BO_LIST_FAILED;
81 list->bo_infos = new_bo_infos;
82 list->capacity = new_capacity;
83 }
84
85 list->bo_infos[list->count] = *bo_info;
86 return list->count++;
87 }
88
89 uint32_t
90 tu_bo_list_add(struct tu_bo_list *list,
91 const struct tu_bo *bo,
92 uint32_t flags)
93 {
94 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
95 .flags = flags,
96 .handle = bo->gem_handle,
97 .presumed = bo->iova,
98 });
99 }
100
101 VkResult
102 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
103 {
104 for (uint32_t i = 0; i < other->count; i++) {
105 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
106 return VK_ERROR_OUT_OF_HOST_MEMORY;
107 }
108
109 return VK_SUCCESS;
110 }
111
112 void
113 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
114 struct tu_cs *cs,
115 enum vgt_event_type event)
116 {
117 bool need_seqno = false;
118 switch (event) {
119 case CACHE_FLUSH_TS:
120 case WT_DONE_TS:
121 case RB_DONE_TS:
122 case PC_CCU_FLUSH_DEPTH_TS:
123 case PC_CCU_FLUSH_COLOR_TS:
124 case PC_CCU_RESOLVE_TS:
125 need_seqno = true;
126 break;
127 default:
128 break;
129 }
130
131 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
132 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
133 if (need_seqno) {
134 tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
135 tu_cs_emit(cs, 0);
136 }
137 }
138
139 static void
140 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
141 struct tu_cs *cs,
142 enum tu_cmd_flush_bits flushes)
143 {
144 /* Experiments show that invalidating CCU while it still has data in it
145 * doesn't work, so make sure to always flush before invalidating in case
146 * any data remains that hasn't yet been made available through a barrier.
147 * However it does seem to work for UCHE.
148 */
149 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
150 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
151 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
152 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
153 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
154 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
155 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
156 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
157 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
158 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
159 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
160 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
161 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
162 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
163 if (flushes & TU_CMD_FLAG_WAIT_MEM_WRITES)
164 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
165 if (flushes & TU_CMD_FLAG_WAIT_FOR_IDLE)
166 tu_cs_emit_wfi(cs);
167 if (flushes & TU_CMD_FLAG_WAIT_FOR_ME)
168 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
169 }
170
171 /* "Normal" cache flushes, that don't require any special handling */
172
173 static void
174 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
175 struct tu_cs *cs)
176 {
177 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
178 cmd_buffer->state.cache.flush_bits = 0;
179 }
180
181 /* Renderpass cache flushes */
182
183 void
184 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
185 struct tu_cs *cs)
186 {
187 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
188 cmd_buffer->state.renderpass_cache.flush_bits = 0;
189 }
190
191 /* Cache flushes for things that use the color/depth read/write path (i.e.
192 * blits and draws). This deals with changing CCU state as well as the usual
193 * cache flushing.
194 */
195
196 void
197 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
198 struct tu_cs *cs,
199 enum tu_cmd_ccu_state ccu_state)
200 {
201 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
202
203 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
204
205 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
206 * the CCU may also contain data that we haven't flushed out yet, so we
207 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
208 * emit a WFI as it isn't pipelined.
209 */
210 if (ccu_state != cmd_buffer->state.ccu_state) {
211 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
212 flushes |=
213 TU_CMD_FLAG_CCU_FLUSH_COLOR |
214 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
215 cmd_buffer->state.cache.pending_flush_bits &= ~(
216 TU_CMD_FLAG_CCU_FLUSH_COLOR |
217 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
218 }
219 flushes |=
220 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
221 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
222 TU_CMD_FLAG_WAIT_FOR_IDLE;
223 cmd_buffer->state.cache.pending_flush_bits &= ~(
224 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
225 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
226 TU_CMD_FLAG_WAIT_FOR_IDLE);
227 }
228
229 tu6_emit_flushes(cmd_buffer, cs, flushes);
230 cmd_buffer->state.cache.flush_bits = 0;
231
232 if (ccu_state != cmd_buffer->state.ccu_state) {
233 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
234 tu_cs_emit_regs(cs,
235 A6XX_RB_CCU_CNTL(.offset =
236 ccu_state == TU_CMD_CCU_GMEM ?
237 phys_dev->ccu_offset_gmem :
238 phys_dev->ccu_offset_bypass,
239 .gmem = ccu_state == TU_CMD_CCU_GMEM));
240 cmd_buffer->state.ccu_state = ccu_state;
241 }
242 }
243
244 static void
245 tu6_emit_zs(struct tu_cmd_buffer *cmd,
246 const struct tu_subpass *subpass,
247 struct tu_cs *cs)
248 {
249 const struct tu_framebuffer *fb = cmd->state.framebuffer;
250
251 const uint32_t a = subpass->depth_stencil_attachment.attachment;
252 if (a == VK_ATTACHMENT_UNUSED) {
253 tu_cs_emit_regs(cs,
254 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
255 A6XX_RB_DEPTH_BUFFER_PITCH(0),
256 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
257 A6XX_RB_DEPTH_BUFFER_BASE(0),
258 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
259
260 tu_cs_emit_regs(cs,
261 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
262
263 tu_cs_emit_regs(cs,
264 A6XX_GRAS_LRZ_BUFFER_BASE(0),
265 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
266 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
267
268 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
269
270 return;
271 }
272
273 const struct tu_image_view *iview = fb->attachments[a].attachment;
274 const struct tu_render_pass_attachment *attachment =
275 &cmd->state.pass->attachments[a];
276 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
277
278 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
279 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
280 tu_cs_image_ref(cs, iview, 0);
281 tu_cs_emit(cs, attachment->gmem_offset);
282
283 tu_cs_emit_regs(cs,
284 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
285
286 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
287 tu_cs_image_flag_ref(cs, iview, 0);
288
289 tu_cs_emit_regs(cs,
290 A6XX_GRAS_LRZ_BUFFER_BASE(0),
291 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
292 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
293
294 if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
295 attachment->format == VK_FORMAT_S8_UINT) {
296
297 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
298 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
299 if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
300 tu_cs_image_stencil_ref(cs, iview, 0);
301 tu_cs_emit(cs, attachment->gmem_offset_stencil);
302 } else {
303 tu_cs_image_ref(cs, iview, 0);
304 tu_cs_emit(cs, attachment->gmem_offset);
305 }
306 } else {
307 tu_cs_emit_regs(cs,
308 A6XX_RB_STENCIL_INFO(0));
309 }
310 }
311
312 static void
313 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
314 const struct tu_subpass *subpass,
315 struct tu_cs *cs)
316 {
317 const struct tu_framebuffer *fb = cmd->state.framebuffer;
318
319 for (uint32_t i = 0; i < subpass->color_count; ++i) {
320 uint32_t a = subpass->color_attachments[i].attachment;
321 if (a == VK_ATTACHMENT_UNUSED)
322 continue;
323
324 const struct tu_image_view *iview = fb->attachments[a].attachment;
325
326 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
327 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
328 tu_cs_image_ref(cs, iview, 0);
329 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
330
331 tu_cs_emit_regs(cs,
332 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
333
334 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
335 tu_cs_image_flag_ref(cs, iview, 0);
336 }
337
338 tu_cs_emit_regs(cs,
339 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
340 tu_cs_emit_regs(cs,
341 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
342
343 unsigned layers = MAX2(fb->layers, util_logbase2(subpass->multiview_mask) + 1);
344 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(layers - 1));
345 }
346
347 void
348 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
349 {
350 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
351 bool msaa_disable = samples == MSAA_ONE;
352
353 tu_cs_emit_regs(cs,
354 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
355 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
356 .msaa_disable = msaa_disable));
357
358 tu_cs_emit_regs(cs,
359 A6XX_GRAS_RAS_MSAA_CNTL(samples),
360 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
361 .msaa_disable = msaa_disable));
362
363 tu_cs_emit_regs(cs,
364 A6XX_RB_RAS_MSAA_CNTL(samples),
365 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
366 .msaa_disable = msaa_disable));
367
368 tu_cs_emit_regs(cs,
369 A6XX_RB_MSAA_CNTL(samples));
370 }
371
372 static void
373 tu6_emit_bin_size(struct tu_cs *cs,
374 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
375 {
376 tu_cs_emit_regs(cs,
377 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
378 .binh = bin_h,
379 .dword = flags));
380
381 tu_cs_emit_regs(cs,
382 A6XX_RB_BIN_CONTROL(.binw = bin_w,
383 .binh = bin_h,
384 .dword = flags));
385
386 /* no flag for RB_BIN_CONTROL2... */
387 tu_cs_emit_regs(cs,
388 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
389 .binh = bin_h));
390 }
391
392 static void
393 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
394 const struct tu_subpass *subpass,
395 struct tu_cs *cs,
396 bool binning)
397 {
398 const struct tu_framebuffer *fb = cmd->state.framebuffer;
399 uint32_t cntl = 0;
400 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
401 if (binning) {
402 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
403 } else {
404 uint32_t mrts_ubwc_enable = 0;
405 for (uint32_t i = 0; i < subpass->color_count; ++i) {
406 uint32_t a = subpass->color_attachments[i].attachment;
407 if (a == VK_ATTACHMENT_UNUSED)
408 continue;
409
410 const struct tu_image_view *iview = fb->attachments[a].attachment;
411 if (iview->ubwc_enabled)
412 mrts_ubwc_enable |= 1 << i;
413 }
414
415 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
416
417 const uint32_t a = subpass->depth_stencil_attachment.attachment;
418 if (a != VK_ATTACHMENT_UNUSED) {
419 const struct tu_image_view *iview = fb->attachments[a].attachment;
420 if (iview->ubwc_enabled)
421 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
422 }
423
424 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
425 * in order to set it correctly for the different subpasses. However,
426 * that means the packets we're emitting also happen during binning. So
427 * we need to guard the write on !BINNING at CP execution time.
428 */
429 tu_cs_reserve(cs, 3 + 4);
430 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
431 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
432 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
433 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
434 }
435
436 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
437 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
438 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
439 tu_cs_emit(cs, cntl);
440 }
441
442 static void
443 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
444 {
445
446 const VkRect2D *render_area = &cmd->state.render_area;
447
448 /* Avoid assertion fails with an empty render area at (0, 0) where the
449 * subtraction below wraps around. Empty render areas should be forced to
450 * the sysmem path by use_sysmem_rendering(). It's not even clear whether
451 * an empty scissor here works, and the blob seems to force sysmem too as
452 * it sets something wrong (non-empty) for the scissor.
453 */
454 if (render_area->extent.width == 0 ||
455 render_area->extent.height == 0)
456 return;
457
458 uint32_t x1 = render_area->offset.x;
459 uint32_t y1 = render_area->offset.y;
460 uint32_t x2 = x1 + render_area->extent.width - 1;
461 uint32_t y2 = y1 + render_area->extent.height - 1;
462
463 if (align) {
464 x1 = x1 & ~(GMEM_ALIGN_W - 1);
465 y1 = y1 & ~(GMEM_ALIGN_H - 1);
466 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
467 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
468 }
469
470 tu_cs_emit_regs(cs,
471 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
472 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
473 }
474
475 void
476 tu6_emit_window_scissor(struct tu_cs *cs,
477 uint32_t x1,
478 uint32_t y1,
479 uint32_t x2,
480 uint32_t y2)
481 {
482 tu_cs_emit_regs(cs,
483 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
484 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
485
486 tu_cs_emit_regs(cs,
487 A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1),
488 A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2));
489 }
490
491 void
492 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
493 {
494 tu_cs_emit_regs(cs,
495 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
496
497 tu_cs_emit_regs(cs,
498 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
499
500 tu_cs_emit_regs(cs,
501 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
502
503 tu_cs_emit_regs(cs,
504 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
505 }
506
507 static void
508 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
509 {
510 uint32_t enable_mask;
511 switch (id) {
512 case TU_DRAW_STATE_PROGRAM:
513 case TU_DRAW_STATE_VI:
514 case TU_DRAW_STATE_FS_CONST:
515 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
516 * when resources would actually be used in the binning shader.
517 * Presumably the overhead of prefetching the resources isn't
518 * worth it.
519 */
520 case TU_DRAW_STATE_DESC_SETS_LOAD:
521 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
522 CP_SET_DRAW_STATE__0_SYSMEM;
523 break;
524 case TU_DRAW_STATE_PROGRAM_BINNING:
525 case TU_DRAW_STATE_VI_BINNING:
526 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
527 break;
528 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
529 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
530 break;
531 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
532 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
533 break;
534 default:
535 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
536 CP_SET_DRAW_STATE__0_SYSMEM |
537 CP_SET_DRAW_STATE__0_BINNING;
538 break;
539 }
540
541 /* We need to reload the descriptors every time the descriptor sets
542 * change. However, the commands we send only depend on the pipeline
543 * because the whole point is to cache descriptors which are used by the
544 * pipeline. There's a problem here, in that the firmware has an
545 * "optimization" which skips executing groups that are set to the same
546 * value as the last draw. This means that if the descriptor sets change
547 * but not the pipeline, we'd try to re-execute the same buffer which
548 * the firmware would ignore and we wouldn't pre-load the new
549 * descriptors. Set the DIRTY bit to avoid this optimization
550 */
551 if (id == TU_DRAW_STATE_DESC_SETS_LOAD)
552 enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
553
554 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
555 enable_mask |
556 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
557 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
558 tu_cs_emit_qw(cs, state.iova);
559 }
560
561 static bool
562 use_hw_binning(struct tu_cmd_buffer *cmd)
563 {
564 const struct tu_framebuffer *fb = cmd->state.framebuffer;
565
566 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
567 * with non-hw binning GMEM rendering. this is required because some of the
568 * XFB commands need to only be executed once
569 */
570 if (cmd->state.xfb_used)
571 return true;
572
573 /* Some devices have a newer a630_sqe.fw in which, only in CP_DRAW_INDX and
574 * CP_DRAW_INDX_OFFSET, visibility-based skipping happens *before*
575 * predication-based skipping. It seems this breaks predication, because
576 * draws skipped by predication will not be executed in the binning phase,
577 * and therefore won't have an entry in the draw stream, but the
578 * visibility-based skipping will expect it to have an entry. The result is
579 * a GPU hang when actually executing the first non-predicated draw.
