turnip: implement depthBounds
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 static void
112 tu_tiling_config_update_tile_layout(struct tu_tiling_config *tiling,
113 const struct tu_device *dev,
114 const struct tu_render_pass *pass)
115 {
116 const uint32_t tile_align_w = pass->tile_align_w;
117 const uint32_t max_tile_width = 1024;
118
119 /* note: don't offset the tiling config by render_area.offset,
120 * because binning pass can't deal with it
121 * this means we might end up with more tiles than necessary,
122 * but load/store/etc are still scissored to the render_area
123 */
124 tiling->tile0.offset = (VkOffset2D) {};
125
126 const uint32_t ra_width =
127 tiling->render_area.extent.width +
128 (tiling->render_area.offset.x - tiling->tile0.offset.x);
129 const uint32_t ra_height =
130 tiling->render_area.extent.height +
131 (tiling->render_area.offset.y - tiling->tile0.offset.y);
132
133 /* start from 1 tile */
134 tiling->tile_count = (VkExtent2D) {
135 .width = 1,
136 .height = 1,
137 };
138 tiling->tile0.extent = (VkExtent2D) {
139 .width = util_align_npot(ra_width, tile_align_w),
140 .height = align(ra_height, TILE_ALIGN_H),
141 };
142
143 if (unlikely(dev->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN)) {
144 /* start with 2x2 tiles */
145 tiling->tile_count.width = 2;
146 tiling->tile_count.height = 2;
147 tiling->tile0.extent.width = util_align_npot(DIV_ROUND_UP(ra_width, 2), tile_align_w);
148 tiling->tile0.extent.height = align(DIV_ROUND_UP(ra_height, 2), TILE_ALIGN_H);
149 }
150
151 /* do not exceed max tile width */
152 while (tiling->tile0.extent.width > max_tile_width) {
153 tiling->tile_count.width++;
154 tiling->tile0.extent.width =
155 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
156 }
157
158 /* will force to sysmem, don't bother trying to have a valid tile config
159 * TODO: just skip all GMEM stuff when sysmem is forced?
160 */
161 if (!pass->gmem_pixels)
162 return;
163
164 /* do not exceed gmem size */
165 while (tiling->tile0.extent.width * tiling->tile0.extent.height > pass->gmem_pixels) {
166 if (tiling->tile0.extent.width > MAX2(tile_align_w, tiling->tile0.extent.height)) {
167 tiling->tile_count.width++;
168 tiling->tile0.extent.width =
169 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
170 } else {
171 /* if this assert fails then layout is impossible.. */
172 assert(tiling->tile0.extent.height > TILE_ALIGN_H);
173 tiling->tile_count.height++;
174 tiling->tile0.extent.height =
175 align(DIV_ROUND_UP(ra_height, tiling->tile_count.height), TILE_ALIGN_H);
176 }
177 }
178 }
179
180 static void
181 tu_tiling_config_update_pipe_layout(struct tu_tiling_config *tiling,
182 const struct tu_device *dev)
183 {
184 const uint32_t max_pipe_count = 32; /* A6xx */
185
186 /* start from 1 tile per pipe */
187 tiling->pipe0 = (VkExtent2D) {
188 .width = 1,
189 .height = 1,
190 };
191 tiling->pipe_count = tiling->tile_count;
192
193 while (tiling->pipe_count.width * tiling->pipe_count.height > max_pipe_count) {
194 if (tiling->pipe0.width < tiling->pipe0.height) {
195 tiling->pipe0.width += 1;
196 tiling->pipe_count.width =
197 DIV_ROUND_UP(tiling->tile_count.width, tiling->pipe0.width);
198 } else {
199 tiling->pipe0.height += 1;
200 tiling->pipe_count.height =
201 DIV_ROUND_UP(tiling->tile_count.height, tiling->pipe0.height);
202 }
203 }
204 }
205
206 static void
207 tu_tiling_config_update_pipes(struct tu_tiling_config *tiling,
208 const struct tu_device *dev)
209 {
210 const uint32_t max_pipe_count = 32; /* A6xx */
211 const uint32_t used_pipe_count =
212 tiling->pipe_count.width * tiling->pipe_count.height;
213 const VkExtent2D last_pipe = {
214 .width = (tiling->tile_count.width - 1) % tiling->pipe0.width + 1,
215 .height = (tiling->tile_count.height - 1) % tiling->pipe0.height + 1,
216 };
217
218 assert(used_pipe_count <= max_pipe_count);
219 assert(max_pipe_count <= ARRAY_SIZE(tiling->pipe_config));
220
221 for (uint32_t y = 0; y < tiling->pipe_count.height; y++) {
222 for (uint32_t x = 0; x < tiling->pipe_count.width; x++) {
223 const uint32_t pipe_x = tiling->pipe0.width * x;
224 const uint32_t pipe_y = tiling->pipe0.height * y;
225 const uint32_t pipe_w = (x == tiling->pipe_count.width - 1)
226 ? last_pipe.width
227 : tiling->pipe0.width;
228 const uint32_t pipe_h = (y == tiling->pipe_count.height - 1)
229 ? last_pipe.height
230 : tiling->pipe0.height;
231 const uint32_t n = tiling->pipe_count.width * y + x;
232
233 tiling->pipe_config[n] = A6XX_VSC_PIPE_CONFIG_REG_X(pipe_x) |
234 A6XX_VSC_PIPE_CONFIG_REG_Y(pipe_y) |
235 A6XX_VSC_PIPE_CONFIG_REG_W(pipe_w) |
236 A6XX_VSC_PIPE_CONFIG_REG_H(pipe_h);
237 tiling->pipe_sizes[n] = CP_SET_BIN_DATA5_0_VSC_SIZE(pipe_w * pipe_h);
238 }
239 }
240
241 memset(tiling->pipe_config + used_pipe_count, 0,
242 sizeof(uint32_t) * (max_pipe_count - used_pipe_count));
243 }
244
245 static void
246 tu_tiling_config_get_tile(const struct tu_tiling_config *tiling,
247 const struct tu_device *dev,
248 uint32_t tx,
249 uint32_t ty,
250 struct tu_tile *tile)
251 {
252 /* find the pipe and the slot for tile (tx, ty) */
253 const uint32_t px = tx / tiling->pipe0.width;
254 const uint32_t py = ty / tiling->pipe0.height;
255 const uint32_t sx = tx - tiling->pipe0.width * px;
256 const uint32_t sy = ty - tiling->pipe0.height * py;
257 /* last pipe has different width */
258 const uint32_t pipe_width =
259 MIN2(tiling->pipe0.width,
260 tiling->tile_count.width - px * tiling->pipe0.width);
261
262 assert(tx < tiling->tile_count.width && ty < tiling->tile_count.height);
263 assert(px < tiling->pipe_count.width && py < tiling->pipe_count.height);
264 assert(sx < tiling->pipe0.width && sy < tiling->pipe0.height);
265
266 /* convert to 1D indices */
267 tile->pipe = tiling->pipe_count.width * py + px;
268 tile->slot = pipe_width * sy + sx;
269
270 /* get the blit area for the tile */
271 tile->begin = (VkOffset2D) {
272 .x = tiling->tile0.offset.x + tiling->tile0.extent.width * tx,
273 .y = tiling->tile0.offset.y + tiling->tile0.extent.height * ty,
274 };
275 tile->end.x =
276 (tx == tiling->tile_count.width - 1)
277 ? tiling->render_area.offset.x + tiling->render_area.extent.width
278 : tile->begin.x + tiling->tile0.extent.width;
279 tile->end.y =
280 (ty == tiling->tile_count.height - 1)
281 ? tiling->render_area.offset.y + tiling->render_area.extent.height
282 : tile->begin.y + tiling->tile0.extent.height;
283 }
284
285 void
286 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
287 struct tu_cs *cs,
288 enum vgt_event_type event)
289 {
290 bool need_seqno = false;
291 switch (event) {
292 case CACHE_FLUSH_TS:
293 case WT_DONE_TS:
294 case RB_DONE_TS:
295 case PC_CCU_FLUSH_DEPTH_TS:
296 case PC_CCU_FLUSH_COLOR_TS:
297 case PC_CCU_RESOLVE_TS:
298 need_seqno = true;
299 break;
300 default:
301 break;
302 }
303
304 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
305 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
306 if (need_seqno) {
307 tu_cs_emit_qw(cs, cmd->scratch_bo.iova);
308 tu_cs_emit(cs, 0);
309 }
310 }
311
312 static void
313 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
314 struct tu_cs *cs,
315 enum tu_cmd_flush_bits flushes)
316 {
317 /* Experiments show that invalidating CCU while it still has data in it
318 * doesn't work, so make sure to always flush before invalidating in case
319 * any data remains that hasn't yet been made available through a barrier.
320 * However it does seem to work for UCHE.
321 */
322 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
323 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
324 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
325 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
326 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
327 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
328 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
329 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
330 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
331 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
332 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
333 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
334 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
335 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
336 if (flushes & TU_CMD_FLAG_WFI)
337 tu_cs_emit_wfi(cs);
338 }
339
340 /* "Normal" cache flushes, that don't require any special handling */
341
342 static void
343 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
344 struct tu_cs *cs)
345 {
346 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
347 cmd_buffer->state.cache.flush_bits = 0;
348 }
349
350 /* Renderpass cache flushes */
351
352 void
353 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
354 struct tu_cs *cs)
355 {
356 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
357 cmd_buffer->state.renderpass_cache.flush_bits = 0;
358 }
359
360 /* Cache flushes for things that use the color/depth read/write path (i.e.
361 * blits and draws). This deals with changing CCU state as well as the usual
362 * cache flushing.
363 */
364
365 void
366 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
367 struct tu_cs *cs,
368 enum tu_cmd_ccu_state ccu_state)
369 {
370 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
371
372 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
373
374 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
375 * the CCU may also contain data that we haven't flushed out yet, so we
376 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
377 * emit a WFI as it isn't pipelined.
378 */
379 if (ccu_state != cmd_buffer->state.ccu_state) {
380 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
381 flushes |=
382 TU_CMD_FLAG_CCU_FLUSH_COLOR |
383 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
384 cmd_buffer->state.cache.pending_flush_bits &= ~(
385 TU_CMD_FLAG_CCU_FLUSH_COLOR |
386 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
387 }
388 flushes |=
389 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
390 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
391 TU_CMD_FLAG_WFI;
392 cmd_buffer->state.cache.pending_flush_bits &= ~(
393 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
394 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
395 }
396
397 tu6_emit_flushes(cmd_buffer, cs, flushes);
398 cmd_buffer->state.cache.flush_bits = 0;
399
400 if (ccu_state != cmd_buffer->state.ccu_state) {
401 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
402 tu_cs_emit_regs(cs,
403 A6XX_RB_CCU_CNTL(.offset =
404 ccu_state == TU_CMD_CCU_GMEM ?
