c7c6df49a3fb1562e27a7ecc9071db246b80b788
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 void
112 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
113 struct tu_cs *cs,
114 enum vgt_event_type event)
115 {
116 bool need_seqno = false;
117 switch (event) {
118 case CACHE_FLUSH_TS:
119 case WT_DONE_TS:
120 case RB_DONE_TS:
121 case PC_CCU_FLUSH_DEPTH_TS:
122 case PC_CCU_FLUSH_COLOR_TS:
123 case PC_CCU_RESOLVE_TS:
124 need_seqno = true;
125 break;
126 default:
127 break;
128 }
129
130 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
131 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
132 if (need_seqno) {
133 tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
134 tu_cs_emit(cs, 0);
135 }
136 }
137
138 static void
139 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
140 struct tu_cs *cs,
141 enum tu_cmd_flush_bits flushes)
142 {
143 /* Experiments show that invalidating CCU while it still has data in it
144 * doesn't work, so make sure to always flush before invalidating in case
145 * any data remains that hasn't yet been made available through a barrier.
146 * However it does seem to work for UCHE.
147 */
148 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
149 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
150 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
151 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
152 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
153 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
154 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
155 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
156 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
157 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
158 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
159 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
160 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
161 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
162 if (flushes & TU_CMD_FLAG_WFI)
163 tu_cs_emit_wfi(cs);
164 }
165
166 /* "Normal" cache flushes, that don't require any special handling */
167
168 static void
169 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
170 struct tu_cs *cs)
171 {
172 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
173 cmd_buffer->state.cache.flush_bits = 0;
174 }
175
176 /* Renderpass cache flushes */
177
178 void
179 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
180 struct tu_cs *cs)
181 {
182 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
183 cmd_buffer->state.renderpass_cache.flush_bits = 0;
184 }
185
186 /* Cache flushes for things that use the color/depth read/write path (i.e.
187 * blits and draws). This deals with changing CCU state as well as the usual
188 * cache flushing.
189 */
190
191 void
192 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
193 struct tu_cs *cs,
194 enum tu_cmd_ccu_state ccu_state)
195 {
196 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
197
198 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
199
200 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
201 * the CCU may also contain data that we haven't flushed out yet, so we
202 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
203 * emit a WFI as it isn't pipelined.
204 */
205 if (ccu_state != cmd_buffer->state.ccu_state) {
206 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
207 flushes |=
208 TU_CMD_FLAG_CCU_FLUSH_COLOR |
209 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
210 cmd_buffer->state.cache.pending_flush_bits &= ~(
211 TU_CMD_FLAG_CCU_FLUSH_COLOR |
212 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
213 }
214 flushes |=
215 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
216 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
217 TU_CMD_FLAG_WFI;
218 cmd_buffer->state.cache.pending_flush_bits &= ~(
219 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
220 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
221 }
222
223 tu6_emit_flushes(cmd_buffer, cs, flushes);
224 cmd_buffer->state.cache.flush_bits = 0;
225
226 if (ccu_state != cmd_buffer->state.ccu_state) {
227 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
228 tu_cs_emit_regs(cs,
229 A6XX_RB_CCU_CNTL(.offset =
230 ccu_state == TU_CMD_CCU_GMEM ?
231 phys_dev->ccu_offset_gmem :
232 phys_dev->ccu_offset_bypass,
233 .gmem = ccu_state == TU_CMD_CCU_GMEM));
234 cmd_buffer->state.ccu_state = ccu_state;
235 }
236 }
237
238 static void
239 tu6_emit_zs(struct tu_cmd_buffer *cmd,
240 const struct tu_subpass *subpass,
241 struct tu_cs *cs)
242 {
243 const struct tu_framebuffer *fb = cmd->state.framebuffer;
244
245 const uint32_t a = subpass->depth_stencil_attachment.attachment;
246 if (a == VK_ATTACHMENT_UNUSED) {
247 tu_cs_emit_regs(cs,
248 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
249 A6XX_RB_DEPTH_BUFFER_PITCH(0),
250 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
251 A6XX_RB_DEPTH_BUFFER_BASE(0),
252 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
253
254 tu_cs_emit_regs(cs,
255 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
256
257 tu_cs_emit_regs(cs,
258 A6XX_GRAS_LRZ_BUFFER_BASE(0),
259 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
260 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
261
262 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
263
264 return;
265 }
266
267 const struct tu_image_view *iview = fb->attachments[a].attachment;
268 const struct tu_render_pass_attachment *attachment =
269 &cmd->state.pass->attachments[a];
270 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
271
272 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
273 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
274 tu_cs_image_ref(cs, iview, 0);
275 tu_cs_emit(cs, attachment->gmem_offset);
276
277 tu_cs_emit_regs(cs,
278 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
279
280 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
281 tu_cs_image_flag_ref(cs, iview, 0);
282
283 tu_cs_emit_regs(cs,
284 A6XX_GRAS_LRZ_BUFFER_BASE(0),
285 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
286 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
287
288 if (attachment->format == VK_FORMAT_S8_UINT) {
289 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
290 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
291 tu_cs_image_ref(cs, iview, 0);
292 tu_cs_emit(cs, attachment->gmem_offset);
293 } else {
294 tu_cs_emit_regs(cs,
295 A6XX_RB_STENCIL_INFO(0));
296 }
297 }
298
299 static void
300 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
301 const struct tu_subpass *subpass,
302 struct tu_cs *cs)
303 {
304 const struct tu_framebuffer *fb = cmd->state.framebuffer;
305
306 for (uint32_t i = 0; i < subpass->color_count; ++i) {
307 uint32_t a = subpass->color_attachments[i].attachment;
308 if (a == VK_ATTACHMENT_UNUSED)
309 continue;
310
311 const struct tu_image_view *iview = fb->attachments[a].attachment;
312
313 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
314 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
315 tu_cs_image_ref(cs, iview, 0);
316 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
317
318 tu_cs_emit_regs(cs,
319 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
320
321 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
322 tu_cs_image_flag_ref(cs, iview, 0);
323 }
324
325 tu_cs_emit_regs(cs,
326 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
327 tu_cs_emit_regs(cs,
328 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
329
330 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
331 }
332
333 void
334 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
335 {
336 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
337 bool msaa_disable = samples == MSAA_ONE;
338
339 tu_cs_emit_regs(cs,
340 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
341 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
342 .msaa_disable = msaa_disable));
343
344 tu_cs_emit_regs(cs,
345 A6XX_GRAS_RAS_MSAA_CNTL(samples),
346 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
347 .msaa_disable = msaa_disable));
348
349 tu_cs_emit_regs(cs,
350 A6XX_RB_RAS_MSAA_CNTL(samples),
351 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
352 .msaa_disable = msaa_disable));
353
354 tu_cs_emit_regs(cs,
355 A6XX_RB_MSAA_CNTL(samples));
356 }
357
358 static void
359 tu6_emit_bin_size(struct tu_cs *cs,
360 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
361 {
362 tu_cs_emit_regs(cs,
363 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
364 .binh = bin_h,
365 .dword = flags));
366
367 tu_cs_emit_regs(cs,
368 A6XX_RB_BIN_CONTROL(.binw = bin_w,
369 .binh = bin_h,
370 .dword = flags));
371
372 /* no flag for RB_BIN_CONTROL2... */
373 tu_cs_emit_regs(cs,
374 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
375 .binh = bin_h));
376 }
377
378 static void
379 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
380 const struct tu_subpass *subpass,
381 struct tu_cs *cs,
382 bool binning)
383 {
384 const struct tu_framebuffer *fb = cmd->state.framebuffer;
385 uint32_t cntl = 0;
386 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
387 if (binning) {
388 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
389 } else {
390 uint32_t mrts_ubwc_enable = 0;
391 for (uint32_t i = 0; i < subpass->color_count; ++i) {
392 uint32_t a = subpass->color_attachments[i].attachment;
393 if (a == VK_ATTACHMENT_UNUSED)
394 continue;
395
396 const struct tu_image_view *iview = fb->attachments[a].attachment;
397 if (iview->ubwc_enabled)
398 mrts_ubwc_enable |= 1 << i;
399 }
400
401 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
402
403 const uint32_t a = subpass->depth_stencil_attachment.attachment;
404 if (a != VK_ATTACHMENT_UNUSED) {
405 const struct tu_image_view *iview = fb->attachments[a].attachment;
406 if (iview->ubwc_enabled)
407 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
408 }
409
410 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
411 * in order to set it correctly for the different subpasses. However,
412 * that means the packets we're emitting also happen during binning. So
413 * we need to guard the write on !BINNING at CP execution time.
414 */
415 tu_cs_reserve(cs, 3 + 4);
416 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
417 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
418 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
419 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
420 }
421
422 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
423 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
424 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
425 tu_cs_emit(cs, cntl);
426 }
427
428 static void
429 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
430 {
431 const VkRect2D *render_area = &cmd->state.render_area;
432 uint32_t x1 = render_area->offset.x;
433 uint32_t y1 = render_area->offset.y;
434 uint32_t x2 = x1 + render_area->extent.width - 1;
435 uint32_t y2 = y1 + render_area->extent.height - 1;
436
437 if (align) {
438 x1 = x1 & ~(GMEM_ALIGN_W - 1);
439 y1 = y1 & ~(GMEM_ALIGN_H - 1);
440 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
441 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
442 }
443
444 tu_cs_emit_regs(cs,
445 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
446 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
447 }
448
449 void
450 tu6_emit_window_scissor(struct tu_cs *cs,
451 uint32_t x1,
452 uint32_t y1,
453 uint32_t x2,
454 uint32_t y2)
455 {
456 tu_cs_emit_regs(cs,
457 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
458 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
459
460 tu_cs_emit_regs(cs,
461 A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1),
462 A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2));
463 }
464
465 void
466 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
467 {
468 tu_cs_emit_regs(cs,
469 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
470
471 tu_cs_emit_regs(cs,
472 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
473
474 tu_cs_emit_regs(cs,
475 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
476
477 tu_cs_emit_regs(cs,
478 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
479 }
480
481 static void
482 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
483 {
484 uint32_t enable_mask;
485 switch (id) {
486 case TU_DRAW_STATE_PROGRAM:
487 case TU_DRAW_STATE_VI:
488 case TU_DRAW_STATE_FS_CONST:
489 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
490 * when resources would actually be used in the binning shader.
491 * Presumably the overhead of prefetching the resources isn't
492 * worth it.