580 * However, it seems that things still work if the whole renderpass is
581 * predicated. Affected tests are
582 * dEQP-VK.conditional_rendering.draw_clear.draw.case_2 as well as a few
583 * other case_N.
584 *
585 * Broken FW version: 016ee181
586 * linux-firmware (working) FW version: 016ee176
587 *
588 * All known a650_sqe.fw versions don't have this bug.
589 *
590 * TODO: we should do version detection of the FW so that devices using the
591 * linux-firmware version of a630_sqe.fw don't need this workaround.
592 */
593 if (cmd->state.has_subpass_predication && cmd->device->physical_device->gpu_id != 650)
594 return false;
595
596 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
597 return false;
598
599 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
600 return true;
601
602 return (fb->tile_count.width * fb->tile_count.height) > 2;
603 }
604
605 static bool
606 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
607 {
608 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
609 return true;
610
611 /* If hw binning is required because of XFB but doesn't work because of the
612 * conditional rendering bug, fallback to sysmem.
613 */
614 if (cmd->state.xfb_used && cmd->state.has_subpass_predication &&
615 cmd->device->physical_device->gpu_id != 650)
616 return true;
617
618 /* can't fit attachments into gmem */
619 if (!cmd->state.pass->gmem_pixels)
620 return true;
621
622 if (cmd->state.framebuffer->layers > 1)
623 return true;
624
625 /* Use sysmem for empty render areas */
626 if (cmd->state.render_area.extent.width == 0 ||
627 cmd->state.render_area.extent.height == 0)
628 return true;
629
630 if (cmd->state.has_tess)
631 return true;
632
633 return false;
634 }
635
636 static void
637 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
638 struct tu_cs *cs,
639 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot)
640 {
641 const struct tu_framebuffer *fb = cmd->state.framebuffer;
642
643 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
644 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
645
646 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
647 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
648
649 const uint32_t x1 = fb->tile0.width * tx;
650 const uint32_t y1 = fb->tile0.height * ty;
651 const uint32_t x2 = x1 + fb->tile0.width - 1;
652 const uint32_t y2 = y1 + fb->tile0.height - 1;
653 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
654 tu6_emit_window_offset(cs, x1, y1);
655
656 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
657
658 if (use_hw_binning(cmd)) {
659 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
660
661 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
662 tu_cs_emit(cs, 0x0);
663
664 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
665 tu_cs_emit(cs, fb->pipe_sizes[pipe] |
666 CP_SET_BIN_DATA5_0_VSC_N(slot));
667 tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
668 tu_cs_emit(cs, pipe * 4);
669 tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
670
671 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
672 tu_cs_emit(cs, 0x0);
673
674 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
675 tu_cs_emit(cs, 0x0);
676 } else {
677 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
678 tu_cs_emit(cs, 0x1);
679
680 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
681 tu_cs_emit(cs, 0x0);
682 }
683 }
684
685 static void
686 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
687 struct tu_cs *cs,
688 uint32_t layer_mask,
689 uint32_t a,
690 uint32_t gmem_a)
691 {
692 const struct tu_framebuffer *fb = cmd->state.framebuffer;
693 struct tu_image_view *dst = fb->attachments[a].attachment;
694 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
695
696 tu_resolve_sysmem(cmd, cs, src, dst, layer_mask, fb->layers, &cmd->state.render_area);
697 }
698
699 static void
700 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
701 struct tu_cs *cs,
702 const struct tu_subpass *subpass)
703 {
704 if (subpass->resolve_attachments) {
705 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
706 * Commands":
707 *
708 * End-of-subpass multisample resolves are treated as color
709 * attachment writes for the purposes of synchronization. That is,
710 * they are considered to execute in the
711 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
712 * their writes are synchronized with
713 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
714 * rendering within a subpass and any resolve operations at the end
715 * of the subpass occurs automatically, without need for explicit
716 * dependencies or pipeline barriers. However, if the resolve
717 * attachment is also used in a different subpass, an explicit
718 * dependency is needed.
719 *
720 * We use the CP_BLIT path for sysmem resolves, which is really a
721 * transfer command, so we have to manually flush similar to the gmem
722 * resolve case. However, a flush afterwards isn't needed because of the
723 * last sentence and the fact that we're in sysmem mode.
724 */
725 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
726 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
727
728 /* Wait for the flushes to land before using the 2D engine */
729 tu_cs_emit_wfi(cs);
730
731 for (unsigned i = 0; i < subpass->color_count; i++) {
732 uint32_t a = subpass->resolve_attachments[i].attachment;
733 if (a == VK_ATTACHMENT_UNUSED)
734 continue;
735
736 tu6_emit_sysmem_resolve(cmd, cs, subpass->multiview_mask, a,
737 subpass->color_attachments[i].attachment);
738 }
739 }
740 }
741
742 static void
743 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
744 {
745 const struct tu_render_pass *pass = cmd->state.pass;
746 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
747
748 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
749 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
750 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
751 CP_SET_DRAW_STATE__0_GROUP_ID(0));
752 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
753 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
754
755 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
756 tu_cs_emit(cs, 0x0);
757
758 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
759 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
760
761 tu6_emit_blit_scissor(cmd, cs, true);
762
763 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
764 if (pass->attachments[a].gmem_offset >= 0)
765 tu_store_gmem_attachment(cmd, cs, a, a);
766 }
767
768 if (subpass->resolve_attachments) {
769 for (unsigned i = 0; i < subpass->color_count; i++) {
770 uint32_t a = subpass->resolve_attachments[i].attachment;
771 if (a != VK_ATTACHMENT_UNUSED)
772 tu_store_gmem_attachment(cmd, cs, a,
773 subpass->color_attachments[i].attachment);
774 }
775 }
776 }
777
778 static void
779 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
780 {
781 struct tu_device *dev = cmd->device;
782 const struct tu_physical_device *phys_dev = dev->physical_device;
783
784 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
785
786 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
787 .vs_state = true,
788 .hs_state = true,
789 .ds_state = true,
790 .gs_state = true,
791 .fs_state = true,
792 .cs_state = true,
793 .gfx_ibo = true,
794 .cs_ibo = true,
795 .gfx_shared_const = true,
796 .cs_shared_const = true,
797 .gfx_bindless = 0x1f,
798 .cs_bindless = 0x1f));
799
800 tu_cs_emit_wfi(cs);
801
802 cmd->state.cache.pending_flush_bits &=
803 ~(TU_CMD_FLAG_WAIT_FOR_IDLE | TU_CMD_FLAG_CACHE_INVALIDATE);
804
805 tu_cs_emit_regs(cs,
806 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
807 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
808 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
809 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
810 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
811 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
812 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
813 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
814 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
815 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
816
817 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
818 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
819 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
820 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
821 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
822 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
823 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_SHARED_CONSTS, 0);
824 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
825 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
826 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
827 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
828 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
829 tu_cs_emit_write_reg(cs, REG_A6XX_SP_MODE_CONTROL,
830 A6XX_SP_MODE_CONTROL_CONSTANT_DEMOTION_ENABLE | 4);
831
832 /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
833 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
834 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
835 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
836
837 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
838
839 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
840
841 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
842 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
843 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
844 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
845 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
846 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
847 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
848 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
849 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
850 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
851 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
852
853 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
854
855 tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false));
856 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
857
858 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
859
860 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
861
862 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
863 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MULTIVIEW_CNTL, 0);
864
865 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
866
867 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
868
869 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
870 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
871 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
872 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
873 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
874 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
875 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
876 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
877 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
878
879 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
880
881 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MULTIVIEW_CNTL, 0);
882
883 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
884
885 /* we don't use this yet.. probably best to disable.. */
886 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
887 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
888 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
889 CP_SET_DRAW_STATE__0_GROUP_ID(0));
890 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
891 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
892
893 tu_cs_emit_regs(cs,
894 A6XX_SP_HS_CTRL_REG0(0));
895
896 tu_cs_emit_regs(cs,
897 A6XX_SP_GS_CTRL_REG0(0));
898
899 tu_cs_emit_regs(cs,
900 A6XX_GRAS_LRZ_CNTL(0));
901
902 tu_cs_emit_regs(cs,
903 A6XX_RB_LRZ_CNTL(0));
904
905 tu_cs_emit_regs(cs,
906 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
907 .bo_offset = gb_offset(bcolor_builtin)));
908 tu_cs_emit_regs(cs,
909 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
910 .bo_offset = gb_offset(bcolor_builtin)));
911
912 /* VSC buffers:
913 * use vsc pitches from the largest values used so far with this device
914 * if there hasn't been overflow, there will already be a scratch bo
915 * allocated for these sizes
916 *
917 * if overflow is detected, the stream size is increased by 2x
918 */
919 mtx_lock(&dev->mutex);
920
921 struct tu6_global *global = dev->global_bo.map;
922
923 uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
924 uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
925
926 if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
927 dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
928
929 if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
930 dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
931
932 cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
933 cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
934
935 mtx_unlock(&dev->mutex);
936
937 struct tu_bo *vsc_bo;
938 uint32_t size0 = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES +
939 cmd->vsc_draw_strm_pitch * MAX_VSC_PIPES;
940
941 tu_get_scratch_bo(dev, size0 + MAX_VSC_PIPES * 4, &vsc_bo);
942
943 tu_cs_emit_regs(cs,
944 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
945 tu_cs_emit_regs(cs,
946 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
947 tu_cs_emit_regs(cs,
948 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
949 .bo_offset = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES));
950
951 tu_bo_list_add(&cmd->bo_list, vsc_bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
952
953 tu_cs_sanity_check(cs);
954 }
955
956 static void
957 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
958 {
959 const struct tu_framebuffer *fb = cmd->state.framebuffer;
960
961 tu_cs_emit_regs(cs,
962 A6XX_VSC_BIN_SIZE(.width = fb->tile0.width,
963 .height = fb->tile0.height));
964
965 tu_cs_emit_regs(cs,
966 A6XX_VSC_BIN_COUNT(.nx = fb->tile_count.width,
967 .ny = fb->tile_count.height));
968
969 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
970 tu_cs_emit_array(cs, fb->pipe_config, 32);
971
972 tu_cs_emit_regs(cs,
973 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
974 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
975
976 tu_cs_emit_regs(cs,
977 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
978 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
979 }
980
981 static void
982 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
983 {
984 const struct tu_framebuffer *fb = cmd->state.framebuffer;
985 const uint32_t used_pipe_count =
986 fb->pipe_count.width * fb->pipe_count.height;
987
988 for (int i = 0; i < used_pipe_count; i++) {
989 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
990 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
991 CP_COND_WRITE5_0_WRITE_MEMORY);
992 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
993 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
994 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
995 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
996 tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
997 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
998
999 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1000 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1001 CP_COND_WRITE5_0_WRITE_MEMORY);
1002 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
1003 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1004 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
1005 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1006 tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
1007 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
1008 }
1009
1010 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1011 }
1012
1013 static void
1014 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1015 {
1016 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1017 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1018
1019 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1020
1021 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1022 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
1023
1024 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1025 tu_cs_emit(cs, 0x1);
1026
1027 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1028 tu_cs_emit(cs, 0x1);
1029
1030 tu_cs_emit_wfi(cs);
1031
1032 tu_cs_emit_regs(cs,
1033 A6XX_VFD_MODE_CNTL(.binning_pass = true));
1034
1035 update_vsc_pipe(cmd, cs);
1036
1037 tu_cs_emit_regs(cs,
1038 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1039
1040 tu_cs_emit_regs(cs,
1041 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1042
1043 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1044 tu_cs_emit(cs, UNK_2C);
1045
1046 tu_cs_emit_regs(cs,
1047 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1048
1049 tu_cs_emit_regs(cs,
1050 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1051
1052 /* emit IB to binning drawcmds: */
1053 tu_cs_emit_call(cs, &cmd->draw_cs);
1054
1055 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1056 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1057 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1058 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1059 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1060 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1061
1062 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1063 tu_cs_emit(cs, UNK_2D);
1064
1065 /* This flush is probably required because the VSC, which produces the
1066 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1067 * visibility stream (without caching) to do draw skipping. The
1068 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1069 * submitted are finished before reading the VSC regs (in
1070 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1071 * part of draws).
