dac6ef82a8744203a152997d8535ca77754f176a
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 void
112 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
113 struct tu_cs *cs,
114 enum vgt_event_type event)
115 {
116 bool need_seqno = false;
117 switch (event) {
118 case CACHE_FLUSH_TS:
119 case WT_DONE_TS:
120 case RB_DONE_TS:
121 case PC_CCU_FLUSH_DEPTH_TS:
122 case PC_CCU_FLUSH_COLOR_TS:
123 case PC_CCU_RESOLVE_TS:
124 need_seqno = true;
125 break;
126 default:
127 break;
128 }
129
130 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
131 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
132 if (need_seqno) {
133 tu_cs_emit_qw(cs, cmd->scratch_bo.iova);
134 tu_cs_emit(cs, 0);
135 }
136 }
137
138 static void
139 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
140 struct tu_cs *cs,
141 enum tu_cmd_flush_bits flushes)
142 {
143 /* Experiments show that invalidating CCU while it still has data in it
144 * doesn't work, so make sure to always flush before invalidating in case
145 * any data remains that hasn't yet been made available through a barrier.
146 * However it does seem to work for UCHE.
147 */
148 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
149 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
150 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
151 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
152 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
153 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
154 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
155 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
156 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
157 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
158 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
159 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
160 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
161 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
162 if (flushes & TU_CMD_FLAG_WFI)
163 tu_cs_emit_wfi(cs);
164 }
165
166 /* "Normal" cache flushes, that don't require any special handling */
167
168 static void
169 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
170 struct tu_cs *cs)
171 {
172 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
173 cmd_buffer->state.cache.flush_bits = 0;
174 }
175
176 /* Renderpass cache flushes */
177
178 void
179 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
180 struct tu_cs *cs)
181 {
182 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
183 cmd_buffer->state.renderpass_cache.flush_bits = 0;
184 }
185
186 /* Cache flushes for things that use the color/depth read/write path (i.e.
187 * blits and draws). This deals with changing CCU state as well as the usual
188 * cache flushing.
189 */
190
191 void
192 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
193 struct tu_cs *cs,
194 enum tu_cmd_ccu_state ccu_state)
195 {
196 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
197
198 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
199
200 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
201 * the CCU may also contain data that we haven't flushed out yet, so we
202 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
203 * emit a WFI as it isn't pipelined.
204 */
205 if (ccu_state != cmd_buffer->state.ccu_state) {
206 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
207 flushes |=
208 TU_CMD_FLAG_CCU_FLUSH_COLOR |
209 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
210 cmd_buffer->state.cache.pending_flush_bits &= ~(
211 TU_CMD_FLAG_CCU_FLUSH_COLOR |
212 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
213 }
214 flushes |=
215 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
216 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
217 TU_CMD_FLAG_WFI;
218 cmd_buffer->state.cache.pending_flush_bits &= ~(
219 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
220 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
221 }
222
223 tu6_emit_flushes(cmd_buffer, cs, flushes);
224 cmd_buffer->state.cache.flush_bits = 0;
225
226 if (ccu_state != cmd_buffer->state.ccu_state) {
227 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
228 tu_cs_emit_regs(cs,
229 A6XX_RB_CCU_CNTL(.offset =
230 ccu_state == TU_CMD_CCU_GMEM ?
231 phys_dev->ccu_offset_gmem :
232 phys_dev->ccu_offset_bypass,
233 .gmem = ccu_state == TU_CMD_CCU_GMEM));
234 cmd_buffer->state.ccu_state = ccu_state;
235 }
236 }
237
238 static void
239 tu6_emit_zs(struct tu_cmd_buffer *cmd,
240 const struct tu_subpass *subpass,
241 struct tu_cs *cs)
242 {
243 const struct tu_framebuffer *fb = cmd->state.framebuffer;
244
245 const uint32_t a = subpass->depth_stencil_attachment.attachment;
246 if (a == VK_ATTACHMENT_UNUSED) {
247 tu_cs_emit_regs(cs,
248 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
249 A6XX_RB_DEPTH_BUFFER_PITCH(0),
250 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
251 A6XX_RB_DEPTH_BUFFER_BASE(0),
252 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
253
254 tu_cs_emit_regs(cs,
255 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
256
257 tu_cs_emit_regs(cs,
258 A6XX_GRAS_LRZ_BUFFER_BASE(0),
259 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
260 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
261
262 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
263
264 return;
265 }
266
267 const struct tu_image_view *iview = fb->attachments[a].attachment;
268 const struct tu_render_pass_attachment *attachment =
269 &cmd->state.pass->attachments[a];
270 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
271
272 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
273 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
274 tu_cs_image_ref(cs, iview, 0);
275 tu_cs_emit(cs, attachment->gmem_offset);
276
277 tu_cs_emit_regs(cs,
278 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
279
280 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
281 tu_cs_image_flag_ref(cs, iview, 0);
282
283 tu_cs_emit_regs(cs,
284 A6XX_GRAS_LRZ_BUFFER_BASE(0),
285 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
286 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
287
288 if (attachment->format == VK_FORMAT_S8_UINT) {
289 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
290 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
291 tu_cs_image_ref(cs, iview, 0);
292 tu_cs_emit(cs, attachment->gmem_offset);
293 } else {
294 tu_cs_emit_regs(cs,
295 A6XX_RB_STENCIL_INFO(0));
296 }
297 }
298
299 static void
300 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
301 const struct tu_subpass *subpass,
302 struct tu_cs *cs)
303 {
304 const struct tu_framebuffer *fb = cmd->state.framebuffer;
305
306 for (uint32_t i = 0; i < subpass->color_count; ++i) {
307 uint32_t a = subpass->color_attachments[i].attachment;
308 if (a == VK_ATTACHMENT_UNUSED)
309 continue;
310
311 const struct tu_image_view *iview = fb->attachments[a].attachment;
312
313 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
314 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
315 tu_cs_image_ref(cs, iview, 0);
316 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
317
318 tu_cs_emit_regs(cs,
319 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
320
321 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
322 tu_cs_image_flag_ref(cs, iview, 0);
323 }
324
325 tu_cs_emit_regs(cs,
326 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
327 tu_cs_emit_regs(cs,
328 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
329
330 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
331 }
332
333 void
334 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
335 {
336 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
337 bool msaa_disable = samples == MSAA_ONE;
338
339 tu_cs_emit_regs(cs,
340 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
341 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
342 .msaa_disable = msaa_disable));
343
344 tu_cs_emit_regs(cs,
345 A6XX_GRAS_RAS_MSAA_CNTL(samples),
346 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
347 .msaa_disable = msaa_disable));
348
349 tu_cs_emit_regs(cs,
350 A6XX_RB_RAS_MSAA_CNTL(samples),
351 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
352 .msaa_disable = msaa_disable));
353
354 tu_cs_emit_regs(cs,
355 A6XX_RB_MSAA_CNTL(samples));
356 }
357
358 static void
359 tu6_emit_bin_size(struct tu_cs *cs,
360 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
361 {
362 tu_cs_emit_regs(cs,
363 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
364 .binh = bin_h,
365 .dword = flags));
366
367 tu_cs_emit_regs(cs,
368 A6XX_RB_BIN_CONTROL(.binw = bin_w,
369 .binh = bin_h,
370 .dword = flags));
371
372 /* no flag for RB_BIN_CONTROL2... */
373 tu_cs_emit_regs(cs,
374 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
375 .binh = bin_h));
376 }
377
378 static void
379 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
380 const struct tu_subpass *subpass,
381 struct tu_cs *cs,
382 bool binning)
383 {
384 const struct tu_framebuffer *fb = cmd->state.framebuffer;
385 uint32_t cntl = 0;
386 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
387 if (binning) {
388 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
389 } else {
390 uint32_t mrts_ubwc_enable = 0;
391 for (uint32_t i = 0; i < subpass->color_count; ++i) {
392 uint32_t a = subpass->color_attachments[i].attachment;
393 if (a == VK_ATTACHMENT_UNUSED)
394 continue;
395
396 const struct tu_image_view *iview = fb->attachments[a].attachment;
397 if (iview->ubwc_enabled)
398 mrts_ubwc_enable |= 1 << i;
399 }
400
401 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
402
403 const uint32_t a = subpass->depth_stencil_attachment.attachment;
404 if (a != VK_ATTACHMENT_UNUSED) {
405 const struct tu_image_view *iview = fb->attachments[a].attachment;
406 if (iview->ubwc_enabled)
407 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
408 }
409
410 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
411 * in order to set it correctly for the different subpasses. However,
412 * that means the packets we're emitting also happen during binning. So
413 * we need to guard the write on !BINNING at CP execution time.
414 */
415 tu_cs_reserve(cs, 3 + 4);
416 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
417 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
418 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
419 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
420 }
421
422 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
423 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
424 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
425 tu_cs_emit(cs, cntl);
426 }
427
428 static void
429 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
430 {
431 const VkRect2D *render_area = &cmd->state.render_area;
432 uint32_t x1 = render_area->offset.x;
433 uint32_t y1 = render_area->offset.y;
434 uint32_t x2 = x1 + render_area->extent.width - 1;
435 uint32_t y2 = y1 + render_area->extent.height - 1;
436
437 if (align) {
438 x1 = x1 & ~(GMEM_ALIGN_W - 1);
439 y1 = y1 & ~(GMEM_ALIGN_H - 1);
440 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
441 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
442 }
443
444 tu_cs_emit_regs(cs,
445 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
446 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
447 }
448
449 void
450 tu6_emit_window_scissor(struct tu_cs *cs,
451 uint32_t x1,
452 uint32_t y1,
453 uint32_t x2,
454 uint32_t y2)
455 {
456 tu_cs_emit_regs(cs,
457 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
458 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
459
460 tu_cs_emit_regs(cs,
461 A6XX_GRAS_RESOLVE_CNTL_1(.x = x1, .y = y1),
462 A6XX_GRAS_RESOLVE_CNTL_2(.x = x2, .y = y2));
463 }
464
465 void
466 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
467 {
468 tu_cs_emit_regs(cs,
469 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
470
471 tu_cs_emit_regs(cs,
472 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
473
474 tu_cs_emit_regs(cs,
475 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
476
477 tu_cs_emit_regs(cs,
478 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
479 }
480
481 static void
482 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
483 {
484 uint32_t enable_mask;
485 switch (id) {
486 case TU_DRAW_STATE_PROGRAM:
487 case TU_DRAW_STATE_VI:
488 case TU_DRAW_STATE_FS_CONST:
489 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
490 * when resources would actually be used in the binning shader.
491 * Presumably the overhead of prefetching the resources isn't
492 * worth it.