405 phys_dev->ccu_offset_gmem :
406 phys_dev->ccu_offset_bypass,
407 .gmem = ccu_state == TU_CMD_CCU_GMEM));
408 cmd_buffer->state.ccu_state = ccu_state;
409 }
410 }
411
412 static void
413 tu6_emit_zs(struct tu_cmd_buffer *cmd,
414 const struct tu_subpass *subpass,
415 struct tu_cs *cs)
416 {
417 const struct tu_framebuffer *fb = cmd->state.framebuffer;
418
419 const uint32_t a = subpass->depth_stencil_attachment.attachment;
420 if (a == VK_ATTACHMENT_UNUSED) {
421 tu_cs_emit_regs(cs,
422 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
423 A6XX_RB_DEPTH_BUFFER_PITCH(0),
424 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
425 A6XX_RB_DEPTH_BUFFER_BASE(0),
426 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
427
428 tu_cs_emit_regs(cs,
429 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
430
431 tu_cs_emit_regs(cs,
432 A6XX_GRAS_LRZ_BUFFER_BASE(0),
433 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
434 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
435
436 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
437
438 return;
439 }
440
441 const struct tu_image_view *iview = fb->attachments[a].attachment;
442 const struct tu_render_pass_attachment *attachment =
443 &cmd->state.pass->attachments[a];
444 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
445
446 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
447 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
448 tu_cs_image_ref(cs, iview, 0);
449 tu_cs_emit(cs, attachment->gmem_offset);
450
451 tu_cs_emit_regs(cs,
452 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
453
454 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
455 tu_cs_image_flag_ref(cs, iview, 0);
456
457 tu_cs_emit_regs(cs,
458 A6XX_GRAS_LRZ_BUFFER_BASE(0),
459 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
460 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
461
462 if (attachment->format == VK_FORMAT_S8_UINT) {
463 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
464 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
465 tu_cs_image_ref(cs, iview, 0);
466 tu_cs_emit(cs, attachment->gmem_offset);
467 } else {
468 tu_cs_emit_regs(cs,
469 A6XX_RB_STENCIL_INFO(0));
470 }
471 }
472
473 static void
474 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
475 const struct tu_subpass *subpass,
476 struct tu_cs *cs)
477 {
478 const struct tu_framebuffer *fb = cmd->state.framebuffer;
479
480 for (uint32_t i = 0; i < subpass->color_count; ++i) {
481 uint32_t a = subpass->color_attachments[i].attachment;
482 if (a == VK_ATTACHMENT_UNUSED)
483 continue;
484
485 const struct tu_image_view *iview = fb->attachments[a].attachment;
486
487 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
488 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
489 tu_cs_image_ref(cs, iview, 0);
490 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
491
492 tu_cs_emit_regs(cs,
493 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
494
495 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
496 tu_cs_image_flag_ref(cs, iview, 0);
497 }
498
499 tu_cs_emit_regs(cs,
500 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
501 tu_cs_emit_regs(cs,
502 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
503
504 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
505 }
506
507 void
508 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
509 {
510 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
511 bool msaa_disable = samples == MSAA_ONE;
512
513 tu_cs_emit_regs(cs,
514 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
515 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
516 .msaa_disable = msaa_disable));
517
518 tu_cs_emit_regs(cs,
519 A6XX_GRAS_RAS_MSAA_CNTL(samples),
520 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
521 .msaa_disable = msaa_disable));
522
523 tu_cs_emit_regs(cs,
524 A6XX_RB_RAS_MSAA_CNTL(samples),
525 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
526 .msaa_disable = msaa_disable));
527
528 tu_cs_emit_regs(cs,
529 A6XX_RB_MSAA_CNTL(samples));
530 }
531
532 static void
533 tu6_emit_bin_size(struct tu_cs *cs,
534 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
535 {
536 tu_cs_emit_regs(cs,
537 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
538 .binh = bin_h,
539 .dword = flags));
540
541 tu_cs_emit_regs(cs,
542 A6XX_RB_BIN_CONTROL(.binw = bin_w,
543 .binh = bin_h,
544 .dword = flags));
545
546 /* no flag for RB_BIN_CONTROL2... */
547 tu_cs_emit_regs(cs,
548 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
549 .binh = bin_h));
550 }
551
552 static void
553 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
554 const struct tu_subpass *subpass,
555 struct tu_cs *cs,
556 bool binning)
557 {
558 const struct tu_framebuffer *fb = cmd->state.framebuffer;
559 uint32_t cntl = 0;
560 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
561 if (binning) {
562 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
563 } else {
564 uint32_t mrts_ubwc_enable = 0;
565 for (uint32_t i = 0; i < subpass->color_count; ++i) {
566 uint32_t a = subpass->color_attachments[i].attachment;
567 if (a == VK_ATTACHMENT_UNUSED)
568 continue;
569
570 const struct tu_image_view *iview = fb->attachments[a].attachment;
571 if (iview->ubwc_enabled)
572 mrts_ubwc_enable |= 1 << i;
573 }
574
575 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
576
577 const uint32_t a = subpass->depth_stencil_attachment.attachment;
578 if (a != VK_ATTACHMENT_UNUSED) {
579 const struct tu_image_view *iview = fb->attachments[a].attachment;
580 if (iview->ubwc_enabled)
581 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
582 }
583
584 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
585 * in order to set it correctly for the different subpasses. However,
586 * that means the packets we're emitting also happen during binning. So
587 * we need to guard the write on !BINNING at CP execution time.
588 */
589 tu_cs_reserve(cs, 3 + 4);
590 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
591 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
592 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
593 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
594 }
595
596 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
597 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
598 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
599 tu_cs_emit(cs, cntl);
600 }
601
602 static void
603 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
604 {
605 const VkRect2D *render_area = &cmd->state.tiling_config.render_area;
606 uint32_t x1 = render_area->offset.x;
607 uint32_t y1 = render_area->offset.y;
608 uint32_t x2 = x1 + render_area->extent.width - 1;
609 uint32_t y2 = y1 + render_area->extent.height - 1;
610
611 if (align) {
612 x1 = x1 & ~(GMEM_ALIGN_W - 1);
613 y1 = y1 & ~(GMEM_ALIGN_H - 1);
614 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
615 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
616 }
617
618 tu_cs_emit_regs(cs,
619 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
620 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
621 }
622
623 void
624 tu6_emit_window_scissor(struct tu_cs *cs,
625 uint32_t x1,
626 uint32_t y1,
627 uint32_t x2,
628 uint32_t y2)
629 {
630 tu_cs_emit_regs(cs,
631 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
632 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
633
634 tu_cs_emit_regs(cs,
635 A6XX_GRAS_RESOLVE_CNTL_1(.x = x1, .y = y1),
636 A6XX_GRAS_RESOLVE_CNTL_2(.x = x2, .y = y2));
637 }
638
639 void
640 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
641 {
642 tu_cs_emit_regs(cs,
643 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
644
645 tu_cs_emit_regs(cs,
646 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
647
648 tu_cs_emit_regs(cs,
649 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
650
651 tu_cs_emit_regs(cs,
652 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
653 }
654
655 static void
656 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
657 {
658 uint32_t enable_mask;
659 switch (id) {
660 case TU_DRAW_STATE_PROGRAM:
661 case TU_DRAW_STATE_VI:
662 case TU_DRAW_STATE_FS_CONST:
663 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
664 * when resources would actually be used in the binning shader.
665 * Presumably the overhead of prefetching the resources isn't
666 * worth it.
667 */
668 case TU_DRAW_STATE_DESC_SETS_LOAD:
669 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
670 CP_SET_DRAW_STATE__0_SYSMEM;
671 break;
672 case TU_DRAW_STATE_PROGRAM_BINNING:
673 case TU_DRAW_STATE_VI_BINNING:
674 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
675 break;
676 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
677 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
678 break;
679 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
680 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
681 break;
682 default:
683 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
684 CP_SET_DRAW_STATE__0_SYSMEM |
685 CP_SET_DRAW_STATE__0_BINNING;
686 break;
687 }
688
689 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
690 enable_mask |
691 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
692 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
693 tu_cs_emit_qw(cs, state.iova);
694 }
695
696 /* note: get rid of this eventually */
697 static void
698 tu_cs_emit_sds_ib(struct tu_cs *cs, uint32_t id, struct tu_cs_entry entry)
699 {
700 tu_cs_emit_draw_state(cs, id, (struct tu_draw_state) {
701 .iova = entry.size ? entry.bo->iova + entry.offset : 0,
702 .size = entry.size / 4,
703 });
704 }
705
706 static bool
707 use_hw_binning(struct tu_cmd_buffer *cmd)
708 {
709 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
710
711 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
712 * with non-hw binning GMEM rendering. this is required because some of the
713 * XFB commands need to only be executed once
714 */
715 if (cmd->state.xfb_used)
716 return true;
717
718 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
719 return false;
720
721 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
722 return true;
723
724 return (tiling->tile_count.width * tiling->tile_count.height) > 2;
725 }
726
727 static bool
728 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
729 {
730 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
731 return true;
732
733 /* can't fit attachments into gmem */
734 if (!cmd->state.pass->gmem_pixels)
735 return true;
736
737 if (cmd->state.framebuffer->layers > 1)
738 return true;
739
740 if (cmd->has_tess)
741 return true;
742
743 return cmd->state.tiling_config.force_sysmem;
744 }
745
746 static void
747 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
748 struct tu_cs *cs,
749 const struct tu_tile *tile)
750 {
751 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
752 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
753
754 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
755 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
756
757 const uint32_t x1 = tile->begin.x;
758 const uint32_t y1 = tile->begin.y;
759 const uint32_t x2 = tile->end.x - 1;
760 const uint32_t y2 = tile->end.y - 1;
761 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
762 tu6_emit_window_offset(cs, x1, y1);
763
764 tu_cs_emit_regs(cs,
765 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
766
767 if (use_hw_binning(cmd)) {
768 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
769
770 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
771 tu_cs_emit(cs, 0x0);
772
773 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5, 7);
774 tu_cs_emit(cs, cmd->state.tiling_config.pipe_sizes[tile->pipe] |
775 CP_SET_BIN_DATA5_0_VSC_N(tile->slot));
776 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + tile->pipe * cmd->vsc_draw_strm_pitch);
777 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + (tile->pipe * 4) + (32 * cmd->vsc_draw_strm_pitch));
778 tu_cs_emit_qw(cs, cmd->vsc_prim_strm.iova + (tile->pipe * cmd->vsc_prim_strm_pitch));
779
780 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
781 tu_cs_emit(cs, 0x0);
782
783 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
784 tu_cs_emit(cs, 0x0);
785 } else {
786 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
787 tu_cs_emit(cs, 0x1);
788
789 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
790 tu_cs_emit(cs, 0x0);
791 }
792 }
793
794 static void
795 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
796 struct tu_cs *cs,
797 uint32_t a,
798 uint32_t gmem_a)
799 {
800 const struct tu_framebuffer *fb = cmd->state.framebuffer;
801 struct tu_image_view *dst = fb->attachments[a].attachment;
802 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
803
804 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.tiling_config.render_area);
805 }
806
807 static void
808 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
809 struct tu_cs *cs,
810 const struct tu_subpass *subpass)
811 {
812 if (subpass->resolve_attachments) {
813 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
814 * Commands":
815 *
816 * End-of-subpass multisample resolves are treated as color
817 * attachment writes for the purposes of synchronization. That is,
818 * they are considered to execute in the
819 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
820 * their writes are synchronized with
821 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
822 * rendering within a subpass and any resolve operations at the end
823 * of the subpass occurs automatically, without need for explicit
824 * dependencies or pipeline barriers. However, if the resolve
825 * attachment is also used in a different subpass, an explicit
826 * dependency is needed.
827 *
828 * We use the CP_BLIT path for sysmem resolves, which is really a
829 * transfer command, so we have to manually flush similar to the gmem
830 * resolve case. However, a flush afterwards isn't needed because of the
831 * last sentence and the fact that we're in sysmem mode.