493 */
494 case TU_DRAW_STATE_DESC_SETS_LOAD:
495 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
496 CP_SET_DRAW_STATE__0_SYSMEM;
497 break;
498 case TU_DRAW_STATE_PROGRAM_BINNING:
499 case TU_DRAW_STATE_VI_BINNING:
500 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
501 break;
502 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
503 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
504 break;
505 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
506 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
507 break;
508 default:
509 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
510 CP_SET_DRAW_STATE__0_SYSMEM |
511 CP_SET_DRAW_STATE__0_BINNING;
512 break;
513 }
514
515 /* We need to reload the descriptors every time the descriptor sets
516 * change. However, the commands we send only depend on the pipeline
517 * because the whole point is to cache descriptors which are used by the
518 * pipeline. There's a problem here, in that the firmware has an
519 * "optimization" which skips executing groups that are set to the same
520 * value as the last draw. This means that if the descriptor sets change
521 * but not the pipeline, we'd try to re-execute the same buffer which
522 * the firmware would ignore and we wouldn't pre-load the new
523 * descriptors. Set the DIRTY bit to avoid this optimization
524 */
525 if (id == TU_DRAW_STATE_DESC_SETS_LOAD)
526 enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
527
528 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
529 enable_mask |
530 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
531 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
532 tu_cs_emit_qw(cs, state.iova);
533 }
534
535 static bool
536 use_hw_binning(struct tu_cmd_buffer *cmd)
537 {
538 const struct tu_framebuffer *fb = cmd->state.framebuffer;
539
540 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
541 * with non-hw binning GMEM rendering. this is required because some of the
542 * XFB commands need to only be executed once
543 */
544 if (cmd->state.xfb_used)
545 return true;
546
547 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
548 return false;
549
550 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
551 return true;
552
553 return (fb->tile_count.width * fb->tile_count.height) > 2;
554 }
555
556 static bool
557 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
558 {
559 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
560 return true;
561
562 /* can't fit attachments into gmem */
563 if (!cmd->state.pass->gmem_pixels)
564 return true;
565
566 if (cmd->state.framebuffer->layers > 1)
567 return true;
568
569 if (cmd->has_tess)
570 return true;
571
572 return false;
573 }
574
575 static void
576 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
577 struct tu_cs *cs,
578 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot)
579 {
580 const struct tu_framebuffer *fb = cmd->state.framebuffer;
581
582 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
583 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
584
585 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
586 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
587
588 const uint32_t x1 = fb->tile0.width * tx;
589 const uint32_t y1 = fb->tile0.height * ty;
590 const uint32_t x2 = x1 + fb->tile0.width - 1;
591 const uint32_t y2 = y1 + fb->tile0.height - 1;
592 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
593 tu6_emit_window_offset(cs, x1, y1);
594
595 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
596
597 if (use_hw_binning(cmd)) {
598 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
599
600 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
601 tu_cs_emit(cs, 0x0);
602
603 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
604 tu_cs_emit(cs, fb->pipe_sizes[pipe] |
605 CP_SET_BIN_DATA5_0_VSC_N(slot));
606 tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
607 tu_cs_emit(cs, pipe * 4);
608 tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
609
610 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
611 tu_cs_emit(cs, 0x0);
612
613 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
614 tu_cs_emit(cs, 0x0);
615 } else {
616 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
617 tu_cs_emit(cs, 0x1);
618
619 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
620 tu_cs_emit(cs, 0x0);
621 }
622 }
623
624 static void
625 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
626 struct tu_cs *cs,
627 uint32_t a,
628 uint32_t gmem_a)
629 {
630 const struct tu_framebuffer *fb = cmd->state.framebuffer;
631 struct tu_image_view *dst = fb->attachments[a].attachment;
632 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
633
634 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.render_area);
635 }
636
637 static void
638 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
639 struct tu_cs *cs,
640 const struct tu_subpass *subpass)
641 {
642 if (subpass->resolve_attachments) {
643 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
644 * Commands":
645 *
646 * End-of-subpass multisample resolves are treated as color
647 * attachment writes for the purposes of synchronization. That is,
648 * they are considered to execute in the
649 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
650 * their writes are synchronized with
651 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
652 * rendering within a subpass and any resolve operations at the end
653 * of the subpass occurs automatically, without need for explicit
654 * dependencies or pipeline barriers. However, if the resolve
655 * attachment is also used in a different subpass, an explicit
656 * dependency is needed.
657 *
658 * We use the CP_BLIT path for sysmem resolves, which is really a
659 * transfer command, so we have to manually flush similar to the gmem
660 * resolve case. However, a flush afterwards isn't needed because of the
661 * last sentence and the fact that we're in sysmem mode.
662 */
663 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
664 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
665
666 /* Wait for the flushes to land before using the 2D engine */
667 tu_cs_emit_wfi(cs);
668
669 for (unsigned i = 0; i < subpass->color_count; i++) {
670 uint32_t a = subpass->resolve_attachments[i].attachment;
671 if (a == VK_ATTACHMENT_UNUSED)
672 continue;
673
674 tu6_emit_sysmem_resolve(cmd, cs, a,
675 subpass->color_attachments[i].attachment);
676 }
677 }
678 }
679
680 static void
681 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
682 {
683 const struct tu_render_pass *pass = cmd->state.pass;
684 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
685
686 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
687 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
688 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
689 CP_SET_DRAW_STATE__0_GROUP_ID(0));
690 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
691 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
692
693 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
694 tu_cs_emit(cs, 0x0);
695
696 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
697 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
698
699 tu6_emit_blit_scissor(cmd, cs, true);
700
701 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
702 if (pass->attachments[a].gmem_offset >= 0)
703 tu_store_gmem_attachment(cmd, cs, a, a);
704 }
705
706 if (subpass->resolve_attachments) {
707 for (unsigned i = 0; i < subpass->color_count; i++) {
708 uint32_t a = subpass->resolve_attachments[i].attachment;
709 if (a != VK_ATTACHMENT_UNUSED)
710 tu_store_gmem_attachment(cmd, cs, a,
711 subpass->color_attachments[i].attachment);
712 }
713 }
714 }
715
716 static void
717 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
718 {
719 struct tu_device *dev = cmd->device;
720 const struct tu_physical_device *phys_dev = dev->physical_device;
721
722 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
723
724 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
725 .vs_state = true,
726 .hs_state = true,
727 .ds_state = true,
728 .gs_state = true,
729 .fs_state = true,
730 .cs_state = true,
731 .gfx_ibo = true,
732 .cs_ibo = true,
733 .gfx_shared_const = true,
734 .cs_shared_const = true,
735 .gfx_bindless = 0x1f,
736 .cs_bindless = 0x1f));
737
738 tu_cs_emit_regs(cs,
739 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
740 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
741 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
742 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
743 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
744 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
745 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
746 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
747 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
748 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
749
750 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
751 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
752 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
753 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
754 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
755 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
756 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_SHARED_CONSTS, 0);
757 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
758 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
759 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
760 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
761 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
762 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
763
764 /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
765 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
766 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
767 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
768
769 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
770
771 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
772
773 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
774 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
775 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
776 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
777 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
778 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
779 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
780 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
781 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
782 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
783 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
784
785 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
786
787 tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false));
788 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
789
790 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
791
792 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
793 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
794 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9990, 0);
795
796 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
797 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
798
799 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
800
801 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
802
803 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
804 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
805 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
806 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
807 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
808 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
809 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
810 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
811 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
812
813 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
814
815 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
816
817 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
818
819 /* we don't use this yet.. probably best to disable.. */
820 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
821 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
822 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
823 CP_SET_DRAW_STATE__0_GROUP_ID(0));
824 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
825 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
826
827 tu_cs_emit_regs(cs,
828 A6XX_SP_HS_CTRL_REG0(0));
829
830 tu_cs_emit_regs(cs,
831 A6XX_SP_GS_CTRL_REG0(0));
832
833 tu_cs_emit_regs(cs,
834 A6XX_GRAS_LRZ_CNTL(0));
835
836 tu_cs_emit_regs(cs,
837 A6XX_RB_LRZ_CNTL(0));
838
839 tu_cs_emit_regs(cs,
840 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
841 .bo_offset = gb_offset(border_color)));
842 tu_cs_emit_regs(cs,
843 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
844 .bo_offset = gb_offset(border_color)));
845
846 /* VSC buffers:
847 * use vsc pitches from the largest values used so far with this device
848 * if there hasn't been overflow, there will already be a scratch bo
849 * allocated for these sizes
850 *
851 * if overflow is detected, the stream size is increased by 2x
852 */
853 mtx_lock(&dev->vsc_pitch_mtx);
854
855 struct tu6_global *global = dev->global_bo.map;
856
857 uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
858 uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
859
860 if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
861 dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
862
863 if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
864 dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
865
866 cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
867 cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
868
869 mtx_unlock(&dev->vsc_pitch_mtx);
870
871 struct tu_bo *vsc_bo;
872 uint32_t size0 = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES +
873 cmd->vsc_draw_strm_pitch * MAX_VSC_PIPES;
874
875 tu_get_scratch_bo(dev, size0 + MAX_VSC_PIPES * 4, &vsc_bo);
876
877 tu_cs_emit_regs(cs,
878 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
879 tu_cs_emit_regs(cs,
880 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
881 tu_cs_emit_regs(cs,
882 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
883 .bo_offset = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES));
884
885 tu_bo_list_add(&cmd->bo_list, vsc_bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
886
887 tu_cs_sanity_check(cs);
888 }
889
890 static void
891 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
892 {
893 const struct tu_framebuffer *fb = cmd->state.framebuffer;
894
895 tu_cs_emit_regs(cs,
896 A6XX_VSC_BIN_SIZE(.width = fb->tile0.width,
897 .height = fb->tile0.height));
898
899 tu_cs_emit_regs(cs,
900 A6XX_VSC_BIN_COUNT(.nx = fb->tile_count.width,
901 .ny = fb->tile_count.height));
902
903 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
904 tu_cs_emit_array(cs, fb->pipe_config, 32);
905
906 tu_cs_emit_regs(cs,
907 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
908 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
909
910 tu_cs_emit_regs(cs,
911 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
912 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
913 }
914
915 static void
916 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
917 {
918 const struct tu_framebuffer *fb = cmd->state.framebuffer;
919 const uint32_t used_pipe_count =
920 fb->pipe_count.width * fb->pipe_count.height;
921
922 for (int i = 0; i < used_pipe_count; i++) {
923 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
924 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
925 CP_COND_WRITE5_0_WRITE_MEMORY);
926 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
927 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
928 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
929 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
930 tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
931 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
932
933 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
934 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
935 CP_COND_WRITE5_0_WRITE_MEMORY);
936 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
937 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
938 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
939 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
940 tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
941 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
942 }
943
944 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
945 }
946
947 static void
948 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
949 {
950 struct tu_physical_device *phys_dev = cmd->device->physical_device;
951 const struct tu_framebuffer *fb = cmd->state.framebuffer;
952
953 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
954
955 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
956 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
957
958 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
959 tu_cs_emit(cs, 0x1);
960
961 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
962 tu_cs_emit(cs, 0x1);
963
964 tu_cs_emit_wfi(cs);
965
966 tu_cs_emit_regs(cs,
967 A6XX_VFD_MODE_CNTL(.binning_pass = true));
968
969 update_vsc_pipe(cmd, cs);
970
971 tu_cs_emit_regs(cs,
972 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
973
974 tu_cs_emit_regs(cs,
975 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
976
977 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
978 tu_cs_emit(cs, UNK_2C);
979
980 tu_cs_emit_regs(cs,
981 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
982
983 tu_cs_emit_regs(cs,
984 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
985
986 /* emit IB to binning drawcmds: */
987 tu_cs_emit_call(cs, &cmd->draw_cs);
988
989 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
990 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
991 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
992 CP_SET_DRAW_STATE__0_GROUP_ID(0));
993 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
994 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
995
996 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
997 tu_cs_emit(cs, UNK_2D);
998
999 /* This flush is probably required because the VSC, which produces the
1000 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1001 * visibility stream (without caching) to do draw skipping. The
1002 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1003 * submitted are finished before reading the VSC regs (in
1004 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1005 * part of draws).