1072 */
1073 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1074
1075 tu_cs_emit_wfi(cs);
1076
1077 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1078
1079 emit_vsc_overflow_test(cmd, cs);
1080
1081 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1082 tu_cs_emit(cs, 0x0);
1083
1084 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1085 tu_cs_emit(cs, 0x0);
1086 }
1087
1088 static struct tu_draw_state
1089 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1090 const struct tu_subpass *subpass,
1091 bool gmem)
1092 {
1093 /* note: we can probably emit input attachments just once for the whole
1094 * renderpass, this would avoid emitting both sysmem/gmem versions
1095 *
1096 * emit two texture descriptors for each input, as a workaround for
1097 * d24s8/d32s8, which can be sampled as both float (depth) and integer (stencil)
1098 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1099 * in the pair
1100 * TODO: a smarter workaround
1101 */
1102
1103 if (!subpass->input_count)
1104 return (struct tu_draw_state) {};
1105
1106 struct tu_cs_memory texture;
1107 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1108 A6XX_TEX_CONST_DWORDS, &texture);
1109 assert(result == VK_SUCCESS);
1110
1111 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1112 uint32_t a = subpass->input_attachments[i / 2].attachment;
1113 if (a == VK_ATTACHMENT_UNUSED)
1114 continue;
1115
1116 struct tu_image_view *iview =
1117 cmd->state.framebuffer->attachments[a].attachment;
1118 const struct tu_render_pass_attachment *att =
1119 &cmd->state.pass->attachments[a];
1120 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1121 uint32_t gmem_offset = att->gmem_offset;
1122 uint32_t cpp = att->cpp;
1123
1124 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1125
1126 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1127 /* note this works because spec says fb and input attachments
1128 * must use identity swizzle
1129 */
1130 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1131 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1132 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1133 if (cmd->device->physical_device->limited_z24s8) {
1134 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_8_8_8_UINT) |
1135 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_W) |
1136 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1137 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1138 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1139 } else {
1140 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_Z24_UINT_S8_UINT) |
1141 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1142 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1143 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1144 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1145 }
1146 }
1147
1148 if (i % 2 == 1 && att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
1149 dst[0] &= ~A6XX_TEX_CONST_0_FMT__MASK;
1150 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_UINT);
1151 dst[2] &= ~(A6XX_TEX_CONST_2_PITCHALIGN__MASK | A6XX_TEX_CONST_2_PITCH__MASK);
1152 dst[2] |= A6XX_TEX_CONST_2_PITCH(iview->stencil_PITCH << 6);
1153 dst[3] = 0;
1154 dst[4] = iview->stencil_base_addr;
1155 dst[5] = (dst[5] & 0xffff) | iview->stencil_base_addr >> 32;
1156
1157 cpp = att->samples;
1158 gmem_offset = att->gmem_offset_stencil;
1159 }
1160
1161 if (!gmem)
1162 continue;
1163
1164 /* patched for gmem */
1165 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1166 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1167 dst[2] =
1168 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1169 A6XX_TEX_CONST_2_PITCH(cmd->state.framebuffer->tile0.width * cpp);
1170 dst[3] = 0;
1171 dst[4] = cmd->device->physical_device->gmem_base + gmem_offset;
1172 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1173 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1174 dst[i] = 0;
1175 }
1176
1177 struct tu_cs cs;
1178 struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
1179
1180 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1181 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1182 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1183 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1184 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1185 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1186 tu_cs_emit_qw(&cs, texture.iova);
1187
1188 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1189 tu_cs_emit_qw(&cs, texture.iova);
1190
1191 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1192
1193 assert(cs.cur == cs.end); /* validate draw state size */
1194
1195 return ds;
1196 }
1197
1198 static void
1199 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1200 {
1201 struct tu_cs *cs = &cmd->draw_cs;
1202
1203 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1204 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
1205 tu_emit_input_attachments(cmd, subpass, true));
1206 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
1207 tu_emit_input_attachments(cmd, subpass, false));
1208 }
1209
1210 static void
1211 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1212 const VkRenderPassBeginInfo *info)
1213 {
1214 struct tu_cs *cs = &cmd->draw_cs;
1215
1216 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1217
1218 tu6_emit_blit_scissor(cmd, cs, true);
1219
1220 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1221 tu_load_gmem_attachment(cmd, cs, i, false);
1222
1223 tu6_emit_blit_scissor(cmd, cs, false);
1224
1225 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1226 tu_clear_gmem_attachment(cmd, cs, i, info);
1227
1228 tu_cond_exec_end(cs);
1229
1230 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1231
1232 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1233 tu_clear_sysmem_attachment(cmd, cs, i, info);
1234
1235 tu_cond_exec_end(cs);
1236 }
1237
1238 static void
1239 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1240 {
1241 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1242
1243 assert(fb->width > 0 && fb->height > 0);
1244 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1245 tu6_emit_window_offset(cs, 0, 0);
1246
1247 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1248
1249 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1250
1251 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1252 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1253
1254 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1255 tu_cs_emit(cs, 0x0);
1256
1257 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1258
1259 /* enable stream-out, with sysmem there is only one pass: */
1260 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1261
1262 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1263 tu_cs_emit(cs, 0x1);
1264
1265 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1266 tu_cs_emit(cs, 0x0);
1267
1268 tu_cs_sanity_check(cs);
1269 }
1270
1271 static void
1272 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1273 {
1274 /* Do any resolves of the last subpass. These are handled in the
1275 * tile_store_ib in the gmem path.
1276 */
1277 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1278
1279 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1280
1281 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1282 tu_cs_emit(cs, 0x0);
1283
1284 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1285
1286 tu_cs_sanity_check(cs);
1287 }
1288
1289 static void
1290 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1291 {
1292 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1293
1294 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1295
1296 /* lrz clear? */
1297
1298 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1299 tu_cs_emit(cs, 0x0);
1300
1301 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1302
1303 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1304 if (use_hw_binning(cmd)) {
1305 /* enable stream-out during binning pass: */
1306 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1307
1308 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1309 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1310
1311 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1312
1313 tu6_emit_binning_pass(cmd, cs);
1314
1315 /* and disable stream-out for draw pass: */
1316 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
1317
1318 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1319 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1320
1321 tu_cs_emit_regs(cs,
1322 A6XX_VFD_MODE_CNTL(0));
1323
1324 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1325
1326 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1327
1328 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1329 tu_cs_emit(cs, 0x1);
1330 } else {
1331 /* no binning pass, so enable stream-out for draw pass:: */
1332 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1333
1334 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height, 0x6000000);
1335 }
1336
1337 tu_cs_sanity_check(cs);
1338 }
1339
1340 static void
1341 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1342 {
1343 tu_cs_emit_call(cs, &cmd->draw_cs);
1344
1345 if (use_hw_binning(cmd)) {
1346 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1347 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1348 }
1349
1350 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1351
1352 tu_cs_sanity_check(cs);
1353 }
1354
1355 static void
1356 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1357 {
1358 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1359
1360 tu_cs_emit_regs(cs,
1361 A6XX_GRAS_LRZ_CNTL(0));
1362
1363 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1364
1365 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1366
1367 tu_cs_sanity_check(cs);
1368 }
1369
1370 static void
1371 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1372 {
1373 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1374
1375 tu6_tile_render_begin(cmd, &cmd->cs);
1376
1377 uint32_t pipe = 0;
1378 for (uint32_t py = 0; py < fb->pipe_count.height; py++) {
1379 for (uint32_t px = 0; px < fb->pipe_count.width; px++, pipe++) {
1380 uint32_t tx1 = px * fb->pipe0.width;
1381 uint32_t ty1 = py * fb->pipe0.height;
1382 uint32_t tx2 = MIN2(tx1 + fb->pipe0.width, fb->tile_count.width);
1383 uint32_t ty2 = MIN2(ty1 + fb->pipe0.height, fb->tile_count.height);
1384 uint32_t slot = 0;
1385 for (uint32_t ty = ty1; ty < ty2; ty++) {
1386 for (uint32_t tx = tx1; tx < tx2; tx++, slot++) {
1387 tu6_emit_tile_select(cmd, &cmd->cs, tx, ty, pipe, slot);
1388 tu6_render_tile(cmd, &cmd->cs);
1389 }
1390 }
1391 }
1392 }
1393
1394 tu6_tile_render_end(cmd, &cmd->cs);
1395 }
1396
1397 static void
1398 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1399 {
1400 tu6_sysmem_render_begin(cmd, &cmd->cs);
1401
1402 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1403
1404 tu6_sysmem_render_end(cmd, &cmd->cs);
1405 }
1406
1407 static void
1408 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1409 {
1410 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1411 struct tu_cs sub_cs;
1412
1413 VkResult result =
1414 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1415 if (result != VK_SUCCESS) {
1416 cmd->record_result = result;
1417 return;
1418 }
1419
1420 /* emit to tile-store sub_cs */
1421 tu6_emit_tile_store(cmd, &sub_cs);
1422
1423 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1424 }
1425
1426 static VkResult
1427 tu_create_cmd_buffer(struct tu_device *device,
1428 struct tu_cmd_pool *pool,
1429 VkCommandBufferLevel level,
1430 VkCommandBuffer *pCommandBuffer)
1431 {
1432 struct tu_cmd_buffer *cmd_buffer;
1433
1434 cmd_buffer = vk_object_zalloc(&device->vk, NULL, sizeof(*cmd_buffer),
1435 VK_OBJECT_TYPE_COMMAND_BUFFER);
1436 if (cmd_buffer == NULL)
1437 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1438
1439 cmd_buffer->device = device;
1440 cmd_buffer->pool = pool;
1441 cmd_buffer->level = level;
1442
1443 if (pool) {
1444 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1445 cmd_buffer->queue_family_index = pool->queue_family_index;
1446
1447 } else {
1448 /* Init the pool_link so we can safely call list_del when we destroy
1449 * the command buffer
1450 */
1451 list_inithead(&cmd_buffer->pool_link);
1452 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1453 }
1454
1455 tu_bo_list_init(&cmd_buffer->bo_list);
1456 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1457 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1458 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1459 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1460
1461 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1462
1463 list_inithead(&cmd_buffer->upload.list);
1464
1465 return VK_SUCCESS;
1466 }
1467
1468 static void
1469 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1470 {
1471 list_del(&cmd_buffer->pool_link);
1472
1473 tu_cs_finish(&cmd_buffer->cs);
1474 tu_cs_finish(&cmd_buffer->draw_cs);
1475 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1476 tu_cs_finish(&cmd_buffer->sub_cs);
1477
1478 tu_bo_list_destroy(&cmd_buffer->bo_list);
1479 vk_object_free(&cmd_buffer->device->vk, &cmd_buffer->pool->alloc, cmd_buffer);
1480 }
1481
1482 static VkResult
1483 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1484 {
1485 cmd_buffer->record_result = VK_SUCCESS;
1486
1487 tu_bo_list_reset(&cmd_buffer->bo_list);
1488 tu_cs_reset(&cmd_buffer->cs);
1489 tu_cs_reset(&cmd_buffer->draw_cs);
1490 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1491 tu_cs_reset(&cmd_buffer->sub_cs);
1492
1493 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1494 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1495
1496 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1497
1498 return cmd_buffer->record_result;
1499 }
1500
1501 VkResult
1502 tu_AllocateCommandBuffers(VkDevice _device,
1503 const VkCommandBufferAllocateInfo *pAllocateInfo,
1504 VkCommandBuffer *pCommandBuffers)
1505 {
1506 TU_FROM_HANDLE(tu_device, device, _device);
1507 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1508
1509 VkResult result = VK_SUCCESS;
1510 uint32_t i;
1511
1512 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1513
1514 if (!list_is_empty(&pool->free_cmd_buffers)) {
1515 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1516 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1517
1518 list_del(&cmd_buffer->pool_link);
1519 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1520
1521 result = tu_reset_cmd_buffer(cmd_buffer);
1522 cmd_buffer->level = pAllocateInfo->level;
1523
1524 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1525 } else {
1526 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1527 &pCommandBuffers[i]);
1528 }
1529 if (result != VK_SUCCESS)
1530 break;
1531 }
1532
1533 if (result != VK_SUCCESS) {
1534 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1535 pCommandBuffers);
1536
1537 /* From the Vulkan 1.0.66 spec:
1538 *
1539 * "vkAllocateCommandBuffers can be used to create multiple
1540 * command buffers. If the creation of any of those command
1541 * buffers fails, the implementation must destroy all
1542 * successfully created command buffer objects from this
1543 * command, set all entries of the pCommandBuffers array to
1544 * NULL and return the error."
1545 */
1546 memset(pCommandBuffers, 0,
1547 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1548 }
1549
1550 return result;
1551 }
1552
1553 void
1554 tu_FreeCommandBuffers(VkDevice device,
1555 VkCommandPool commandPool,
1556 uint32_t commandBufferCount,
1557 const VkCommandBuffer *pCommandBuffers)
1558 {
1559 for (uint32_t i = 0; i < commandBufferCount; i++) {
1560 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1561
1562 if (cmd_buffer) {
1563 if (cmd_buffer->pool) {
1564 list_del(&cmd_buffer->pool_link);
1565 list_addtail(&cmd_buffer->pool_link,
1566 &cmd_buffer->pool->free_cmd_buffers);
1567 } else
1568 tu_cmd_buffer_destroy(cmd_buffer);
1569 }
1570 }
1571 }
1572
1573 VkResult
1574 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1575 VkCommandBufferResetFlags flags)
1576 {
1577 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1578 return tu_reset_cmd_buffer(cmd_buffer);
1579 }
1580
1581 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1582 * invalidations.