832 */
833 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
834 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
835
836 /* Wait for the flushes to land before using the 2D engine */
837 tu_cs_emit_wfi(cs);
838
839 for (unsigned i = 0; i < subpass->color_count; i++) {
840 uint32_t a = subpass->resolve_attachments[i].attachment;
841 if (a == VK_ATTACHMENT_UNUSED)
842 continue;
843
844 tu6_emit_sysmem_resolve(cmd, cs, a,
845 subpass->color_attachments[i].attachment);
846 }
847 }
848 }
849
850 static void
851 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
852 {
853 const struct tu_render_pass *pass = cmd->state.pass;
854 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
855
856 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
857 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
858 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
859 CP_SET_DRAW_STATE__0_GROUP_ID(0));
860 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
861 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
862
863 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
864 tu_cs_emit(cs, 0x0);
865
866 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
867 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
868
869 tu6_emit_blit_scissor(cmd, cs, true);
870
871 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
872 if (pass->attachments[a].gmem_offset >= 0)
873 tu_store_gmem_attachment(cmd, cs, a, a);
874 }
875
876 if (subpass->resolve_attachments) {
877 for (unsigned i = 0; i < subpass->color_count; i++) {
878 uint32_t a = subpass->resolve_attachments[i].attachment;
879 if (a != VK_ATTACHMENT_UNUSED)
880 tu_store_gmem_attachment(cmd, cs, a,
881 subpass->color_attachments[i].attachment);
882 }
883 }
884 }
885
886 static void
887 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
888 {
889 const struct tu_physical_device *phys_dev = cmd->device->physical_device;
890
891 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
892
893 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 0xfffff);
894
895 tu_cs_emit_regs(cs,
896 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
897 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
898 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
899 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
900 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
901 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
902 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
903 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
904 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
905 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
906
907 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
908 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
909 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
910 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
911 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
912 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
913 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BB11, 0);
914 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
915 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
916 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
917 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
918 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
919 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
920 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_GS_SIV_CNTL, 0x0000ffff);
921
922 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
923 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
924 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
925
926 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
927
928 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
929
930 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
931 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
932 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
933 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
934 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
935 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
936 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
937 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
938 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
939 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
940 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
941
942 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9101, 0xffff00);
943 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
944
945 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9236,
946 A6XX_VPC_UNKNOWN_9236_POINT_COORD_INVERT(0));
947 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
948
949 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_SO_OVERRIDE,
950 A6XX_VPC_SO_OVERRIDE_SO_DISABLE);
951
952 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
953 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
954 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9990, 0);
955
956 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
957 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
958
959 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
960
961 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
962
963 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
964 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_809B, 0);
965 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
966 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
967 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
968 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
969 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
970 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9981, 0x3);
971 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
972 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9108, 0x3);
973 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
974 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
975
976 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
977
978 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
979
980 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
981
982 /* we don't use this yet.. probably best to disable.. */
983 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
984 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
985 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
986 CP_SET_DRAW_STATE__0_GROUP_ID(0));
987 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
988 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
989
990 tu_cs_emit_regs(cs,
991 A6XX_SP_HS_CTRL_REG0(0));
992
993 tu_cs_emit_regs(cs,
994 A6XX_SP_GS_CTRL_REG0(0));
995
996 tu_cs_emit_regs(cs,
997 A6XX_GRAS_LRZ_CNTL(0));
998
999 tu_cs_emit_regs(cs,
1000 A6XX_RB_LRZ_CNTL(0));
1001
1002 tu_cs_emit_regs(cs,
1003 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1004 tu_cs_emit_regs(cs,
1005 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1006
1007 tu_cs_sanity_check(cs);
1008 }
1009
1010 static void
1011 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1012 {
1013 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1014
1015 tu_cs_emit_regs(cs,
1016 A6XX_VSC_BIN_SIZE(.width = tiling->tile0.extent.width,
1017 .height = tiling->tile0.extent.height),
1018 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = &cmd->vsc_draw_strm,
1019 .bo_offset = 32 * cmd->vsc_draw_strm_pitch));
1020
1021 tu_cs_emit_regs(cs,
1022 A6XX_VSC_BIN_COUNT(.nx = tiling->tile_count.width,
1023 .ny = tiling->tile_count.height));
1024
1025 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
1026 for (unsigned i = 0; i < 32; i++)
1027 tu_cs_emit(cs, tiling->pipe_config[i]);
1028
1029 tu_cs_emit_regs(cs,
1030 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = &cmd->vsc_prim_strm),
1031 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
1032 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - 64));
1033
1034 tu_cs_emit_regs(cs,
1035 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = &cmd->vsc_draw_strm),
1036 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
1037 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - 64));
1038 }
1039
1040 static void
1041 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1042 {
1043 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1044 const uint32_t used_pipe_count =
1045 tiling->pipe_count.width * tiling->pipe_count.height;
1046
1047 /* Clear vsc_scratch: */
1048 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
1049 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1050 tu_cs_emit(cs, 0x0);
1051
1052 /* Check for overflow, write vsc_scratch if detected: */
1053 for (int i = 0; i < used_pipe_count; i++) {
1054 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1055 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1056 CP_COND_WRITE5_0_WRITE_MEMORY);
1057 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
1058 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1059 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - 64));
1060 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1061 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1062 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(1 + cmd->vsc_draw_strm_pitch));
1063
1064 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1065 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1066 CP_COND_WRITE5_0_WRITE_MEMORY);
1067 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
1068 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1069 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - 64));
1070 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1071 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1072 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(3 + cmd->vsc_prim_strm_pitch));
1073 }
1074
1075 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1076 }
1077
1078 static void
1079 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1080 {
1081 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1082 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1083
1084 uint32_t x1 = tiling->tile0.offset.x;
1085 uint32_t y1 = tiling->tile0.offset.y;
1086 uint32_t x2 = tiling->render_area.offset.x + tiling->render_area.extent.width - 1;
1087 uint32_t y2 = tiling->render_area.offset.y + tiling->render_area.extent.height - 1;
1088
1089 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
1090
1091 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1092 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
1093
1094 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1095 tu_cs_emit(cs, 0x1);
1096
1097 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1098 tu_cs_emit(cs, 0x1);
1099
1100 tu_cs_emit_wfi(cs);
1101
1102 tu_cs_emit_regs(cs,
1103 A6XX_VFD_MODE_CNTL(.binning_pass = true));
1104
1105 update_vsc_pipe(cmd, cs);
1106
1107 tu_cs_emit_regs(cs,
1108 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1109
1110 tu_cs_emit_regs(cs,
1111 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1112
1113 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1114 tu_cs_emit(cs, UNK_2C);
1115
1116 tu_cs_emit_regs(cs,
1117 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1118
1119 tu_cs_emit_regs(cs,
1120 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1121
1122 /* emit IB to binning drawcmds: */
1123 tu_cs_emit_call(cs, &cmd->draw_cs);
1124
1125 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1126 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1127 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1128 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1129 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1130 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1131
1132 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1133 tu_cs_emit(cs, UNK_2D);
1134
1135 /* This flush is probably required because the VSC, which produces the
1136 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1137 * visibility stream (without caching) to do draw skipping. The
1138 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1139 * submitted are finished before reading the VSC regs (in
1140 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1141 * part of draws).
1142 */
1143 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1144
1145 tu_cs_emit_wfi(cs);
1146
1147 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1148
1149 emit_vsc_overflow_test(cmd, cs);
1150
1151 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1152 tu_cs_emit(cs, 0x0);
1153
1154 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1155 tu_cs_emit(cs, 0x0);
1156 }
1157
1158 static void
1159 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1160 const struct tu_subpass *subpass,
1161 struct tu_cs_entry *ib,
1162 bool gmem)
1163 {
1164 /* note: we can probably emit input attachments just once for the whole
1165 * renderpass, this would avoid emitting both sysmem/gmem versions
1166 *
1167 * emit two texture descriptors for each input, as a workaround for
1168 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1169 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1170 * in the pair
1171 * TODO: a smarter workaround
1172 */
1173
1174 if (!subpass->input_count)
1175 return;
1176
1177 struct tu_cs_memory texture;
1178 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1179 A6XX_TEX_CONST_DWORDS, &texture);
1180 assert(result == VK_SUCCESS);
1181
1182 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1183 uint32_t a = subpass->input_attachments[i / 2].attachment;
1184 if (a == VK_ATTACHMENT_UNUSED)
1185 continue;
1186
1187 struct tu_image_view *iview =
1188 cmd->state.framebuffer->attachments[a].attachment;
1189 const struct tu_render_pass_attachment *att =
1190 &cmd->state.pass->attachments[a];
1191 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1192
1193 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1194
1195 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1196 /* note this works because spec says fb and input attachments
1197 * must use identity swizzle
1198 */
1199 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1200 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1201 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1202 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1203 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1204 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1205 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1206 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1207 }
1208
1209 if (!gmem)
1210 continue;
1211
1212 /* patched for gmem */
1213 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1214 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1215 dst[2] =
1216 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1217 A6XX_TEX_CONST_2_PITCH(cmd->state.tiling_config.tile0.extent.width * att->cpp);
1218 dst[3] = 0;
1219 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1220 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1221 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1222 dst[i] = 0;
1223 }
1224
1225 struct tu_cs cs;
1226 tu_cs_begin_sub_stream(&cmd->sub_cs, 9, &cs);
1227
1228 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1229 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1230 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1231 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1232 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1233 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1234 tu_cs_emit_qw(&cs, texture.iova);
1235
1236 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1237 tu_cs_emit_qw(&cs, texture.iova);
1238
1239 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1240
1241 *ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1242 }
1243
1244 static void
1245 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1246 {
1247 struct tu_cs *cs = &cmd->draw_cs;
1248
1249 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_gmem_ib, true);
1250 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_sysmem_ib, false);
1251
1252 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1253 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM, cmd->state.ia_gmem_ib);
1254 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM, cmd->state.ia_sysmem_ib);
1255 }
1256
1257 static void
1258 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1259 const VkRenderPassBeginInfo *info)
1260 {
1261 struct tu_cs *cs = &cmd->draw_cs;
1262
1263 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1264
1265 tu6_emit_blit_scissor(cmd, cs, true);
1266
1267 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1268 tu_load_gmem_attachment(cmd, cs, i, false);
1269
1270 tu6_emit_blit_scissor(cmd, cs, false);
1271
1272 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1273 tu_clear_gmem_attachment(cmd, cs, i, info);
1274
1275 tu_cond_exec_end(cs);
1276
1277 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1278
1279 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1280 tu_clear_sysmem_attachment(cmd, cs, i, info);
1281
1282 tu_cond_exec_end(cs);
1283 }
1284
1285 static void
1286 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1287 const struct VkRect2D *renderArea)