1006 */
1007 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1008
1009 tu_cs_emit_wfi(cs);
1010
1011 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1012
1013 emit_vsc_overflow_test(cmd, cs);
1014
1015 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1016 tu_cs_emit(cs, 0x0);
1017
1018 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1019 tu_cs_emit(cs, 0x0);
1020 }
1021
1022 static struct tu_draw_state
1023 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1024 const struct tu_subpass *subpass,
1025 bool gmem)
1026 {
1027 /* note: we can probably emit input attachments just once for the whole
1028 * renderpass, this would avoid emitting both sysmem/gmem versions
1029 *
1030 * emit two texture descriptors for each input, as a workaround for
1031 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1032 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1033 * in the pair
1034 * TODO: a smarter workaround
1035 */
1036
1037 if (!subpass->input_count)
1038 return (struct tu_draw_state) {};
1039
1040 struct tu_cs_memory texture;
1041 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1042 A6XX_TEX_CONST_DWORDS, &texture);
1043 assert(result == VK_SUCCESS);
1044
1045 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1046 uint32_t a = subpass->input_attachments[i / 2].attachment;
1047 if (a == VK_ATTACHMENT_UNUSED)
1048 continue;
1049
1050 struct tu_image_view *iview =
1051 cmd->state.framebuffer->attachments[a].attachment;
1052 const struct tu_render_pass_attachment *att =
1053 &cmd->state.pass->attachments[a];
1054 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1055
1056 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1057
1058 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1059 /* note this works because spec says fb and input attachments
1060 * must use identity swizzle
1061 */
1062 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1063 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1064 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1065 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1066 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1067 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1068 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1069 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1070 }
1071
1072 if (!gmem)
1073 continue;
1074
1075 /* patched for gmem */
1076 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1077 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1078 dst[2] =
1079 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1080 A6XX_TEX_CONST_2_PITCH(cmd->state.framebuffer->tile0.width * att->cpp);
1081 dst[3] = 0;
1082 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1083 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1084 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1085 dst[i] = 0;
1086 }
1087
1088 struct tu_cs cs;
1089 struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
1090
1091 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1092 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1093 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1094 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1095 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1096 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1097 tu_cs_emit_qw(&cs, texture.iova);
1098
1099 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1100 tu_cs_emit_qw(&cs, texture.iova);
1101
1102 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1103
1104 assert(cs.cur == cs.end); /* validate draw state size */
1105
1106 return ds;
1107 }
1108
1109 static void
1110 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1111 {
1112 struct tu_cs *cs = &cmd->draw_cs;
1113
1114 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1115 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
1116 tu_emit_input_attachments(cmd, subpass, true));
1117 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
1118 tu_emit_input_attachments(cmd, subpass, false));
1119 }
1120
1121 static void
1122 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1123 const VkRenderPassBeginInfo *info)
1124 {
1125 struct tu_cs *cs = &cmd->draw_cs;
1126
1127 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1128
1129 tu6_emit_blit_scissor(cmd, cs, true);
1130
1131 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1132 tu_load_gmem_attachment(cmd, cs, i, false);
1133
1134 tu6_emit_blit_scissor(cmd, cs, false);
1135
1136 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1137 tu_clear_gmem_attachment(cmd, cs, i, info);
1138
1139 tu_cond_exec_end(cs);
1140
1141 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1142
1143 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1144 tu_clear_sysmem_attachment(cmd, cs, i, info);
1145
1146 tu_cond_exec_end(cs);
1147 }
1148
1149 static void
1150 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1151 {
1152 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1153
1154 assert(fb->width > 0 && fb->height > 0);
1155 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1156 tu6_emit_window_offset(cs, 0, 0);
1157
1158 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1159
1160 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1161
1162 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1163 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1164
1165 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1166 tu_cs_emit(cs, 0x0);
1167
1168 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1169
1170 /* enable stream-out, with sysmem there is only one pass: */
1171 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1172
1173 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1174 tu_cs_emit(cs, 0x1);
1175
1176 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1177 tu_cs_emit(cs, 0x0);
1178
1179 tu_cs_sanity_check(cs);
1180 }
1181
1182 static void
1183 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1184 {
1185 /* Do any resolves of the last subpass. These are handled in the
1186 * tile_store_ib in the gmem path.
1187 */
1188 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1189
1190 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1191
1192 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1193 tu_cs_emit(cs, 0x0);
1194
1195 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1196
1197 tu_cs_sanity_check(cs);
1198 }
1199
1200 static void
1201 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1202 {
1203 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1204
1205 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1206
1207 /* lrz clear? */
1208
1209 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1210 tu_cs_emit(cs, 0x0);
1211
1212 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1213
1214 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1215 if (use_hw_binning(cmd)) {
1216 /* enable stream-out during binning pass: */
1217 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1218
1219 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1220 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1221
1222 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1223
1224 tu6_emit_binning_pass(cmd, cs);
1225
1226 /* and disable stream-out for draw pass: */
1227 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
1228
1229 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1230 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1231
1232 tu_cs_emit_regs(cs,
1233 A6XX_VFD_MODE_CNTL(0));
1234
1235 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1236
1237 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1238
1239 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1240 tu_cs_emit(cs, 0x1);
1241 } else {
1242 /* no binning pass, so enable stream-out for draw pass:: */
1243 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1244
1245 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height, 0x6000000);
1246 }
1247
1248 tu_cs_sanity_check(cs);
1249 }
1250
1251 static void
1252 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1253 {
1254 tu_cs_emit_call(cs, &cmd->draw_cs);
1255
1256 if (use_hw_binning(cmd)) {
1257 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1258 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1259 }
1260
1261 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1262
1263 tu_cs_sanity_check(cs);
1264 }
1265
1266 static void
1267 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1268 {
1269 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1270
1271 tu_cs_emit_regs(cs,
1272 A6XX_GRAS_LRZ_CNTL(0));
1273
1274 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1275
1276 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1277
1278 tu_cs_sanity_check(cs);
1279 }
1280
1281 static void
1282 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1283 {
1284 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1285
1286 tu6_tile_render_begin(cmd, &cmd->cs);
1287
1288 uint32_t pipe = 0;
1289 for (uint32_t py = 0; py < fb->pipe_count.height; py++) {
1290 for (uint32_t px = 0; px < fb->pipe_count.width; px++, pipe++) {
1291 uint32_t tx1 = px * fb->pipe0.width;
1292 uint32_t ty1 = py * fb->pipe0.height;
1293 uint32_t tx2 = MIN2(tx1 + fb->pipe0.width, fb->tile_count.width);
1294 uint32_t ty2 = MIN2(ty1 + fb->pipe0.height, fb->tile_count.height);
1295 uint32_t slot = 0;
1296 for (uint32_t ty = ty1; ty < ty2; ty++) {
1297 for (uint32_t tx = tx1; tx < tx2; tx++, slot++) {
1298 tu6_emit_tile_select(cmd, &cmd->cs, tx, ty, pipe, slot);
1299 tu6_render_tile(cmd, &cmd->cs);
1300 }
1301 }
1302 }
1303 }
1304
1305 tu6_tile_render_end(cmd, &cmd->cs);
1306 }
1307
1308 static void
1309 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1310 {
1311 tu6_sysmem_render_begin(cmd, &cmd->cs);
1312
1313 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1314
1315 tu6_sysmem_render_end(cmd, &cmd->cs);
1316 }
1317
1318 static void
1319 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1320 {
1321 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1322 struct tu_cs sub_cs;
1323
1324 VkResult result =
1325 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1326 if (result != VK_SUCCESS) {
1327 cmd->record_result = result;
1328 return;
1329 }
1330
1331 /* emit to tile-store sub_cs */
1332 tu6_emit_tile_store(cmd, &sub_cs);
1333
1334 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1335 }
1336
1337 static VkResult
1338 tu_create_cmd_buffer(struct tu_device *device,
1339 struct tu_cmd_pool *pool,
1340 VkCommandBufferLevel level,
1341 VkCommandBuffer *pCommandBuffer)
1342 {
1343 struct tu_cmd_buffer *cmd_buffer;
1344
1345 cmd_buffer = vk_object_zalloc(&device->vk, NULL, sizeof(*cmd_buffer),
1346 VK_OBJECT_TYPE_COMMAND_BUFFER);
1347 if (cmd_buffer == NULL)
1348 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1349
1350 cmd_buffer->device = device;
1351 cmd_buffer->pool = pool;
1352 cmd_buffer->level = level;
1353
1354 if (pool) {
1355 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1356 cmd_buffer->queue_family_index = pool->queue_family_index;
1357
1358 } else {
1359 /* Init the pool_link so we can safely call list_del when we destroy
1360 * the command buffer
1361 */
1362 list_inithead(&cmd_buffer->pool_link);
1363 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1364 }
1365
1366 tu_bo_list_init(&cmd_buffer->bo_list);
1367 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1368 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1369 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1370 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1371
1372 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1373
1374 list_inithead(&cmd_buffer->upload.list);
1375
1376 return VK_SUCCESS;
1377 }
1378
1379 static void
1380 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1381 {
1382 list_del(&cmd_buffer->pool_link);
1383
1384 tu_cs_finish(&cmd_buffer->cs);
1385 tu_cs_finish(&cmd_buffer->draw_cs);
1386 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1387 tu_cs_finish(&cmd_buffer->sub_cs);
1388
1389 tu_bo_list_destroy(&cmd_buffer->bo_list);
1390 vk_object_free(&cmd_buffer->device->vk, &cmd_buffer->pool->alloc, cmd_buffer);
1391 }
1392
1393 static VkResult
1394 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1395 {
1396 cmd_buffer->record_result = VK_SUCCESS;
1397
1398 tu_bo_list_reset(&cmd_buffer->bo_list);
1399 tu_cs_reset(&cmd_buffer->cs);
1400 tu_cs_reset(&cmd_buffer->draw_cs);
1401 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1402 tu_cs_reset(&cmd_buffer->sub_cs);
1403
1404 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1405 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1406
1407 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1408
1409 return cmd_buffer->record_result;
1410 }
1411
1412 VkResult
1413 tu_AllocateCommandBuffers(VkDevice _device,
1414 const VkCommandBufferAllocateInfo *pAllocateInfo,
1415 VkCommandBuffer *pCommandBuffers)
1416 {
1417 TU_FROM_HANDLE(tu_device, device, _device);
1418 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1419
1420 VkResult result = VK_SUCCESS;
1421 uint32_t i;
1422
1423 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1424
1425 if (!list_is_empty(&pool->free_cmd_buffers)) {
1426 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1427 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1428
1429 list_del(&cmd_buffer->pool_link);
1430 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1431
1432 result = tu_reset_cmd_buffer(cmd_buffer);
1433 cmd_buffer->level = pAllocateInfo->level;
1434
1435 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1436 } else {
1437 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1438 &pCommandBuffers[i]);
1439 }
1440 if (result != VK_SUCCESS)
1441 break;
1442 }
1443
1444 if (result != VK_SUCCESS) {
1445 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1446 pCommandBuffers);
1447
1448 /* From the Vulkan 1.0.66 spec:
1449 *
1450 * "vkAllocateCommandBuffers can be used to create multiple
1451 * command buffers. If the creation of any of those command
1452 * buffers fails, the implementation must destroy all
1453 * successfully created command buffer objects from this
1454 * command, set all entries of the pCommandBuffers array to
1455 * NULL and return the error."