493 */
494 case TU_DRAW_STATE_DESC_SETS_LOAD:
495 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
496 CP_SET_DRAW_STATE__0_SYSMEM;
497 break;
498 case TU_DRAW_STATE_PROGRAM_BINNING:
499 case TU_DRAW_STATE_VI_BINNING:
500 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
501 break;
502 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
503 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
504 break;
505 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
506 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
507 break;
508 default:
509 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
510 CP_SET_DRAW_STATE__0_SYSMEM |
511 CP_SET_DRAW_STATE__0_BINNING;
512 break;
513 }
514
515 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
516 enable_mask |
517 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
518 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
519 tu_cs_emit_qw(cs, state.iova);
520 }
521
522 /* note: get rid of this eventually */
523 static void
524 tu_cs_emit_sds_ib(struct tu_cs *cs, uint32_t id, struct tu_cs_entry entry)
525 {
526 tu_cs_emit_draw_state(cs, id, (struct tu_draw_state) {
527 .iova = entry.size ? entry.bo->iova + entry.offset : 0,
528 .size = entry.size / 4,
529 });
530 }
531
532 static bool
533 use_hw_binning(struct tu_cmd_buffer *cmd)
534 {
535 const struct tu_framebuffer *fb = cmd->state.framebuffer;
536
537 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
538 * with non-hw binning GMEM rendering. this is required because some of the
539 * XFB commands need to only be executed once
540 */
541 if (cmd->state.xfb_used)
542 return true;
543
544 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
545 return false;
546
547 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
548 return true;
549
550 return (fb->tile_count.width * fb->tile_count.height) > 2;
551 }
552
553 static bool
554 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
555 {
556 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
557 return true;
558
559 /* can't fit attachments into gmem */
560 if (!cmd->state.pass->gmem_pixels)
561 return true;
562
563 if (cmd->state.framebuffer->layers > 1)
564 return true;
565
566 if (cmd->has_tess)
567 return true;
568
569 return false;
570 }
571
572 static void
573 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
574 struct tu_cs *cs,
575 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot)
576 {
577 const struct tu_framebuffer *fb = cmd->state.framebuffer;
578
579 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
580 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
581
582 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
583 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
584
585 const uint32_t x1 = fb->tile0.width * tx;
586 const uint32_t y1 = fb->tile0.height * ty;
587 const uint32_t x2 = x1 + fb->tile0.width - 1;
588 const uint32_t y2 = y1 + fb->tile0.height - 1;
589 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
590 tu6_emit_window_offset(cs, x1, y1);
591
592 tu_cs_emit_regs(cs,
593 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
594
595 if (use_hw_binning(cmd)) {
596 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
597
598 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
599 tu_cs_emit(cs, 0x0);
600
601 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5, 7);
602 tu_cs_emit(cs, fb->pipe_sizes[pipe] |
603 CP_SET_BIN_DATA5_0_VSC_N(slot));
604 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + pipe * cmd->vsc_draw_strm_pitch);
605 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + pipe * 4 + 32 * cmd->vsc_draw_strm_pitch);
606 tu_cs_emit_qw(cs, cmd->vsc_prim_strm.iova + pipe * cmd->vsc_prim_strm_pitch);
607
608 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
609 tu_cs_emit(cs, 0x0);
610
611 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
612 tu_cs_emit(cs, 0x0);
613 } else {
614 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
615 tu_cs_emit(cs, 0x1);
616
617 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
618 tu_cs_emit(cs, 0x0);
619 }
620 }
621
622 static void
623 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
624 struct tu_cs *cs,
625 uint32_t a,
626 uint32_t gmem_a)
627 {
628 const struct tu_framebuffer *fb = cmd->state.framebuffer;
629 struct tu_image_view *dst = fb->attachments[a].attachment;
630 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
631
632 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.render_area);
633 }
634
635 static void
636 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
637 struct tu_cs *cs,
638 const struct tu_subpass *subpass)
639 {
640 if (subpass->resolve_attachments) {
641 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
642 * Commands":
643 *
644 * End-of-subpass multisample resolves are treated as color
645 * attachment writes for the purposes of synchronization. That is,
646 * they are considered to execute in the
647 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
648 * their writes are synchronized with
649 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
650 * rendering within a subpass and any resolve operations at the end
651 * of the subpass occurs automatically, without need for explicit
652 * dependencies or pipeline barriers. However, if the resolve
653 * attachment is also used in a different subpass, an explicit
654 * dependency is needed.
655 *
656 * We use the CP_BLIT path for sysmem resolves, which is really a
657 * transfer command, so we have to manually flush similar to the gmem
658 * resolve case. However, a flush afterwards isn't needed because of the
659 * last sentence and the fact that we're in sysmem mode.
660 */
661 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
662 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
663
664 /* Wait for the flushes to land before using the 2D engine */
665 tu_cs_emit_wfi(cs);
666
667 for (unsigned i = 0; i < subpass->color_count; i++) {
668 uint32_t a = subpass->resolve_attachments[i].attachment;
669 if (a == VK_ATTACHMENT_UNUSED)
670 continue;
671
672 tu6_emit_sysmem_resolve(cmd, cs, a,
673 subpass->color_attachments[i].attachment);
674 }
675 }
676 }
677
678 static void
679 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
680 {
681 const struct tu_render_pass *pass = cmd->state.pass;
682 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
683
684 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
685 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
686 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
687 CP_SET_DRAW_STATE__0_GROUP_ID(0));
688 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
689 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
690
691 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
692 tu_cs_emit(cs, 0x0);
693
694 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
695 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
696
697 tu6_emit_blit_scissor(cmd, cs, true);
698
699 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
700 if (pass->attachments[a].gmem_offset >= 0)
701 tu_store_gmem_attachment(cmd, cs, a, a);
702 }
703
704 if (subpass->resolve_attachments) {
705 for (unsigned i = 0; i < subpass->color_count; i++) {
706 uint32_t a = subpass->resolve_attachments[i].attachment;
707 if (a != VK_ATTACHMENT_UNUSED)
708 tu_store_gmem_attachment(cmd, cs, a,
709 subpass->color_attachments[i].attachment);
710 }
711 }
712 }
713
714 static void
715 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
716 {
717 const struct tu_physical_device *phys_dev = cmd->device->physical_device;
718
719 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
720
721 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 0xfffff);
722
723 tu_cs_emit_regs(cs,
724 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
725 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
726 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
727 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
728 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
729 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
730 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
731 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
732 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
733 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
734
735 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
736 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
737 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
738 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
739 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
740 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
741 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BB11, 0);
742 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
743 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
744 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
745 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
746 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
747 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
748 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_GS_SIV_CNTL, 0x0000ffff);
749
750 /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
751 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
752 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
753 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
754
755 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
756
757 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
758
759 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
760 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
761 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
762 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
763 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
764 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
765 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
766 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
767 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
768 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
769 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
770
771 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9101, 0xffff00);
772 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
773
774 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9236,
775 A6XX_VPC_UNKNOWN_9236_POINT_COORD_INVERT(0));
776 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
777
778 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_SO_OVERRIDE,
779 A6XX_VPC_SO_OVERRIDE_SO_DISABLE);
780
781 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
782 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
783 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9990, 0);
784
785 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
786 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
787
788 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
789
790 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
791
792 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
793 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_809B, 0);
794 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
795 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
796 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
797 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
798 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
799 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
800 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
801 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
802
803 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
804
805 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
806
807 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
808
809 /* we don't use this yet.. probably best to disable.. */
810 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
811 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
812 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
813 CP_SET_DRAW_STATE__0_GROUP_ID(0));
814 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
815 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
816
817 tu_cs_emit_regs(cs,
818 A6XX_SP_HS_CTRL_REG0(0));
819
820 tu_cs_emit_regs(cs,
821 A6XX_SP_GS_CTRL_REG0(0));
822
823 tu_cs_emit_regs(cs,
824 A6XX_GRAS_LRZ_CNTL(0));
825
826 tu_cs_emit_regs(cs,
827 A6XX_RB_LRZ_CNTL(0));
828
829 tu_cs_emit_regs(cs,
830 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
831 tu_cs_emit_regs(cs,
832 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
833
834 tu_cs_sanity_check(cs);
835 }
836
837 static void
838 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
839 {
840 const struct tu_framebuffer *fb = cmd->state.framebuffer;
841
842 tu_cs_emit_regs(cs,
843 A6XX_VSC_BIN_SIZE(.width = fb->tile0.width,
844 .height = fb->tile0.height),
845 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = &cmd->vsc_draw_strm,
846 .bo_offset = 32 * cmd->vsc_draw_strm_pitch));
847
848 tu_cs_emit_regs(cs,
849 A6XX_VSC_BIN_COUNT(.nx = fb->tile_count.width,
850 .ny = fb->tile_count.height));
851
852 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
853 tu_cs_emit_array(cs, fb->pipe_config, 32);
854
855 tu_cs_emit_regs(cs,
856 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = &cmd->vsc_prim_strm),
857 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
858 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - 64));
859
860 tu_cs_emit_regs(cs,
861 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = &cmd->vsc_draw_strm),
862 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
863 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - 64));
864 }
865
866 static void
867 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
868 {
869 const struct tu_framebuffer *fb = cmd->state.framebuffer;
870 const uint32_t used_pipe_count =
871 fb->pipe_count.width * fb->pipe_count.height;
872
873 /* Clear vsc_scratch: */
874 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
875 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
876 tu_cs_emit(cs, 0x0);
877
878 /* Check for overflow, write vsc_scratch if detected: */
879 for (int i = 0; i < used_pipe_count; i++) {
880 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
881 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
882 CP_COND_WRITE5_0_WRITE_MEMORY);
883 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
884 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
885 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - 64));
886 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
887 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
888 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(1 + cmd->vsc_draw_strm_pitch));
889
890 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
891 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
892 CP_COND_WRITE5_0_WRITE_MEMORY);
893 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
894 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
895 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - 64));
896 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
897 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
898 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(3 + cmd->vsc_prim_strm_pitch));
899 }
900
901 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
902 }
903
904 static void
905 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
906 {
907 struct tu_physical_device *phys_dev = cmd->device->physical_device;
908 const struct tu_framebuffer *fb = cmd->state.framebuffer;
909
910 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
911
912 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
913 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
914
915 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
916 tu_cs_emit(cs, 0x1);
917
918 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
919 tu_cs_emit(cs, 0x1);
920
921 tu_cs_emit_wfi(cs);
922
923 tu_cs_emit_regs(cs,
924 A6XX_VFD_MODE_CNTL(.binning_pass = true));
925
926 update_vsc_pipe(cmd, cs);
927
928 tu_cs_emit_regs(cs,
929 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
930
931 tu_cs_emit_regs(cs,
932 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
933
934 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
935 tu_cs_emit(cs, UNK_2C);
936
937 tu_cs_emit_regs(cs,
938 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
939
940 tu_cs_emit_regs(cs,
941 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
942
943 /* emit IB to binning drawcmds: */
944 tu_cs_emit_call(cs, &cmd->draw_cs);
945
946 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
947 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
948 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
949 CP_SET_DRAW_STATE__0_GROUP_ID(0));
950 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
951 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
952
953 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
954 tu_cs_emit(cs, UNK_2D);
955
956 /* This flush is probably required because the VSC, which produces the
957 * visibility stream, is a client of UCHE, whereas the CP needs to read the
958 * visibility stream (without caching) to do draw skipping. The
959 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
960 * submitted are finished before reading the VSC regs (in
961 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
962 * part of draws).