1288 {
1289 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1290
1291 assert(fb->width > 0 && fb->height > 0);
1292 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1293 tu6_emit_window_offset(cs, 0, 0);
1294
1295 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1296
1297 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1298
1299 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1300 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1301
1302 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1303 tu_cs_emit(cs, 0x0);
1304
1305 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1306
1307 /* enable stream-out, with sysmem there is only one pass: */
1308 tu_cs_emit_regs(cs,
1309 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
1310
1311 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1312 tu_cs_emit(cs, 0x1);
1313
1314 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1315 tu_cs_emit(cs, 0x0);
1316
1317 tu_cs_sanity_check(cs);
1318 }
1319
1320 static void
1321 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1322 {
1323 /* Do any resolves of the last subpass. These are handled in the
1324 * tile_store_ib in the gmem path.
1325 */
1326 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1327
1328 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1329
1330 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1331 tu_cs_emit(cs, 0x0);
1332
1333 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1334
1335 tu_cs_sanity_check(cs);
1336 }
1337
1338 static void
1339 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1340 {
1341 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1342
1343 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1344
1345 /* lrz clear? */
1346
1347 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1348 tu_cs_emit(cs, 0x0);
1349
1350 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1351
1352 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1353 if (use_hw_binning(cmd)) {
1354 /* enable stream-out during binning pass: */
1355 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1356
1357 tu6_emit_bin_size(cs,
1358 tiling->tile0.extent.width,
1359 tiling->tile0.extent.height,
1360 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1361
1362 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1363
1364 tu6_emit_binning_pass(cmd, cs);
1365
1366 /* and disable stream-out for draw pass: */
1367 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=true));
1368
1369 tu6_emit_bin_size(cs,
1370 tiling->tile0.extent.width,
1371 tiling->tile0.extent.height,
1372 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1373
1374 tu_cs_emit_regs(cs,
1375 A6XX_VFD_MODE_CNTL(0));
1376
1377 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1378
1379 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1380
1381 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1382 tu_cs_emit(cs, 0x1);
1383 } else {
1384 /* no binning pass, so enable stream-out for draw pass:: */
1385 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1386
1387 tu6_emit_bin_size(cs,
1388 tiling->tile0.extent.width,
1389 tiling->tile0.extent.height,
1390 0x6000000);
1391 }
1392
1393 tu_cs_sanity_check(cs);
1394 }
1395
1396 static void
1397 tu6_render_tile(struct tu_cmd_buffer *cmd,
1398 struct tu_cs *cs,
1399 const struct tu_tile *tile)
1400 {
1401 tu6_emit_tile_select(cmd, cs, tile);
1402
1403 tu_cs_emit_call(cs, &cmd->draw_cs);
1404
1405 if (use_hw_binning(cmd)) {
1406 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1407 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1408 }
1409
1410 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1411
1412 tu_cs_sanity_check(cs);
1413 }
1414
1415 static void
1416 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1417 {
1418 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1419
1420 tu_cs_emit_regs(cs,
1421 A6XX_GRAS_LRZ_CNTL(0));
1422
1423 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1424
1425 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1426
1427 tu_cs_sanity_check(cs);
1428 }
1429
1430 static void
1431 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1432 {
1433 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1434
1435 if (use_hw_binning(cmd))
1436 cmd->use_vsc_data = true;
1437
1438 tu6_tile_render_begin(cmd, &cmd->cs);
1439
1440 for (uint32_t y = 0; y < tiling->tile_count.height; y++) {
1441 for (uint32_t x = 0; x < tiling->tile_count.width; x++) {
1442 struct tu_tile tile;
1443 tu_tiling_config_get_tile(tiling, cmd->device, x, y, &tile);
1444 tu6_render_tile(cmd, &cmd->cs, &tile);
1445 }
1446 }
1447
1448 tu6_tile_render_end(cmd, &cmd->cs);
1449 }
1450
1451 static void
1452 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1453 {
1454 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1455
1456 tu6_sysmem_render_begin(cmd, &cmd->cs, &tiling->render_area);
1457
1458 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1459
1460 tu6_sysmem_render_end(cmd, &cmd->cs);
1461 }
1462
1463 static void
1464 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1465 {
1466 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1467 struct tu_cs sub_cs;
1468
1469 VkResult result =
1470 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1471 if (result != VK_SUCCESS) {
1472 cmd->record_result = result;
1473 return;
1474 }
1475
1476 /* emit to tile-store sub_cs */
1477 tu6_emit_tile_store(cmd, &sub_cs);
1478
1479 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1480 }
1481
1482 static void
1483 tu_cmd_update_tiling_config(struct tu_cmd_buffer *cmd,
1484 const VkRect2D *render_area)
1485 {
1486 const struct tu_device *dev = cmd->device;
1487 struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1488
1489 tiling->render_area = *render_area;
1490 tiling->force_sysmem = false;
1491
1492 tu_tiling_config_update_tile_layout(tiling, dev, cmd->state.pass);
1493 tu_tiling_config_update_pipe_layout(tiling, dev);
1494 tu_tiling_config_update_pipes(tiling, dev);
1495 }
1496
1497 static VkResult
1498 tu_create_cmd_buffer(struct tu_device *device,
1499 struct tu_cmd_pool *pool,
1500 VkCommandBufferLevel level,
1501 VkCommandBuffer *pCommandBuffer)
1502 {
1503 struct tu_cmd_buffer *cmd_buffer;
1504 cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8,
1505 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1506 if (cmd_buffer == NULL)
1507 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1508
1509 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1510 cmd_buffer->device = device;
1511 cmd_buffer->pool = pool;
1512 cmd_buffer->level = level;
1513
1514 if (pool) {
1515 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1516 cmd_buffer->queue_family_index = pool->queue_family_index;
1517
1518 } else {
1519 /* Init the pool_link so we can safely call list_del when we destroy
1520 * the command buffer
1521 */
1522 list_inithead(&cmd_buffer->pool_link);
1523 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1524 }
1525
1526 tu_bo_list_init(&cmd_buffer->bo_list);
1527 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1528 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1529 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1530 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1531
1532 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1533
1534 list_inithead(&cmd_buffer->upload.list);
1535
1536 VkResult result = tu_bo_init_new(device, &cmd_buffer->scratch_bo, 0x1000);
1537 if (result != VK_SUCCESS)
1538 goto fail_scratch_bo;
1539
1540 /* TODO: resize on overflow */
1541 cmd_buffer->vsc_draw_strm_pitch = device->vsc_draw_strm_pitch;
1542 cmd_buffer->vsc_prim_strm_pitch = device->vsc_prim_strm_pitch;
1543 cmd_buffer->vsc_draw_strm = device->vsc_draw_strm;
1544 cmd_buffer->vsc_prim_strm = device->vsc_prim_strm;
1545
1546 return VK_SUCCESS;
1547
1548 fail_scratch_bo:
1549 list_del(&cmd_buffer->pool_link);
1550 return result;
1551 }
1552
1553 static void
1554 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1555 {
1556 tu_bo_finish(cmd_buffer->device, &cmd_buffer->scratch_bo);
1557
1558 list_del(&cmd_buffer->pool_link);
1559
1560 tu_cs_finish(&cmd_buffer->cs);
1561 tu_cs_finish(&cmd_buffer->draw_cs);
1562 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1563 tu_cs_finish(&cmd_buffer->sub_cs);
1564
1565 tu_bo_list_destroy(&cmd_buffer->bo_list);
1566 vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
1567 }
1568
1569 static VkResult
1570 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1571 {
1572 cmd_buffer->record_result = VK_SUCCESS;
1573
1574 tu_bo_list_reset(&cmd_buffer->bo_list);
1575 tu_cs_reset(&cmd_buffer->cs);
1576 tu_cs_reset(&cmd_buffer->draw_cs);
1577 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1578 tu_cs_reset(&cmd_buffer->sub_cs);
1579
1580 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1581 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1582
1583 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1584
1585 return cmd_buffer->record_result;
1586 }
1587
1588 VkResult
1589 tu_AllocateCommandBuffers(VkDevice _device,
1590 const VkCommandBufferAllocateInfo *pAllocateInfo,
1591 VkCommandBuffer *pCommandBuffers)
1592 {
1593 TU_FROM_HANDLE(tu_device, device, _device);
1594 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1595
1596 VkResult result = VK_SUCCESS;
1597 uint32_t i;
1598
1599 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1600
1601 if (!list_is_empty(&pool->free_cmd_buffers)) {
1602 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1603 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1604
1605 list_del(&cmd_buffer->pool_link);
1606 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1607
1608 result = tu_reset_cmd_buffer(cmd_buffer);
1609 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1610 cmd_buffer->level = pAllocateInfo->level;
1611
1612 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1613 } else {
1614 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1615 &pCommandBuffers[i]);
1616 }
1617 if (result != VK_SUCCESS)
1618 break;
1619 }
1620
1621 if (result != VK_SUCCESS) {
1622 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1623 pCommandBuffers);
1624
1625 /* From the Vulkan 1.0.66 spec:
1626 *
1627 * "vkAllocateCommandBuffers can be used to create multiple
1628 * command buffers. If the creation of any of those command
1629 * buffers fails, the implementation must destroy all
1630 * successfully created command buffer objects from this
1631 * command, set all entries of the pCommandBuffers array to
1632 * NULL and return the error."
1633 */
1634 memset(pCommandBuffers, 0,
1635 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1636 }
1637
1638 return result;
1639 }
1640
1641 void
1642 tu_FreeCommandBuffers(VkDevice device,
1643 VkCommandPool commandPool,
1644 uint32_t commandBufferCount,
1645 const VkCommandBuffer *pCommandBuffers)
1646 {
1647 for (uint32_t i = 0; i < commandBufferCount; i++) {
1648 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1649
1650 if (cmd_buffer) {
1651 if (cmd_buffer->pool) {
1652 list_del(&cmd_buffer->pool_link);
1653 list_addtail(&cmd_buffer->pool_link,
1654 &cmd_buffer->pool->free_cmd_buffers);
1655 } else
1656 tu_cmd_buffer_destroy(cmd_buffer);
1657 }
1658 }
1659 }
1660
1661 VkResult
1662 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1663 VkCommandBufferResetFlags flags)
1664 {
1665 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1666 return tu_reset_cmd_buffer(cmd_buffer);
1667 }
1668
1669 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1670 * invalidations.
1671 */
1672 static void
1673 tu_cache_init(struct tu_cache_state *cache)
1674 {
1675 cache->flush_bits = 0;
1676 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1677 }
1678
1679 VkResult
1680 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1681 const VkCommandBufferBeginInfo *pBeginInfo)
1682 {
1683 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1684 VkResult result = VK_SUCCESS;
1685
1686 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1687 /* If the command buffer has already been resetted with
1688 * vkResetCommandBuffer, no need to do it again.
1689 */
1690 result = tu_reset_cmd_buffer(cmd_buffer);
1691 if (result != VK_SUCCESS)
1692 return result;
1693 }
1694
1695 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1696 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1697
1698 tu_cache_init(&cmd_buffer->state.cache);
1699 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1700 cmd_buffer->usage_flags = pBeginInfo->flags;
1701
1702 tu_cs_begin(&cmd_buffer->cs);
1703 tu_cs_begin(&cmd_buffer->draw_cs);
1704 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1705
1706 /* setup initial configuration into command buffer */
1707 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1708 switch (cmd_buffer->queue_family_index) {
1709 case TU_QUEUE_GENERAL:
1710 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1711 break;
1712 default:
1713 break;
1714 }
1715 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1716 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1717 assert(pBeginInfo->pInheritanceInfo);
1718 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1719 cmd_buffer->state.subpass =
1720 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1721 } else {
1722 /* When executing in the middle of another command buffer, the CCU
1723 * state is unknown.
1724 */
1725 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1726 }
1727 }
1728
1729 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1730
1731 return VK_SUCCESS;
1732 }
1733
1734 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1735 * rendering can skip over unused state), so we need to collect all the
1736 * bindings together into a single state emit at draw time.
1737 */
1738 void
1739 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1740 uint32_t firstBinding,
1741 uint32_t bindingCount,
1742 const VkBuffer *pBuffers,
1743 const VkDeviceSize *pOffsets)
1744 {
1745 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1746
1747 assert(firstBinding + bindingCount <= MAX_VBS);
1748
1749 for (uint32_t i = 0; i < bindingCount; i++) {
1750 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1751
1752 cmd->state.vb.buffers[firstBinding + i] = buf;
1753 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1754
1755 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1756 }
1757
1758 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1759 }
1760
1761 void
1762 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1763 VkBuffer buffer,
1764 VkDeviceSize offset,
1765 VkIndexType indexType)
1766 {
1767 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1768 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1769
1770
1771
1772 uint32_t index_size, index_shift, restart_index;
1773
1774 switch (indexType) {
1775 case VK_INDEX_TYPE_UINT16:
1776 index_size = INDEX4_SIZE_16_BIT;
1777 index_shift = 1;
1778 restart_index = 0xffff;
1779 break;
1780 case VK_INDEX_TYPE_UINT32:
1781 index_size = INDEX4_SIZE_32_BIT;
1782 index_shift = 2;
1783 restart_index = 0xffffffff;
1784 break;
1785 case VK_INDEX_TYPE_UINT8_EXT:
1786 index_size = INDEX4_SIZE_8_BIT;
1787 index_shift = 0;
1788 restart_index = 0xff;
1789 break;
1790 default:
1791 unreachable("invalid VkIndexType");
1792 }
1793
1794 /* initialize/update the restart index */
1795 if (cmd->state.index_size != index_size)
1796 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1797
1798 assert(buf->size >= offset);
1799
1800 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1801 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1802 cmd->state.index_size = index_size;
1803 cmd->state.index_shift = index_shift;
1804
1805 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1806 }
1807
1808 void
1809 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1810 VkPipelineBindPoint pipelineBindPoint,
1811 VkPipelineLayout _layout,
1812 uint32_t firstSet,
1813 uint32_t descriptorSetCount,
1814 const VkDescriptorSet *pDescriptorSets,
1815 uint32_t dynamicOffsetCount,
1816 const uint32_t *pDynamicOffsets)
1817 {
1818 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1819 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1820 unsigned dyn_idx = 0;
1821
1822 struct tu_descriptor_state *descriptors_state =
1823 tu_get_descriptors_state(cmd, pipelineBindPoint);
1824
1825 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1826 unsigned idx = i + firstSet;
1827 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1828
1829 descriptors_state->sets[idx] = set;
1830
1831 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1832 /* update the contents of the dynamic descriptor set */
1833 unsigned src_idx = j;
1834 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1835 assert(dyn_idx < dynamicOffsetCount);
1836
1837 uint32_t *dst =
1838 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1839 uint32_t *src =
1840 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1841 uint32_t offset = pDynamicOffsets[dyn_idx];
1842
1843 /* Patch the storage/uniform descriptors right away. */
1844 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1845 /* Note: we can assume here that the addition won't roll over and
1846 * change the SIZE field.