1456 */
1457 memset(pCommandBuffers, 0,
1458 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1459 }
1460
1461 return result;
1462 }
1463
1464 void
1465 tu_FreeCommandBuffers(VkDevice device,
1466 VkCommandPool commandPool,
1467 uint32_t commandBufferCount,
1468 const VkCommandBuffer *pCommandBuffers)
1469 {
1470 for (uint32_t i = 0; i < commandBufferCount; i++) {
1471 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1472
1473 if (cmd_buffer) {
1474 if (cmd_buffer->pool) {
1475 list_del(&cmd_buffer->pool_link);
1476 list_addtail(&cmd_buffer->pool_link,
1477 &cmd_buffer->pool->free_cmd_buffers);
1478 } else
1479 tu_cmd_buffer_destroy(cmd_buffer);
1480 }
1481 }
1482 }
1483
1484 VkResult
1485 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1486 VkCommandBufferResetFlags flags)
1487 {
1488 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1489 return tu_reset_cmd_buffer(cmd_buffer);
1490 }
1491
1492 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1493 * invalidations.
1494 */
1495 static void
1496 tu_cache_init(struct tu_cache_state *cache)
1497 {
1498 cache->flush_bits = 0;
1499 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1500 }
1501
1502 VkResult
1503 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1504 const VkCommandBufferBeginInfo *pBeginInfo)
1505 {
1506 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1507 VkResult result = VK_SUCCESS;
1508
1509 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1510 /* If the command buffer has already been resetted with
1511 * vkResetCommandBuffer, no need to do it again.
1512 */
1513 result = tu_reset_cmd_buffer(cmd_buffer);
1514 if (result != VK_SUCCESS)
1515 return result;
1516 }
1517
1518 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1519 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1520
1521 tu_cache_init(&cmd_buffer->state.cache);
1522 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1523 cmd_buffer->usage_flags = pBeginInfo->flags;
1524
1525 tu_cs_begin(&cmd_buffer->cs);
1526 tu_cs_begin(&cmd_buffer->draw_cs);
1527 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1528
1529 /* setup initial configuration into command buffer */
1530 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1531 switch (cmd_buffer->queue_family_index) {
1532 case TU_QUEUE_GENERAL:
1533 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1534 break;
1535 default:
1536 break;
1537 }
1538 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1539 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1540 assert(pBeginInfo->pInheritanceInfo);
1541 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1542 cmd_buffer->state.subpass =
1543 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1544 } else {
1545 /* When executing in the middle of another command buffer, the CCU
1546 * state is unknown.
1547 */
1548 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1549 }
1550 }
1551
1552 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1553
1554 return VK_SUCCESS;
1555 }
1556
1557 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1558 * rendering can skip over unused state), so we need to collect all the
1559 * bindings together into a single state emit at draw time.
1560 */
1561 void
1562 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1563 uint32_t firstBinding,
1564 uint32_t bindingCount,
1565 const VkBuffer *pBuffers,
1566 const VkDeviceSize *pOffsets)
1567 {
1568 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1569
1570 assert(firstBinding + bindingCount <= MAX_VBS);
1571
1572 for (uint32_t i = 0; i < bindingCount; i++) {
1573 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1574
1575 cmd->state.vb.buffers[firstBinding + i] = buf;
1576 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1577
1578 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1579 }
1580
1581 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1582 }
1583
1584 void
1585 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1586 VkBuffer buffer,
1587 VkDeviceSize offset,
1588 VkIndexType indexType)
1589 {
1590 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1591 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1592
1593
1594
1595 uint32_t index_size, index_shift, restart_index;
1596
1597 switch (indexType) {
1598 case VK_INDEX_TYPE_UINT16:
1599 index_size = INDEX4_SIZE_16_BIT;
1600 index_shift = 1;
1601 restart_index = 0xffff;
1602 break;
1603 case VK_INDEX_TYPE_UINT32:
1604 index_size = INDEX4_SIZE_32_BIT;
1605 index_shift = 2;
1606 restart_index = 0xffffffff;
1607 break;
1608 case VK_INDEX_TYPE_UINT8_EXT:
1609 index_size = INDEX4_SIZE_8_BIT;
1610 index_shift = 0;
1611 restart_index = 0xff;
1612 break;
1613 default:
1614 unreachable("invalid VkIndexType");
1615 }
1616
1617 /* initialize/update the restart index */
1618 if (cmd->state.index_size != index_size)
1619 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1620
1621 assert(buf->size >= offset);
1622
1623 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1624 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1625 cmd->state.index_size = index_size;
1626
1627 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1628 }
1629
1630 void
1631 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1632 VkPipelineBindPoint pipelineBindPoint,
1633 VkPipelineLayout _layout,
1634 uint32_t firstSet,
1635 uint32_t descriptorSetCount,
1636 const VkDescriptorSet *pDescriptorSets,
1637 uint32_t dynamicOffsetCount,
1638 const uint32_t *pDynamicOffsets)
1639 {
1640 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1641 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1642 unsigned dyn_idx = 0;
1643
1644 struct tu_descriptor_state *descriptors_state =
1645 tu_get_descriptors_state(cmd, pipelineBindPoint);
1646
1647 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1648 unsigned idx = i + firstSet;
1649 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1650
1651 descriptors_state->sets[idx] = set;
1652
1653 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1654 /* update the contents of the dynamic descriptor set */
1655 unsigned src_idx = j;
1656 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1657 assert(dyn_idx < dynamicOffsetCount);
1658
1659 uint32_t *dst =
1660 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1661 uint32_t *src =
1662 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1663 uint32_t offset = pDynamicOffsets[dyn_idx];
1664
1665 /* Patch the storage/uniform descriptors right away. */
1666 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1667 /* Note: we can assume here that the addition won't roll over and
1668 * change the SIZE field.
1669 */
1670 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1671 va += offset;
1672 dst[0] = va;
1673 dst[1] = va >> 32;
1674 } else {
1675 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1676 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1677 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1678 va += offset;
1679 dst[4] = va;
1680 dst[5] = va >> 32;
1681 }
1682 }
1683
1684 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1685 if (set->buffers[j]) {
1686 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1687 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1688 }
1689 }
1690
1691 if (set->size > 0) {
1692 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1693 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1694 }
1695 }
1696 assert(dyn_idx == dynamicOffsetCount);
1697
1698 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_invalidate_value;
1699 uint64_t addr[MAX_SETS + 1] = {};
1700 struct tu_cs *cs, state_cs;
1701
1702 for (uint32_t i = 0; i < MAX_SETS; i++) {
1703 struct tu_descriptor_set *set = descriptors_state->sets[i];
1704 if (set)
1705 addr[i] = set->va | 3;
1706 }
1707
1708 if (layout->dynamic_offset_count) {
1709 /* allocate and fill out dynamic descriptor set */
1710 struct tu_cs_memory dynamic_desc_set;
1711 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1712 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1713 assert(result == VK_SUCCESS);
1714
1715 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1716 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1717 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1718 }
1719
1720 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1721 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1722 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1723 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_GFX_BINDLESS(0x1f);
1724
1725 cmd->state.desc_sets = tu_cs_draw_state(&cmd->sub_cs, &state_cs, 24);
1726 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
1727 cs = &state_cs;
1728 } else {
1729 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1730
1731 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1732 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1733 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_CS_BINDLESS(0x1f);
1734
1735 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
1736 cs = &cmd->cs;
1737 }
1738
1739 tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 10);
1740 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1741 tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 10);
1742 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1743 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(.dword = hlsq_invalidate_value));
1744
1745 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1746 assert(cs->cur == cs->end); /* validate draw state size */
1747 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1748 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
1749 }
1750 }
1751
1752 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1753 uint32_t firstBinding,
1754 uint32_t bindingCount,
1755 const VkBuffer *pBuffers,
1756 const VkDeviceSize *pOffsets,
1757 const VkDeviceSize *pSizes)
1758 {
1759 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1760 struct tu_cs *cs = &cmd->draw_cs;
1761
1762 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1763 * presumably there isn't any benefit using a draw state when the
1764 * condition is (SYSMEM | BINNING)
1765 */
1766 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1767 CP_COND_REG_EXEC_0_SYSMEM |
1768 CP_COND_REG_EXEC_0_BINNING);
1769
1770 for (uint32_t i = 0; i < bindingCount; i++) {
1771 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1772 uint64_t iova = buf->bo->iova + pOffsets[i];
1773 uint32_t size = buf->bo->size - pOffsets[i];
1774 uint32_t idx = i + firstBinding;
1775
1776 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1777 size = pSizes[i];
1778
1779 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1780 uint32_t offset = iova & 0x1f;
1781 iova &= ~(uint64_t) 0x1f;
1782
1783 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1784 tu_cs_emit_qw(cs, iova);
1785 tu_cs_emit(cs, size + offset);
1786
1787 cmd->state.streamout_offset[idx] = offset;
1788
1789 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1790 }
1791
1792 tu_cond_exec_end(cs);
1793 }
1794
1795 void
1796 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1797 uint32_t firstCounterBuffer,
1798 uint32_t counterBufferCount,
1799 const VkBuffer *pCounterBuffers,
1800 const VkDeviceSize *pCounterBufferOffsets)
1801 {
1802 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1803 struct tu_cs *cs = &cmd->draw_cs;
1804
1805 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1806 CP_COND_REG_EXEC_0_SYSMEM |
1807 CP_COND_REG_EXEC_0_BINNING);
1808
1809 /* TODO: only update offset for active buffers */
1810 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1811 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1812
1813 for (uint32_t i = 0; i < counterBufferCount; i++) {
1814 uint32_t idx = firstCounterBuffer + i;
1815 uint32_t offset = cmd->state.streamout_offset[idx];
1816
1817 if (!pCounterBuffers[i])
1818 continue;
1819
1820 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1821
1822 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1823
1824 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1825 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1826 CP_MEM_TO_REG_0_UNK31 |
1827 CP_MEM_TO_REG_0_CNT(1));
1828 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1829
1830 if (offset) {
1831 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1832 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1833 CP_REG_RMW_0_SRC1_ADD);
1834 tu_cs_emit_qw(cs, 0xffffffff);
1835 tu_cs_emit_qw(cs, offset);
1836 }
1837 }
1838
1839 tu_cond_exec_end(cs);
1840 }
1841
1842 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1843 uint32_t firstCounterBuffer,
1844 uint32_t counterBufferCount,
1845 const VkBuffer *pCounterBuffers,
1846 const VkDeviceSize *pCounterBufferOffsets)
1847 {
1848 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1849 struct tu_cs *cs = &cmd->draw_cs;
1850
1851 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1852 CP_COND_REG_EXEC_0_SYSMEM |
1853 CP_COND_REG_EXEC_0_BINNING);
1854
1855 /* TODO: only flush buffers that need to be flushed */
1856 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
1857 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
1858 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
1859 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[i]));
1860 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
1861 }
1862
1863 for (uint32_t i = 0; i < counterBufferCount; i++) {
1864 uint32_t idx = firstCounterBuffer + i;
1865 uint32_t offset = cmd->state.streamout_offset[idx];
1866
1867 if (!pCounterBuffers[i])
1868 continue;
1869
1870 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1871
1872 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1873
1874 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
1875 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1876 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1877 CP_MEM_TO_REG_0_SHIFT_BY_2 |
1878 0x40000 | /* ??? */
1879 CP_MEM_TO_REG_0_UNK31 |
1880 CP_MEM_TO_REG_0_CNT(1));
1881 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[idx]));
1882
1883 if (offset) {
1884 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1885 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1886 CP_REG_RMW_0_SRC1_ADD);
1887 tu_cs_emit_qw(cs, 0xffffffff);
1888 tu_cs_emit_qw(cs, -offset);
1889 }
1890
1891 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
1892 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1893 CP_REG_TO_MEM_0_CNT(1));
1894 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1895 }
1896
1897 tu_cond_exec_end(cs);
1898
1899 cmd->state.xfb_used = true;
1900 }
1901
1902 void
1903 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
1904 VkPipelineLayout layout,
1905 VkShaderStageFlags stageFlags,
1906 uint32_t offset,
1907 uint32_t size,
1908 const void *pValues)
1909 {
1910 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1911 memcpy((void*) cmd->push_constants + offset, pValues, size);
1912 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
1913 }
1914
1915 /* Flush everything which has been made available but we haven't actually
1916 * flushed yet.