963 */
964 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
965
966 tu_cs_emit_wfi(cs);
967
968 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
969
970 emit_vsc_overflow_test(cmd, cs);
971
972 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
973 tu_cs_emit(cs, 0x0);
974
975 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
976 tu_cs_emit(cs, 0x0);
977 }
978
979 static void
980 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
981 const struct tu_subpass *subpass,
982 struct tu_cs_entry *ib,
983 bool gmem)
984 {
985 /* note: we can probably emit input attachments just once for the whole
986 * renderpass, this would avoid emitting both sysmem/gmem versions
987 *
988 * emit two texture descriptors for each input, as a workaround for
989 * d24s8, which can be sampled as both float (depth) and integer (stencil)
990 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
991 * in the pair
992 * TODO: a smarter workaround
993 */
994
995 if (!subpass->input_count)
996 return;
997
998 struct tu_cs_memory texture;
999 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1000 A6XX_TEX_CONST_DWORDS, &texture);
1001 assert(result == VK_SUCCESS);
1002
1003 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1004 uint32_t a = subpass->input_attachments[i / 2].attachment;
1005 if (a == VK_ATTACHMENT_UNUSED)
1006 continue;
1007
1008 struct tu_image_view *iview =
1009 cmd->state.framebuffer->attachments[a].attachment;
1010 const struct tu_render_pass_attachment *att =
1011 &cmd->state.pass->attachments[a];
1012 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1013
1014 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1015
1016 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1017 /* note this works because spec says fb and input attachments
1018 * must use identity swizzle
1019 */
1020 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1021 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1022 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1023 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1024 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1025 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1026 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1027 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1028 }
1029
1030 if (!gmem)
1031 continue;
1032
1033 /* patched for gmem */
1034 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1035 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1036 dst[2] =
1037 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1038 A6XX_TEX_CONST_2_PITCH(cmd->state.framebuffer->tile0.width * att->cpp);
1039 dst[3] = 0;
1040 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1041 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1042 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1043 dst[i] = 0;
1044 }
1045
1046 struct tu_cs cs;
1047 tu_cs_begin_sub_stream(&cmd->sub_cs, 9, &cs);
1048
1049 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1050 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1051 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1052 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1053 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1054 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1055 tu_cs_emit_qw(&cs, texture.iova);
1056
1057 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1058 tu_cs_emit_qw(&cs, texture.iova);
1059
1060 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1061
1062 *ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1063 }
1064
1065 static void
1066 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1067 {
1068 struct tu_cs *cs = &cmd->draw_cs;
1069
1070 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_gmem_ib, true);
1071 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_sysmem_ib, false);
1072
1073 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1074 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM, cmd->state.ia_gmem_ib);
1075 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM, cmd->state.ia_sysmem_ib);
1076 }
1077
1078 static void
1079 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1080 const VkRenderPassBeginInfo *info)
1081 {
1082 struct tu_cs *cs = &cmd->draw_cs;
1083
1084 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1085
1086 tu6_emit_blit_scissor(cmd, cs, true);
1087
1088 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1089 tu_load_gmem_attachment(cmd, cs, i, false);
1090
1091 tu6_emit_blit_scissor(cmd, cs, false);
1092
1093 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1094 tu_clear_gmem_attachment(cmd, cs, i, info);
1095
1096 tu_cond_exec_end(cs);
1097
1098 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1099
1100 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1101 tu_clear_sysmem_attachment(cmd, cs, i, info);
1102
1103 tu_cond_exec_end(cs);
1104 }
1105
1106 static void
1107 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1108 {
1109 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1110
1111 assert(fb->width > 0 && fb->height > 0);
1112 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1113 tu6_emit_window_offset(cs, 0, 0);
1114
1115 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1116
1117 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1118
1119 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1120 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1121
1122 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1123 tu_cs_emit(cs, 0x0);
1124
1125 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1126
1127 /* enable stream-out, with sysmem there is only one pass: */
1128 tu_cs_emit_regs(cs,
1129 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
1130
1131 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1132 tu_cs_emit(cs, 0x1);
1133
1134 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1135 tu_cs_emit(cs, 0x0);
1136
1137 tu_cs_sanity_check(cs);
1138 }
1139
1140 static void
1141 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1142 {
1143 /* Do any resolves of the last subpass. These are handled in the
1144 * tile_store_ib in the gmem path.
1145 */
1146 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1147
1148 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1149
1150 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1151 tu_cs_emit(cs, 0x0);
1152
1153 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1154
1155 tu_cs_sanity_check(cs);
1156 }
1157
1158 static void
1159 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1160 {
1161 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1162
1163 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1164
1165 /* lrz clear? */
1166
1167 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1168 tu_cs_emit(cs, 0x0);
1169
1170 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1171
1172 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1173 if (use_hw_binning(cmd)) {
1174 /* enable stream-out during binning pass: */
1175 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1176
1177 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1178 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1179
1180 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1181
1182 tu6_emit_binning_pass(cmd, cs);
1183
1184 /* and disable stream-out for draw pass: */
1185 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=true));
1186
1187 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1188 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1189
1190 tu_cs_emit_regs(cs,
1191 A6XX_VFD_MODE_CNTL(0));
1192
1193 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1194
1195 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1196
1197 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1198 tu_cs_emit(cs, 0x1);
1199 } else {
1200 /* no binning pass, so enable stream-out for draw pass:: */
1201 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1202
1203 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height, 0x6000000);
1204 }
1205
1206 tu_cs_sanity_check(cs);
1207 }
1208
1209 static void
1210 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1211 {
1212 tu_cs_emit_call(cs, &cmd->draw_cs);
1213
1214 if (use_hw_binning(cmd)) {
1215 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1216 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1217 }
1218
1219 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1220
1221 tu_cs_sanity_check(cs);
1222 }
1223
1224 static void
1225 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1226 {
1227 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1228
1229 tu_cs_emit_regs(cs,
1230 A6XX_GRAS_LRZ_CNTL(0));
1231
1232 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1233
1234 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1235
1236 tu_cs_sanity_check(cs);
1237 }
1238
1239 static void
1240 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1241 {
1242 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1243
1244 if (use_hw_binning(cmd))
1245 cmd->use_vsc_data = true;
1246
1247 tu6_tile_render_begin(cmd, &cmd->cs);
1248
1249 uint32_t pipe = 0;
1250 for (uint32_t py = 0; py < fb->pipe_count.height; py++) {
1251 for (uint32_t px = 0; px < fb->pipe_count.width; px++, pipe++) {
1252 uint32_t tx1 = px * fb->pipe0.width;
1253 uint32_t ty1 = py * fb->pipe0.height;
1254 uint32_t tx2 = MIN2(tx1 + fb->pipe0.width, fb->tile_count.width);
1255 uint32_t ty2 = MIN2(ty1 + fb->pipe0.height, fb->tile_count.height);
1256 uint32_t slot = 0;
1257 for (uint32_t ty = ty1; ty < ty2; ty++) {
1258 for (uint32_t tx = tx1; tx < tx2; tx++, slot++) {
1259 tu6_emit_tile_select(cmd, &cmd->cs, tx, ty, pipe, slot);
1260 tu6_render_tile(cmd, &cmd->cs);
1261 }
1262 }
1263 }
1264 }
1265
1266 tu6_tile_render_end(cmd, &cmd->cs);
1267 }
1268
1269 static void
1270 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1271 {
1272 tu6_sysmem_render_begin(cmd, &cmd->cs);
1273
1274 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1275
1276 tu6_sysmem_render_end(cmd, &cmd->cs);
1277 }
1278
1279 static void
1280 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1281 {
1282 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1283 struct tu_cs sub_cs;
1284
1285 VkResult result =
1286 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1287 if (result != VK_SUCCESS) {
1288 cmd->record_result = result;
1289 return;
1290 }
1291
1292 /* emit to tile-store sub_cs */
1293 tu6_emit_tile_store(cmd, &sub_cs);
1294
1295 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1296 }
1297
1298 static VkResult
1299 tu_create_cmd_buffer(struct tu_device *device,
1300 struct tu_cmd_pool *pool,
1301 VkCommandBufferLevel level,
1302 VkCommandBuffer *pCommandBuffer)
1303 {
1304 struct tu_cmd_buffer *cmd_buffer;
1305 cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8,
1306 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1307 if (cmd_buffer == NULL)
1308 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1309
1310 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1311 cmd_buffer->device = device;
1312 cmd_buffer->pool = pool;
1313 cmd_buffer->level = level;
1314
1315 if (pool) {
1316 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1317 cmd_buffer->queue_family_index = pool->queue_family_index;
1318
1319 } else {
1320 /* Init the pool_link so we can safely call list_del when we destroy
1321 * the command buffer
1322 */
1323 list_inithead(&cmd_buffer->pool_link);
1324 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1325 }
1326
1327 tu_bo_list_init(&cmd_buffer->bo_list);
1328 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1329 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1330 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1331 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1332
1333 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1334
1335 list_inithead(&cmd_buffer->upload.list);
1336
1337 VkResult result = tu_bo_init_new(device, &cmd_buffer->scratch_bo, 0x1000);
1338 if (result != VK_SUCCESS)
1339 goto fail_scratch_bo;
1340
1341 /* TODO: resize on overflow */
1342 cmd_buffer->vsc_draw_strm_pitch = device->vsc_draw_strm_pitch;
1343 cmd_buffer->vsc_prim_strm_pitch = device->vsc_prim_strm_pitch;
1344 cmd_buffer->vsc_draw_strm = device->vsc_draw_strm;
1345 cmd_buffer->vsc_prim_strm = device->vsc_prim_strm;
1346
1347 return VK_SUCCESS;
1348
1349 fail_scratch_bo:
1350 list_del(&cmd_buffer->pool_link);
1351 return result;
1352 }
1353
1354 static void
1355 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1356 {
1357 tu_bo_finish(cmd_buffer->device, &cmd_buffer->scratch_bo);
1358
1359 list_del(&cmd_buffer->pool_link);
1360
1361 tu_cs_finish(&cmd_buffer->cs);
1362 tu_cs_finish(&cmd_buffer->draw_cs);
1363 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1364 tu_cs_finish(&cmd_buffer->sub_cs);
1365
1366 tu_bo_list_destroy(&cmd_buffer->bo_list);
1367 vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
1368 }
1369
1370 static VkResult
1371 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1372 {
1373 cmd_buffer->record_result = VK_SUCCESS;
1374
1375 tu_bo_list_reset(&cmd_buffer->bo_list);
1376 tu_cs_reset(&cmd_buffer->cs);
1377 tu_cs_reset(&cmd_buffer->draw_cs);
1378 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1379 tu_cs_reset(&cmd_buffer->sub_cs);
1380
1381 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1382 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1383
1384 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1385
1386 return cmd_buffer->record_result;
1387 }
1388
1389 VkResult
1390 tu_AllocateCommandBuffers(VkDevice _device,
1391 const VkCommandBufferAllocateInfo *pAllocateInfo,
1392 VkCommandBuffer *pCommandBuffers)
1393 {
1394 TU_FROM_HANDLE(tu_device, device, _device);
1395 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1396
1397 VkResult result = VK_SUCCESS;
1398 uint32_t i;
1399
1400 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1401
1402 if (!list_is_empty(&pool->free_cmd_buffers)) {
1403 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1404 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1405
1406 list_del(&cmd_buffer->pool_link);
1407 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1408
1409 result = tu_reset_cmd_buffer(cmd_buffer);
1410 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1411 cmd_buffer->level = pAllocateInfo->level;
1412
1413 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1414 } else {
1415 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1416 &pCommandBuffers[i]);
1417 }
1418 if (result != VK_SUCCESS)
1419 break;
1420 }
1421
1422 if (result != VK_SUCCESS) {
1423 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1424 pCommandBuffers);
1425
1426 /* From the Vulkan 1.0.66 spec:
1427 *
1428 * "vkAllocateCommandBuffers can be used to create multiple
1429 * command buffers. If the creation of any of those command
1430 * buffers fails, the implementation must destroy all
1431 * successfully created command buffer objects from this
1432 * command, set all entries of the pCommandBuffers array to
1433 * NULL and return the error."