1583 */
1584 static void
1585 tu_cache_init(struct tu_cache_state *cache)
1586 {
1587 cache->flush_bits = 0;
1588 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1589 }
1590
1591 VkResult
1592 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1593 const VkCommandBufferBeginInfo *pBeginInfo)
1594 {
1595 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1596 VkResult result = VK_SUCCESS;
1597
1598 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1599 /* If the command buffer has already been resetted with
1600 * vkResetCommandBuffer, no need to do it again.
1601 */
1602 result = tu_reset_cmd_buffer(cmd_buffer);
1603 if (result != VK_SUCCESS)
1604 return result;
1605 }
1606
1607 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1608 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1609
1610 tu_cache_init(&cmd_buffer->state.cache);
1611 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1612 cmd_buffer->usage_flags = pBeginInfo->flags;
1613
1614 tu_cs_begin(&cmd_buffer->cs);
1615 tu_cs_begin(&cmd_buffer->draw_cs);
1616 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1617
1618 /* setup initial configuration into command buffer */
1619 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1620 switch (cmd_buffer->queue_family_index) {
1621 case TU_QUEUE_GENERAL:
1622 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1623 break;
1624 default:
1625 break;
1626 }
1627 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1628 assert(pBeginInfo->pInheritanceInfo);
1629
1630 vk_foreach_struct(ext, pBeginInfo->pInheritanceInfo) {
1631 switch (ext->sType) {
1632 case VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT: {
1633 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *cond_rend = (void *) ext;
1634 cmd_buffer->state.predication_active = cond_rend->conditionalRenderingEnable;
1635 break;
1636 default:
1637 break;
1638 }
1639 }
1640 }
1641
1642 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1643 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1644 cmd_buffer->state.subpass =
1645 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1646 } else {
1647 /* When executing in the middle of another command buffer, the CCU
1648 * state is unknown.
1649 */
1650 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1651 }
1652 }
1653
1654 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1655
1656 return VK_SUCCESS;
1657 }
1658
1659 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1660 * rendering can skip over unused state), so we need to collect all the
1661 * bindings together into a single state emit at draw time.
1662 */
1663 void
1664 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1665 uint32_t firstBinding,
1666 uint32_t bindingCount,
1667 const VkBuffer *pBuffers,
1668 const VkDeviceSize *pOffsets)
1669 {
1670 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1671
1672 assert(firstBinding + bindingCount <= MAX_VBS);
1673
1674 for (uint32_t i = 0; i < bindingCount; i++) {
1675 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1676
1677 cmd->state.vb.buffers[firstBinding + i] = buf;
1678 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1679
1680 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1681 }
1682
1683 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1684 }
1685
1686 void
1687 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1688 VkBuffer buffer,
1689 VkDeviceSize offset,
1690 VkIndexType indexType)
1691 {
1692 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1693 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1694
1695
1696
1697 uint32_t index_size, index_shift, restart_index;
1698
1699 switch (indexType) {
1700 case VK_INDEX_TYPE_UINT16:
1701 index_size = INDEX4_SIZE_16_BIT;
1702 index_shift = 1;
1703 restart_index = 0xffff;
1704 break;
1705 case VK_INDEX_TYPE_UINT32:
1706 index_size = INDEX4_SIZE_32_BIT;
1707 index_shift = 2;
1708 restart_index = 0xffffffff;
1709 break;
1710 case VK_INDEX_TYPE_UINT8_EXT:
1711 index_size = INDEX4_SIZE_8_BIT;
1712 index_shift = 0;
1713 restart_index = 0xff;
1714 break;
1715 default:
1716 unreachable("invalid VkIndexType");
1717 }
1718
1719 /* initialize/update the restart index */
1720 if (cmd->state.index_size != index_size)
1721 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1722
1723 assert(buf->size >= offset);
1724
1725 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1726 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1727 cmd->state.index_size = index_size;
1728
1729 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1730 }
1731
1732 void
1733 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1734 VkPipelineBindPoint pipelineBindPoint,
1735 VkPipelineLayout _layout,
1736 uint32_t firstSet,
1737 uint32_t descriptorSetCount,
1738 const VkDescriptorSet *pDescriptorSets,
1739 uint32_t dynamicOffsetCount,
1740 const uint32_t *pDynamicOffsets)
1741 {
1742 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1743 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1744 unsigned dyn_idx = 0;
1745
1746 struct tu_descriptor_state *descriptors_state =
1747 tu_get_descriptors_state(cmd, pipelineBindPoint);
1748
1749 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1750 unsigned idx = i + firstSet;
1751 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1752
1753 descriptors_state->sets[idx] = set;
1754
1755 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1756 /* update the contents of the dynamic descriptor set */
1757 unsigned src_idx = j;
1758 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1759 assert(dyn_idx < dynamicOffsetCount);
1760
1761 uint32_t *dst =
1762 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1763 uint32_t *src =
1764 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1765 uint32_t offset = pDynamicOffsets[dyn_idx];
1766
1767 /* Patch the storage/uniform descriptors right away. */
1768 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1769 /* Note: we can assume here that the addition won't roll over and
1770 * change the SIZE field.
1771 */
1772 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1773 va += offset;
1774 dst[0] = va;
1775 dst[1] = va >> 32;
1776 } else {
1777 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1778 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1779 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1780 va += offset;
1781 dst[4] = va;
1782 dst[5] = va >> 32;
1783 }
1784 }
1785
1786 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1787 if (set->buffers[j]) {
1788 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1789 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1790 }
1791 }
1792
1793 if (set->size > 0) {
1794 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1795 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1796 }
1797 }
1798 assert(dyn_idx == dynamicOffsetCount);
1799
1800 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_invalidate_value;
1801 uint64_t addr[MAX_SETS + 1] = {};
1802 struct tu_cs *cs, state_cs;
1803
1804 for (uint32_t i = 0; i < MAX_SETS; i++) {
1805 struct tu_descriptor_set *set = descriptors_state->sets[i];
1806 if (set)
1807 addr[i] = set->va | 3;
1808 }
1809
1810 if (layout->dynamic_offset_count) {
1811 /* allocate and fill out dynamic descriptor set */
1812 struct tu_cs_memory dynamic_desc_set;
1813 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1814 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1815 assert(result == VK_SUCCESS);
1816
1817 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1818 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1819 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1820 }
1821
1822 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1823 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1824 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1825 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_GFX_BINDLESS(0x1f);
1826
1827 cmd->state.desc_sets = tu_cs_draw_state(&cmd->sub_cs, &state_cs, 24);
1828 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
1829 cs = &state_cs;
1830 } else {
1831 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1832
1833 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1834 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1835 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_CS_BINDLESS(0x1f);
1836
1837 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
1838 cs = &cmd->cs;
1839 }
1840
1841 tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 10);
1842 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1843 tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 10);
1844 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1845 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(.dword = hlsq_invalidate_value));
1846
1847 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1848 assert(cs->cur == cs->end); /* validate draw state size */
1849 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1850 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
1851 }
1852 }
1853
1854 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1855 uint32_t firstBinding,
1856 uint32_t bindingCount,
1857 const VkBuffer *pBuffers,
1858 const VkDeviceSize *pOffsets,
1859 const VkDeviceSize *pSizes)
1860 {
1861 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1862 struct tu_cs *cs = &cmd->draw_cs;
1863
1864 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1865 * presumably there isn't any benefit using a draw state when the
1866 * condition is (SYSMEM | BINNING)
1867 */
1868 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1869 CP_COND_REG_EXEC_0_SYSMEM |
1870 CP_COND_REG_EXEC_0_BINNING);
1871
1872 for (uint32_t i = 0; i < bindingCount; i++) {
1873 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1874 uint64_t iova = buf->bo->iova + pOffsets[i];
1875 uint32_t size = buf->bo->size - pOffsets[i];
1876 uint32_t idx = i + firstBinding;
1877
1878 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1879 size = pSizes[i];
1880
1881 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1882 uint32_t offset = iova & 0x1f;
1883 iova &= ~(uint64_t) 0x1f;
1884
1885 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1886 tu_cs_emit_qw(cs, iova);
1887 tu_cs_emit(cs, size + offset);
1888
1889 cmd->state.streamout_offset[idx] = offset;
1890
1891 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1892 }
1893
1894 tu_cond_exec_end(cs);
1895 }
1896
1897 void
1898 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1899 uint32_t firstCounterBuffer,
1900 uint32_t counterBufferCount,
1901 const VkBuffer *pCounterBuffers,
1902 const VkDeviceSize *pCounterBufferOffsets)
1903 {
1904 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1905 struct tu_cs *cs = &cmd->draw_cs;
1906
1907 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1908 CP_COND_REG_EXEC_0_SYSMEM |
1909 CP_COND_REG_EXEC_0_BINNING);
1910
1911 /* TODO: only update offset for active buffers */
1912 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1913 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1914
1915 for (uint32_t i = 0; i < counterBufferCount; i++) {
1916 uint32_t idx = firstCounterBuffer + i;
1917 uint32_t offset = cmd->state.streamout_offset[idx];
1918
1919 if (!pCounterBuffers[i])
1920 continue;
1921
1922 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1923
1924 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1925
1926 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1927 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1928 CP_MEM_TO_REG_0_UNK31 |
1929 CP_MEM_TO_REG_0_CNT(1));
1930 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1931
1932 if (offset) {
1933 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1934 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1935 CP_REG_RMW_0_SRC1_ADD);
1936 tu_cs_emit_qw(cs, 0xffffffff);
1937 tu_cs_emit_qw(cs, offset);
1938 }
1939 }
1940
1941 tu_cond_exec_end(cs);
1942 }
1943
1944 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1945 uint32_t firstCounterBuffer,
1946 uint32_t counterBufferCount,
1947 const VkBuffer *pCounterBuffers,
1948 const VkDeviceSize *pCounterBufferOffsets)
1949 {
1950 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1951 struct tu_cs *cs = &cmd->draw_cs;
1952
1953 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1954 CP_COND_REG_EXEC_0_SYSMEM |
1955 CP_COND_REG_EXEC_0_BINNING);
1956
1957 /* TODO: only flush buffers that need to be flushed */
1958 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
1959 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
1960 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
1961 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[i]));
1962 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
1963 }
1964
1965 for (uint32_t i = 0; i < counterBufferCount; i++) {
1966 uint32_t idx = firstCounterBuffer + i;
1967 uint32_t offset = cmd->state.streamout_offset[idx];
1968
1969 if (!pCounterBuffers[i])
1970 continue;
1971
1972 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1973
1974 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1975
1976 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
1977 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1978 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1979 CP_MEM_TO_REG_0_SHIFT_BY_2 |
1980 0x40000 | /* ??? */
1981 CP_MEM_TO_REG_0_UNK31 |
1982 CP_MEM_TO_REG_0_CNT(1));
1983 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[idx]));
1984
1985 if (offset) {
1986 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1987 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1988 CP_REG_RMW_0_SRC1_ADD);
1989 tu_cs_emit_qw(cs, 0xffffffff);
1990 tu_cs_emit_qw(cs, -offset);
1991 }
1992
1993 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
1994 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1995 CP_REG_TO_MEM_0_CNT(1));
1996 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1997 }
1998
1999 tu_cond_exec_end(cs);
2000
2001 cmd->state.xfb_used = true;
2002 }
2003
2004 void
2005 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
2006 VkPipelineLayout layout,
2007 VkShaderStageFlags stageFlags,
2008 uint32_t offset,
2009 uint32_t size,
2010 const void *pValues)
2011 {
2012 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2013 memcpy((void*) cmd->push_constants + offset, pValues, size);
2014 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2015 }
2016
2017 /* Flush everything which has been made available but we haven't actually
2018 * flushed yet.
2019 */
2020 static void
2021 tu_flush_all_pending(struct tu_cache_state *cache)
2022 {
2023 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2024 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
2025 }
2026
2027 VkResult
2028 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
2029 {
2030 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
2031
2032 /* We currently flush CCU at the end of the command buffer, like
2033 * what the blob does. There's implicit synchronization around every
2034 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
2035 * know yet if this command buffer will be the last in the submit so we
2036 * have to defensively flush everything else.
2037 *
2038 * TODO: We could definitely do better than this, since these flushes
2039 * aren't required by Vulkan, but we'd need kernel support to do that.
2040 * Ideally, we'd like the kernel to flush everything afterwards, so that we
2041 * wouldn't have to do any flushes here, and when submitting multiple
2042 * command buffers there wouldn't be any unnecessary flushes in between.