1917 */
1918 static void
1919 tu_flush_all_pending(struct tu_cache_state *cache)
1920 {
1921 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
1922 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
1923 }
1924
1925 VkResult
1926 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
1927 {
1928 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1929
1930 /* We currently flush CCU at the end of the command buffer, like
1931 * what the blob does. There's implicit synchronization around every
1932 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
1933 * know yet if this command buffer will be the last in the submit so we
1934 * have to defensively flush everything else.
1935 *
1936 * TODO: We could definitely do better than this, since these flushes
1937 * aren't required by Vulkan, but we'd need kernel support to do that.
1938 * Ideally, we'd like the kernel to flush everything afterwards, so that we
1939 * wouldn't have to do any flushes here, and when submitting multiple
1940 * command buffers there wouldn't be any unnecessary flushes in between.
1941 */
1942 if (cmd_buffer->state.pass) {
1943 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
1944 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
1945 } else {
1946 tu_flush_all_pending(&cmd_buffer->state.cache);
1947 cmd_buffer->state.cache.flush_bits |=
1948 TU_CMD_FLAG_CCU_FLUSH_COLOR |
1949 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
1950 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
1951 }
1952
1953 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->global_bo,
1954 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1955
1956 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
1957 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
1958 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1959 }
1960
1961 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
1962 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
1963 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1964 }
1965
1966 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
1967 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
1968 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1969 }
1970
1971 tu_cs_end(&cmd_buffer->cs);
1972 tu_cs_end(&cmd_buffer->draw_cs);
1973 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
1974
1975 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
1976
1977 return cmd_buffer->record_result;
1978 }
1979
1980 static struct tu_cs
1981 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
1982 {
1983 struct tu_cs cs;
1984
1985 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
1986 cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
1987
1988 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1989 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
1990
1991 return cs;
1992 }
1993
1994 void
1995 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
1996 VkPipelineBindPoint pipelineBindPoint,
1997 VkPipeline _pipeline)
1998 {
1999 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2000 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2001
2002 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2003 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2004 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2005 }
2006
2007 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2008 cmd->state.compute_pipeline = pipeline;
2009 tu_cs_emit_state_ib(&cmd->cs, pipeline->program.state);
2010 return;
2011 }
2012
2013 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2014
2015 cmd->state.pipeline = pipeline;
2016 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
2017
2018 struct tu_cs *cs = &cmd->draw_cs;
2019 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2020 uint32_t i;
2021
2022 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2023 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
2024 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
2025 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
2026 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
2027 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
2028 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
2029 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
2030 for_each_bit(i, mask)
2031 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2032
2033 /* If the new pipeline requires more VBs than we had previously set up, we
2034 * need to re-emit them in SDS. If it requires the same set or fewer, we
2035 * can just re-use the old SDS.
2036 */
2037 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2038 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2039
2040 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2041 * so the dynamic state ib must be updated when pipeline changes
2042 */
2043 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2044 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2045
2046 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2047 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2048
2049 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2050 }
2051 }
2052
2053 void
2054 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2055 uint32_t firstViewport,
2056 uint32_t viewportCount,
2057 const VkViewport *pViewports)
2058 {
2059 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2060 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2061
2062 assert(firstViewport == 0 && viewportCount == 1);
2063
2064 tu6_emit_viewport(&cs, pViewports);
2065 }
2066
2067 void
2068 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2069 uint32_t firstScissor,
2070 uint32_t scissorCount,
2071 const VkRect2D *pScissors)
2072 {
2073 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2074 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2075
2076 assert(firstScissor == 0 && scissorCount == 1);
2077
2078 tu6_emit_scissor(&cs, pScissors);
2079 }
2080
2081 void
2082 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2083 {
2084 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2085 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2086
2087 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2088 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2089
2090 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2091 }
2092
2093 void
2094 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2095 float depthBiasConstantFactor,
2096 float depthBiasClamp,
2097 float depthBiasSlopeFactor)
2098 {
2099 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2100 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2101
2102 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2103 }
2104
2105 void
2106 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2107 const float blendConstants[4])
2108 {
2109 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2110 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2111
2112 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2113 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2114 }
2115
2116 void
2117 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2118 float minDepthBounds,
2119 float maxDepthBounds)
2120 {
2121 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2122 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
2123
2124 tu_cs_emit_regs(&cs,
2125 A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
2126 A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
2127 }
2128
2129 static void
2130 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2131 {
2132 if (face & VK_STENCIL_FACE_FRONT_BIT)
2133 *value = (*value & 0xff00) | (mask & 0xff);
2134 if (face & VK_STENCIL_FACE_BACK_BIT)
2135 *value = (*value & 0xff) | (mask & 0xff) << 8;
2136 }
2137
2138 void
2139 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2140 VkStencilFaceFlags faceMask,
2141 uint32_t compareMask)
2142 {
2143 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2144 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2145
2146 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2147
2148 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2149 }
2150
2151 void
2152 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2153 VkStencilFaceFlags faceMask,
2154 uint32_t writeMask)
2155 {
2156 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2157 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2158
2159 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2160
2161 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2162 }
2163
2164 void
2165 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2166 VkStencilFaceFlags faceMask,
2167 uint32_t reference)
2168 {
2169 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2170 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2171
2172 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2173
2174 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2175 }
2176
2177 void
2178 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2179 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2180 {
2181 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2182 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2183
2184 assert(pSampleLocationsInfo);
2185
2186 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2187 }
2188
2189 static void
2190 tu_flush_for_access(struct tu_cache_state *cache,
2191 enum tu_cmd_access_mask src_mask,
2192 enum tu_cmd_access_mask dst_mask)
2193 {
2194 enum tu_cmd_flush_bits flush_bits = 0;
2195
2196 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2197 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2198 }
2199
2200 #define SRC_FLUSH(domain, flush, invalidate) \
2201 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2202 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2203 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2204 }
2205
2206 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2207 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2208 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2209
2210 #undef SRC_FLUSH
2211
2212 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2213 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2214 flush_bits |= TU_CMD_FLAG_##flush; \
2215 cache->pending_flush_bits |= \
2216 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2217 }
2218
2219 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2220 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2221
2222 #undef SRC_INCOHERENT_FLUSH
2223
2224 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
2225 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2226 }
2227
2228 #define DST_FLUSH(domain, flush, invalidate) \
2229 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2230 TU_ACCESS_##domain##_WRITE)) { \
2231 flush_bits |= cache->pending_flush_bits & \
2232 (TU_CMD_FLAG_##invalidate | \
2233 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2234 }
2235
2236 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2237 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2238 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2239
2240 #undef DST_FLUSH
2241
2242 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2243 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2244 TU_ACCESS_##domain##_WRITE)) { \
2245 flush_bits |= TU_CMD_FLAG_##invalidate | \
2246 (cache->pending_flush_bits & \
2247 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2248 }
2249
2250 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2251 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2252
2253 #undef DST_INCOHERENT_FLUSH
2254
2255 if (dst_mask & TU_ACCESS_WFI_READ) {
2256 flush_bits |= TU_CMD_FLAG_WFI;
2257 }
2258
2259 cache->flush_bits |= flush_bits;
2260 cache->pending_flush_bits &= ~flush_bits;
2261 }
2262
2263 static enum tu_cmd_access_mask
2264 vk2tu_access(VkAccessFlags flags, bool gmem)
2265 {
2266 enum tu_cmd_access_mask mask = 0;
2267
2268 /* If the GPU writes a buffer that is then read by an indirect draw
2269 * command, we theoretically need a WFI + WAIT_FOR_ME combination to
2270 * wait for the writes to complete. The WAIT_FOR_ME is performed as part
2271 * of the draw by the firmware, so we just need to execute a WFI.
2272 */
2273 if (flags &
2274 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2275 VK_ACCESS_MEMORY_READ_BIT)) {
2276 mask |= TU_ACCESS_WFI_READ;
2277 }
2278
2279 if (flags &
2280 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2281 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
2282 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2283 VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
2284 VK_ACCESS_MEMORY_READ_BIT)) {
2285 mask |= TU_ACCESS_SYSMEM_READ;
2286 }
2287
2288 if (flags &
2289 (VK_ACCESS_HOST_WRITE_BIT |
2290 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
2291 VK_ACCESS_MEMORY_WRITE_BIT)) {
2292 mask |= TU_ACCESS_SYSMEM_WRITE;
2293 }
2294
2295 if (flags &
2296 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2297 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2298 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2299 /* TODO: Is there a no-cache bit for textures so that we can ignore
2300 * these?
2301 */
2302 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2303 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2304 VK_ACCESS_MEMORY_READ_BIT)) {
2305 mask |= TU_ACCESS_UCHE_READ;
2306 }
2307
2308 if (flags &
2309 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2310 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2311 VK_ACCESS_MEMORY_WRITE_BIT)) {
2312 mask |= TU_ACCESS_UCHE_WRITE;
2313 }
2314
2315 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2316 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2317 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2318 * can ignore CCU and pretend that color attachments and transfers use
2319 * sysmem directly.
2320 */
2321
2322 if (flags &
2323 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2324 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2325 VK_ACCESS_MEMORY_READ_BIT)) {
2326 if (gmem)
2327 mask |= TU_ACCESS_SYSMEM_READ;
2328 else
2329 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2330 }
2331
2332 if (flags &
2333 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2334 VK_ACCESS_MEMORY_READ_BIT)) {
2335 if (gmem)
2336 mask |= TU_ACCESS_SYSMEM_READ;
2337 else
2338 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2339 }
2340
2341 if (flags &
2342 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2343 VK_ACCESS_MEMORY_WRITE_BIT)) {
2344 if (gmem) {
2345 mask |= TU_ACCESS_SYSMEM_WRITE;
2346 } else {
2347 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2348 }
2349 }
2350
2351 if (flags &
2352 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2353 VK_ACCESS_MEMORY_WRITE_BIT)) {
2354 if (gmem) {
2355 mask |= TU_ACCESS_SYSMEM_WRITE;
2356 } else {
2357 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2358 }
2359 }
2360
2361 /* When the dst access is a transfer read/write, it seems we sometimes need
2362 * to insert a WFI after any flushes, to guarantee that the flushes finish
2363 * before the 2D engine starts. However the opposite (i.e. a WFI after
2364 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2365 * the blob doesn't emit such a WFI.