1434 */
1435 memset(pCommandBuffers, 0,
1436 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1437 }
1438
1439 return result;
1440 }
1441
1442 void
1443 tu_FreeCommandBuffers(VkDevice device,
1444 VkCommandPool commandPool,
1445 uint32_t commandBufferCount,
1446 const VkCommandBuffer *pCommandBuffers)
1447 {
1448 for (uint32_t i = 0; i < commandBufferCount; i++) {
1449 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1450
1451 if (cmd_buffer) {
1452 if (cmd_buffer->pool) {
1453 list_del(&cmd_buffer->pool_link);
1454 list_addtail(&cmd_buffer->pool_link,
1455 &cmd_buffer->pool->free_cmd_buffers);
1456 } else
1457 tu_cmd_buffer_destroy(cmd_buffer);
1458 }
1459 }
1460 }
1461
1462 VkResult
1463 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1464 VkCommandBufferResetFlags flags)
1465 {
1466 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1467 return tu_reset_cmd_buffer(cmd_buffer);
1468 }
1469
1470 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1471 * invalidations.
1472 */
1473 static void
1474 tu_cache_init(struct tu_cache_state *cache)
1475 {
1476 cache->flush_bits = 0;
1477 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1478 }
1479
1480 VkResult
1481 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1482 const VkCommandBufferBeginInfo *pBeginInfo)
1483 {
1484 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1485 VkResult result = VK_SUCCESS;
1486
1487 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1488 /* If the command buffer has already been resetted with
1489 * vkResetCommandBuffer, no need to do it again.
1490 */
1491 result = tu_reset_cmd_buffer(cmd_buffer);
1492 if (result != VK_SUCCESS)
1493 return result;
1494 }
1495
1496 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1497 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1498
1499 tu_cache_init(&cmd_buffer->state.cache);
1500 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1501 cmd_buffer->usage_flags = pBeginInfo->flags;
1502
1503 tu_cs_begin(&cmd_buffer->cs);
1504 tu_cs_begin(&cmd_buffer->draw_cs);
1505 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1506
1507 /* setup initial configuration into command buffer */
1508 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1509 switch (cmd_buffer->queue_family_index) {
1510 case TU_QUEUE_GENERAL:
1511 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1512 break;
1513 default:
1514 break;
1515 }
1516 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1517 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1518 assert(pBeginInfo->pInheritanceInfo);
1519 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1520 cmd_buffer->state.subpass =
1521 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1522 } else {
1523 /* When executing in the middle of another command buffer, the CCU
1524 * state is unknown.
1525 */
1526 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1527 }
1528 }
1529
1530 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1531
1532 return VK_SUCCESS;
1533 }
1534
1535 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1536 * rendering can skip over unused state), so we need to collect all the
1537 * bindings together into a single state emit at draw time.
1538 */
1539 void
1540 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1541 uint32_t firstBinding,
1542 uint32_t bindingCount,
1543 const VkBuffer *pBuffers,
1544 const VkDeviceSize *pOffsets)
1545 {
1546 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1547
1548 assert(firstBinding + bindingCount <= MAX_VBS);
1549
1550 for (uint32_t i = 0; i < bindingCount; i++) {
1551 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1552
1553 cmd->state.vb.buffers[firstBinding + i] = buf;
1554 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1555
1556 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1557 }
1558
1559 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1560 }
1561
1562 void
1563 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1564 VkBuffer buffer,
1565 VkDeviceSize offset,
1566 VkIndexType indexType)
1567 {
1568 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1569 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1570
1571
1572
1573 uint32_t index_size, index_shift, restart_index;
1574
1575 switch (indexType) {
1576 case VK_INDEX_TYPE_UINT16:
1577 index_size = INDEX4_SIZE_16_BIT;
1578 index_shift = 1;
1579 restart_index = 0xffff;
1580 break;
1581 case VK_INDEX_TYPE_UINT32:
1582 index_size = INDEX4_SIZE_32_BIT;
1583 index_shift = 2;
1584 restart_index = 0xffffffff;
1585 break;
1586 case VK_INDEX_TYPE_UINT8_EXT:
1587 index_size = INDEX4_SIZE_8_BIT;
1588 index_shift = 0;
1589 restart_index = 0xff;
1590 break;
1591 default:
1592 unreachable("invalid VkIndexType");
1593 }
1594
1595 /* initialize/update the restart index */
1596 if (cmd->state.index_size != index_size)
1597 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1598
1599 assert(buf->size >= offset);
1600
1601 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1602 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1603 cmd->state.index_size = index_size;
1604
1605 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1606 }
1607
1608 void
1609 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1610 VkPipelineBindPoint pipelineBindPoint,
1611 VkPipelineLayout _layout,
1612 uint32_t firstSet,
1613 uint32_t descriptorSetCount,
1614 const VkDescriptorSet *pDescriptorSets,
1615 uint32_t dynamicOffsetCount,
1616 const uint32_t *pDynamicOffsets)
1617 {
1618 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1619 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1620 unsigned dyn_idx = 0;
1621
1622 struct tu_descriptor_state *descriptors_state =
1623 tu_get_descriptors_state(cmd, pipelineBindPoint);
1624
1625 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1626 unsigned idx = i + firstSet;
1627 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1628
1629 descriptors_state->sets[idx] = set;
1630
1631 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1632 /* update the contents of the dynamic descriptor set */
1633 unsigned src_idx = j;
1634 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1635 assert(dyn_idx < dynamicOffsetCount);
1636
1637 uint32_t *dst =
1638 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1639 uint32_t *src =
1640 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1641 uint32_t offset = pDynamicOffsets[dyn_idx];
1642
1643 /* Patch the storage/uniform descriptors right away. */
1644 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1645 /* Note: we can assume here that the addition won't roll over and
1646 * change the SIZE field.