2043 */
2044 if (cmd_buffer->state.pass) {
2045 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
2046 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
2047 } else {
2048 tu_flush_all_pending(&cmd_buffer->state.cache);
2049 cmd_buffer->state.cache.flush_bits |=
2050 TU_CMD_FLAG_CCU_FLUSH_COLOR |
2051 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
2052 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
2053 }
2054
2055 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->global_bo,
2056 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2057
2058 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
2059 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
2060 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2061 }
2062
2063 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
2064 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
2065 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2066 }
2067
2068 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
2069 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
2070 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2071 }
2072
2073 tu_cs_end(&cmd_buffer->cs);
2074 tu_cs_end(&cmd_buffer->draw_cs);
2075 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
2076
2077 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
2078
2079 return cmd_buffer->record_result;
2080 }
2081
2082 static struct tu_cs
2083 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2084 {
2085 struct tu_cs cs;
2086
2087 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2088 cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
2089
2090 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2091 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2092
2093 return cs;
2094 }
2095
2096 void
2097 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2098 VkPipelineBindPoint pipelineBindPoint,
2099 VkPipeline _pipeline)
2100 {
2101 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2102 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2103
2104 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2105 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2106 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2107 }
2108
2109 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2110 cmd->state.compute_pipeline = pipeline;
2111 tu_cs_emit_state_ib(&cmd->cs, pipeline->program.state);
2112 return;
2113 }
2114
2115 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2116
2117 cmd->state.pipeline = pipeline;
2118 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
2119
2120 struct tu_cs *cs = &cmd->draw_cs;
2121 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2122 uint32_t i;
2123
2124 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2125 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
2126 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
2127 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
2128 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
2129 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
2130 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
2131 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
2132 for_each_bit(i, mask)
2133 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2134
2135 /* If the new pipeline requires more VBs than we had previously set up, we
2136 * need to re-emit them in SDS. If it requires the same set or fewer, we
2137 * can just re-use the old SDS.
2138 */
2139 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2140 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2141
2142 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2143 * so the dynamic state ib must be updated when pipeline changes
2144 */
2145 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2146 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2147
2148 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2149 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2150
2151 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2152 }
2153 }
2154
2155 void
2156 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2157 uint32_t firstViewport,
2158 uint32_t viewportCount,
2159 const VkViewport *pViewports)
2160 {
2161 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2162 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2163
2164 assert(firstViewport == 0 && viewportCount == 1);
2165
2166 tu6_emit_viewport(&cs, pViewports);
2167 }
2168
2169 void
2170 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2171 uint32_t firstScissor,
2172 uint32_t scissorCount,
2173 const VkRect2D *pScissors)
2174 {
2175 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2176 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2177
2178 assert(firstScissor == 0 && scissorCount == 1);
2179
2180 tu6_emit_scissor(&cs, pScissors);
2181 }
2182
2183 void
2184 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2185 {
2186 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2187 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2188
2189 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2190 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2191
2192 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2193 }
2194
2195 void
2196 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2197 float depthBiasConstantFactor,
2198 float depthBiasClamp,
2199 float depthBiasSlopeFactor)
2200 {
2201 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2202 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2203
2204 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2205 }
2206
2207 void
2208 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2209 const float blendConstants[4])
2210 {
2211 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2212 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2213
2214 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2215 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2216 }
2217
2218 void
2219 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2220 float minDepthBounds,
2221 float maxDepthBounds)
2222 {
2223 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2224 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
2225
2226 tu_cs_emit_regs(&cs,
2227 A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
2228 A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
2229 }
2230
2231 static void
2232 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2233 {
2234 if (face & VK_STENCIL_FACE_FRONT_BIT)
2235 *value = (*value & 0xff00) | (mask & 0xff);
2236 if (face & VK_STENCIL_FACE_BACK_BIT)
2237 *value = (*value & 0xff) | (mask & 0xff) << 8;
2238 }
2239
2240 void
2241 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2242 VkStencilFaceFlags faceMask,
2243 uint32_t compareMask)
2244 {
2245 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2246 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2247
2248 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2249
2250 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2251 }
2252
2253 void
2254 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2255 VkStencilFaceFlags faceMask,
2256 uint32_t writeMask)
2257 {
2258 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2259 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2260
2261 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2262
2263 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2264 }
2265
2266 void
2267 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2268 VkStencilFaceFlags faceMask,
2269 uint32_t reference)
2270 {
2271 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2272 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2273
2274 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2275
2276 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2277 }
2278
2279 void
2280 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2281 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2282 {
2283 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2284 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2285
2286 assert(pSampleLocationsInfo);
2287
2288 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2289 }
2290
2291 static void
2292 tu_flush_for_access(struct tu_cache_state *cache,
2293 enum tu_cmd_access_mask src_mask,
2294 enum tu_cmd_access_mask dst_mask)
2295 {
2296 enum tu_cmd_flush_bits flush_bits = 0;
2297
2298 if (src_mask & TU_ACCESS_HOST_WRITE) {
2299 /* Host writes are always visible to CP, so only invalidate GPU caches */
2300 cache->pending_flush_bits |= TU_CMD_FLAG_GPU_INVALIDATE;
2301 }
2302
2303 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2304 /* Invalidate CP and 2D engine (make it do WFI + WFM if necessary) as
2305 * well.
2306 */
2307 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2308 }
2309
2310 if (src_mask & TU_ACCESS_CP_WRITE) {
2311 /* Flush the CP write queue. However a WFI shouldn't be necessary as
2312 * WAIT_MEM_WRITES should cover it.
2313 */
2314 cache->pending_flush_bits |=
2315 TU_CMD_FLAG_WAIT_MEM_WRITES |
2316 TU_CMD_FLAG_GPU_INVALIDATE |
2317 TU_CMD_FLAG_WAIT_FOR_ME;
2318 }
2319
2320 #define SRC_FLUSH(domain, flush, invalidate) \
2321 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2322 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2323 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2324 }
2325
2326 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2327 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2328 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2329
2330 #undef SRC_FLUSH
2331
2332 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2333 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2334 flush_bits |= TU_CMD_FLAG_##flush; \
2335 cache->pending_flush_bits |= \
2336 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2337 }
2338
2339 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2340 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2341
2342 #undef SRC_INCOHERENT_FLUSH
2343
2344 /* Treat host & sysmem write accesses the same, since the kernel implicitly
2345 * drains the queue before signalling completion to the host.
2346 */
2347 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE |
2348 TU_ACCESS_HOST_READ | TU_ACCESS_HOST_WRITE)) {
2349 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2350 }
2351
2352 #define DST_FLUSH(domain, flush, invalidate) \
2353 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2354 TU_ACCESS_##domain##_WRITE)) { \
2355 flush_bits |= cache->pending_flush_bits & \
2356 (TU_CMD_FLAG_##invalidate | \
2357 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2358 }
2359
2360 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2361 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2362 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2363
2364 #undef DST_FLUSH
2365
2366 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2367 if (dst_mask & (TU_ACCESS_##domain##_INCOHERENT_READ | \
2368 TU_ACCESS_##domain##_INCOHERENT_WRITE)) { \
2369 flush_bits |= TU_CMD_FLAG_##invalidate | \
2370 (cache->pending_flush_bits & \
2371 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2372 }
2373
2374 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2375 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2376
2377 #undef DST_INCOHERENT_FLUSH
2378
2379 if (dst_mask & TU_ACCESS_WFI_READ) {
2380 flush_bits |= cache->pending_flush_bits &
2381 (TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_WAIT_FOR_IDLE);
2382 }
2383
2384 if (dst_mask & TU_ACCESS_WFM_READ) {
2385 flush_bits |= cache->pending_flush_bits &
2386 (TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_WAIT_FOR_ME);
2387 }
2388
2389 cache->flush_bits |= flush_bits;
2390 cache->pending_flush_bits &= ~flush_bits;
2391 }
2392
2393 static enum tu_cmd_access_mask
2394 vk2tu_access(VkAccessFlags flags, bool gmem)
2395 {
2396 enum tu_cmd_access_mask mask = 0;
2397
2398 /* If the GPU writes a buffer that is then read by an indirect draw
2399 * command, we theoretically need to emit a WFI to wait for any cache
2400 * flushes, and then a WAIT_FOR_ME to wait on the CP for the WFI to
2401 * complete. Waiting for the WFI to complete is performed as part of the
2402 * draw by the firmware, so we just need to execute the WFI.
2403 *
2404 * Transform feedback counters are read via CP_MEM_TO_REG, which implicitly
2405 * does CP_WAIT_FOR_ME, but we still need a WFI if the GPU writes it.
2406 *
2407 * Currently we read the draw predicate using CP_MEM_TO_MEM, which
2408 * also implicitly does CP_WAIT_FOR_ME. However CP_DRAW_PRED_SET does *not*
2409 * implicitly do CP_WAIT_FOR_ME, it seems to only wait for counters to
2410 * complete since it's written for DX11 where you can only predicate on the
2411 * result of a query object. So if we implement 64-bit comparisons in the
2412 * future, or if CP_DRAW_PRED_SET grows the capability to do 32-bit
2413 * comparisons, then this will have to be dealt with.
2414 */
2415 if (flags &
2416 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2417 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT |
2418 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT |
2419 VK_ACCESS_MEMORY_READ_BIT)) {
2420 mask |= TU_ACCESS_WFI_READ;
2421 }
2422
2423 if (flags &
2424 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2425 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2426 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP */
2427 VK_ACCESS_MEMORY_READ_BIT)) {
2428 mask |= TU_ACCESS_SYSMEM_READ;
2429 }
2430
2431 if (flags &
2432 (VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT |
2433 VK_ACCESS_MEMORY_WRITE_BIT)) {
2434 mask |= TU_ACCESS_CP_WRITE;
2435 }
2436
2437 if (flags &
2438 (VK_ACCESS_HOST_READ_BIT |
2439 VK_ACCESS_MEMORY_WRITE_BIT)) {
2440 mask |= TU_ACCESS_HOST_READ;
2441 }
2442
2443 if (flags &
2444 (VK_ACCESS_HOST_WRITE_BIT |
2445 VK_ACCESS_MEMORY_WRITE_BIT)) {
2446 mask |= TU_ACCESS_HOST_WRITE;
2447 }
2448
2449 if (flags &
2450 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2451 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2452 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2453 /* TODO: Is there a no-cache bit for textures so that we can ignore
2454 * these?
2455 */
2456 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2457 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2458 VK_ACCESS_MEMORY_READ_BIT)) {
2459 mask |= TU_ACCESS_UCHE_READ;
2460 }
2461
2462 if (flags &
2463 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2464 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2465 VK_ACCESS_MEMORY_WRITE_BIT)) {
2466 mask |= TU_ACCESS_UCHE_WRITE;
2467 }
2468
2469 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2470 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2471 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2472 * can ignore CCU and pretend that color attachments and transfers use
2473 * sysmem directly.
2474 */
2475
2476 if (flags &
2477 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2478 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2479 VK_ACCESS_MEMORY_READ_BIT)) {
2480 if (gmem)
2481 mask |= TU_ACCESS_SYSMEM_READ;
2482 else
2483 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2484 }
2485
2486 if (flags &
2487 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2488 VK_ACCESS_MEMORY_READ_BIT)) {
2489 if (gmem)
2490 mask |= TU_ACCESS_SYSMEM_READ;
2491 else
2492 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2493 }
2494
2495 if (flags &
2496 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2497 VK_ACCESS_MEMORY_WRITE_BIT)) {
2498 if (gmem) {
2499 mask |= TU_ACCESS_SYSMEM_WRITE;
2500 } else {
2501 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2502 }
2503 }
2504
2505 if (flags &
2506 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2507 VK_ACCESS_MEMORY_WRITE_BIT)) {
2508 if (gmem) {
2509 mask |= TU_ACCESS_SYSMEM_WRITE;
2510 } else {
2511 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2512 }
2513 }
2514
2515 /* When the dst access is a transfer read/write, it seems we sometimes need
2516 * to insert a WFI after any flushes, to guarantee that the flushes finish
2517 * before the 2D engine starts. However the opposite (i.e. a WFI after
2518 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2519 * the blob doesn't emit such a WFI.
2520 */
2521
2522 if (flags &
2523 (VK_ACCESS_TRANSFER_WRITE_BIT |
2524 VK_ACCESS_MEMORY_WRITE_BIT)) {
2525 if (gmem) {
2526 mask |= TU_ACCESS_SYSMEM_WRITE;
2527 } else {
2528 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2529 }
2530 mask |= TU_ACCESS_WFI_READ;
2531 }
2532
2533 if (flags &
2534 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2535 VK_ACCESS_MEMORY_READ_BIT)) {
2536 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2537 }
2538
2539 return mask;
2540 }
2541
2542
2543 void
2544 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2545 uint32_t commandBufferCount,
2546 const VkCommandBuffer *pCmdBuffers)
2547 {
2548 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2549 VkResult result;
2550
2551 assert(commandBufferCount > 0);
2552
2553 /* Emit any pending flushes. */
2554 if (cmd->state.pass) {
2555 tu_flush_all_pending(&cmd->state.renderpass_cache);
2556 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2557 } else {
2558 tu_flush_all_pending(&cmd->state.cache);
2559 tu_emit_cache_flush(cmd, &cmd->cs);
2560 }
2561
2562 for (uint32_t i = 0; i < commandBufferCount; i++) {
2563 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2564
2565 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2566 if (result != VK_SUCCESS) {
2567 cmd->record_result = result;
2568 break;
2569 }
2570
2571 if (secondary->usage_flags &
2572 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2573 assert(tu_cs_is_empty(&secondary->cs));
2574
2575 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2576 if (result != VK_SUCCESS) {
2577 cmd->record_result = result;
2578 break;
2579 }
2580
2581 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2582 &secondary->draw_epilogue_cs);
2583 if (result != VK_SUCCESS) {
2584 cmd->record_result = result;
2585 break;
2586 }
2587
2588 if (secondary->state.has_tess)
2589 cmd->state.has_tess = true;
2590 if (secondary->state.has_subpass_predication)
2591 cmd->state.has_subpass_predication = true;
2592 } else {
2593 assert(tu_cs_is_empty(&secondary->draw_cs));
2594 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2595
2596 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2597 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2598 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2599 }
2600
2601 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2602 }
2603
2604 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2605 }
2606 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2607
2608 /* After executing secondary command buffers, there may have been arbitrary
2609 * flushes executed, so when we encounter a pipeline barrier with a
2610 * srcMask, we have to assume that we need to invalidate. Therefore we need
2611 * to re-initialize the cache with all pending invalidate bits set.