1847 */
1848 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1849 va += offset;
1850 dst[0] = va;
1851 dst[1] = va >> 32;
1852 } else {
1853 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1854 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1855 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1856 va += offset;
1857 dst[4] = va;
1858 dst[5] = va >> 32;
1859 }
1860 }
1861
1862 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1863 if (set->buffers[j]) {
1864 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1865 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1866 }
1867 }
1868
1869 if (set->size > 0) {
1870 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1871 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1872 }
1873 }
1874 assert(dyn_idx == dynamicOffsetCount);
1875
1876 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_update_value;
1877 uint64_t addr[MAX_SETS + 1] = {};
1878 struct tu_cs cs;
1879
1880 for (uint32_t i = 0; i < MAX_SETS; i++) {
1881 struct tu_descriptor_set *set = descriptors_state->sets[i];
1882 if (set)
1883 addr[i] = set->va | 3;
1884 }
1885
1886 if (layout->dynamic_offset_count) {
1887 /* allocate and fill out dynamic descriptor set */
1888 struct tu_cs_memory dynamic_desc_set;
1889 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1890 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1891 assert(result == VK_SUCCESS);
1892
1893 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1894 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1895 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1896 }
1897
1898 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1899 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1900 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1901 hlsq_update_value = 0x7c000;
1902
1903 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS | TU_CMD_DIRTY_SHADER_CONSTS;
1904 } else {
1905 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1906
1907 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1908 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1909 hlsq_update_value = 0x3e00;
1910
1911 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS;
1912 }
1913
1914 tu_cs_begin_sub_stream(&cmd->sub_cs, 24, &cs);
1915
1916 tu_cs_emit_pkt4(&cs, sp_bindless_base_reg, 10);
1917 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1918 tu_cs_emit_pkt4(&cs, hlsq_bindless_base_reg, 10);
1919 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1920 tu_cs_emit_regs(&cs, A6XX_HLSQ_UPDATE_CNTL(.dword = hlsq_update_value));
1921
1922 struct tu_cs_entry ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1923 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1924 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1925 tu_cs_emit_sds_ib(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, ib);
1926 cmd->state.desc_sets_ib = ib;
1927 } else {
1928 /* note: for compute we could emit directly, instead of a CP_INDIRECT
1929 * however, the blob uses draw states for compute
1930 */
1931 tu_cs_emit_ib(&cmd->cs, &ib);
1932 }
1933 }
1934
1935 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1936 uint32_t firstBinding,
1937 uint32_t bindingCount,
1938 const VkBuffer *pBuffers,
1939 const VkDeviceSize *pOffsets,
1940 const VkDeviceSize *pSizes)
1941 {
1942 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1943 struct tu_cs *cs = &cmd->draw_cs;
1944
1945 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1946 * presumably there isn't any benefit using a draw state when the
1947 * condition is (SYSMEM | BINNING)
1948 */
1949 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1950 CP_COND_REG_EXEC_0_SYSMEM |
1951 CP_COND_REG_EXEC_0_BINNING);
1952
1953 for (uint32_t i = 0; i < bindingCount; i++) {
1954 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1955 uint64_t iova = buf->bo->iova + pOffsets[i];
1956 uint32_t size = buf->bo->size - pOffsets[i];
1957 uint32_t idx = i + firstBinding;
1958
1959 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1960 size = pSizes[i];
1961
1962 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1963 uint32_t offset = iova & 0x1f;
1964 iova &= ~(uint64_t) 0x1f;
1965
1966 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1967 tu_cs_emit_qw(cs, iova);
1968 tu_cs_emit(cs, size + offset);
1969
1970 cmd->state.streamout_offset[idx] = offset;
1971
1972 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1973 }
1974
1975 tu_cond_exec_end(cs);
1976 }
1977
1978 void
1979 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1980 uint32_t firstCounterBuffer,
1981 uint32_t counterBufferCount,
1982 const VkBuffer *pCounterBuffers,
1983 const VkDeviceSize *pCounterBufferOffsets)
1984 {
1985 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1986 struct tu_cs *cs = &cmd->draw_cs;
1987
1988 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1989 CP_COND_REG_EXEC_0_SYSMEM |
1990 CP_COND_REG_EXEC_0_BINNING);
1991
1992 /* TODO: only update offset for active buffers */
1993 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1994 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1995
1996 for (uint32_t i = 0; i < counterBufferCount; i++) {
1997 uint32_t idx = firstCounterBuffer + i;
1998 uint32_t offset = cmd->state.streamout_offset[idx];
1999
2000 if (!pCounterBuffers[i])
2001 continue;
2002
2003 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
2004
2005 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
2006
2007 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
2008 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
2009 CP_MEM_TO_REG_0_UNK31 |
2010 CP_MEM_TO_REG_0_CNT(1));
2011 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
2012
2013 if (offset) {
2014 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
2015 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
2016 CP_REG_RMW_0_SRC1_ADD);
2017 tu_cs_emit_qw(cs, 0xffffffff);
2018 tu_cs_emit_qw(cs, offset);
2019 }
2020 }
2021
2022 tu_cond_exec_end(cs);
2023 }
2024
2025 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
2026 uint32_t firstCounterBuffer,
2027 uint32_t counterBufferCount,
2028 const VkBuffer *pCounterBuffers,
2029 const VkDeviceSize *pCounterBufferOffsets)
2030 {
2031 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2032 struct tu_cs *cs = &cmd->draw_cs;
2033
2034 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
2035 CP_COND_REG_EXEC_0_SYSMEM |
2036 CP_COND_REG_EXEC_0_BINNING);
2037
2038 /* TODO: only flush buffers that need to be flushed */
2039 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
2040 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
2041 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
2042 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(flush_base[i]));
2043 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
2044 }
2045
2046 for (uint32_t i = 0; i < counterBufferCount; i++) {
2047 uint32_t idx = firstCounterBuffer + i;
2048 uint32_t offset = cmd->state.streamout_offset[idx];
2049
2050 if (!pCounterBuffers[i])
2051 continue;
2052
2053 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
2054
2055 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
2056
2057 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
2058 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
2059 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2060 CP_MEM_TO_REG_0_SHIFT_BY_2 |
2061 0x40000 | /* ??? */
2062 CP_MEM_TO_REG_0_UNK31 |
2063 CP_MEM_TO_REG_0_CNT(1));
2064 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(flush_base[idx]));
2065
2066 if (offset) {
2067 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
2068 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2069 CP_REG_RMW_0_SRC1_ADD);
2070 tu_cs_emit_qw(cs, 0xffffffff);
2071 tu_cs_emit_qw(cs, -offset);
2072 }
2073
2074 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
2075 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2076 CP_REG_TO_MEM_0_CNT(1));
2077 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
2078 }
2079
2080 tu_cond_exec_end(cs);
2081
2082 cmd->state.xfb_used = true;
2083 }
2084
2085 void
2086 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
2087 VkPipelineLayout layout,
2088 VkShaderStageFlags stageFlags,
2089 uint32_t offset,
2090 uint32_t size,
2091 const void *pValues)
2092 {
2093 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2094 memcpy((void*) cmd->push_constants + offset, pValues, size);
2095 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2096 }
2097
2098 /* Flush everything which has been made available but we haven't actually
2099 * flushed yet.
2100 */
2101 static void
2102 tu_flush_all_pending(struct tu_cache_state *cache)
2103 {
2104 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2105 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
2106 }
2107
2108 VkResult
2109 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
2110 {
2111 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
2112
2113 /* We currently flush CCU at the end of the command buffer, like
2114 * what the blob does. There's implicit synchronization around every
2115 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
2116 * know yet if this command buffer will be the last in the submit so we
2117 * have to defensively flush everything else.
2118 *
2119 * TODO: We could definitely do better than this, since these flushes
2120 * aren't required by Vulkan, but we'd need kernel support to do that.
2121 * Ideally, we'd like the kernel to flush everything afterwards, so that we
2122 * wouldn't have to do any flushes here, and when submitting multiple
2123 * command buffers there wouldn't be any unnecessary flushes in between.
2124 */
2125 if (cmd_buffer->state.pass) {
2126 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
2127 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
2128 } else {
2129 tu_flush_all_pending(&cmd_buffer->state.cache);
2130 cmd_buffer->state.cache.flush_bits |=
2131 TU_CMD_FLAG_CCU_FLUSH_COLOR |
2132 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
2133 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
2134 }
2135
2136 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->scratch_bo,
2137 MSM_SUBMIT_BO_WRITE);
2138
2139 if (cmd_buffer->use_vsc_data) {
2140 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_draw_strm,
2141 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2142 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_prim_strm,
2143 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2144 }
2145
2146 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->border_color,
2147 MSM_SUBMIT_BO_READ);
2148
2149 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
2150 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
2151 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2152 }
2153
2154 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
2155 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
2156 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2157 }
2158
2159 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
2160 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
2161 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2162 }
2163
2164 tu_cs_end(&cmd_buffer->cs);
2165 tu_cs_end(&cmd_buffer->draw_cs);
2166 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
2167
2168 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
2169
2170 return cmd_buffer->record_result;
2171 }
2172
2173 static struct tu_cs
2174 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2175 {
2176 struct tu_cs_memory memory;
2177 struct tu_cs cs;
2178
2179 /* TODO: share this logic with tu_pipeline_static_state */
2180 tu_cs_alloc(&cmd->sub_cs, size, 1, &memory);
2181 tu_cs_init_external(&cs, memory.map, memory.map + size);
2182 tu_cs_begin(&cs);
2183 tu_cs_reserve_space(&cs, size);
2184
2185 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2186 cmd->state.dynamic_state[id].iova = memory.iova;
2187 cmd->state.dynamic_state[id].size = size;
2188
2189 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2190 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2191
2192 return cs;
2193 }
2194
2195 void
2196 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2197 VkPipelineBindPoint pipelineBindPoint,
2198 VkPipeline _pipeline)
2199 {
2200 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2201 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2202
2203 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2204 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2205 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2206 }
2207
2208 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2209 cmd->state.compute_pipeline = pipeline;
2210 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_PIPELINE;
2211 return;
2212 }
2213
2214 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2215
2216 cmd->state.pipeline = pipeline;
2217 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2218
2219 struct tu_cs *cs = &cmd->draw_cs;
2220 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2221 uint32_t i;
2222
2223 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2224 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
2225 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
2226 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
2227 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
2228 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
2229 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
2230 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
2231
2232 for_each_bit(i, mask)
2233 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2234
2235 /* If the new pipeline requires more VBs than we had previously set up, we
2236 * need to re-emit them in SDS. If it requires the same set or fewer, we
2237 * can just re-use the old SDS.
2238 */
2239 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2240 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2241
2242 /* If the pipeline needs a dynamic descriptor, re-emit descriptor sets */
2243 if (pipeline->layout->dynamic_offset_count)
2244 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS;
2245
2246 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2247 * so the dynamic state ib must be updated when pipeline changes
2248 */
2249 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2250 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2251
2252 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2253 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2254
2255 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2256 }
2257 }
2258
2259 void
2260 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2261 uint32_t firstViewport,
2262 uint32_t viewportCount,
2263 const VkViewport *pViewports)
2264 {
2265 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2266 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2267
2268 assert(firstViewport == 0 && viewportCount == 1);
2269
2270 tu6_emit_viewport(&cs, pViewports);
2271 }
2272
2273 void
2274 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2275 uint32_t firstScissor,
2276 uint32_t scissorCount,
2277 const VkRect2D *pScissors)
2278 {
2279 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2280 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2281
2282 assert(firstScissor == 0 && scissorCount == 1);
2283
2284 tu6_emit_scissor(&cs, pScissors);
2285 }
2286
2287 void
2288 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2289 {
2290 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2291 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2292
2293 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2294 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2295
2296 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2297 }
2298
2299 void
2300 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2301 float depthBiasConstantFactor,
2302 float depthBiasClamp,
2303 float depthBiasSlopeFactor)
2304 {
2305 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2306 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2307
2308 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2309 }
2310
2311 void
2312 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2313 const float blendConstants[4])
2314 {
2315 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2316 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2317
2318 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2319 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2320 }
2321
2322 void
2323 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2324 float minDepthBounds,
2325 float maxDepthBounds)
2326 {
2327 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2328 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
2329
2330 tu_cs_emit_regs(&cs,
2331 A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
2332 A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
2333 }
2334
2335 static void
2336 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2337 {
2338 if (face & VK_STENCIL_FACE_FRONT_BIT)
2339 *value |= A6XX_RB_STENCILMASK_MASK(mask);
2340 if (face & VK_STENCIL_FACE_BACK_BIT)
2341 *value |= A6XX_RB_STENCILMASK_BFMASK(mask);
2342 }
2343
2344 void
2345 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2346 VkStencilFaceFlags faceMask,
2347 uint32_t compareMask)
2348 {
2349 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2350 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2351
2352 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2353
2354 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2355 }
2356
2357 void
2358 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2359 VkStencilFaceFlags faceMask,
2360 uint32_t writeMask)
2361 {
2362 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2363 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2364
2365 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2366
2367 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2368 }
2369
2370 void
2371 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2372 VkStencilFaceFlags faceMask,
2373 uint32_t reference)
2374 {
2375 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2376 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2377
2378 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2379
2380 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2381 }
2382
2383 void
2384 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2385 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2386 {
2387 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2388 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2389
2390 assert(pSampleLocationsInfo);
2391
2392 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2393 }
2394
2395 static void
2396 tu_flush_for_access(struct tu_cache_state *cache,
2397 enum tu_cmd_access_mask src_mask,
2398 enum tu_cmd_access_mask dst_mask)
2399 {
2400 enum tu_cmd_flush_bits flush_bits = 0;
2401
2402 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2403 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2404 }
2405
2406 #define SRC_FLUSH(domain, flush, invalidate) \
2407 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2408 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2409 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2410 }
2411
2412 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2413 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2414 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2415
2416 #undef SRC_FLUSH
2417
2418 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2419 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2420 flush_bits |= TU_CMD_FLAG_##flush; \
2421 cache->pending_flush_bits |= \
2422 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2423 }
2424
2425 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2426 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2427
2428 #undef SRC_INCOHERENT_FLUSH
2429
2430 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
2431 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2432 }
2433
2434 #define DST_FLUSH(domain, flush, invalidate) \
2435 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2436 TU_ACCESS_##domain##_WRITE)) { \
2437 flush_bits |= cache->pending_flush_bits & \
2438 (TU_CMD_FLAG_##invalidate | \
2439 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2440 }
2441
2442 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2443 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2444 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2445
2446 #undef DST_FLUSH
2447
2448 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2449 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2450 TU_ACCESS_##domain##_WRITE)) { \
2451 flush_bits |= TU_CMD_FLAG_##invalidate | \
2452 (cache->pending_flush_bits & \
2453 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2454 }
2455
2456 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2457 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2458
2459 #undef DST_INCOHERENT_FLUSH
2460
2461 if (dst_mask & TU_ACCESS_WFI_READ) {
2462 flush_bits |= TU_CMD_FLAG_WFI;
2463 }
2464
2465 cache->flush_bits |= flush_bits;
2466 cache->pending_flush_bits &= ~flush_bits;
2467 }
2468
2469 static enum tu_cmd_access_mask
2470 vk2tu_access(VkAccessFlags flags, bool gmem)
2471 {
2472 enum tu_cmd_access_mask mask = 0;
2473
2474 /* If the GPU writes a buffer that is then read by an indirect draw
2475 * command, we theoretically need a WFI + WAIT_FOR_ME combination to
2476 * wait for the writes to complete. The WAIT_FOR_ME is performed as part
2477 * of the draw by the firmware, so we just need to execute a WFI.