1647 */
1648 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1649 va += offset;
1650 dst[0] = va;
1651 dst[1] = va >> 32;
1652 } else {
1653 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1654 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1655 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1656 va += offset;
1657 dst[4] = va;
1658 dst[5] = va >> 32;
1659 }
1660 }
1661
1662 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1663 if (set->buffers[j]) {
1664 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1665 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1666 }
1667 }
1668
1669 if (set->size > 0) {
1670 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1671 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1672 }
1673 }
1674 assert(dyn_idx == dynamicOffsetCount);
1675
1676 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_update_value;
1677 uint64_t addr[MAX_SETS + 1] = {};
1678 struct tu_cs cs;
1679
1680 for (uint32_t i = 0; i < MAX_SETS; i++) {
1681 struct tu_descriptor_set *set = descriptors_state->sets[i];
1682 if (set)
1683 addr[i] = set->va | 3;
1684 }
1685
1686 if (layout->dynamic_offset_count) {
1687 /* allocate and fill out dynamic descriptor set */
1688 struct tu_cs_memory dynamic_desc_set;
1689 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1690 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1691 assert(result == VK_SUCCESS);
1692
1693 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1694 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1695 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1696 }
1697
1698 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1699 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1700 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1701 hlsq_update_value = 0x7c000;
1702
1703 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS | TU_CMD_DIRTY_SHADER_CONSTS;
1704 } else {
1705 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1706
1707 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1708 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1709 hlsq_update_value = 0x3e00;
1710
1711 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS;
1712 }
1713
1714 tu_cs_begin_sub_stream(&cmd->sub_cs, 24, &cs);
1715
1716 tu_cs_emit_pkt4(&cs, sp_bindless_base_reg, 10);
1717 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1718 tu_cs_emit_pkt4(&cs, hlsq_bindless_base_reg, 10);
1719 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1720 tu_cs_emit_regs(&cs, A6XX_HLSQ_UPDATE_CNTL(.dword = hlsq_update_value));
1721
1722 struct tu_cs_entry ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1723 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1724 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1725 tu_cs_emit_sds_ib(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, ib);
1726 cmd->state.desc_sets_ib = ib;
1727 } else {
1728 /* note: for compute we could emit directly, instead of a CP_INDIRECT
1729 * however, the blob uses draw states for compute
1730 */
1731 tu_cs_emit_ib(&cmd->cs, &ib);
1732 }
1733 }
1734
1735 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1736 uint32_t firstBinding,
1737 uint32_t bindingCount,
1738 const VkBuffer *pBuffers,
1739 const VkDeviceSize *pOffsets,
1740 const VkDeviceSize *pSizes)
1741 {
1742 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1743 struct tu_cs *cs = &cmd->draw_cs;
1744
1745 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1746 * presumably there isn't any benefit using a draw state when the
1747 * condition is (SYSMEM | BINNING)
1748 */
1749 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1750 CP_COND_REG_EXEC_0_SYSMEM |
1751 CP_COND_REG_EXEC_0_BINNING);
1752
1753 for (uint32_t i = 0; i < bindingCount; i++) {
1754 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1755 uint64_t iova = buf->bo->iova + pOffsets[i];
1756 uint32_t size = buf->bo->size - pOffsets[i];
1757 uint32_t idx = i + firstBinding;
1758
1759 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1760 size = pSizes[i];
1761
1762 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1763 uint32_t offset = iova & 0x1f;
1764 iova &= ~(uint64_t) 0x1f;
1765
1766 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1767 tu_cs_emit_qw(cs, iova);
1768 tu_cs_emit(cs, size + offset);
1769
1770 cmd->state.streamout_offset[idx] = offset;
1771
1772 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1773 }
1774
1775 tu_cond_exec_end(cs);
1776 }
1777
1778 void
1779 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1780 uint32_t firstCounterBuffer,
1781 uint32_t counterBufferCount,
1782 const VkBuffer *pCounterBuffers,
1783 const VkDeviceSize *pCounterBufferOffsets)
1784 {
1785 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1786 struct tu_cs *cs = &cmd->draw_cs;
1787
1788 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1789 CP_COND_REG_EXEC_0_SYSMEM |
1790 CP_COND_REG_EXEC_0_BINNING);
1791
1792 /* TODO: only update offset for active buffers */
1793 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1794 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1795
1796 for (uint32_t i = 0; i < counterBufferCount; i++) {
1797 uint32_t idx = firstCounterBuffer + i;
1798 uint32_t offset = cmd->state.streamout_offset[idx];
1799
1800 if (!pCounterBuffers[i])
1801 continue;
1802
1803 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1804
1805 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1806
1807 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1808 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1809 CP_MEM_TO_REG_0_UNK31 |
1810 CP_MEM_TO_REG_0_CNT(1));
1811 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1812
1813 if (offset) {
1814 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1815 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1816 CP_REG_RMW_0_SRC1_ADD);
1817 tu_cs_emit_qw(cs, 0xffffffff);
1818 tu_cs_emit_qw(cs, offset);
1819 }
1820 }
1821
1822 tu_cond_exec_end(cs);
1823 }
1824
1825 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1826 uint32_t firstCounterBuffer,
1827 uint32_t counterBufferCount,
1828 const VkBuffer *pCounterBuffers,
1829 const VkDeviceSize *pCounterBufferOffsets)
1830 {
1831 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1832 struct tu_cs *cs = &cmd->draw_cs;
1833
1834 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1835 CP_COND_REG_EXEC_0_SYSMEM |
1836 CP_COND_REG_EXEC_0_BINNING);
1837
1838 /* TODO: only flush buffers that need to be flushed */
1839 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
1840 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
1841 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
1842 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(flush_base[i]));
1843 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
1844 }
1845
1846 for (uint32_t i = 0; i < counterBufferCount; i++) {
1847 uint32_t idx = firstCounterBuffer + i;
1848 uint32_t offset = cmd->state.streamout_offset[idx];
1849
1850 if (!pCounterBuffers[i])
1851 continue;
1852
1853 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1854
1855 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1856
1857 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
1858 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1859 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1860 CP_MEM_TO_REG_0_SHIFT_BY_2 |
1861 0x40000 | /* ??? */
1862 CP_MEM_TO_REG_0_UNK31 |
1863 CP_MEM_TO_REG_0_CNT(1));
1864 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(flush_base[idx]));
1865
1866 if (offset) {
1867 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1868 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1869 CP_REG_RMW_0_SRC1_ADD);
1870 tu_cs_emit_qw(cs, 0xffffffff);
1871 tu_cs_emit_qw(cs, -offset);
1872 }
1873
1874 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
1875 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1876 CP_REG_TO_MEM_0_CNT(1));
1877 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1878 }
1879
1880 tu_cond_exec_end(cs);
1881
1882 cmd->state.xfb_used = true;
1883 }
1884
1885 void
1886 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
1887 VkPipelineLayout layout,
1888 VkShaderStageFlags stageFlags,
1889 uint32_t offset,
1890 uint32_t size,
1891 const void *pValues)
1892 {
1893 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1894 memcpy((void*) cmd->push_constants + offset, pValues, size);
1895 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
1896 }
1897
1898 /* Flush everything which has been made available but we haven't actually
1899 * flushed yet.
1900 */
1901 static void
1902 tu_flush_all_pending(struct tu_cache_state *cache)
1903 {
1904 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
1905 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
1906 }
1907
1908 VkResult
1909 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
1910 {
1911 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1912
1913 /* We currently flush CCU at the end of the command buffer, like
1914 * what the blob does. There's implicit synchronization around every
1915 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
1916 * know yet if this command buffer will be the last in the submit so we
1917 * have to defensively flush everything else.
1918 *
1919 * TODO: We could definitely do better than this, since these flushes
1920 * aren't required by Vulkan, but we'd need kernel support to do that.
1921 * Ideally, we'd like the kernel to flush everything afterwards, so that we
1922 * wouldn't have to do any flushes here, and when submitting multiple
1923 * command buffers there wouldn't be any unnecessary flushes in between.
1924 */
1925 if (cmd_buffer->state.pass) {
1926 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
1927 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
1928 } else {
1929 tu_flush_all_pending(&cmd_buffer->state.cache);
1930 cmd_buffer->state.cache.flush_bits |=
1931 TU_CMD_FLAG_CCU_FLUSH_COLOR |
1932 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
1933 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
1934 }
1935
1936 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->scratch_bo,
1937 MSM_SUBMIT_BO_WRITE);
1938
1939 if (cmd_buffer->use_vsc_data) {
1940 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_draw_strm,
1941 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1942 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_prim_strm,
1943 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1944 }
1945
1946 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->border_color,
1947 MSM_SUBMIT_BO_READ);
1948
1949 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
1950 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
1951 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1952 }
1953
1954 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
1955 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
1956 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1957 }
1958
1959 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
1960 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
1961 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1962 }
1963
1964 tu_cs_end(&cmd_buffer->cs);
1965 tu_cs_end(&cmd_buffer->draw_cs);
1966 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
1967
1968 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
1969
1970 return cmd_buffer->record_result;
1971 }
1972
1973 static struct tu_cs
1974 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
1975 {
1976 struct tu_cs_memory memory;
1977 struct tu_cs cs;
1978
1979 /* TODO: share this logic with tu_pipeline_static_state */
1980 tu_cs_alloc(&cmd->sub_cs, size, 1, &memory);
1981 tu_cs_init_external(&cs, memory.map, memory.map + size);
1982 tu_cs_begin(&cs);
1983 tu_cs_reserve_space(&cs, size);
1984
1985 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
1986 cmd->state.dynamic_state[id].iova = memory.iova;
1987 cmd->state.dynamic_state[id].size = size;
1988
1989 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1990 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
1991
1992 return cs;
1993 }
1994
1995 void
1996 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
1997 VkPipelineBindPoint pipelineBindPoint,
1998 VkPipeline _pipeline)
1999 {
2000 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2001 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2002
2003 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2004 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2005 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2006 }
2007
2008 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2009 cmd->state.compute_pipeline = pipeline;
2010 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_PIPELINE;
2011 return;
2012 }
2013
2014 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2015
2016 cmd->state.pipeline = pipeline;
2017 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2018
2019 struct tu_cs *cs = &cmd->draw_cs;
2020 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2021 uint32_t i;
2022
2023 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2024 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
2025 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
2026 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
2027 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
2028 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
2029 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
2030 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
2031
2032 for_each_bit(i, mask)
2033 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2034
2035 /* If the new pipeline requires more VBs than we had previously set up, we
2036 * need to re-emit them in SDS. If it requires the same set or fewer, we
2037 * can just re-use the old SDS.
2038 */
2039 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2040 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2041
2042 /* If the pipeline needs a dynamic descriptor, re-emit descriptor sets */
2043 if (pipeline->layout->dynamic_offset_count)
2044 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS;
2045
2046 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2047 * so the dynamic state ib must be updated when pipeline changes
2048 */
2049 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2050 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2051
2052 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2053 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2054
2055 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2056 }
2057 }
2058
2059 void
2060 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2061 uint32_t firstViewport,
2062 uint32_t viewportCount,
2063 const VkViewport *pViewports)
2064 {
2065 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2066 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2067
2068 assert(firstViewport == 0 && viewportCount == 1);
2069
2070 tu6_emit_viewport(&cs, pViewports);
2071 }
2072
2073 void
2074 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2075 uint32_t firstScissor,
2076 uint32_t scissorCount,
2077 const VkRect2D *pScissors)
2078 {
2079 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2080 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2081
2082 assert(firstScissor == 0 && scissorCount == 1);
2083
2084 tu6_emit_scissor(&cs, pScissors);
2085 }
2086
2087 void
2088 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2089 {
2090 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2091 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2092
2093 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2094 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2095
2096 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2097 }
2098
2099 void
2100 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2101 float depthBiasConstantFactor,
2102 float depthBiasClamp,
2103 float depthBiasSlopeFactor)
2104 {
2105 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2106 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2107
2108 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2109 }
2110
2111 void
2112 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2113 const float blendConstants[4])
2114 {
2115 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2116 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2117
2118 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2119 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2120 }
2121
2122 void
2123 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2124 float minDepthBounds,
2125 float maxDepthBounds)
2126 {
2127 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2128 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
2129
2130 tu_cs_emit_regs(&cs,
2131 A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
2132 A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
2133 }
2134
2135 static void
2136 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2137 {
2138 if (face & VK_STENCIL_FACE_FRONT_BIT)
2139 *value = (*value & 0xff00) | (mask & 0xff);
2140 if (face & VK_STENCIL_FACE_BACK_BIT)
2141 *value = (*value & 0xff) | (mask & 0xff) << 8;
2142 }
2143
2144 void
2145 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2146 VkStencilFaceFlags faceMask,
2147 uint32_t compareMask)
2148 {
2149 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2150 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2151
2152 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2153
2154 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2155 }
2156
2157 void
2158 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2159 VkStencilFaceFlags faceMask,
2160 uint32_t writeMask)
2161 {
2162 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2163 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2164
2165 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2166
2167 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2168 }
2169
2170 void
2171 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2172 VkStencilFaceFlags faceMask,
2173 uint32_t reference)
2174 {
2175 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2176 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2177
2178 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2179
2180 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2181 }
2182
2183 void
2184 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2185 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2186 {
2187 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2188 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2189
2190 assert(pSampleLocationsInfo);
2191
2192 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2193 }
2194
2195 static void
2196 tu_flush_for_access(struct tu_cache_state *cache,
2197 enum tu_cmd_access_mask src_mask,
2198 enum tu_cmd_access_mask dst_mask)
2199 {
2200 enum tu_cmd_flush_bits flush_bits = 0;
2201
2202 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2203 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2204 }
2205
2206 #define SRC_FLUSH(domain, flush, invalidate) \
2207 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2208 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2209 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2210 }
2211
2212 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2213 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2214 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2215
2216 #undef SRC_FLUSH
2217
2218 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2219 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2220 flush_bits |= TU_CMD_FLAG_##flush; \
2221 cache->pending_flush_bits |= \
2222 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2223 }
2224
2225 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2226 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2227
2228 #undef SRC_INCOHERENT_FLUSH
2229
2230 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
2231 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2232 }
2233
2234 #define DST_FLUSH(domain, flush, invalidate) \
2235 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2236 TU_ACCESS_##domain##_WRITE)) { \
2237 flush_bits |= cache->pending_flush_bits & \
2238 (TU_CMD_FLAG_##invalidate | \
2239 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2240 }
2241
2242 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2243 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2244 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2245
2246 #undef DST_FLUSH
2247
2248 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2249 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2250 TU_ACCESS_##domain##_WRITE)) { \
2251 flush_bits |= TU_CMD_FLAG_##invalidate | \
2252 (cache->pending_flush_bits & \
2253 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2254 }
2255
2256 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2257 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2258
2259 #undef DST_INCOHERENT_FLUSH
2260
2261 if (dst_mask & TU_ACCESS_WFI_READ) {
2262 flush_bits |= TU_CMD_FLAG_WFI;
2263 }
2264
2265 cache->flush_bits |= flush_bits;
2266 cache->pending_flush_bits &= ~flush_bits;
2267 }
2268
2269 static enum tu_cmd_access_mask
2270 vk2tu_access(VkAccessFlags flags, bool gmem)
2271 {
2272 enum tu_cmd_access_mask mask = 0;
2273
2274 /* If the GPU writes a buffer that is then read by an indirect draw
2275 * command, we theoretically need a WFI + WAIT_FOR_ME combination to
2276 * wait for the writes to complete. The WAIT_FOR_ME is performed as part
2277 * of the draw by the firmware, so we just need to execute a WFI.