2612 */
2613 if (cmd->state.pass) {
2614 tu_cache_init(&cmd->state.renderpass_cache);
2615 } else {
2616 tu_cache_init(&cmd->state.cache);
2617 }
2618 }
2619
2620 VkResult
2621 tu_CreateCommandPool(VkDevice _device,
2622 const VkCommandPoolCreateInfo *pCreateInfo,
2623 const VkAllocationCallbacks *pAllocator,
2624 VkCommandPool *pCmdPool)
2625 {
2626 TU_FROM_HANDLE(tu_device, device, _device);
2627 struct tu_cmd_pool *pool;
2628
2629 pool = vk_object_alloc(&device->vk, pAllocator, sizeof(*pool),
2630 VK_OBJECT_TYPE_COMMAND_POOL);
2631 if (pool == NULL)
2632 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2633
2634 if (pAllocator)
2635 pool->alloc = *pAllocator;
2636 else
2637 pool->alloc = device->vk.alloc;
2638
2639 list_inithead(&pool->cmd_buffers);
2640 list_inithead(&pool->free_cmd_buffers);
2641
2642 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2643
2644 *pCmdPool = tu_cmd_pool_to_handle(pool);
2645
2646 return VK_SUCCESS;
2647 }
2648
2649 void
2650 tu_DestroyCommandPool(VkDevice _device,
2651 VkCommandPool commandPool,
2652 const VkAllocationCallbacks *pAllocator)
2653 {
2654 TU_FROM_HANDLE(tu_device, device, _device);
2655 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2656
2657 if (!pool)
2658 return;
2659
2660 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2661 &pool->cmd_buffers, pool_link)
2662 {
2663 tu_cmd_buffer_destroy(cmd_buffer);
2664 }
2665
2666 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2667 &pool->free_cmd_buffers, pool_link)
2668 {
2669 tu_cmd_buffer_destroy(cmd_buffer);
2670 }
2671
2672 vk_object_free(&device->vk, pAllocator, pool);
2673 }
2674
2675 VkResult
2676 tu_ResetCommandPool(VkDevice device,
2677 VkCommandPool commandPool,
2678 VkCommandPoolResetFlags flags)
2679 {
2680 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2681 VkResult result;
2682
2683 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2684 pool_link)
2685 {
2686 result = tu_reset_cmd_buffer(cmd_buffer);
2687 if (result != VK_SUCCESS)
2688 return result;
2689 }
2690
2691 return VK_SUCCESS;
2692 }
2693
2694 void
2695 tu_TrimCommandPool(VkDevice device,
2696 VkCommandPool commandPool,
2697 VkCommandPoolTrimFlags flags)
2698 {
2699 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2700
2701 if (!pool)
2702 return;
2703
2704 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2705 &pool->free_cmd_buffers, pool_link)
2706 {
2707 tu_cmd_buffer_destroy(cmd_buffer);
2708 }
2709 }
2710
2711 static void
2712 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2713 const struct tu_subpass_barrier *barrier,
2714 bool external)
2715 {
2716 /* Note: we don't know until the end of the subpass whether we'll use
2717 * sysmem, so assume sysmem here to be safe.
2718 */
2719 struct tu_cache_state *cache =
2720 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2721 enum tu_cmd_access_mask src_flags =
2722 vk2tu_access(barrier->src_access_mask, false);
2723 enum tu_cmd_access_mask dst_flags =
2724 vk2tu_access(barrier->dst_access_mask, false);
2725
2726 if (barrier->incoherent_ccu_color)
2727 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2728 if (barrier->incoherent_ccu_depth)
2729 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2730
2731 tu_flush_for_access(cache, src_flags, dst_flags);
2732 }
2733
2734 void
2735 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2736 const VkRenderPassBeginInfo *pRenderPassBegin,
2737 VkSubpassContents contents)
2738 {
2739 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2740 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2741 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2742
2743 cmd->state.pass = pass;
2744 cmd->state.subpass = pass->subpasses;
2745 cmd->state.framebuffer = fb;
2746 cmd->state.render_area = pRenderPassBegin->renderArea;
2747
2748 tu_cmd_prepare_tile_store_ib(cmd);
2749
2750 /* Note: because this is external, any flushes will happen before draw_cs
2751 * gets called. However deferred flushes could have to happen later as part
2752 * of the subpass.
2753 */
2754 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2755 cmd->state.renderpass_cache.pending_flush_bits =
2756 cmd->state.cache.pending_flush_bits;
2757 cmd->state.renderpass_cache.flush_bits = 0;
2758
2759 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2760
2761 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2762 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2763 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2764 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2765
2766 tu_set_input_attachments(cmd, cmd->state.subpass);
2767
2768 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2769 const struct tu_image_view *iview = fb->attachments[i].attachment;
2770 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2771 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2772 }
2773
2774 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2775 }
2776
2777 void
2778 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2779 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2780 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2781 {
2782 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2783 pSubpassBeginInfo->contents);
2784 }
2785
2786 void
2787 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2788 {
2789 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2790 const struct tu_render_pass *pass = cmd->state.pass;
2791 struct tu_cs *cs = &cmd->draw_cs;
2792
2793 const struct tu_subpass *subpass = cmd->state.subpass++;
2794
2795 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2796
2797 if (subpass->resolve_attachments) {
2798 tu6_emit_blit_scissor(cmd, cs, true);
2799
2800 for (unsigned i = 0; i < subpass->color_count; i++) {
2801 uint32_t a = subpass->resolve_attachments[i].attachment;
2802 if (a == VK_ATTACHMENT_UNUSED)
2803 continue;
2804
2805 tu_store_gmem_attachment(cmd, cs, a,
2806 subpass->color_attachments[i].attachment);
2807
2808 if (pass->attachments[a].gmem_offset < 0)
2809 continue;
2810
2811 /* TODO:
2812 * check if the resolved attachment is needed by later subpasses,
2813 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2814 */
2815 tu_finishme("missing GMEM->GMEM resolve path\n");
2816 tu_load_gmem_attachment(cmd, cs, a, true);
2817 }
2818 }
2819
2820 tu_cond_exec_end(cs);
2821
2822 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2823
2824 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2825
2826 tu_cond_exec_end(cs);
2827
2828 /* Handle dependencies for the next subpass */
2829 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2830
2831 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2832 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2833 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2834 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2835 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2836
2837 tu_set_input_attachments(cmd, cmd->state.subpass);
2838 }
2839
2840 void
2841 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2842 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2843 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2844 {
2845 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2846 }
2847
2848 static void
2849 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2850 struct tu_descriptor_state *descriptors_state,
2851 gl_shader_stage type,
2852 uint32_t *push_constants)
2853 {
2854 const struct tu_program_descriptor_linkage *link =
2855 &pipeline->program.link[type];
2856 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2857
2858 if (link->push_consts.count > 0) {
2859 unsigned num_units = link->push_consts.count;
2860 unsigned offset = link->push_consts.lo;
2861 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2862 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2863 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2864 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2865 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2866 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2867 tu_cs_emit(cs, 0);
2868 tu_cs_emit(cs, 0);
2869 for (unsigned i = 0; i < num_units * 4; i++)
2870 tu_cs_emit(cs, push_constants[i + offset * 4]);
2871 }
2872
2873 for (uint32_t i = 0; i < state->num_enabled; i++) {
2874 uint32_t size = state->range[i].end - state->range[i].start;
2875 uint32_t offset = state->range[i].start;
2876
2877 /* and even if the start of the const buffer is before
2878 * first_immediate, the end may not be:
2879 */
2880 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2881
2882 if (size == 0)
2883 continue;
2884
2885 /* things should be aligned to vec4: */
2886 debug_assert((state->range[i].offset % 16) == 0);
2887 debug_assert((size % 16) == 0);
2888 debug_assert((offset % 16) == 0);
2889
2890 /* Dig out the descriptor from the descriptor state and read the VA from
2891 * it.
2892 */
2893 assert(state->range[i].ubo.bindless);
2894 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2895 descriptors_state->dynamic_descriptors :
2896 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2897 unsigned block = state->range[i].ubo.block;
2898 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2899 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2900 assert(va);
2901
2902 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2903 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2904 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2905 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2906 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2907 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2908 tu_cs_emit_qw(cs, va + offset);
2909 }
2910 }
2911
2912 static struct tu_draw_state
2913 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2914 const struct tu_pipeline *pipeline,
2915 struct tu_descriptor_state *descriptors_state,
2916 gl_shader_stage type)
2917 {
2918 struct tu_cs cs;
2919 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2920
2921 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2922
2923 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2924 }
2925
2926 static struct tu_draw_state
2927 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
2928 const struct tu_pipeline *pipeline)
2929 {
2930 struct tu_cs cs;
2931 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
2932
2933 int binding;
2934 for_each_bit(binding, pipeline->vi.bindings_used) {
2935 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
2936 const VkDeviceSize offset = buf->bo_offset +
2937 cmd->state.vb.offsets[binding];
2938
2939 tu_cs_emit_regs(&cs,
2940 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
2941 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
2942
2943 }
2944
2945 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
2946
2947 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2948 }
2949
2950 static uint64_t
2951 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
2952 uint32_t draw_count)
2953 {
2954 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2955 * Still not sure what to do here, so just allocate a reasonably large
2956 * BO and hope for the best for now. */
2957 if (!draw_count)
2958 draw_count = 2048;
2959
2960 /* the tess param BO is pipeline->tess.param_stride bytes per patch,
2961 * which includes both the per-vertex outputs and per-patch outputs
2962 * build_primitive_map in ir3 calculates this stride
2963 */
2964 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2965 uint32_t num_patches = draw_count / verts_per_patch;
2966 return num_patches * pipeline->tess.param_stride;
2967 }
2968
2969 static uint64_t
2970 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
2971 uint32_t draw_count)
2972 {
2973 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2974 * Still not sure what to do here, so just allocate a reasonably large
2975 * BO and hope for the best for now. */
2976 if (!draw_count)
2977 draw_count = 2048;
2978
2979 /* Each distinct patch gets its own tess factor output. */
2980 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2981 uint32_t num_patches = draw_count / verts_per_patch;
2982 uint32_t factor_stride;
2983 switch (pipeline->tess.patch_type) {
2984 case IR3_TESS_ISOLINES:
2985 factor_stride = 12;
2986 break;
2987 case IR3_TESS_TRIANGLES:
2988 factor_stride = 20;
2989 break;
2990 case IR3_TESS_QUADS:
2991 factor_stride = 28;
2992 break;
2993 default:
2994 unreachable("bad tessmode");
2995 }
2996 return factor_stride * num_patches;
2997 }
2998
2999 static VkResult
3000 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
3001 uint32_t draw_count,
3002 const struct tu_pipeline *pipeline,
3003 struct tu_draw_state *state,
3004 uint64_t *factor_iova)
3005 {
3006 struct tu_cs cs;
3007 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 16, &cs);
3008 if (result != VK_SUCCESS)
3009 return result;
3010
3011 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
3012 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
3013 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
3014 if (tess_bo_size > 0) {
3015 struct tu_bo *tess_bo;
3016 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
3017 if (result != VK_SUCCESS)
3018 return result;
3019
3020 tu_bo_list_add(&cmd->bo_list, tess_bo,
3021 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3022 uint64_t tess_factor_iova = tess_bo->iova;
3023 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
3024
3025 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3026 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
3027 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3028 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3029 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
3030 CP_LOAD_STATE6_0_NUM_UNIT(1));
3031 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
3032 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
3033 tu_cs_emit_qw(&cs, tess_param_iova);
3034 tu_cs_emit_qw(&cs, tess_factor_iova);
3035
3036 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3037 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
3038 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3039 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3040 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
3041 CP_LOAD_STATE6_0_NUM_UNIT(1));
3042 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
3043 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
3044 tu_cs_emit_qw(&cs, tess_param_iova);
3045 tu_cs_emit_qw(&cs, tess_factor_iova);
3046
3047 *factor_iova = tess_factor_iova;
3048 }
3049 *state = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
3050 return VK_SUCCESS;
3051 }
3052
3053 static VkResult
3054 tu6_draw_common(struct tu_cmd_buffer *cmd,
3055 struct tu_cs *cs,
3056 bool indexed,
3057 /* note: draw_count is 0 for indirect */
3058 uint32_t draw_count)
3059 {
3060 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3061 VkResult result;
3062
3063 struct tu_descriptor_state *descriptors_state =
3064 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
3065
3066 tu_emit_cache_flush_renderpass(cmd, cs);
3067
3068 /* TODO lrz */
3069
3070 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
3071 .primitive_restart =
3072 pipeline->ia.primitive_restart && indexed,
3073 .tess_upper_left_domain_origin =
3074 pipeline->tess.upper_left_domain_origin));
3075
3076 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3077 cmd->state.shader_const[MESA_SHADER_VERTEX] =
3078 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
3079 cmd->state.shader_const[MESA_SHADER_TESS_CTRL] =
3080 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
3081 cmd->state.shader_const[MESA_SHADER_TESS_EVAL] =
3082 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
3083 cmd->state.shader_const[MESA_SHADER_GEOMETRY] =
3084 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
3085 cmd->state.shader_const[MESA_SHADER_FRAGMENT] =
3086 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
3087 }
3088
3089 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3090 cmd->state.vertex_buffers = tu6_emit_vertex_buffers(cmd, pipeline);
3091
3092 bool has_tess =
3093 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3094 struct tu_draw_state tess_consts = {};
3095 if (has_tess) {
3096 uint64_t tess_factor_iova = 0;
3097
3098 cmd->state.has_tess = true;
3099 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts, &tess_factor_iova);
3100 if (result != VK_SUCCESS)
3101 return result;
3102
3103 /* this sequence matches what the blob does before every tess draw
3104 * PC_TESSFACTOR_ADDR_LO is a non-context register and needs a wfi
3105 * before writing to it
3106 */
3107 tu_cs_emit_wfi(cs);
3108
3109 tu_cs_emit_pkt4(cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
3110 tu_cs_emit_qw(cs, tess_factor_iova);
3111
3112 tu_cs_emit_pkt7(cs, CP_SET_SUBDRAW_SIZE, 1);
3113 tu_cs_emit(cs, draw_count);
3114 }
3115
3116 /* for the first draw in a renderpass, re-emit all the draw states
3117 *
3118 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3119 * used, then draw states must be re-emitted. note however this only happens
3120 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3121 *
3122 * the two input attachment states are excluded because secondary command
3123 * buffer doesn't have a state ib to restore it, and not re-emitting them
3124 * is OK since CmdClearAttachments won't disable/overwrite them
3125 */
3126 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3127 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3128
3129 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
3130 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
3131 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
3132 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
3133 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
3134 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
3135 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
3136 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
3137 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
3138 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
3139 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
3140 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
3141 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
3142 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
3143 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
3144 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
3145 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3146
3147 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3148 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3149 ((pipeline->dynamic_state_mask & BIT(i)) ?