2366 */
2367
2368 if (flags &
2369 (VK_ACCESS_TRANSFER_WRITE_BIT |
2370 VK_ACCESS_MEMORY_WRITE_BIT)) {
2371 if (gmem) {
2372 mask |= TU_ACCESS_SYSMEM_WRITE;
2373 } else {
2374 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2375 }
2376 mask |= TU_ACCESS_WFI_READ;
2377 }
2378
2379 if (flags &
2380 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2381 VK_ACCESS_MEMORY_READ_BIT)) {
2382 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2383 }
2384
2385 return mask;
2386 }
2387
2388
2389 void
2390 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2391 uint32_t commandBufferCount,
2392 const VkCommandBuffer *pCmdBuffers)
2393 {
2394 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2395 VkResult result;
2396
2397 assert(commandBufferCount > 0);
2398
2399 /* Emit any pending flushes. */
2400 if (cmd->state.pass) {
2401 tu_flush_all_pending(&cmd->state.renderpass_cache);
2402 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2403 } else {
2404 tu_flush_all_pending(&cmd->state.cache);
2405 tu_emit_cache_flush(cmd, &cmd->cs);
2406 }
2407
2408 for (uint32_t i = 0; i < commandBufferCount; i++) {
2409 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2410
2411 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2412 if (result != VK_SUCCESS) {
2413 cmd->record_result = result;
2414 break;
2415 }
2416
2417 if (secondary->usage_flags &
2418 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2419 assert(tu_cs_is_empty(&secondary->cs));
2420
2421 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2422 if (result != VK_SUCCESS) {
2423 cmd->record_result = result;
2424 break;
2425 }
2426
2427 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2428 &secondary->draw_epilogue_cs);
2429 if (result != VK_SUCCESS) {
2430 cmd->record_result = result;
2431 break;
2432 }
2433
2434 if (secondary->has_tess)
2435 cmd->has_tess = true;
2436 } else {
2437 assert(tu_cs_is_empty(&secondary->draw_cs));
2438 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2439
2440 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2441 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2442 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2443 }
2444
2445 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2446 }
2447
2448 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2449 }
2450 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2451
2452 /* After executing secondary command buffers, there may have been arbitrary
2453 * flushes executed, so when we encounter a pipeline barrier with a
2454 * srcMask, we have to assume that we need to invalidate. Therefore we need
2455 * to re-initialize the cache with all pending invalidate bits set.
2456 */
2457 if (cmd->state.pass) {
2458 tu_cache_init(&cmd->state.renderpass_cache);
2459 } else {
2460 tu_cache_init(&cmd->state.cache);
2461 }
2462 }
2463
2464 VkResult
2465 tu_CreateCommandPool(VkDevice _device,
2466 const VkCommandPoolCreateInfo *pCreateInfo,
2467 const VkAllocationCallbacks *pAllocator,
2468 VkCommandPool *pCmdPool)
2469 {
2470 TU_FROM_HANDLE(tu_device, device, _device);
2471 struct tu_cmd_pool *pool;
2472
2473 pool = vk_object_alloc(&device->vk, pAllocator, sizeof(*pool),
2474 VK_OBJECT_TYPE_COMMAND_POOL);
2475 if (pool == NULL)
2476 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2477
2478 if (pAllocator)
2479 pool->alloc = *pAllocator;
2480 else
2481 pool->alloc = device->vk.alloc;
2482
2483 list_inithead(&pool->cmd_buffers);
2484 list_inithead(&pool->free_cmd_buffers);
2485
2486 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2487
2488 *pCmdPool = tu_cmd_pool_to_handle(pool);
2489
2490 return VK_SUCCESS;
2491 }
2492
2493 void
2494 tu_DestroyCommandPool(VkDevice _device,
2495 VkCommandPool commandPool,
2496 const VkAllocationCallbacks *pAllocator)
2497 {
2498 TU_FROM_HANDLE(tu_device, device, _device);
2499 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2500
2501 if (!pool)
2502 return;
2503
2504 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2505 &pool->cmd_buffers, pool_link)
2506 {
2507 tu_cmd_buffer_destroy(cmd_buffer);
2508 }
2509
2510 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2511 &pool->free_cmd_buffers, pool_link)
2512 {
2513 tu_cmd_buffer_destroy(cmd_buffer);
2514 }
2515
2516 vk_object_free(&device->vk, pAllocator, pool);
2517 }
2518
2519 VkResult
2520 tu_ResetCommandPool(VkDevice device,
2521 VkCommandPool commandPool,
2522 VkCommandPoolResetFlags flags)
2523 {
2524 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2525 VkResult result;
2526
2527 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2528 pool_link)
2529 {
2530 result = tu_reset_cmd_buffer(cmd_buffer);
2531 if (result != VK_SUCCESS)
2532 return result;
2533 }
2534
2535 return VK_SUCCESS;
2536 }
2537
2538 void
2539 tu_TrimCommandPool(VkDevice device,
2540 VkCommandPool commandPool,
2541 VkCommandPoolTrimFlags flags)
2542 {
2543 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2544
2545 if (!pool)
2546 return;
2547
2548 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2549 &pool->free_cmd_buffers, pool_link)
2550 {
2551 tu_cmd_buffer_destroy(cmd_buffer);
2552 }
2553 }
2554
2555 static void
2556 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2557 const struct tu_subpass_barrier *barrier,
2558 bool external)
2559 {
2560 /* Note: we don't know until the end of the subpass whether we'll use
2561 * sysmem, so assume sysmem here to be safe.
2562 */
2563 struct tu_cache_state *cache =
2564 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2565 enum tu_cmd_access_mask src_flags =
2566 vk2tu_access(barrier->src_access_mask, false);
2567 enum tu_cmd_access_mask dst_flags =
2568 vk2tu_access(barrier->dst_access_mask, false);
2569
2570 if (barrier->incoherent_ccu_color)
2571 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2572 if (barrier->incoherent_ccu_depth)
2573 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2574
2575 tu_flush_for_access(cache, src_flags, dst_flags);
2576 }
2577
2578 void
2579 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2580 const VkRenderPassBeginInfo *pRenderPassBegin,
2581 VkSubpassContents contents)
2582 {
2583 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2584 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2585 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2586
2587 cmd->state.pass = pass;
2588 cmd->state.subpass = pass->subpasses;
2589 cmd->state.framebuffer = fb;
2590 cmd->state.render_area = pRenderPassBegin->renderArea;
2591
2592 tu_cmd_prepare_tile_store_ib(cmd);
2593
2594 /* Note: because this is external, any flushes will happen before draw_cs
2595 * gets called. However deferred flushes could have to happen later as part
2596 * of the subpass.
2597 */
2598 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2599 cmd->state.renderpass_cache.pending_flush_bits =
2600 cmd->state.cache.pending_flush_bits;
2601 cmd->state.renderpass_cache.flush_bits = 0;
2602
2603 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2604
2605 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2606 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2607 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2608 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2609
2610 tu_set_input_attachments(cmd, cmd->state.subpass);
2611
2612 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2613 const struct tu_image_view *iview = fb->attachments[i].attachment;
2614 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2615 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2616 }
2617
2618 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2619 }
2620
2621 void
2622 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2623 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2624 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2625 {
2626 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2627 pSubpassBeginInfo->contents);
2628 }
2629
2630 void
2631 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2632 {
2633 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2634 const struct tu_render_pass *pass = cmd->state.pass;
2635 struct tu_cs *cs = &cmd->draw_cs;
2636
2637 const struct tu_subpass *subpass = cmd->state.subpass++;
2638
2639 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2640
2641 if (subpass->resolve_attachments) {
2642 tu6_emit_blit_scissor(cmd, cs, true);
2643
2644 for (unsigned i = 0; i < subpass->color_count; i++) {
2645 uint32_t a = subpass->resolve_attachments[i].attachment;
2646 if (a == VK_ATTACHMENT_UNUSED)
2647 continue;
2648
2649 tu_store_gmem_attachment(cmd, cs, a,
2650 subpass->color_attachments[i].attachment);
2651
2652 if (pass->attachments[a].gmem_offset < 0)
2653 continue;
2654
2655 /* TODO:
2656 * check if the resolved attachment is needed by later subpasses,
2657 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2658 */
2659 tu_finishme("missing GMEM->GMEM resolve path\n");
2660 tu_load_gmem_attachment(cmd, cs, a, true);
2661 }
2662 }
2663
2664 tu_cond_exec_end(cs);
2665
2666 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2667
2668 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2669
2670 tu_cond_exec_end(cs);
2671
2672 /* Handle dependencies for the next subpass */
2673 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2674
2675 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2676 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2677 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2678 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2679 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2680
2681 tu_set_input_attachments(cmd, cmd->state.subpass);
2682 }
2683
2684 void
2685 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2686 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2687 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2688 {
2689 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2690 }
2691
2692 static void
2693 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2694 struct tu_descriptor_state *descriptors_state,
2695 gl_shader_stage type,
2696 uint32_t *push_constants)
2697 {
2698 const struct tu_program_descriptor_linkage *link =
2699 &pipeline->program.link[type];
2700 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2701
2702 if (link->push_consts.count > 0) {
2703 unsigned num_units = link->push_consts.count;
2704 unsigned offset = link->push_consts.lo;
2705 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2706 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2707 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2708 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2709 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2710 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2711 tu_cs_emit(cs, 0);
2712 tu_cs_emit(cs, 0);
2713 for (unsigned i = 0; i < num_units * 4; i++)
2714 tu_cs_emit(cs, push_constants[i + offset * 4]);
2715 }
2716
2717 for (uint32_t i = 0; i < state->num_enabled; i++) {
2718 uint32_t size = state->range[i].end - state->range[i].start;
2719 uint32_t offset = state->range[i].start;
2720
2721 /* and even if the start of the const buffer is before
2722 * first_immediate, the end may not be:
2723 */
2724 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2725
2726 if (size == 0)
2727 continue;
2728
2729 /* things should be aligned to vec4: */
2730 debug_assert((state->range[i].offset % 16) == 0);
2731 debug_assert((size % 16) == 0);
2732 debug_assert((offset % 16) == 0);
2733
2734 /* Dig out the descriptor from the descriptor state and read the VA from
2735 * it.