2278 */
2279 if (flags &
2280 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2281 VK_ACCESS_MEMORY_READ_BIT)) {
2282 mask |= TU_ACCESS_WFI_READ;
2283 }
2284
2285 if (flags &
2286 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2287 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
2288 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2289 VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
2290 VK_ACCESS_MEMORY_READ_BIT)) {
2291 mask |= TU_ACCESS_SYSMEM_READ;
2292 }
2293
2294 if (flags &
2295 (VK_ACCESS_HOST_WRITE_BIT |
2296 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
2297 VK_ACCESS_MEMORY_WRITE_BIT)) {
2298 mask |= TU_ACCESS_SYSMEM_WRITE;
2299 }
2300
2301 if (flags &
2302 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2303 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2304 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2305 /* TODO: Is there a no-cache bit for textures so that we can ignore
2306 * these?
2307 */
2308 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2309 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2310 VK_ACCESS_MEMORY_READ_BIT)) {
2311 mask |= TU_ACCESS_UCHE_READ;
2312 }
2313
2314 if (flags &
2315 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2316 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2317 VK_ACCESS_MEMORY_WRITE_BIT)) {
2318 mask |= TU_ACCESS_UCHE_WRITE;
2319 }
2320
2321 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2322 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2323 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2324 * can ignore CCU and pretend that color attachments and transfers use
2325 * sysmem directly.
2326 */
2327
2328 if (flags &
2329 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2330 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2331 VK_ACCESS_MEMORY_READ_BIT)) {
2332 if (gmem)
2333 mask |= TU_ACCESS_SYSMEM_READ;
2334 else
2335 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2336 }
2337
2338 if (flags &
2339 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2340 VK_ACCESS_MEMORY_READ_BIT)) {
2341 if (gmem)
2342 mask |= TU_ACCESS_SYSMEM_READ;
2343 else
2344 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2345 }
2346
2347 if (flags &
2348 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2349 VK_ACCESS_MEMORY_WRITE_BIT)) {
2350 if (gmem) {
2351 mask |= TU_ACCESS_SYSMEM_WRITE;
2352 } else {
2353 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2354 }
2355 }
2356
2357 if (flags &
2358 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2359 VK_ACCESS_MEMORY_WRITE_BIT)) {
2360 if (gmem) {
2361 mask |= TU_ACCESS_SYSMEM_WRITE;
2362 } else {
2363 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2364 }
2365 }
2366
2367 /* When the dst access is a transfer read/write, it seems we sometimes need
2368 * to insert a WFI after any flushes, to guarantee that the flushes finish
2369 * before the 2D engine starts. However the opposite (i.e. a WFI after
2370 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2371 * the blob doesn't emit such a WFI.
2372 */
2373
2374 if (flags &
2375 (VK_ACCESS_TRANSFER_WRITE_BIT |
2376 VK_ACCESS_MEMORY_WRITE_BIT)) {
2377 if (gmem) {
2378 mask |= TU_ACCESS_SYSMEM_WRITE;
2379 } else {
2380 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2381 }
2382 mask |= TU_ACCESS_WFI_READ;
2383 }
2384
2385 if (flags &
2386 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2387 VK_ACCESS_MEMORY_READ_BIT)) {
2388 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2389 }
2390
2391 return mask;
2392 }
2393
2394
2395 void
2396 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2397 uint32_t commandBufferCount,
2398 const VkCommandBuffer *pCmdBuffers)
2399 {
2400 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2401 VkResult result;
2402
2403 assert(commandBufferCount > 0);
2404
2405 /* Emit any pending flushes. */
2406 if (cmd->state.pass) {
2407 tu_flush_all_pending(&cmd->state.renderpass_cache);
2408 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2409 } else {
2410 tu_flush_all_pending(&cmd->state.cache);
2411 tu_emit_cache_flush(cmd, &cmd->cs);
2412 }
2413
2414 for (uint32_t i = 0; i < commandBufferCount; i++) {
2415 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2416
2417 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2418 if (result != VK_SUCCESS) {
2419 cmd->record_result = result;
2420 break;
2421 }
2422
2423 if (secondary->usage_flags &
2424 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2425 assert(tu_cs_is_empty(&secondary->cs));
2426
2427 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2428 if (result != VK_SUCCESS) {
2429 cmd->record_result = result;
2430 break;
2431 }
2432
2433 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2434 &secondary->draw_epilogue_cs);
2435 if (result != VK_SUCCESS) {
2436 cmd->record_result = result;
2437 break;
2438 }
2439
2440 if (secondary->has_tess)
2441 cmd->has_tess = true;
2442 } else {
2443 assert(tu_cs_is_empty(&secondary->draw_cs));
2444 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2445
2446 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2447 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2448 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2449 }
2450
2451 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2452 }
2453
2454 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2455 }
2456 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2457
2458 /* After executing secondary command buffers, there may have been arbitrary
2459 * flushes executed, so when we encounter a pipeline barrier with a
2460 * srcMask, we have to assume that we need to invalidate. Therefore we need
2461 * to re-initialize the cache with all pending invalidate bits set.
2462 */
2463 if (cmd->state.pass) {
2464 tu_cache_init(&cmd->state.renderpass_cache);
2465 } else {
2466 tu_cache_init(&cmd->state.cache);
2467 }
2468 }
2469
2470 VkResult
2471 tu_CreateCommandPool(VkDevice _device,
2472 const VkCommandPoolCreateInfo *pCreateInfo,
2473 const VkAllocationCallbacks *pAllocator,
2474 VkCommandPool *pCmdPool)
2475 {
2476 TU_FROM_HANDLE(tu_device, device, _device);
2477 struct tu_cmd_pool *pool;
2478
2479 pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
2480 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2481 if (pool == NULL)
2482 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2483
2484 if (pAllocator)
2485 pool->alloc = *pAllocator;
2486 else
2487 pool->alloc = device->alloc;
2488
2489 list_inithead(&pool->cmd_buffers);
2490 list_inithead(&pool->free_cmd_buffers);
2491
2492 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2493
2494 *pCmdPool = tu_cmd_pool_to_handle(pool);
2495
2496 return VK_SUCCESS;
2497 }
2498
2499 void
2500 tu_DestroyCommandPool(VkDevice _device,
2501 VkCommandPool commandPool,
2502 const VkAllocationCallbacks *pAllocator)
2503 {
2504 TU_FROM_HANDLE(tu_device, device, _device);
2505 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2506
2507 if (!pool)
2508 return;
2509
2510 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2511 &pool->cmd_buffers, pool_link)
2512 {
2513 tu_cmd_buffer_destroy(cmd_buffer);
2514 }
2515
2516 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2517 &pool->free_cmd_buffers, pool_link)
2518 {
2519 tu_cmd_buffer_destroy(cmd_buffer);
2520 }
2521
2522 vk_free2(&device->alloc, pAllocator, pool);
2523 }
2524
2525 VkResult
2526 tu_ResetCommandPool(VkDevice device,
2527 VkCommandPool commandPool,
2528 VkCommandPoolResetFlags flags)
2529 {
2530 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2531 VkResult result;
2532
2533 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2534 pool_link)
2535 {
2536 result = tu_reset_cmd_buffer(cmd_buffer);
2537 if (result != VK_SUCCESS)
2538 return result;
2539 }
2540
2541 return VK_SUCCESS;
2542 }
2543
2544 void
2545 tu_TrimCommandPool(VkDevice device,
2546 VkCommandPool commandPool,
2547 VkCommandPoolTrimFlags flags)
2548 {
2549 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2550
2551 if (!pool)
2552 return;
2553
2554 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2555 &pool->free_cmd_buffers, pool_link)
2556 {
2557 tu_cmd_buffer_destroy(cmd_buffer);
2558 }
2559 }
2560
2561 static void
2562 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2563 const struct tu_subpass_barrier *barrier,
2564 bool external)
2565 {
2566 /* Note: we don't know until the end of the subpass whether we'll use
2567 * sysmem, so assume sysmem here to be safe.
2568 */
2569 struct tu_cache_state *cache =
2570 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2571 enum tu_cmd_access_mask src_flags =
2572 vk2tu_access(barrier->src_access_mask, false);
2573 enum tu_cmd_access_mask dst_flags =
2574 vk2tu_access(barrier->dst_access_mask, false);
2575
2576 if (barrier->incoherent_ccu_color)
2577 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2578 if (barrier->incoherent_ccu_depth)
2579 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2580
2581 tu_flush_for_access(cache, src_flags, dst_flags);
2582 }
2583
2584 void
2585 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2586 const VkRenderPassBeginInfo *pRenderPassBegin,
2587 VkSubpassContents contents)
2588 {
2589 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2590 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2591 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2592
2593 cmd->state.pass = pass;
2594 cmd->state.subpass = pass->subpasses;
2595 cmd->state.framebuffer = fb;
2596 cmd->state.render_area = pRenderPassBegin->renderArea;
2597
2598 tu_cmd_prepare_tile_store_ib(cmd);
2599
2600 /* Note: because this is external, any flushes will happen before draw_cs
2601 * gets called. However deferred flushes could have to happen later as part
2602 * of the subpass.