3150 cmd->state.dynamic_state[i] :
3151 pipeline->dynamic_state[i]));
3152 }
3153 } else {
3154
3155 /* emit draw states that were just updated
3156 * note we eventually don't want to have to emit anything here
3157 */
3158 uint32_t draw_state_count =
3159 has_tess +
3160 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
3161 ((cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD) ? 1 : 0) +
3162 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3163 1; /* vs_params */
3164
3165 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3166
3167 /* We may need to re-emit tess consts if the current draw call is
3168 * sufficiently larger than the last draw call. */
3169 if (has_tess)
3170 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
3171 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3172 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
3173 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
3174 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
3175 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
3176 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
3177 }
3178 if (cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD)
3179 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
3180 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3181 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
3182 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3183 }
3184
3185 tu_cs_sanity_check(cs);
3186
3187 /* There are too many graphics dirty bits to list here, so just list the
3188 * bits to preserve instead. The only things not emitted here are
3189 * compute-related state.
3190 */
3191 cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3192 return VK_SUCCESS;
3193 }
3194
3195 static uint32_t
3196 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
3197 {
3198 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3199 uint32_t initiator =
3200 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3201 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
3202 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3203 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3204
3205 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3206 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3207
3208 switch (pipeline->tess.patch_type) {
3209 case IR3_TESS_TRIANGLES:
3210 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3211 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3212 break;
3213 case IR3_TESS_ISOLINES:
3214 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3215 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3216 break;
3217 case IR3_TESS_NONE:
3218 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3219 break;
3220 case IR3_TESS_QUADS:
3221 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3222 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3223 break;
3224 }
3225 return initiator;
3226 }
3227
3228
3229 static uint32_t
3230 vs_params_offset(struct tu_cmd_buffer *cmd)
3231 {
3232 const struct tu_program_descriptor_linkage *link =
3233 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
3234 const struct ir3_const_state *const_state = &link->const_state;
3235
3236 if (const_state->offsets.driver_param >= link->constlen)
3237 return 0;
3238
3239 /* this layout is required by CP_DRAW_INDIRECT_MULTI */
3240 STATIC_ASSERT(IR3_DP_DRAWID == 0);
3241 STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
3242 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3243
3244 /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
3245 assert(const_state->offsets.driver_param != 0);
3246
3247 return const_state->offsets.driver_param;
3248 }
3249
3250 static struct tu_draw_state
3251 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
3252 uint32_t vertex_offset,
3253 uint32_t first_instance)
3254 {
3255 uint32_t offset = vs_params_offset(cmd);
3256
3257 struct tu_cs cs;
3258 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 8 : 0), &cs);
3259 if (result != VK_SUCCESS) {
3260 cmd->record_result = result;
3261 return (struct tu_draw_state) {};
3262 }
3263
3264 /* TODO: don't make a new draw state when it doesn't change */
3265
3266 tu_cs_emit_regs(&cs,
3267 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3268 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3269
3270 if (offset) {
3271 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3272 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3273 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3274 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3275 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3276 CP_LOAD_STATE6_0_NUM_UNIT(1));
3277 tu_cs_emit(&cs, 0);
3278 tu_cs_emit(&cs, 0);
3279
3280 tu_cs_emit(&cs, 0);
3281 tu_cs_emit(&cs, vertex_offset);
3282 tu_cs_emit(&cs, first_instance);
3283 tu_cs_emit(&cs, 0);
3284 }
3285
3286 struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3287 return (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
3288 }
3289
3290 void
3291 tu_CmdDraw(VkCommandBuffer commandBuffer,
3292 uint32_t vertexCount,
3293 uint32_t instanceCount,
3294 uint32_t firstVertex,
3295 uint32_t firstInstance)
3296 {
3297 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3298 struct tu_cs *cs = &cmd->draw_cs;
3299
3300 cmd->state.vs_params = tu6_emit_vs_params(cmd, firstVertex, firstInstance);
3301
3302 tu6_draw_common(cmd, cs, false, vertexCount);
3303
3304 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3305 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3306 tu_cs_emit(cs, instanceCount);
3307 tu_cs_emit(cs, vertexCount);
3308 }
3309
3310 void
3311 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3312 uint32_t indexCount,
3313 uint32_t instanceCount,
3314 uint32_t firstIndex,
3315 int32_t vertexOffset,
3316 uint32_t firstInstance)
3317 {
3318 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3319 struct tu_cs *cs = &cmd->draw_cs;
3320
3321 cmd->state.vs_params = tu6_emit_vs_params(cmd, vertexOffset, firstInstance);
3322
3323 tu6_draw_common(cmd, cs, true, indexCount);
3324
3325 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3326 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3327 tu_cs_emit(cs, instanceCount);
3328 tu_cs_emit(cs, indexCount);
3329 tu_cs_emit(cs, firstIndex);
3330 tu_cs_emit_qw(cs, cmd->state.index_va);
3331 tu_cs_emit(cs, cmd->state.max_index_count);
3332 }
3333
3334 /* Various firmware bugs/inconsistencies mean that some indirect draw opcodes
3335 * do not wait for WFI's to complete before executing. Add a WAIT_FOR_ME if
3336 * pending for these opcodes. This may result in a few extra WAIT_FOR_ME's
3337 * with these opcodes, but the alternative would add unnecessary WAIT_FOR_ME's
3338 * before draw opcodes that don't need it.
3339 */
3340 static void
3341 draw_wfm(struct tu_cmd_buffer *cmd)
3342 {
3343 cmd->state.renderpass_cache.flush_bits |=
3344 cmd->state.renderpass_cache.pending_flush_bits & TU_CMD_FLAG_WAIT_FOR_ME;
3345 cmd->state.renderpass_cache.pending_flush_bits &= ~TU_CMD_FLAG_WAIT_FOR_ME;
3346 }
3347
3348 void
3349 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3350 VkBuffer _buffer,
3351 VkDeviceSize offset,
3352 uint32_t drawCount,
3353 uint32_t stride)
3354 {
3355 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3356 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3357 struct tu_cs *cs = &cmd->draw_cs;
3358
3359 cmd->state.vs_params = (struct tu_draw_state) {};
3360
3361 /* The latest known a630_sqe.fw fails to wait for WFI before reading the
3362 * indirect buffer when using CP_DRAW_INDIRECT_MULTI, so we have to fall
3363 * back to CP_WAIT_FOR_ME except for a650 which has a fixed firmware.
3364 *
3365 * TODO: There may be newer a630_sqe.fw released in the future which fixes
3366 * this, if so we should detect it and avoid this workaround.
3367 */
3368 if (cmd->device->physical_device->gpu_id != 650)
3369 draw_wfm(cmd);
3370
3371 tu6_draw_common(cmd, cs, false, 0);
3372
3373 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
3374 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3375 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
3376 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3377 tu_cs_emit(cs, drawCount);
3378 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3379 tu_cs_emit(cs, stride);
3380
3381 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3382 }
3383
3384 void
3385 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3386 VkBuffer _buffer,
3387 VkDeviceSize offset,
3388 uint32_t drawCount,
3389 uint32_t stride)
3390 {
3391 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3392 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3393 struct tu_cs *cs = &cmd->draw_cs;
3394
3395 cmd->state.vs_params = (struct tu_draw_state) {};
3396
3397 if (cmd->device->physical_device->gpu_id != 650)
3398 draw_wfm(cmd);
3399
3400 tu6_draw_common(cmd, cs, true, 0);
3401
3402 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
3403 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3404 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
3405 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3406 tu_cs_emit(cs, drawCount);
3407 tu_cs_emit_qw(cs, cmd->state.index_va);
3408 tu_cs_emit(cs, cmd->state.max_index_count);
3409 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3410 tu_cs_emit(cs, stride);
3411
3412 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3413 }
3414
3415 void
3416 tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,
3417 VkBuffer _buffer,
3418 VkDeviceSize offset,
3419 VkBuffer countBuffer,
3420 VkDeviceSize countBufferOffset,
3421 uint32_t drawCount,
3422 uint32_t stride)
3423 {
3424 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3425 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3426 TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
3427 struct tu_cs *cs = &cmd->draw_cs;
3428
3429 cmd->state.vs_params = (struct tu_draw_state) {};
3430
3431 /* It turns out that the firmware we have for a650 only partially fixed the
3432 * problem with CP_DRAW_INDIRECT_MULTI not waiting for WFI's to complete
3433 * before reading indirect parameters. It waits for WFI's before reading
3434 * the draw parameters, but after reading the indirect count :(.
3435 */
3436 draw_wfm(cmd);
3437
3438 tu6_draw_common(cmd, cs, false, 0);
3439
3440 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 8);
3441 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3442 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT) |
3443 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3444 tu_cs_emit(cs, drawCount);
3445 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3446 tu_cs_emit_qw(cs, count_buf->bo->iova + count_buf->bo_offset + countBufferOffset);
3447 tu_cs_emit(cs, stride);
3448
3449 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3450 tu_bo_list_add(&cmd->bo_list, count_buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3451 }
3452
3453 void
3454 tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,
3455 VkBuffer _buffer,
3456 VkDeviceSize offset,
3457 VkBuffer countBuffer,
3458 VkDeviceSize countBufferOffset,
3459 uint32_t drawCount,
3460 uint32_t stride)
3461 {
3462 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3463 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3464 TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
3465 struct tu_cs *cs = &cmd->draw_cs;
3466
3467 cmd->state.vs_params = (struct tu_draw_state) {};
3468
3469 draw_wfm(cmd);
3470
3471 tu6_draw_common(cmd, cs, true, 0);
3472
3473 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 11);
3474 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3475 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT_INDEXED) |
3476 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3477 tu_cs_emit(cs, drawCount);
3478 tu_cs_emit_qw(cs, cmd->state.index_va);
3479 tu_cs_emit(cs, cmd->state.max_index_count);
3480 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3481 tu_cs_emit_qw(cs, count_buf->bo->iova + count_buf->bo_offset + countBufferOffset);
3482 tu_cs_emit(cs, stride);
3483
3484 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3485 tu_bo_list_add(&cmd->bo_list, count_buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3486 }
3487
3488 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3489 uint32_t instanceCount,
3490 uint32_t firstInstance,
3491 VkBuffer _counterBuffer,
3492 VkDeviceSize counterBufferOffset,
3493 uint32_t counterOffset,
3494 uint32_t vertexStride)
3495 {
3496 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3497 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
3498 struct tu_cs *cs = &cmd->draw_cs;
3499
3500 /* All known firmware versions do not wait for WFI's with CP_DRAW_AUTO.