2478 */
2479 if (flags &
2480 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2481 VK_ACCESS_MEMORY_READ_BIT)) {
2482 mask |= TU_ACCESS_WFI_READ;
2483 }
2484
2485 if (flags &
2486 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2487 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
2488 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2489 VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
2490 VK_ACCESS_MEMORY_READ_BIT)) {
2491 mask |= TU_ACCESS_SYSMEM_READ;
2492 }
2493
2494 if (flags &
2495 (VK_ACCESS_HOST_WRITE_BIT |
2496 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
2497 VK_ACCESS_MEMORY_WRITE_BIT)) {
2498 mask |= TU_ACCESS_SYSMEM_WRITE;
2499 }
2500
2501 if (flags &
2502 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2503 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2504 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2505 /* TODO: Is there a no-cache bit for textures so that we can ignore
2506 * these?
2507 */
2508 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2509 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2510 VK_ACCESS_MEMORY_READ_BIT)) {
2511 mask |= TU_ACCESS_UCHE_READ;
2512 }
2513
2514 if (flags &
2515 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2516 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2517 VK_ACCESS_MEMORY_WRITE_BIT)) {
2518 mask |= TU_ACCESS_UCHE_WRITE;
2519 }
2520
2521 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2522 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2523 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2524 * can ignore CCU and pretend that color attachments and transfers use
2525 * sysmem directly.
2526 */
2527
2528 if (flags &
2529 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2530 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2531 VK_ACCESS_MEMORY_READ_BIT)) {
2532 if (gmem)
2533 mask |= TU_ACCESS_SYSMEM_READ;
2534 else
2535 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2536 }
2537
2538 if (flags &
2539 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2540 VK_ACCESS_MEMORY_READ_BIT)) {
2541 if (gmem)
2542 mask |= TU_ACCESS_SYSMEM_READ;
2543 else
2544 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2545 }
2546
2547 if (flags &
2548 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2549 VK_ACCESS_MEMORY_WRITE_BIT)) {
2550 if (gmem) {
2551 mask |= TU_ACCESS_SYSMEM_WRITE;
2552 } else {
2553 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2554 }
2555 }
2556
2557 if (flags &
2558 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2559 VK_ACCESS_MEMORY_WRITE_BIT)) {
2560 if (gmem) {
2561 mask |= TU_ACCESS_SYSMEM_WRITE;
2562 } else {
2563 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2564 }
2565 }
2566
2567 /* When the dst access is a transfer read/write, it seems we sometimes need
2568 * to insert a WFI after any flushes, to guarantee that the flushes finish
2569 * before the 2D engine starts. However the opposite (i.e. a WFI after
2570 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2571 * the blob doesn't emit such a WFI.
2572 */
2573
2574 if (flags &
2575 (VK_ACCESS_TRANSFER_WRITE_BIT |
2576 VK_ACCESS_MEMORY_WRITE_BIT)) {
2577 if (gmem) {
2578 mask |= TU_ACCESS_SYSMEM_WRITE;
2579 } else {
2580 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2581 }
2582 mask |= TU_ACCESS_WFI_READ;
2583 }
2584
2585 if (flags &
2586 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2587 VK_ACCESS_MEMORY_READ_BIT)) {
2588 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2589 }
2590
2591 return mask;
2592 }
2593
2594
2595 void
2596 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2597 uint32_t commandBufferCount,
2598 const VkCommandBuffer *pCmdBuffers)
2599 {
2600 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2601 VkResult result;
2602
2603 assert(commandBufferCount > 0);
2604
2605 /* Emit any pending flushes. */
2606 if (cmd->state.pass) {
2607 tu_flush_all_pending(&cmd->state.renderpass_cache);
2608 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2609 } else {
2610 tu_flush_all_pending(&cmd->state.cache);
2611 tu_emit_cache_flush(cmd, &cmd->cs);
2612 }
2613
2614 for (uint32_t i = 0; i < commandBufferCount; i++) {
2615 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2616
2617 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2618 if (result != VK_SUCCESS) {
2619 cmd->record_result = result;
2620 break;
2621 }
2622
2623 if (secondary->usage_flags &
2624 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2625 assert(tu_cs_is_empty(&secondary->cs));
2626
2627 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2628 if (result != VK_SUCCESS) {
2629 cmd->record_result = result;
2630 break;
2631 }
2632
2633 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2634 &secondary->draw_epilogue_cs);
2635 if (result != VK_SUCCESS) {
2636 cmd->record_result = result;
2637 break;
2638 }
2639
2640 if (secondary->has_tess)
2641 cmd->has_tess = true;
2642 } else {
2643 assert(tu_cs_is_empty(&secondary->draw_cs));
2644 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2645
2646 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2647 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2648 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2649 }
2650
2651 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2652 }
2653
2654 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2655 }
2656 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2657
2658 /* After executing secondary command buffers, there may have been arbitrary
2659 * flushes executed, so when we encounter a pipeline barrier with a
2660 * srcMask, we have to assume that we need to invalidate. Therefore we need
2661 * to re-initialize the cache with all pending invalidate bits set.
2662 */
2663 if (cmd->state.pass) {
2664 tu_cache_init(&cmd->state.renderpass_cache);
2665 } else {
2666 tu_cache_init(&cmd->state.cache);
2667 }
2668 }
2669
2670 VkResult
2671 tu_CreateCommandPool(VkDevice _device,
2672 const VkCommandPoolCreateInfo *pCreateInfo,
2673 const VkAllocationCallbacks *pAllocator,
2674 VkCommandPool *pCmdPool)
2675 {
2676 TU_FROM_HANDLE(tu_device, device, _device);
2677 struct tu_cmd_pool *pool;
2678
2679 pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
2680 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2681 if (pool == NULL)
2682 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2683
2684 if (pAllocator)
2685 pool->alloc = *pAllocator;
2686 else
2687 pool->alloc = device->alloc;
2688
2689 list_inithead(&pool->cmd_buffers);
2690 list_inithead(&pool->free_cmd_buffers);
2691
2692 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2693
2694 *pCmdPool = tu_cmd_pool_to_handle(pool);
2695
2696 return VK_SUCCESS;
2697 }
2698
2699 void
2700 tu_DestroyCommandPool(VkDevice _device,
2701 VkCommandPool commandPool,
2702 const VkAllocationCallbacks *pAllocator)
2703 {
2704 TU_FROM_HANDLE(tu_device, device, _device);
2705 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2706
2707 if (!pool)
2708 return;
2709
2710 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2711 &pool->cmd_buffers, pool_link)
2712 {
2713 tu_cmd_buffer_destroy(cmd_buffer);
2714 }
2715
2716 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2717 &pool->free_cmd_buffers, pool_link)
2718 {
2719 tu_cmd_buffer_destroy(cmd_buffer);
2720 }
2721
2722 vk_free2(&device->alloc, pAllocator, pool);
2723 }
2724
2725 VkResult
2726 tu_ResetCommandPool(VkDevice device,
2727 VkCommandPool commandPool,
2728 VkCommandPoolResetFlags flags)
2729 {
2730 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2731 VkResult result;
2732
2733 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2734 pool_link)
2735 {
2736 result = tu_reset_cmd_buffer(cmd_buffer);
2737 if (result != VK_SUCCESS)
2738 return result;
2739 }
2740
2741 return VK_SUCCESS;
2742 }
2743
2744 void
2745 tu_TrimCommandPool(VkDevice device,
2746 VkCommandPool commandPool,
2747 VkCommandPoolTrimFlags flags)
2748 {
2749 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2750
2751 if (!pool)
2752 return;
2753
2754 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2755 &pool->free_cmd_buffers, pool_link)
2756 {
2757 tu_cmd_buffer_destroy(cmd_buffer);
2758 }
2759 }
2760
2761 static void
2762 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2763 const struct tu_subpass_barrier *barrier,
2764 bool external)
2765 {
2766 /* Note: we don't know until the end of the subpass whether we'll use
2767 * sysmem, so assume sysmem here to be safe.
2768 */
2769 struct tu_cache_state *cache =
2770 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2771 enum tu_cmd_access_mask src_flags =
2772 vk2tu_access(barrier->src_access_mask, false);
2773 enum tu_cmd_access_mask dst_flags =
2774 vk2tu_access(barrier->dst_access_mask, false);
2775
2776 if (barrier->incoherent_ccu_color)
2777 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2778 if (barrier->incoherent_ccu_depth)
2779 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2780
2781 tu_flush_for_access(cache, src_flags, dst_flags);
2782 }
2783
2784 void
2785 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2786 const VkRenderPassBeginInfo *pRenderPassBegin,
2787 VkSubpassContents contents)
2788 {
2789 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2790 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2791 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2792
2793 cmd->state.pass = pass;
2794 cmd->state.subpass = pass->subpasses;
2795 cmd->state.framebuffer = fb;
2796
2797 tu_cmd_update_tiling_config(cmd, &pRenderPassBegin->renderArea);
2798 tu_cmd_prepare_tile_store_ib(cmd);
2799
2800 /* Note: because this is external, any flushes will happen before draw_cs
2801 * gets called. However deferred flushes could have to happen later as part
2802 * of the subpass.
2803 */
2804 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2805 cmd->state.renderpass_cache.pending_flush_bits =
2806 cmd->state.cache.pending_flush_bits;
2807 cmd->state.renderpass_cache.flush_bits = 0;
2808
2809 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2810
2811 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2812 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2813 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2814 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2815
2816 tu_set_input_attachments(cmd, cmd->state.subpass);
2817
2818 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2819 const struct tu_image_view *iview = fb->attachments[i].attachment;
2820 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2821 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2822 }
2823
2824 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2825 }
2826
2827 void
2828 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2829 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2830 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2831 {
2832 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2833 pSubpassBeginInfo->contents);
2834 }
2835
2836 void
2837 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2838 {
2839 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2840 const struct tu_render_pass *pass = cmd->state.pass;
2841 struct tu_cs *cs = &cmd->draw_cs;
2842
2843 const struct tu_subpass *subpass = cmd->state.subpass++;
2844
2845 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2846
2847 if (subpass->resolve_attachments) {
2848 tu6_emit_blit_scissor(cmd, cs, true);
2849
2850 for (unsigned i = 0; i < subpass->color_count; i++) {
2851 uint32_t a = subpass->resolve_attachments[i].attachment;
2852 if (a == VK_ATTACHMENT_UNUSED)
2853 continue;
2854
2855 tu_store_gmem_attachment(cmd, cs, a,
2856 subpass->color_attachments[i].attachment);
2857
2858 if (pass->attachments[a].gmem_offset < 0)
2859 continue;
2860
2861 /* TODO:
2862 * check if the resolved attachment is needed by later subpasses,
2863 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2864 */
2865 tu_finishme("missing GMEM->GMEM resolve path\n");
2866 tu_load_gmem_attachment(cmd, cs, a, true);
2867 }
2868 }
2869
2870 tu_cond_exec_end(cs);
2871
2872 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2873
2874 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2875
2876 tu_cond_exec_end(cs);
2877
2878 /* Handle dependencies for the next subpass */
2879 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2880
2881 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2882 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2883 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2884 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2885 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2886
2887 tu_set_input_attachments(cmd, cmd->state.subpass);
2888 }
2889
2890 void
2891 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2892 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2893 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2894 {
2895 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2896 }
2897
2898 static void
2899 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2900 struct tu_descriptor_state *descriptors_state,
2901 gl_shader_stage type,
2902 uint32_t *push_constants)
2903 {
2904 const struct tu_program_descriptor_linkage *link =
2905 &pipeline->program.link[type];
2906 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2907
2908 if (link->push_consts.count > 0) {
2909 unsigned num_units = link->push_consts.count;
2910 unsigned offset = link->push_consts.lo;
2911 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2912 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2913 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2914 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2915 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2916 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2917 tu_cs_emit(cs, 0);
2918 tu_cs_emit(cs, 0);
2919 for (unsigned i = 0; i < num_units * 4; i++)
2920 tu_cs_emit(cs, push_constants[i + offset * 4]);
2921 }
2922
2923 for (uint32_t i = 0; i < state->num_enabled; i++) {
2924 uint32_t size = state->range[i].end - state->range[i].start;
2925 uint32_t offset = state->range[i].start;
2926
2927 /* and even if the start of the const buffer is before
2928 * first_immediate, the end may not be:
2929 */
2930 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2931
2932 if (size == 0)
2933 continue;
2934
2935 /* things should be aligned to vec4: */
2936 debug_assert((state->range[i].offset % 16) == 0);
2937 debug_assert((size % 16) == 0);
2938 debug_assert((offset % 16) == 0);
2939
2940 /* Dig out the descriptor from the descriptor state and read the VA from
2941 * it.