2603 */
2604 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2605 cmd->state.renderpass_cache.pending_flush_bits =
2606 cmd->state.cache.pending_flush_bits;
2607 cmd->state.renderpass_cache.flush_bits = 0;
2608
2609 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2610
2611 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2612 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2613 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2614 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2615
2616 tu_set_input_attachments(cmd, cmd->state.subpass);
2617
2618 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2619 const struct tu_image_view *iview = fb->attachments[i].attachment;
2620 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2621 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2622 }
2623
2624 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2625 }
2626
2627 void
2628 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2629 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2630 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2631 {
2632 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2633 pSubpassBeginInfo->contents);
2634 }
2635
2636 void
2637 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2638 {
2639 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2640 const struct tu_render_pass *pass = cmd->state.pass;
2641 struct tu_cs *cs = &cmd->draw_cs;
2642
2643 const struct tu_subpass *subpass = cmd->state.subpass++;
2644
2645 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2646
2647 if (subpass->resolve_attachments) {
2648 tu6_emit_blit_scissor(cmd, cs, true);
2649
2650 for (unsigned i = 0; i < subpass->color_count; i++) {
2651 uint32_t a = subpass->resolve_attachments[i].attachment;
2652 if (a == VK_ATTACHMENT_UNUSED)
2653 continue;
2654
2655 tu_store_gmem_attachment(cmd, cs, a,
2656 subpass->color_attachments[i].attachment);
2657
2658 if (pass->attachments[a].gmem_offset < 0)
2659 continue;
2660
2661 /* TODO:
2662 * check if the resolved attachment is needed by later subpasses,
2663 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2664 */
2665 tu_finishme("missing GMEM->GMEM resolve path\n");
2666 tu_load_gmem_attachment(cmd, cs, a, true);
2667 }
2668 }
2669
2670 tu_cond_exec_end(cs);
2671
2672 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2673
2674 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2675
2676 tu_cond_exec_end(cs);
2677
2678 /* Handle dependencies for the next subpass */
2679 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2680
2681 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2682 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2683 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2684 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2685 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2686
2687 tu_set_input_attachments(cmd, cmd->state.subpass);
2688 }
2689
2690 void
2691 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2692 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2693 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2694 {
2695 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2696 }
2697
2698 static void
2699 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2700 struct tu_descriptor_state *descriptors_state,
2701 gl_shader_stage type,
2702 uint32_t *push_constants)
2703 {
2704 const struct tu_program_descriptor_linkage *link =
2705 &pipeline->program.link[type];
2706 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2707
2708 if (link->push_consts.count > 0) {
2709 unsigned num_units = link->push_consts.count;
2710 unsigned offset = link->push_consts.lo;
2711 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2712 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2713 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2714 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2715 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2716 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2717 tu_cs_emit(cs, 0);
2718 tu_cs_emit(cs, 0);
2719 for (unsigned i = 0; i < num_units * 4; i++)
2720 tu_cs_emit(cs, push_constants[i + offset * 4]);
2721 }
2722
2723 for (uint32_t i = 0; i < state->num_enabled; i++) {
2724 uint32_t size = state->range[i].end - state->range[i].start;
2725 uint32_t offset = state->range[i].start;
2726
2727 /* and even if the start of the const buffer is before
2728 * first_immediate, the end may not be:
2729 */
2730 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2731
2732 if (size == 0)
2733 continue;
2734
2735 /* things should be aligned to vec4: */
2736 debug_assert((state->range[i].offset % 16) == 0);
2737 debug_assert((size % 16) == 0);
2738 debug_assert((offset % 16) == 0);
2739
2740 /* Dig out the descriptor from the descriptor state and read the VA from
2741 * it.
2742 */
2743 assert(state->range[i].ubo.bindless);
2744 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2745 descriptors_state->dynamic_descriptors :
2746 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2747 unsigned block = state->range[i].ubo.block;
2748 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2749 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2750 assert(va);
2751
2752 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2753 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2754 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2755 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2756 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2757 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2758 tu_cs_emit_qw(cs, va + offset);
2759 }
2760 }
2761
2762 static struct tu_cs_entry
2763 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2764 const struct tu_pipeline *pipeline,
2765 struct tu_descriptor_state *descriptors_state,
2766 gl_shader_stage type)
2767 {
2768 struct tu_cs cs;
2769 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2770
2771 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2772
2773 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2774 }
2775
2776 static struct tu_cs_entry
2777 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
2778 const struct tu_pipeline *pipeline)
2779 {
2780 struct tu_cs cs;
2781 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
2782
2783 int binding;
2784 for_each_bit(binding, pipeline->vi.bindings_used) {
2785 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
2786 const VkDeviceSize offset = buf->bo_offset +
2787 cmd->state.vb.offsets[binding];
2788
2789 tu_cs_emit_regs(&cs,
2790 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
2791 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
2792
2793 }
2794
2795 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
2796
2797 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2798 }
2799
2800 static uint64_t
2801 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
2802 uint32_t draw_count)
2803 {
2804 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2805 * Still not sure what to do here, so just allocate a reasonably large
2806 * BO and hope for the best for now.
2807 * (maxTessellationControlPerVertexOutputComponents * 2048 vertices +
2808 * maxTessellationControlPerPatchOutputComponents * 512 patches) */
2809 if (!draw_count) {
2810 return ((128 * 2048) + (128 * 512)) * 4;
2811 }
2812
2813 /* For each patch, adreno lays out the tess param BO in memory as:
2814 * (v_input[0][0])...(v_input[i][j])(p_input[0])...(p_input[k]).
2815 * where i = # vertices per patch, j = # per-vertex outputs, and
2816 * k = # per-patch outputs.*/
2817 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2818 uint32_t num_patches = draw_count / verts_per_patch;
2819 return draw_count * pipeline->tess.per_vertex_output_size +
2820 pipeline->tess.per_patch_output_size * num_patches;
2821 }
2822
2823 static uint64_t
2824 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
2825 uint32_t draw_count)
2826 {
2827 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2828 * Still not sure what to do here, so just allocate a reasonably large
2829 * BO and hope for the best for now.
2830 * (quad factor stride * 512 patches) */
2831 if (!draw_count) {
2832 return (28 * 512) * 4;
2833 }
2834
2835 /* Each distinct patch gets its own tess factor output. */
2836 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2837 uint32_t num_patches = draw_count / verts_per_patch;
2838 uint32_t factor_stride;
2839 switch (pipeline->tess.patch_type) {
2840 case IR3_TESS_ISOLINES:
2841 factor_stride = 12;
2842 break;
2843 case IR3_TESS_TRIANGLES:
2844 factor_stride = 20;
2845 break;
2846 case IR3_TESS_QUADS:
2847 factor_stride = 28;
2848 break;
2849 default:
2850 unreachable("bad tessmode");
2851 }
2852 return factor_stride * num_patches;
2853 }
2854
2855 static VkResult
2856 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
2857 uint32_t draw_count,
2858 const struct tu_pipeline *pipeline,
2859 struct tu_cs_entry *entry)
2860 {
2861 struct tu_cs cs;
2862 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 20, &cs);
2863 if (result != VK_SUCCESS)
2864 return result;
2865
2866 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
2867 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
2868 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
2869 if (tess_bo_size > 0) {
2870 struct tu_bo *tess_bo;
2871 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
2872 if (result != VK_SUCCESS)
2873 return result;
2874
2875 tu_bo_list_add(&cmd->bo_list, tess_bo,
2876 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2877 uint64_t tess_factor_iova = tess_bo->iova;
2878 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
2879
2880 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2881 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
2882 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2883 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2884 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
2885 CP_LOAD_STATE6_0_NUM_UNIT(1));
2886 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2887 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2888 tu_cs_emit_qw(&cs, tess_param_iova);
2889 tu_cs_emit_qw(&cs, tess_factor_iova);
2890
2891 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2892 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
2893 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2894 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2895 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
2896 CP_LOAD_STATE6_0_NUM_UNIT(1));
2897 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2898 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2899 tu_cs_emit_qw(&cs, tess_param_iova);
2900 tu_cs_emit_qw(&cs, tess_factor_iova);
2901
2902 tu_cs_emit_pkt4(&cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
2903 tu_cs_emit_qw(&cs, tess_factor_iova);
2904
2905 /* TODO: Without this WFI here, the hardware seems unable to read these
2906 * addresses we just emitted. Freedreno emits these consts as part of
2907 * IB1 instead of in a draw state which might make this WFI unnecessary,
2908 * but it requires a bit more indirection (SS6_INDIRECT for consts). */
2909 tu_cs_emit_wfi(&cs);
2910 }
2911 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2912 return VK_SUCCESS;
2913 }
2914
2915 static VkResult
2916 tu6_draw_common(struct tu_cmd_buffer *cmd,
2917 struct tu_cs *cs,
2918 bool indexed,
2919 /* note: draw_count is 0 for indirect */
2920 uint32_t draw_count)
2921 {
2922 const struct tu_pipeline *pipeline = cmd->state.pipeline;
2923 VkResult result;
2924
2925 struct tu_descriptor_state *descriptors_state =
2926 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
2927
2928 tu_emit_cache_flush_renderpass(cmd, cs);
2929
2930 /* TODO lrz */
2931
2932 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
2933 .primitive_restart =
2934 pipeline->ia.primitive_restart && indexed,
2935 .tess_upper_left_domain_origin =
2936 pipeline->tess.upper_left_domain_origin));
2937
2938 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
2939 cmd->state.shader_const_ib[MESA_SHADER_VERTEX] =
2940 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
2941 cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL] =
2942 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
2943 cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL] =
2944 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
2945 cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY] =
2946 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
2947 cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT] =
2948 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
2949 }
2950
2951 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) {
2952 /* We need to reload the descriptors every time the descriptor sets
2953 * change. However, the commands we send only depend on the pipeline
2954 * because the whole point is to cache descriptors which are used by the
2955 * pipeline. There's a problem here, in that the firmware has an
2956 * "optimization" which skips executing groups that are set to the same
2957 * value as the last draw. This means that if the descriptor sets change
2958 * but not the pipeline, we'd try to re-execute the same buffer which
2959 * the firmware would ignore and we wouldn't pre-load the new
2960 * descriptors. The blob seems to re-emit the LOAD_STATE group whenever
2961 * the descriptor sets change, which we emulate here by copying the
2962 * pre-prepared buffer.