2736 */
2737 assert(state->range[i].ubo.bindless);
2738 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2739 descriptors_state->dynamic_descriptors :
2740 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2741 unsigned block = state->range[i].ubo.block;
2742 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2743 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2744 assert(va);
2745
2746 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2747 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2748 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2749 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2750 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2751 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2752 tu_cs_emit_qw(cs, va + offset);
2753 }
2754 }
2755
2756 static struct tu_draw_state
2757 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2758 const struct tu_pipeline *pipeline,
2759 struct tu_descriptor_state *descriptors_state,
2760 gl_shader_stage type)
2761 {
2762 struct tu_cs cs;
2763 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2764
2765 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2766
2767 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2768 }
2769
2770 static struct tu_draw_state
2771 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
2772 const struct tu_pipeline *pipeline)
2773 {
2774 struct tu_cs cs;
2775 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
2776
2777 int binding;
2778 for_each_bit(binding, pipeline->vi.bindings_used) {
2779 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
2780 const VkDeviceSize offset = buf->bo_offset +
2781 cmd->state.vb.offsets[binding];
2782
2783 tu_cs_emit_regs(&cs,
2784 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
2785 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
2786
2787 }
2788
2789 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
2790
2791 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2792 }
2793
2794 static uint64_t
2795 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
2796 uint32_t draw_count)
2797 {
2798 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2799 * Still not sure what to do here, so just allocate a reasonably large
2800 * BO and hope for the best for now. */
2801 if (!draw_count)
2802 draw_count = 2048;
2803
2804 /* the tess param BO is pipeline->tess.param_stride bytes per patch,
2805 * which includes both the per-vertex outputs and per-patch outputs
2806 * build_primitive_map in ir3 calculates this stride
2807 */
2808 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2809 uint32_t num_patches = draw_count / verts_per_patch;
2810 return num_patches * pipeline->tess.param_stride;
2811 }
2812
2813 static uint64_t
2814 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
2815 uint32_t draw_count)
2816 {
2817 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2818 * Still not sure what to do here, so just allocate a reasonably large
2819 * BO and hope for the best for now. */
2820 if (!draw_count)
2821 draw_count = 2048;
2822
2823 /* Each distinct patch gets its own tess factor output. */
2824 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2825 uint32_t num_patches = draw_count / verts_per_patch;
2826 uint32_t factor_stride;
2827 switch (pipeline->tess.patch_type) {
2828 case IR3_TESS_ISOLINES:
2829 factor_stride = 12;
2830 break;
2831 case IR3_TESS_TRIANGLES:
2832 factor_stride = 20;
2833 break;
2834 case IR3_TESS_QUADS:
2835 factor_stride = 28;
2836 break;
2837 default:
2838 unreachable("bad tessmode");
2839 }
2840 return factor_stride * num_patches;
2841 }
2842
2843 static VkResult
2844 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
2845 uint32_t draw_count,
2846 const struct tu_pipeline *pipeline,
2847 struct tu_draw_state *state)
2848 {
2849 struct tu_cs cs;
2850 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 20, &cs);
2851 if (result != VK_SUCCESS)
2852 return result;
2853
2854 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
2855 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
2856 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
2857 if (tess_bo_size > 0) {
2858 struct tu_bo *tess_bo;
2859 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
2860 if (result != VK_SUCCESS)
2861 return result;
2862
2863 tu_bo_list_add(&cmd->bo_list, tess_bo,
2864 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2865 uint64_t tess_factor_iova = tess_bo->iova;
2866 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
2867
2868 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2869 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
2870 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2871 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2872 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
2873 CP_LOAD_STATE6_0_NUM_UNIT(1));
2874 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2875 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2876 tu_cs_emit_qw(&cs, tess_param_iova);
2877 tu_cs_emit_qw(&cs, tess_factor_iova);
2878
2879 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2880 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
2881 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2882 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2883 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
2884 CP_LOAD_STATE6_0_NUM_UNIT(1));
2885 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2886 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2887 tu_cs_emit_qw(&cs, tess_param_iova);
2888 tu_cs_emit_qw(&cs, tess_factor_iova);
2889
2890 tu_cs_emit_pkt4(&cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
2891 tu_cs_emit_qw(&cs, tess_factor_iova);
2892
2893 /* TODO: Without this WFI here, the hardware seems unable to read these
2894 * addresses we just emitted. Freedreno emits these consts as part of
2895 * IB1 instead of in a draw state which might make this WFI unnecessary,
2896 * but it requires a bit more indirection (SS6_INDIRECT for consts). */
2897 tu_cs_emit_wfi(&cs);
2898 }
2899 *state = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2900 return VK_SUCCESS;
2901 }
2902
2903 static VkResult
2904 tu6_draw_common(struct tu_cmd_buffer *cmd,
2905 struct tu_cs *cs,
2906 bool indexed,
2907 /* note: draw_count is 0 for indirect */
2908 uint32_t draw_count)
2909 {
2910 const struct tu_pipeline *pipeline = cmd->state.pipeline;
2911 VkResult result;
2912
2913 struct tu_descriptor_state *descriptors_state =
2914 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
2915
2916 tu_emit_cache_flush_renderpass(cmd, cs);
2917
2918 /* TODO lrz */
2919
2920 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
2921 .primitive_restart =
2922 pipeline->ia.primitive_restart && indexed,
2923 .tess_upper_left_domain_origin =
2924 pipeline->tess.upper_left_domain_origin));
2925
2926 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
2927 cmd->state.shader_const[MESA_SHADER_VERTEX] =
2928 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
2929 cmd->state.shader_const[MESA_SHADER_TESS_CTRL] =
2930 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
2931 cmd->state.shader_const[MESA_SHADER_TESS_EVAL] =
2932 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
2933 cmd->state.shader_const[MESA_SHADER_GEOMETRY] =
2934 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
2935 cmd->state.shader_const[MESA_SHADER_FRAGMENT] =
2936 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
2937 }
2938
2939 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
2940 cmd->state.vertex_buffers = tu6_emit_vertex_buffers(cmd, pipeline);
2941
2942 bool has_tess =
2943 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
2944 struct tu_draw_state tess_consts = {};
2945 if (has_tess) {
2946 cmd->has_tess = true;
2947 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts);
2948 if (result != VK_SUCCESS)
2949 return result;
2950 }
2951
2952 /* for the first draw in a renderpass, re-emit all the draw states
2953 *
2954 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
2955 * used, then draw states must be re-emitted. note however this only happens
2956 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
2957 *
2958 * the two input attachment states are excluded because secondary command
2959 * buffer doesn't have a state ib to restore it, and not re-emitting them
2960 * is OK since CmdClearAttachments won't disable/overwrite them
2961 */
2962 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
2963 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
2964
2965 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
2966 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
2967 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
2968 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
2969 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
2970 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
2971 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
2972 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
2973 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
2974 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
2975 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
2976 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
2977 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
2978 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
2979 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
2980 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
2981 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
2982
2983 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
2984 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
2985 ((pipeline->dynamic_state_mask & BIT(i)) ?
2986 cmd->state.dynamic_state[i] :
2987 pipeline->dynamic_state[i]));
2988 }
2989 } else {
2990
2991 /* emit draw states that were just updated
2992 * note we eventually don't want to have to emit anything here
2993 */
2994 uint32_t draw_state_count =
2995 has_tess +
2996 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
2997 ((cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD) ? 1 : 0) +
2998 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
2999 1; /* vs_params */
3000
3001 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3002
3003 /* We may need to re-emit tess consts if the current draw call is
3004 * sufficiently larger than the last draw call. */
3005 if (has_tess)
3006 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
3007 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3008 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
3009 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
3010 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
3011 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
3012 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
3013 }
3014 if (cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD)
3015 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
3016 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3017 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
3018 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3019 }
3020
3021 tu_cs_sanity_check(cs);
3022
3023 /* There are too many graphics dirty bits to list here, so just list the
3024 * bits to preserve instead. The only things not emitted here are
3025 * compute-related state.
3026 */
3027 cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3028 return VK_SUCCESS;
3029 }
3030
3031 static uint32_t
3032 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
3033 {
3034 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3035 uint32_t initiator =
3036 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3037 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
3038 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3039 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3040
3041 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3042 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3043
3044 switch (pipeline->tess.patch_type) {
3045 case IR3_TESS_TRIANGLES:
3046 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3047 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3048 break;
3049 case IR3_TESS_ISOLINES:
3050 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3051 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3052 break;
3053 case IR3_TESS_NONE:
3054 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3055 break;
3056 case IR3_TESS_QUADS:
3057 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3058 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3059 break;
3060 }
3061 return initiator;
3062 }
3063
3064
3065 static uint32_t
3066 vs_params_offset(struct tu_cmd_buffer *cmd)
3067 {
3068 const struct tu_program_descriptor_linkage *link =
3069 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
3070 const struct ir3_const_state *const_state = &link->const_state;
3071
3072 if (const_state->offsets.driver_param >= link->constlen)
3073 return 0;
3074
3075 /* this layout is required by CP_DRAW_INDIRECT_MULTI */
3076 STATIC_ASSERT(IR3_DP_DRAWID == 0);
3077 STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
3078 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3079
3080 /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
3081 assert(const_state->offsets.driver_param != 0);
3082
3083 return const_state->offsets.driver_param;
3084 }
3085
3086 static struct tu_draw_state
3087 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
3088 uint32_t vertex_offset,
3089 uint32_t first_instance)
3090 {
3091 uint32_t offset = vs_params_offset(cmd);
3092
3093 struct tu_cs cs;
3094 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 8 : 0), &cs);
3095 if (result != VK_SUCCESS) {
3096 cmd->record_result = result;
3097 return (struct tu_draw_state) {};
3098 }
3099
3100 /* TODO: don't make a new draw state when it doesn't change */
3101
3102 tu_cs_emit_regs(&cs,
3103 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3104 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3105
3106 if (offset) {
3107 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3108 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3109 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3110 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3111 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3112 CP_LOAD_STATE6_0_NUM_UNIT(1));
3113 tu_cs_emit(&cs, 0);
3114 tu_cs_emit(&cs, 0);
3115
3116 tu_cs_emit(&cs, 0);
3117 tu_cs_emit(&cs, vertex_offset);
3118 tu_cs_emit(&cs, first_instance);
3119 tu_cs_emit(&cs, 0);
3120 }
3121
3122 struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3123 return (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
3124 }
3125
3126 void
3127 tu_CmdDraw(VkCommandBuffer commandBuffer,
3128 uint32_t vertexCount,
3129 uint32_t instanceCount,
3130 uint32_t firstVertex,
3131 uint32_t firstInstance)
3132 {
3133 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3134 struct tu_cs *cs = &cmd->draw_cs;
3135
3136 cmd->state.vs_params = tu6_emit_vs_params(cmd, firstVertex, firstInstance);
3137
3138 tu6_draw_common(cmd, cs, false, vertexCount);
3139
3140 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3141 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3142 tu_cs_emit(cs, instanceCount);
3143 tu_cs_emit(cs, vertexCount);
3144 }
3145
3146 void
3147 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3148 uint32_t indexCount,
3149 uint32_t instanceCount,
3150 uint32_t firstIndex,
3151 int32_t vertexOffset,
3152 uint32_t firstInstance)
3153 {
3154 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3155 struct tu_cs *cs = &cmd->draw_cs;
3156
3157 cmd->state.vs_params = tu6_emit_vs_params(cmd, vertexOffset, firstInstance);
3158
3159 tu6_draw_common(cmd, cs, true, indexCount);
3160
3161 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3162 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3163 tu_cs_emit(cs, instanceCount);
3164 tu_cs_emit(cs, indexCount);
3165 tu_cs_emit(cs, firstIndex);
3166 tu_cs_emit_qw(cs, cmd->state.index_va);
3167 tu_cs_emit(cs, cmd->state.max_index_count);
3168 }
3169
3170 void
3171 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3172 VkBuffer _buffer,
3173 VkDeviceSize offset,
3174 uint32_t drawCount,
3175 uint32_t stride)
3176 {
3177 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3178 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3179 struct tu_cs *cs = &cmd->draw_cs;
3180
3181 cmd->state.vs_params = (struct tu_draw_state) {};
3182
3183 tu6_draw_common(cmd, cs, false, 0);
3184
3185 /* workaround for a firmware bug with CP_DRAW_INDIRECT_MULTI, where it
3186 * doesn't wait for WFIs to be completed and leads to GPU fault/hang
3187 * TODO: this could be worked around in a more performant way,
3188 * or there may exist newer firmware that has been fixed
3189 */
3190 if (cmd->device->physical_device->gpu_id != 650)
3191 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
3192
3193 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
3194 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3195 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
3196 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3197 tu_cs_emit(cs, drawCount);
3198 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3199 tu_cs_emit(cs, stride);
3200
3201 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3202 }
3203
3204 void
3205 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3206 VkBuffer _buffer,
3207 VkDeviceSize offset,
3208 uint32_t drawCount,
3209 uint32_t stride)
3210 {
3211 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3212 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3213 struct tu_cs *cs = &cmd->draw_cs;
3214
3215 cmd->state.vs_params = (struct tu_draw_state) {};
3216
3217 tu6_draw_common(cmd, cs, true, 0);
3218
3219 /* workaround for a firmware bug with CP_DRAW_INDIRECT_MULTI, where it
3220 * doesn't wait for WFIs to be completed and leads to GPU fault/hang
3221 * TODO: this could be worked around in a more performant way,
3222 * or there may exist newer firmware that has been fixed
3223 */
3224 if (cmd->device->physical_device->gpu_id != 650)
3225 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
3226
3227 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
3228 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3229 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
3230 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3231 tu_cs_emit(cs, drawCount);
3232 tu_cs_emit_qw(cs, cmd->state.index_va);
3233 tu_cs_emit(cs, cmd->state.max_index_count);
3234 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3235 tu_cs_emit(cs, stride);
3236
3237 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3238 }
3239
3240 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3241 uint32_t instanceCount,
3242 uint32_t firstInstance,
3243 VkBuffer _counterBuffer,
3244 VkDeviceSize counterBufferOffset,
3245 uint32_t counterOffset,
3246 uint32_t vertexStride)
3247 {
3248 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3249 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
3250 struct tu_cs *cs = &cmd->draw_cs;
3251
3252 cmd->state.vs_params = tu6_emit_vs_params(cmd, 0, firstInstance);
3253
3254 tu6_draw_common(cmd, cs, false, 0);
3255
3256 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
3257 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
3258 tu_cs_emit(cs, instanceCount);
3259 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
3260 tu_cs_emit(cs, counterOffset);
3261 tu_cs_emit(cs, vertexStride);
3262
3263 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3264 }
3265
3266 struct tu_dispatch_info
3267 {
3268 /**
3269 * Determine the layout of the grid (in block units) to be used.