3501 * Plus, for the common case where the counter buffer is written by
3502 * vkCmdEndTransformFeedback, we need to wait for the CP_WAIT_MEM_WRITES to
3503 * complete which means we need a WAIT_FOR_ME anyway.
3504 */
3505 draw_wfm(cmd);
3506
3507 cmd->state.vs_params = tu6_emit_vs_params(cmd, 0, firstInstance);
3508
3509 tu6_draw_common(cmd, cs, false, 0);
3510
3511 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
3512 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
3513 tu_cs_emit(cs, instanceCount);
3514 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
3515 tu_cs_emit(cs, counterOffset);
3516 tu_cs_emit(cs, vertexStride);
3517
3518 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3519 }
3520
3521 struct tu_dispatch_info
3522 {
3523 /**
3524 * Determine the layout of the grid (in block units) to be used.
3525 */
3526 uint32_t blocks[3];
3527
3528 /**
3529 * A starting offset for the grid. If unaligned is set, the offset
3530 * must still be aligned.
3531 */
3532 uint32_t offsets[3];
3533 /**
3534 * Whether it's an unaligned compute dispatch.
3535 */
3536 bool unaligned;
3537
3538 /**
3539 * Indirect compute parameters resource.
3540 */
3541 struct tu_buffer *indirect;
3542 uint64_t indirect_offset;
3543 };
3544
3545 static void
3546 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3547 const struct tu_dispatch_info *info)
3548 {
3549 gl_shader_stage type = MESA_SHADER_COMPUTE;
3550 const struct tu_program_descriptor_linkage *link =
3551 &pipeline->program.link[type];
3552 const struct ir3_const_state *const_state = &link->const_state;
3553 uint32_t offset = const_state->offsets.driver_param;
3554
3555 if (link->constlen <= offset)
3556 return;
3557
3558 if (!info->indirect) {
3559 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3560 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3561 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3562 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3563 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3564 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3565 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3566 };
3567
3568 uint32_t num_consts = MIN2(const_state->num_driver_params,
3569 (link->constlen - offset) * 4);
3570 /* push constants */
3571 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3572 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3573 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3574 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3575 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3576 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3577 tu_cs_emit(cs, 0);
3578 tu_cs_emit(cs, 0);
3579 uint32_t i;
3580 for (i = 0; i < num_consts; i++)
3581 tu_cs_emit(cs, driver_params[i]);
3582 } else {
3583 tu_finishme("Indirect driver params");
3584 }
3585 }
3586
3587 static void
3588 tu_dispatch(struct tu_cmd_buffer *cmd,
3589 const struct tu_dispatch_info *info)
3590 {
3591 struct tu_cs *cs = &cmd->cs;
3592 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3593 struct tu_descriptor_state *descriptors_state =
3594 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3595
3596 /* TODO: We could probably flush less if we add a compute_flush_bits
3597 * bitfield.
3598 */
3599 tu_emit_cache_flush(cmd, cs);
3600
3601 /* note: no reason to have this in a separate IB */
3602 tu_cs_emit_state_ib(cs,
3603 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE));
3604
3605 tu_emit_compute_driver_params(cs, pipeline, info);
3606
3607 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD)
3608 tu_cs_emit_state_ib(cs, pipeline->load_state);
3609
3610 cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3611
3612 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3613 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3614
3615 const uint32_t *local_size = pipeline->compute.local_size;
3616 const uint32_t *num_groups = info->blocks;
3617 tu_cs_emit_regs(cs,
3618 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3619 .localsizex = local_size[0] - 1,
3620 .localsizey = local_size[1] - 1,
3621 .localsizez = local_size[2] - 1),
3622 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3623 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3624 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3625 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3626 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3627 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3628
3629 tu_cs_emit_regs(cs,
3630 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3631 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3632 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3633
3634 if (info->indirect) {
3635 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3636
3637 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3638 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3639
3640 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3641 tu_cs_emit(cs, 0x00000000);
3642 tu_cs_emit_qw(cs, iova);
3643 tu_cs_emit(cs,
3644 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3645 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3646 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3647 } else {
3648 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3649 tu_cs_emit(cs, 0x00000000);
3650 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3651 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3652 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3653 }
3654
3655 tu_cs_emit_wfi(cs);
3656 }
3657
3658 void
3659 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3660 uint32_t base_x,
3661 uint32_t base_y,
3662 uint32_t base_z,
3663 uint32_t x,
3664 uint32_t y,
3665 uint32_t z)
3666 {
3667 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3668 struct tu_dispatch_info info = {};
3669
3670 info.blocks[0] = x;
3671 info.blocks[1] = y;
3672 info.blocks[2] = z;
3673
3674 info.offsets[0] = base_x;
3675 info.offsets[1] = base_y;
3676 info.offsets[2] = base_z;
3677 tu_dispatch(cmd_buffer, &info);
3678 }
3679
3680 void
3681 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3682 uint32_t x,
3683 uint32_t y,
3684 uint32_t z)
3685 {
3686 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3687 }
3688
3689 void
3690 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3691 VkBuffer _buffer,
3692 VkDeviceSize offset)
3693 {
3694 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3695 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3696 struct tu_dispatch_info info = {};
3697
3698 info.indirect = buffer;
3699 info.indirect_offset = offset;
3700
3701 tu_dispatch(cmd_buffer, &info);
3702 }
3703
3704 void
3705 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3706 {
3707 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3708
3709 tu_cs_end(&cmd_buffer->draw_cs);
3710 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3711
3712 if (use_sysmem_rendering(cmd_buffer))
3713 tu_cmd_render_sysmem(cmd_buffer);
3714 else
3715 tu_cmd_render_tiles(cmd_buffer);
3716
3717 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3718 rendered */
3719 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3720 tu_cs_begin(&cmd_buffer->draw_cs);
3721 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3722 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3723
3724 cmd_buffer->state.cache.pending_flush_bits |=
3725 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3726 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3727
3728 cmd_buffer->state.pass = NULL;
3729 cmd_buffer->state.subpass = NULL;
3730 cmd_buffer->state.framebuffer = NULL;
3731 cmd_buffer->state.has_tess = false;
3732 cmd_buffer->state.has_subpass_predication = false;
3733 }
3734
3735 void
3736 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3737 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3738 {
3739 tu_CmdEndRenderPass(commandBuffer);
3740 }
3741
3742 struct tu_barrier_info
3743 {
3744 uint32_t eventCount;
3745 const VkEvent *pEvents;
3746 VkPipelineStageFlags srcStageMask;
3747 };
3748
3749 static void
3750 tu_barrier(struct tu_cmd_buffer *cmd,
3751 uint32_t memoryBarrierCount,
3752 const VkMemoryBarrier *pMemoryBarriers,
3753 uint32_t bufferMemoryBarrierCount,
3754 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3755 uint32_t imageMemoryBarrierCount,
3756 const VkImageMemoryBarrier *pImageMemoryBarriers,
3757 const struct tu_barrier_info *info)
3758 {
3759 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3760 VkAccessFlags srcAccessMask = 0;
3761 VkAccessFlags dstAccessMask = 0;
3762
3763 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3764 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3765 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3766 }
3767
3768 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3769 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3770 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3771 }
3772
3773 enum tu_cmd_access_mask src_flags = 0;
3774 enum tu_cmd_access_mask dst_flags = 0;
3775
3776 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3777 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3778 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3779 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3780 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3781 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3782 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3783 /* The underlying memory for this image may have been used earlier
3784 * within the same queue submission for a different image, which
3785 * means that there may be old, stale cache entries which are in the
3786 * "wrong" location, which could cause problems later after writing
3787 * to the image. We don't want these entries being flushed later and
3788 * overwriting the actual image, so we need to flush the CCU.
3789 */
3790 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3791 }
3792 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3793 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3794 }
3795
3796 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3797 * so we have to use the sysmem flushes.
3798 */
3799 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3800 !cmd->state.pass;
3801 src_flags |= vk2tu_access(srcAccessMask, gmem);
3802 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3803
3804 struct tu_cache_state *cache =
3805 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3806 tu_flush_for_access(cache, src_flags, dst_flags);
3807
3808 for (uint32_t i = 0; i < info->eventCount; i++) {
3809 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3810
3811 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3812
3813 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3814 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3815 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3816 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3817 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3818 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3819 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3820 }
3821 }
3822
3823 void
3824 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3825 VkPipelineStageFlags srcStageMask,
3826 VkPipelineStageFlags dstStageMask,
3827 VkDependencyFlags dependencyFlags,
3828 uint32_t memoryBarrierCount,
3829 const VkMemoryBarrier *pMemoryBarriers,
3830 uint32_t bufferMemoryBarrierCount,
3831 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3832 uint32_t imageMemoryBarrierCount,
3833 const VkImageMemoryBarrier *pImageMemoryBarriers)
3834 {
3835 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3836 struct tu_barrier_info info;
3837
3838 info.eventCount = 0;
3839 info.pEvents = NULL;
3840 info.srcStageMask = srcStageMask;
3841
3842 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3843 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3844 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3845 }
3846
3847 static void
3848 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3849 VkPipelineStageFlags stageMask, unsigned value)
3850 {
3851 struct tu_cs *cs = &cmd->cs;
3852
3853 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3854 assert(!cmd->state.pass);
3855
3856 tu_emit_cache_flush(cmd, cs);
3857
3858 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3859
3860 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3861 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3862 */
3863 VkPipelineStageFlags top_of_pipe_flags =
3864 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3865 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3866
3867 if (!(stageMask & ~top_of_pipe_flags)) {
3868 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3869 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3870 tu_cs_emit(cs, value);
3871 } else {
3872 /* Use a RB_DONE_TS event to wait for everything to complete. */
3873 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3874 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3875 tu_cs_emit_qw(cs, event->bo.iova);
3876 tu_cs_emit(cs, value);
3877 }
3878 }
3879
3880 void
3881 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3882 VkEvent _event,
3883 VkPipelineStageFlags stageMask)
3884 {
3885 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3886 TU_FROM_HANDLE(tu_event, event, _event);
3887
3888 write_event(cmd, event, stageMask, 1);
3889 }
3890
3891 void
3892 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3893 VkEvent _event,
3894 VkPipelineStageFlags stageMask)
3895 {
3896 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3897 TU_FROM_HANDLE(tu_event, event, _event);
3898
3899 write_event(cmd, event, stageMask, 0);
3900 }
3901
3902 void
3903 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3904 uint32_t eventCount,
3905 const VkEvent *pEvents,
3906 VkPipelineStageFlags srcStageMask,
3907 VkPipelineStageFlags dstStageMask,
3908 uint32_t memoryBarrierCount,
3909 const VkMemoryBarrier *pMemoryBarriers,
3910 uint32_t bufferMemoryBarrierCount,
3911 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3912 uint32_t imageMemoryBarrierCount,
3913 const VkImageMemoryBarrier *pImageMemoryBarriers)
3914 {
3915 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3916 struct tu_barrier_info info;
3917
3918 info.eventCount = eventCount;
3919 info.pEvents = pEvents;
3920 info.srcStageMask = 0;
3921
3922 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3923 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3924 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3925 }
3926
3927 void
3928 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3929 {
3930 /* No-op */
3931 }
3932
3933
3934 void
3935 tu_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,
3936 const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin)
3937 {
3938 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3939
3940 cmd->state.predication_active = true;
3941 if (cmd->state.pass)
3942 cmd->state.has_subpass_predication = true;
3943
3944 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3945
3946 tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
3947 tu_cs_emit(cs, 1);
3948
3949 /* Wait for any writes to the predicate to land */
3950 if (cmd->state.pass)
3951 tu_emit_cache_flush_renderpass(cmd, cs);
3952 else
3953 tu_emit_cache_flush(cmd, cs);
3954
3955 TU_FROM_HANDLE(tu_buffer, buf, pConditionalRenderingBegin->buffer);
3956 uint64_t iova = tu_buffer_iova(buf) + pConditionalRenderingBegin->offset;
3957
3958 /* qcom doesn't support 32-bit reference values, only 64-bit, but Vulkan
3959 * mandates 32-bit comparisons. Our workaround is to copy the the reference
3960 * value to the low 32-bits of a location where the high 32 bits are known
3961 * to be 0 and then compare that.
3962 */
3963 tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
3964 tu_cs_emit(cs, 0);
3965 tu_cs_emit_qw(cs, global_iova(cmd, predicate));
3966 tu_cs_emit_qw(cs, iova);
3967
3968 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
3969 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
3970
3971 bool inv = pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
3972 tu_cs_emit_pkt7(cs, CP_DRAW_PRED_SET, 3);
3973 tu_cs_emit(cs, CP_DRAW_PRED_SET_0_SRC(PRED_SRC_MEM) |
3974 CP_DRAW_PRED_SET_0_TEST(inv ? EQ_0_PASS : NE_0_PASS));
3975 tu_cs_emit_qw(cs, global_iova(cmd, predicate));
3976
3977 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3978 }
3979
3980 void
3981 tu_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)
3982 {
3983 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3984
3985 cmd->state.predication_active = false;
3986
3987 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3988
3989 tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
3990 tu_cs_emit(cs, 0);
3991 }
3992