2942 */
2943 assert(state->range[i].ubo.bindless);
2944 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2945 descriptors_state->dynamic_descriptors :
2946 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2947 unsigned block = state->range[i].ubo.block;
2948 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2949 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2950 assert(va);
2951
2952 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2953 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2954 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2955 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2956 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2957 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2958 tu_cs_emit_qw(cs, va + offset);
2959 }
2960 }
2961
2962 static struct tu_cs_entry
2963 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2964 const struct tu_pipeline *pipeline,
2965 struct tu_descriptor_state *descriptors_state,
2966 gl_shader_stage type)
2967 {
2968 struct tu_cs cs;
2969 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2970
2971 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2972
2973 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2974 }
2975
2976 static VkResult
2977 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
2978 uint32_t first_instance,
2979 struct tu_cs_entry *entry)
2980 {
2981 /* TODO: fill out more than just base instance */
2982 const struct tu_program_descriptor_linkage *link =
2983 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
2984 const struct ir3_const_state *const_state = &link->const_state;
2985 struct tu_cs cs;
2986
2987 if (const_state->offsets.driver_param >= link->constlen) {
2988 *entry = (struct tu_cs_entry) {};
2989 return VK_SUCCESS;
2990 }
2991
2992 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 8, &cs);
2993 if (result != VK_SUCCESS)
2994 return result;
2995
2996 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2997 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(const_state->offsets.driver_param) |
2998 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2999 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3000 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3001 CP_LOAD_STATE6_0_NUM_UNIT(1));
3002 tu_cs_emit(&cs, 0);
3003 tu_cs_emit(&cs, 0);
3004
3005 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3006
3007 tu_cs_emit(&cs, 0);
3008 tu_cs_emit(&cs, 0);
3009 tu_cs_emit(&cs, first_instance);
3010 tu_cs_emit(&cs, 0);
3011
3012 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3013 return VK_SUCCESS;
3014 }
3015
3016 static struct tu_cs_entry
3017 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
3018 const struct tu_pipeline *pipeline)
3019 {
3020 struct tu_cs cs;
3021 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
3022
3023 int binding;
3024 for_each_bit(binding, pipeline->vi.bindings_used) {
3025 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
3026 const VkDeviceSize offset = buf->bo_offset +
3027 cmd->state.vb.offsets[binding];
3028
3029 tu_cs_emit_regs(&cs,
3030 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
3031 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
3032
3033 }
3034
3035 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
3036
3037 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3038 }
3039
3040 static uint64_t
3041 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
3042 uint32_t draw_count)
3043 {
3044 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
3045 * Still not sure what to do here, so just allocate a reasonably large
3046 * BO and hope for the best for now.
3047 * (maxTessellationControlPerVertexOutputComponents * 2048 vertices +
3048 * maxTessellationControlPerPatchOutputComponents * 512 patches) */
3049 if (!draw_count) {
3050 return ((128 * 2048) + (128 * 512)) * 4;
3051 }
3052
3053 /* For each patch, adreno lays out the tess param BO in memory as:
3054 * (v_input[0][0])...(v_input[i][j])(p_input[0])...(p_input[k]).
3055 * where i = # vertices per patch, j = # per-vertex outputs, and
3056 * k = # per-patch outputs.*/
3057 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
3058 uint32_t num_patches = draw_count / verts_per_patch;
3059 return draw_count * pipeline->tess.per_vertex_output_size +
3060 pipeline->tess.per_patch_output_size * num_patches;
3061 }
3062
3063 static uint64_t
3064 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
3065 uint32_t draw_count)
3066 {
3067 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
3068 * Still not sure what to do here, so just allocate a reasonably large
3069 * BO and hope for the best for now.
3070 * (quad factor stride * 512 patches) */
3071 if (!draw_count) {
3072 return (28 * 512) * 4;
3073 }
3074
3075 /* Each distinct patch gets its own tess factor output. */
3076 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
3077 uint32_t num_patches = draw_count / verts_per_patch;
3078 uint32_t factor_stride;
3079 switch (pipeline->tess.patch_type) {
3080 case IR3_TESS_ISOLINES:
3081 factor_stride = 12;
3082 break;
3083 case IR3_TESS_TRIANGLES:
3084 factor_stride = 20;
3085 break;
3086 case IR3_TESS_QUADS:
3087 factor_stride = 28;
3088 break;
3089 default:
3090 unreachable("bad tessmode");
3091 }
3092 return factor_stride * num_patches;
3093 }
3094
3095 static VkResult
3096 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
3097 uint32_t draw_count,
3098 const struct tu_pipeline *pipeline,
3099 struct tu_cs_entry *entry)
3100 {
3101 struct tu_cs cs;
3102 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 20, &cs);
3103 if (result != VK_SUCCESS)
3104 return result;
3105
3106 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
3107 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
3108 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
3109 if (tess_bo_size > 0) {
3110 struct tu_bo *tess_bo;
3111 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
3112 if (result != VK_SUCCESS)
3113 return result;
3114
3115 tu_bo_list_add(&cmd->bo_list, tess_bo,
3116 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3117 uint64_t tess_factor_iova = tess_bo->iova;
3118 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
3119
3120 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3121 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
3122 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3123 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3124 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
3125 CP_LOAD_STATE6_0_NUM_UNIT(1));
3126 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
3127 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
3128 tu_cs_emit_qw(&cs, tess_param_iova);
3129 tu_cs_emit_qw(&cs, tess_factor_iova);
3130
3131 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3132 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
3133 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3134 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3135 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
3136 CP_LOAD_STATE6_0_NUM_UNIT(1));
3137 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
3138 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
3139 tu_cs_emit_qw(&cs, tess_param_iova);
3140 tu_cs_emit_qw(&cs, tess_factor_iova);
3141
3142 tu_cs_emit_pkt4(&cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
3143 tu_cs_emit_qw(&cs, tess_factor_iova);
3144
3145 /* TODO: Without this WFI here, the hardware seems unable to read these
3146 * addresses we just emitted. Freedreno emits these consts as part of
3147 * IB1 instead of in a draw state which might make this WFI unnecessary,
3148 * but it requires a bit more indirection (SS6_INDIRECT for consts). */
3149 tu_cs_emit_wfi(&cs);
3150 }
3151 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3152 return VK_SUCCESS;
3153 }
3154
3155 static VkResult
3156 tu6_draw_common(struct tu_cmd_buffer *cmd,
3157 struct tu_cs *cs,
3158 bool indexed,
3159 uint32_t vertex_offset,
3160 uint32_t first_instance,
3161 /* note: draw_count count is 0 for indirect */
3162 uint32_t draw_count)
3163 {
3164 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3165 VkResult result;
3166
3167 struct tu_descriptor_state *descriptors_state =
3168 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
3169
3170 tu_emit_cache_flush_renderpass(cmd, cs);
3171
3172 /* TODO lrz */
3173
3174 tu_cs_emit_regs(cs,
3175 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3176 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3177
3178 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
3179 .primitive_restart =
3180 pipeline->ia.primitive_restart && indexed,
3181 .tess_upper_left_domain_origin =
3182 pipeline->tess.upper_left_domain_origin));
3183
3184 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3185 cmd->state.shader_const_ib[MESA_SHADER_VERTEX] =
3186 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
3187 cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL] =
3188 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
3189 cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL] =
3190 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
3191 cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY] =
3192 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
3193 cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT] =
3194 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
3195 }
3196
3197 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) {
3198 /* We need to reload the descriptors every time the descriptor sets
3199 * change. However, the commands we send only depend on the pipeline
3200 * because the whole point is to cache descriptors which are used by the
3201 * pipeline. There's a problem here, in that the firmware has an
3202 * "optimization" which skips executing groups that are set to the same
3203 * value as the last draw. This means that if the descriptor sets change
3204 * but not the pipeline, we'd try to re-execute the same buffer which
3205 * the firmware would ignore and we wouldn't pre-load the new
3206 * descriptors. The blob seems to re-emit the LOAD_STATE group whenever
3207 * the descriptor sets change, which we emulate here by copying the
3208 * pre-prepared buffer.
3209 */
3210 const struct tu_cs_entry *load_entry = &pipeline->load_state.state_ib;
3211 if (load_entry->size > 0) {
3212 struct tu_cs load_cs;
3213 result = tu_cs_begin_sub_stream(&cmd->sub_cs, load_entry->size, &load_cs);
3214 if (result != VK_SUCCESS)
3215 return result;
3216 tu_cs_emit_array(&load_cs,
3217 (uint32_t *)((char *)load_entry->bo->map + load_entry->offset),
3218 load_entry->size / 4);
3219 cmd->state.desc_sets_load_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &load_cs);
3220 } else {
3221 cmd->state.desc_sets_load_ib.size = 0;
3222 }
3223 }
3224
3225 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3226 cmd->state.vertex_buffers_ib = tu6_emit_vertex_buffers(cmd, pipeline);
3227
3228 struct tu_cs_entry vs_params;
3229 result = tu6_emit_vs_params(cmd, first_instance, &vs_params);
3230 if (result != VK_SUCCESS)
3231 return result;
3232
3233 bool has_tess =
3234 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3235 struct tu_cs_entry tess_consts = {};
3236 if (has_tess) {
3237 cmd->has_tess = true;
3238 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts);
3239 if (result != VK_SUCCESS)
3240 return result;
3241 }
3242
3243 /* for the first draw in a renderpass, re-emit all the draw states
3244 *
3245 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3246 * used, then draw states must be re-emitted. note however this only happens
3247 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3248 *
3249 * the two input attachment states are excluded because secondary command
3250 * buffer doesn't have a state ib to restore it, and not re-emitting them
3251 * is OK since CmdClearAttachments won't disable/overwrite them
3252 */
3253 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3254 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3255
3256 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
3257 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
3258 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3259 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
3260 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
3261 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
3262 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
3263 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
3264 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3265 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3266 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3267 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3268 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3269 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets_ib);
3270 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3271 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3272 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_PARAMS, vs_params);
3273
3274 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3275 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3276 ((pipeline->dynamic_state_mask & BIT(i)) ?
3277 cmd->state.dynamic_state[i] :
3278 pipeline->dynamic_state[i]));
3279 }
3280 } else {
3281
3282 /* emit draw states that were just updated
3283 * note we eventually don't want to have to emit anything here
3284 */
3285 uint32_t draw_state_count =
3286 has_tess +
3287 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
3288 ((cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) ? 1 : 0) +
3289 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3290 1; /* vs_params */
3291
3292 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3293
3294 /* We may need to re-emit tess consts if the current draw call is
3295 * sufficiently larger than the last draw call. */
3296 if (has_tess)
3297 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3298 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3299 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3300 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3301 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3302 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3303 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3304 }
3305 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS)
3306 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3307 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3308 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3309 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_PARAMS, vs_params);
3310 }
3311
3312 tu_cs_sanity_check(cs);
3313
3314 /* There are too many graphics dirty bits to list here, so just list the
3315 * bits to preserve instead. The only things not emitted here are
3316 * compute-related state.