3270 */
3271 uint32_t blocks[3];
3272
3273 /**
3274 * A starting offset for the grid. If unaligned is set, the offset
3275 * must still be aligned.
3276 */
3277 uint32_t offsets[3];
3278 /**
3279 * Whether it's an unaligned compute dispatch.
3280 */
3281 bool unaligned;
3282
3283 /**
3284 * Indirect compute parameters resource.
3285 */
3286 struct tu_buffer *indirect;
3287 uint64_t indirect_offset;
3288 };
3289
3290 static void
3291 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3292 const struct tu_dispatch_info *info)
3293 {
3294 gl_shader_stage type = MESA_SHADER_COMPUTE;
3295 const struct tu_program_descriptor_linkage *link =
3296 &pipeline->program.link[type];
3297 const struct ir3_const_state *const_state = &link->const_state;
3298 uint32_t offset = const_state->offsets.driver_param;
3299
3300 if (link->constlen <= offset)
3301 return;
3302
3303 if (!info->indirect) {
3304 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3305 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3306 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3307 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3308 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3309 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3310 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3311 };
3312
3313 uint32_t num_consts = MIN2(const_state->num_driver_params,
3314 (link->constlen - offset) * 4);
3315 /* push constants */
3316 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3317 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3318 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3319 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3320 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3321 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3322 tu_cs_emit(cs, 0);
3323 tu_cs_emit(cs, 0);
3324 uint32_t i;
3325 for (i = 0; i < num_consts; i++)
3326 tu_cs_emit(cs, driver_params[i]);
3327 } else {
3328 tu_finishme("Indirect driver params");
3329 }
3330 }
3331
3332 static void
3333 tu_dispatch(struct tu_cmd_buffer *cmd,
3334 const struct tu_dispatch_info *info)
3335 {
3336 struct tu_cs *cs = &cmd->cs;
3337 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3338 struct tu_descriptor_state *descriptors_state =
3339 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3340
3341 /* TODO: We could probably flush less if we add a compute_flush_bits
3342 * bitfield.
3343 */
3344 tu_emit_cache_flush(cmd, cs);
3345
3346 /* note: no reason to have this in a separate IB */
3347 tu_cs_emit_state_ib(cs,
3348 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE));
3349
3350 tu_emit_compute_driver_params(cs, pipeline, info);
3351
3352 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD)
3353 tu_cs_emit_state_ib(cs, pipeline->load_state);
3354
3355 cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3356
3357 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3358 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3359
3360 const uint32_t *local_size = pipeline->compute.local_size;
3361 const uint32_t *num_groups = info->blocks;
3362 tu_cs_emit_regs(cs,
3363 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3364 .localsizex = local_size[0] - 1,
3365 .localsizey = local_size[1] - 1,
3366 .localsizez = local_size[2] - 1),
3367 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3368 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3369 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3370 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3371 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3372 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3373
3374 tu_cs_emit_regs(cs,
3375 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3376 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3377 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3378
3379 if (info->indirect) {
3380 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3381
3382 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3383 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3384
3385 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3386 tu_cs_emit(cs, 0x00000000);
3387 tu_cs_emit_qw(cs, iova);
3388 tu_cs_emit(cs,
3389 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3390 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3391 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3392 } else {
3393 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3394 tu_cs_emit(cs, 0x00000000);
3395 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3396 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3397 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3398 }
3399
3400 tu_cs_emit_wfi(cs);
3401 }
3402
3403 void
3404 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3405 uint32_t base_x,
3406 uint32_t base_y,
3407 uint32_t base_z,
3408 uint32_t x,
3409 uint32_t y,
3410 uint32_t z)
3411 {
3412 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3413 struct tu_dispatch_info info = {};
3414
3415 info.blocks[0] = x;
3416 info.blocks[1] = y;
3417 info.blocks[2] = z;
3418
3419 info.offsets[0] = base_x;
3420 info.offsets[1] = base_y;
3421 info.offsets[2] = base_z;
3422 tu_dispatch(cmd_buffer, &info);
3423 }
3424
3425 void
3426 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3427 uint32_t x,
3428 uint32_t y,
3429 uint32_t z)
3430 {
3431 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3432 }
3433
3434 void
3435 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3436 VkBuffer _buffer,
3437 VkDeviceSize offset)
3438 {
3439 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3440 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3441 struct tu_dispatch_info info = {};
3442
3443 info.indirect = buffer;
3444 info.indirect_offset = offset;
3445
3446 tu_dispatch(cmd_buffer, &info);
3447 }
3448
3449 void
3450 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3451 {
3452 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3453
3454 tu_cs_end(&cmd_buffer->draw_cs);
3455 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3456
3457 if (use_sysmem_rendering(cmd_buffer))
3458 tu_cmd_render_sysmem(cmd_buffer);
3459 else
3460 tu_cmd_render_tiles(cmd_buffer);
3461
3462 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3463 rendered */
3464 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3465 tu_cs_begin(&cmd_buffer->draw_cs);
3466 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3467 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3468
3469 cmd_buffer->state.cache.pending_flush_bits |=
3470 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3471 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3472
3473 cmd_buffer->state.pass = NULL;
3474 cmd_buffer->state.subpass = NULL;
3475 cmd_buffer->state.framebuffer = NULL;
3476 }
3477
3478 void
3479 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3480 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3481 {
3482 tu_CmdEndRenderPass(commandBuffer);
3483 }
3484
3485 struct tu_barrier_info
3486 {
3487 uint32_t eventCount;
3488 const VkEvent *pEvents;
3489 VkPipelineStageFlags srcStageMask;
3490 };
3491
3492 static void
3493 tu_barrier(struct tu_cmd_buffer *cmd,
3494 uint32_t memoryBarrierCount,
3495 const VkMemoryBarrier *pMemoryBarriers,
3496 uint32_t bufferMemoryBarrierCount,
3497 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3498 uint32_t imageMemoryBarrierCount,
3499 const VkImageMemoryBarrier *pImageMemoryBarriers,
3500 const struct tu_barrier_info *info)
3501 {
3502 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3503 VkAccessFlags srcAccessMask = 0;
3504 VkAccessFlags dstAccessMask = 0;
3505
3506 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3507 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3508 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3509 }
3510
3511 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3512 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3513 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3514 }
3515
3516 enum tu_cmd_access_mask src_flags = 0;
3517 enum tu_cmd_access_mask dst_flags = 0;
3518
3519 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3520 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3521 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3522 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3523 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3524 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3525 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3526 /* The underlying memory for this image may have been used earlier
3527 * within the same queue submission for a different image, which
3528 * means that there may be old, stale cache entries which are in the
3529 * "wrong" location, which could cause problems later after writing
3530 * to the image. We don't want these entries being flushed later and
3531 * overwriting the actual image, so we need to flush the CCU.
3532 */
3533 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3534 }
3535 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3536 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3537 }
3538
3539 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3540 * so we have to use the sysmem flushes.
3541 */
3542 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3543 !cmd->state.pass;
3544 src_flags |= vk2tu_access(srcAccessMask, gmem);
3545 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3546
3547 struct tu_cache_state *cache =
3548 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3549 tu_flush_for_access(cache, src_flags, dst_flags);
3550
3551 for (uint32_t i = 0; i < info->eventCount; i++) {
3552 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3553
3554 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3555
3556 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3557 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3558 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3559 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3560 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3561 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3562 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3563 }
3564 }
3565
3566 void
3567 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3568 VkPipelineStageFlags srcStageMask,
3569 VkPipelineStageFlags dstStageMask,
3570 VkDependencyFlags dependencyFlags,
3571 uint32_t memoryBarrierCount,
3572 const VkMemoryBarrier *pMemoryBarriers,
3573 uint32_t bufferMemoryBarrierCount,
3574 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3575 uint32_t imageMemoryBarrierCount,
3576 const VkImageMemoryBarrier *pImageMemoryBarriers)
3577 {
3578 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3579 struct tu_barrier_info info;
3580
3581 info.eventCount = 0;
3582 info.pEvents = NULL;
3583 info.srcStageMask = srcStageMask;
3584
3585 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3586 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3587 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3588 }
3589
3590 static void
3591 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3592 VkPipelineStageFlags stageMask, unsigned value)
3593 {
3594 struct tu_cs *cs = &cmd->cs;
3595
3596 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3597 assert(!cmd->state.pass);
3598
3599 tu_emit_cache_flush(cmd, cs);
3600
3601 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3602
3603 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3604 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3605 */
3606 VkPipelineStageFlags top_of_pipe_flags =
3607 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3608 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3609
3610 if (!(stageMask & ~top_of_pipe_flags)) {
3611 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3612 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3613 tu_cs_emit(cs, value);
3614 } else {
3615 /* Use a RB_DONE_TS event to wait for everything to complete. */
3616 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3617 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3618 tu_cs_emit_qw(cs, event->bo.iova);
3619 tu_cs_emit(cs, value);
3620 }
3621 }
3622
3623 void
3624 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3625 VkEvent _event,
3626 VkPipelineStageFlags stageMask)
3627 {
3628 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3629 TU_FROM_HANDLE(tu_event, event, _event);
3630
3631 write_event(cmd, event, stageMask, 1);
3632 }
3633
3634 void
3635 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3636 VkEvent _event,
3637 VkPipelineStageFlags stageMask)
3638 {
3639 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3640 TU_FROM_HANDLE(tu_event, event, _event);
3641
3642 write_event(cmd, event, stageMask, 0);
3643 }
3644
3645 void
3646 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3647 uint32_t eventCount,
3648 const VkEvent *pEvents,
3649 VkPipelineStageFlags srcStageMask,
3650 VkPipelineStageFlags dstStageMask,
3651 uint32_t memoryBarrierCount,
3652 const VkMemoryBarrier *pMemoryBarriers,
3653 uint32_t bufferMemoryBarrierCount,
3654 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3655 uint32_t imageMemoryBarrierCount,
3656 const VkImageMemoryBarrier *pImageMemoryBarriers)
3657 {
3658 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3659 struct tu_barrier_info info;
3660
3661 info.eventCount = eventCount;
3662 info.pEvents = pEvents;
3663 info.srcStageMask = 0;
3664
3665 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3666 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3667 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3668 }
3669
3670 void
3671 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3672 {
3673 /* No-op */
3674 }