3317 */
3318 cmd->state.dirty &= (TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3319 return VK_SUCCESS;
3320 }
3321
3322 static uint32_t
3323 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
3324 {
3325 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3326 uint32_t initiator =
3327 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3328 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
3329 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3330 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3331
3332 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3333 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3334
3335 switch (pipeline->tess.patch_type) {
3336 case IR3_TESS_TRIANGLES:
3337 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3338 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3339 break;
3340 case IR3_TESS_ISOLINES:
3341 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3342 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3343 break;
3344 case IR3_TESS_NONE:
3345 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3346 break;
3347 case IR3_TESS_QUADS:
3348 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3349 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3350 break;
3351 }
3352 return initiator;
3353 }
3354
3355 void
3356 tu_CmdDraw(VkCommandBuffer commandBuffer,
3357 uint32_t vertexCount,
3358 uint32_t instanceCount,
3359 uint32_t firstVertex,
3360 uint32_t firstInstance)
3361 {
3362 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3363 struct tu_cs *cs = &cmd->draw_cs;
3364
3365 tu6_draw_common(cmd, cs, false, firstVertex, firstInstance, vertexCount);
3366
3367 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3368 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3369 tu_cs_emit(cs, instanceCount);
3370 tu_cs_emit(cs, vertexCount);
3371 }
3372
3373 void
3374 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3375 uint32_t indexCount,
3376 uint32_t instanceCount,
3377 uint32_t firstIndex,
3378 int32_t vertexOffset,
3379 uint32_t firstInstance)
3380 {
3381 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3382 struct tu_cs *cs = &cmd->draw_cs;
3383
3384 tu6_draw_common(cmd, cs, true, vertexOffset, firstInstance, indexCount);
3385
3386 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3387 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3388 tu_cs_emit(cs, instanceCount);
3389 tu_cs_emit(cs, indexCount);
3390 tu_cs_emit(cs, 0x0); /* XXX */
3391 tu_cs_emit_qw(cs, cmd->state.index_va + (firstIndex << cmd->state.index_shift));
3392 tu_cs_emit(cs, indexCount << cmd->state.index_shift);
3393 }
3394
3395 void
3396 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3397 VkBuffer _buffer,
3398 VkDeviceSize offset,
3399 uint32_t drawCount,
3400 uint32_t stride)
3401 {
3402 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3403 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3404 struct tu_cs *cs = &cmd->draw_cs;
3405
3406 tu6_draw_common(cmd, cs, false, 0, 0, 0);
3407
3408 for (uint32_t i = 0; i < drawCount; i++) {
3409 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT, 3);
3410 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3411 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset + stride * i);
3412 }
3413
3414 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3415 }
3416
3417 void
3418 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3419 VkBuffer _buffer,
3420 VkDeviceSize offset,
3421 uint32_t drawCount,
3422 uint32_t stride)
3423 {
3424 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3425 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3426 struct tu_cs *cs = &cmd->draw_cs;
3427
3428 tu6_draw_common(cmd, cs, true, 0, 0, 0);
3429
3430 for (uint32_t i = 0; i < drawCount; i++) {
3431 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_INDIRECT, 6);
3432 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3433 tu_cs_emit_qw(cs, cmd->state.index_va);
3434 tu_cs_emit(cs, A5XX_CP_DRAW_INDX_INDIRECT_3_MAX_INDICES(cmd->state.max_index_count));
3435 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset + stride * i);
3436 }
3437
3438 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3439 }
3440
3441 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3442 uint32_t instanceCount,
3443 uint32_t firstInstance,
3444 VkBuffer _counterBuffer,
3445 VkDeviceSize counterBufferOffset,
3446 uint32_t counterOffset,
3447 uint32_t vertexStride)
3448 {
3449 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3450 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
3451 struct tu_cs *cs = &cmd->draw_cs;
3452
3453 tu6_draw_common(cmd, cs, false, 0, firstInstance, 0);
3454
3455 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
3456 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
3457 tu_cs_emit(cs, instanceCount);
3458 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
3459 tu_cs_emit(cs, counterOffset);
3460 tu_cs_emit(cs, vertexStride);
3461
3462 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3463 }
3464
3465 struct tu_dispatch_info
3466 {
3467 /**
3468 * Determine the layout of the grid (in block units) to be used.
3469 */
3470 uint32_t blocks[3];
3471
3472 /**
3473 * A starting offset for the grid. If unaligned is set, the offset
3474 * must still be aligned.
3475 */
3476 uint32_t offsets[3];
3477 /**
3478 * Whether it's an unaligned compute dispatch.
3479 */
3480 bool unaligned;
3481
3482 /**
3483 * Indirect compute parameters resource.
3484 */
3485 struct tu_buffer *indirect;
3486 uint64_t indirect_offset;
3487 };
3488
3489 static void
3490 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3491 const struct tu_dispatch_info *info)
3492 {
3493 gl_shader_stage type = MESA_SHADER_COMPUTE;
3494 const struct tu_program_descriptor_linkage *link =
3495 &pipeline->program.link[type];
3496 const struct ir3_const_state *const_state = &link->const_state;
3497 uint32_t offset = const_state->offsets.driver_param;
3498
3499 if (link->constlen <= offset)
3500 return;
3501
3502 if (!info->indirect) {
3503 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3504 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3505 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3506 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3507 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3508 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3509 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3510 };
3511
3512 uint32_t num_consts = MIN2(const_state->num_driver_params,
3513 (link->constlen - offset) * 4);
3514 /* push constants */
3515 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3516 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3517 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3518 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3519 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3520 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3521 tu_cs_emit(cs, 0);
3522 tu_cs_emit(cs, 0);
3523 uint32_t i;
3524 for (i = 0; i < num_consts; i++)
3525 tu_cs_emit(cs, driver_params[i]);
3526 } else {
3527 tu_finishme("Indirect driver params");
3528 }
3529 }
3530
3531 static void
3532 tu_dispatch(struct tu_cmd_buffer *cmd,
3533 const struct tu_dispatch_info *info)
3534 {
3535 struct tu_cs *cs = &cmd->cs;
3536 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3537 struct tu_descriptor_state *descriptors_state =
3538 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3539
3540 /* TODO: We could probably flush less if we add a compute_flush_bits
3541 * bitfield.
3542 */
3543 tu_emit_cache_flush(cmd, cs);
3544
3545 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_PIPELINE)
3546 tu_cs_emit_ib(cs, &pipeline->program.state_ib);
3547
3548 struct tu_cs_entry ib;
3549
3550 ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE);
3551 if (ib.size)
3552 tu_cs_emit_ib(cs, &ib);
3553
3554 tu_emit_compute_driver_params(cs, pipeline, info);
3555
3556 if ((cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS) &&
3557 pipeline->load_state.state_ib.size > 0) {
3558 tu_cs_emit_ib(cs, &pipeline->load_state.state_ib);
3559 }
3560
3561 cmd->state.dirty &=
3562 ~(TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3563
3564 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3565 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3566
3567 const uint32_t *local_size = pipeline->compute.local_size;
3568 const uint32_t *num_groups = info->blocks;
3569 tu_cs_emit_regs(cs,
3570 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3571 .localsizex = local_size[0] - 1,
3572 .localsizey = local_size[1] - 1,
3573 .localsizez = local_size[2] - 1),
3574 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3575 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3576 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3577 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3578 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3579 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3580
3581 tu_cs_emit_regs(cs,
3582 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3583 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3584 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3585
3586 if (info->indirect) {
3587 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3588
3589 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3590 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3591
3592 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3593 tu_cs_emit(cs, 0x00000000);
3594 tu_cs_emit_qw(cs, iova);
3595 tu_cs_emit(cs,
3596 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3597 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3598 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3599 } else {
3600 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3601 tu_cs_emit(cs, 0x00000000);
3602 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3603 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3604 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3605 }
3606
3607 tu_cs_emit_wfi(cs);
3608 }
3609
3610 void
3611 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3612 uint32_t base_x,
3613 uint32_t base_y,
3614 uint32_t base_z,
3615 uint32_t x,
3616 uint32_t y,
3617 uint32_t z)
3618 {
3619 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3620 struct tu_dispatch_info info = {};
3621
3622 info.blocks[0] = x;
3623 info.blocks[1] = y;
3624 info.blocks[2] = z;
3625
3626 info.offsets[0] = base_x;
3627 info.offsets[1] = base_y;
3628 info.offsets[2] = base_z;
3629 tu_dispatch(cmd_buffer, &info);
3630 }
3631
3632 void
3633 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3634 uint32_t x,
3635 uint32_t y,
3636 uint32_t z)
3637 {
3638 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3639 }
3640
3641 void
3642 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3643 VkBuffer _buffer,
3644 VkDeviceSize offset)
3645 {
3646 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3647 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3648 struct tu_dispatch_info info = {};
3649
3650 info.indirect = buffer;
3651 info.indirect_offset = offset;
3652
3653 tu_dispatch(cmd_buffer, &info);
3654 }
3655
3656 void
3657 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3658 {
3659 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3660
3661 tu_cs_end(&cmd_buffer->draw_cs);
3662 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3663
3664 if (use_sysmem_rendering(cmd_buffer))
3665 tu_cmd_render_sysmem(cmd_buffer);
3666 else
3667 tu_cmd_render_tiles(cmd_buffer);
3668
3669 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3670 rendered */
3671 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3672 tu_cs_begin(&cmd_buffer->draw_cs);
3673 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3674 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3675
3676 cmd_buffer->state.cache.pending_flush_bits |=
3677 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3678 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3679
3680 cmd_buffer->state.pass = NULL;
3681 cmd_buffer->state.subpass = NULL;
3682 cmd_buffer->state.framebuffer = NULL;
3683 }
3684
3685 void
3686 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3687 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3688 {
3689 tu_CmdEndRenderPass(commandBuffer);
3690 }
3691
3692 struct tu_barrier_info
3693 {
3694 uint32_t eventCount;
3695 const VkEvent *pEvents;
3696 VkPipelineStageFlags srcStageMask;
3697 };
3698
3699 static void
3700 tu_barrier(struct tu_cmd_buffer *cmd,
3701 uint32_t memoryBarrierCount,
3702 const VkMemoryBarrier *pMemoryBarriers,
3703 uint32_t bufferMemoryBarrierCount,
3704 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3705 uint32_t imageMemoryBarrierCount,
3706 const VkImageMemoryBarrier *pImageMemoryBarriers,
3707 const struct tu_barrier_info *info)
3708 {
3709 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3710 VkAccessFlags srcAccessMask = 0;
3711 VkAccessFlags dstAccessMask = 0;
3712
3713 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3714 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3715 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3716 }
3717
3718 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3719 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3720 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3721 }
3722
3723 enum tu_cmd_access_mask src_flags = 0;
3724 enum tu_cmd_access_mask dst_flags = 0;
3725
3726 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3727 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3728 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3729 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3730 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3731 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3732 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3733 /* The underlying memory for this image may have been used earlier
3734 * within the same queue submission for a different image, which
3735 * means that there may be old, stale cache entries which are in the
3736 * "wrong" location, which could cause problems later after writing
3737 * to the image. We don't want these entries being flushed later and
3738 * overwriting the actual image, so we need to flush the CCU.
3739 */
3740 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3741 }
3742 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3743 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3744 }
3745
3746 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3747 * so we have to use the sysmem flushes.
3748 */
3749 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3750 !cmd->state.pass;
3751 src_flags |= vk2tu_access(srcAccessMask, gmem);
3752 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3753
3754 struct tu_cache_state *cache =
3755 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3756 tu_flush_for_access(cache, src_flags, dst_flags);
3757
3758 for (uint32_t i = 0; i < info->eventCount; i++) {
3759 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3760
3761 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3762
3763 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3764 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3765 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3766 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3767 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3768 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3769 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3770 }
3771 }
3772
3773 void
3774 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3775 VkPipelineStageFlags srcStageMask,
3776 VkPipelineStageFlags dstStageMask,
3777 VkDependencyFlags dependencyFlags,
3778 uint32_t memoryBarrierCount,
3779 const VkMemoryBarrier *pMemoryBarriers,
3780 uint32_t bufferMemoryBarrierCount,
3781 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3782 uint32_t imageMemoryBarrierCount,
3783 const VkImageMemoryBarrier *pImageMemoryBarriers)
3784 {
3785 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3786 struct tu_barrier_info info;
3787
3788 info.eventCount = 0;
3789 info.pEvents = NULL;
3790 info.srcStageMask = srcStageMask;
3791
3792 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3793 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3794 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3795 }
3796
3797 static void
3798 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3799 VkPipelineStageFlags stageMask, unsigned value)
3800 {
3801 struct tu_cs *cs = &cmd->cs;
3802
3803 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3804 assert(!cmd->state.pass);
3805
3806 tu_emit_cache_flush(cmd, cs);
3807
3808 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3809
3810 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3811 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3812 */
3813 VkPipelineStageFlags top_of_pipe_flags =
3814 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3815 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3816
3817 if (!(stageMask & ~top_of_pipe_flags)) {
3818 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3819 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3820 tu_cs_emit(cs, value);
3821 } else {
3822 /* Use a RB_DONE_TS event to wait for everything to complete. */
3823 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3824 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3825 tu_cs_emit_qw(cs, event->bo.iova);
3826 tu_cs_emit(cs, value);
3827 }
3828 }
3829
3830 void
3831 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3832 VkEvent _event,
3833 VkPipelineStageFlags stageMask)
3834 {
3835 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3836 TU_FROM_HANDLE(tu_event, event, _event);
3837
3838 write_event(cmd, event, stageMask, 1);
3839 }
3840
3841 void
3842 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3843 VkEvent _event,
3844 VkPipelineStageFlags stageMask)
3845 {
3846 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3847 TU_FROM_HANDLE(tu_event, event, _event);
3848
3849 write_event(cmd, event, stageMask, 0);
3850 }
3851
3852 void
3853 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3854 uint32_t eventCount,
3855 const VkEvent *pEvents,
3856 VkPipelineStageFlags srcStageMask,
3857 VkPipelineStageFlags dstStageMask,
3858 uint32_t memoryBarrierCount,
3859 const VkMemoryBarrier *pMemoryBarriers,
3860 uint32_t bufferMemoryBarrierCount,
3861 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3862 uint32_t imageMemoryBarrierCount,
3863 const VkImageMemoryBarrier *pImageMemoryBarriers)
3864 {
3865 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3866 struct tu_barrier_info info;
3867
3868 info.eventCount = eventCount;
3869 info.pEvents = pEvents;
3870 info.srcStageMask = 0;
3871
3872 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3873 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3874 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3875 }
3876
3877 void
3878 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3879 {
3880 /* No-op */
3881 }