2963 */
2964 const struct tu_cs_entry *load_entry = &pipeline->load_state.state_ib;
2965 if (load_entry->size > 0) {
2966 struct tu_cs load_cs;
2967 result = tu_cs_begin_sub_stream(&cmd->sub_cs, load_entry->size, &load_cs);
2968 if (result != VK_SUCCESS)
2969 return result;
2970 tu_cs_emit_array(&load_cs,
2971 (uint32_t *)((char *)load_entry->bo->map + load_entry->offset),
2972 load_entry->size / 4);
2973 cmd->state.desc_sets_load_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &load_cs);
2974 } else {
2975 cmd->state.desc_sets_load_ib.size = 0;
2976 }
2977 }
2978
2979 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
2980 cmd->state.vertex_buffers_ib = tu6_emit_vertex_buffers(cmd, pipeline);
2981
2982 bool has_tess =
2983 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
2984 struct tu_cs_entry tess_consts = {};
2985 if (has_tess) {
2986 cmd->has_tess = true;
2987 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts);
2988 if (result != VK_SUCCESS)
2989 return result;
2990 }
2991
2992 /* for the first draw in a renderpass, re-emit all the draw states
2993 *
2994 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
2995 * used, then draw states must be re-emitted. note however this only happens
2996 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
2997 *
2998 * the two input attachment states are excluded because secondary command
2999 * buffer doesn't have a state ib to restore it, and not re-emitting them
3000 * is OK since CmdClearAttachments won't disable/overwrite them
3001 */
3002 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3003 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3004
3005 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
3006 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
3007 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3008 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
3009 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
3010 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
3011 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
3012 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
3013 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3014 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3015 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3016 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3017 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3018 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets_ib);
3019 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3020 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3021 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3022
3023 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3024 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3025 ((pipeline->dynamic_state_mask & BIT(i)) ?
3026 cmd->state.dynamic_state[i] :
3027 pipeline->dynamic_state[i]));
3028 }
3029 } else {
3030
3031 /* emit draw states that were just updated
3032 * note we eventually don't want to have to emit anything here
3033 */
3034 uint32_t draw_state_count =
3035 has_tess +
3036 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
3037 ((cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) ? 1 : 0) +
3038 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3039 1; /* vs_params */
3040
3041 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3042
3043 /* We may need to re-emit tess consts if the current draw call is
3044 * sufficiently larger than the last draw call. */
3045 if (has_tess)
3046 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3047 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3048 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3049 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3050 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3051 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3052 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3053 }
3054 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS)
3055 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3056 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3057 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3058 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3059 }
3060
3061 tu_cs_sanity_check(cs);
3062
3063 /* There are too many graphics dirty bits to list here, so just list the
3064 * bits to preserve instead. The only things not emitted here are
3065 * compute-related state.
3066 */
3067 cmd->state.dirty &= (TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3068 return VK_SUCCESS;
3069 }
3070
3071 static uint32_t
3072 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
3073 {
3074 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3075 uint32_t initiator =
3076 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3077 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
3078 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3079 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3080
3081 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3082 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3083
3084 switch (pipeline->tess.patch_type) {
3085 case IR3_TESS_TRIANGLES:
3086 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3087 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3088 break;
3089 case IR3_TESS_ISOLINES:
3090 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3091 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3092 break;
3093 case IR3_TESS_NONE:
3094 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3095 break;
3096 case IR3_TESS_QUADS:
3097 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3098 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3099 break;
3100 }
3101 return initiator;
3102 }
3103
3104
3105 static uint32_t
3106 vs_params_offset(struct tu_cmd_buffer *cmd)
3107 {
3108 const struct tu_program_descriptor_linkage *link =
3109 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
3110 const struct ir3_const_state *const_state = &link->const_state;
3111
3112 if (const_state->offsets.driver_param >= link->constlen)
3113 return 0;
3114
3115 /* this layout is required by CP_DRAW_INDIRECT_MULTI */
3116 STATIC_ASSERT(IR3_DP_DRAWID == 0);
3117 STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
3118 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3119
3120 /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
3121 assert(const_state->offsets.driver_param != 0);
3122
3123 return const_state->offsets.driver_param;
3124 }
3125
3126 static struct tu_draw_state
3127 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
3128 uint32_t vertex_offset,
3129 uint32_t first_instance)
3130 {
3131 uint32_t offset = vs_params_offset(cmd);
3132
3133 struct tu_cs cs;
3134 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 8 : 0), &cs);
3135 if (result != VK_SUCCESS) {
3136 cmd->record_result = result;
3137 return (struct tu_draw_state) {};
3138 }
3139
3140 /* TODO: don't make a new draw state when it doesn't change */
3141
3142 tu_cs_emit_regs(&cs,
3143 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3144 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3145
3146 if (offset) {
3147 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3148 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3149 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3150 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3151 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3152 CP_LOAD_STATE6_0_NUM_UNIT(1));
3153 tu_cs_emit(&cs, 0);
3154 tu_cs_emit(&cs, 0);
3155
3156 tu_cs_emit(&cs, 0);
3157 tu_cs_emit(&cs, vertex_offset);
3158 tu_cs_emit(&cs, first_instance);
3159 tu_cs_emit(&cs, 0);
3160 }
3161
3162 struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3163 return (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
3164 }
3165
3166 void
3167 tu_CmdDraw(VkCommandBuffer commandBuffer,
3168 uint32_t vertexCount,
3169 uint32_t instanceCount,
3170 uint32_t firstVertex,
3171 uint32_t firstInstance)
3172 {
3173 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3174 struct tu_cs *cs = &cmd->draw_cs;
3175
3176 cmd->state.vs_params = tu6_emit_vs_params(cmd, firstVertex, firstInstance);
3177
3178 tu6_draw_common(cmd, cs, false, vertexCount);
3179
3180 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3181 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3182 tu_cs_emit(cs, instanceCount);
3183 tu_cs_emit(cs, vertexCount);
3184 }
3185
3186 void
3187 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3188 uint32_t indexCount,
3189 uint32_t instanceCount,
3190 uint32_t firstIndex,
3191 int32_t vertexOffset,
3192 uint32_t firstInstance)
3193 {
3194 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3195 struct tu_cs *cs = &cmd->draw_cs;
3196
3197 cmd->state.vs_params = tu6_emit_vs_params(cmd, vertexOffset, firstInstance);
3198
3199 tu6_draw_common(cmd, cs, true, indexCount);
3200
3201 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3202 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3203 tu_cs_emit(cs, instanceCount);
3204 tu_cs_emit(cs, indexCount);
3205 tu_cs_emit(cs, firstIndex);
3206 tu_cs_emit_qw(cs, cmd->state.index_va);
3207 tu_cs_emit(cs, cmd->state.max_index_count);
3208 }
3209
3210 void
3211 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3212 VkBuffer _buffer,
3213 VkDeviceSize offset,
3214 uint32_t drawCount,
3215 uint32_t stride)
3216 {
3217 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3218 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3219 struct tu_cs *cs = &cmd->draw_cs;
3220
3221 cmd->state.vs_params = (struct tu_draw_state) {};
3222
3223 tu6_draw_common(cmd, cs, false, 0);
3224
3225 /* workaround for a firmware bug with CP_DRAW_INDIRECT_MULTI, where it
3226 * doesn't wait for WFIs to be completed and leads to GPU fault/hang
3227 * TODO: this could be worked around in a more performant way,
3228 * or there may exist newer firmware that has been fixed
3229 */
3230 if (cmd->device->physical_device->gpu_id != 650)
3231 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
3232
3233 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
3234 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3235 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
3236 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3237 tu_cs_emit(cs, drawCount);
3238 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3239 tu_cs_emit(cs, stride);
3240
3241 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3242 }
3243
3244 void
3245 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3246 VkBuffer _buffer,
3247 VkDeviceSize offset,
3248 uint32_t drawCount,
3249 uint32_t stride)
3250 {
3251 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3252 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3253 struct tu_cs *cs = &cmd->draw_cs;
3254
3255 cmd->state.vs_params = (struct tu_draw_state) {};
3256
3257 tu6_draw_common(cmd, cs, true, 0);
3258
3259 /* workaround for a firmware bug with CP_DRAW_INDIRECT_MULTI, where it
3260 * doesn't wait for WFIs to be completed and leads to GPU fault/hang
3261 * TODO: this could be worked around in a more performant way,
3262 * or there may exist newer firmware that has been fixed
3263 */
3264 if (cmd->device->physical_device->gpu_id != 650)
3265 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
3266
3267 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
3268 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3269 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
3270 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3271 tu_cs_emit(cs, drawCount);
3272 tu_cs_emit_qw(cs, cmd->state.index_va);
3273 tu_cs_emit(cs, cmd->state.max_index_count);
3274 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3275 tu_cs_emit(cs, stride);
3276
3277 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3278 }
3279
3280 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3281 uint32_t instanceCount,
3282 uint32_t firstInstance,
3283 VkBuffer _counterBuffer,
3284 VkDeviceSize counterBufferOffset,
3285 uint32_t counterOffset,
3286 uint32_t vertexStride)
3287 {
3288 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3289 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
3290 struct tu_cs *cs = &cmd->draw_cs;
3291
3292 cmd->state.vs_params = tu6_emit_vs_params(cmd, 0, firstInstance);
3293
3294 tu6_draw_common(cmd, cs, false, 0);
3295
3296 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
3297 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
3298 tu_cs_emit(cs, instanceCount);
3299 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
3300 tu_cs_emit(cs, counterOffset);
3301 tu_cs_emit(cs, vertexStride);
3302
3303 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3304 }
3305
3306 struct tu_dispatch_info
3307 {
3308 /**
3309 * Determine the layout of the grid (in block units) to be used.
3310 */
3311 uint32_t blocks[3];
3312
3313 /**
3314 * A starting offset for the grid. If unaligned is set, the offset
3315 * must still be aligned.
3316 */
3317 uint32_t offsets[3];
3318 /**
3319 * Whether it's an unaligned compute dispatch.
3320 */
3321 bool unaligned;
3322
3323 /**
3324 * Indirect compute parameters resource.
3325 */
3326 struct tu_buffer *indirect;
3327 uint64_t indirect_offset;
3328 };
3329
3330 static void
3331 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3332 const struct tu_dispatch_info *info)
3333 {
3334 gl_shader_stage type = MESA_SHADER_COMPUTE;
3335 const struct tu_program_descriptor_linkage *link =
3336 &pipeline->program.link[type];
3337 const struct ir3_const_state *const_state = &link->const_state;
3338 uint32_t offset = const_state->offsets.driver_param;
3339
3340 if (link->constlen <= offset)
3341 return;
3342
3343 if (!info->indirect) {
3344 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3345 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3346 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3347 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3348 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3349 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3350 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3351 };
3352
3353 uint32_t num_consts = MIN2(const_state->num_driver_params,
3354 (link->constlen - offset) * 4);
3355 /* push constants */
3356 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3357 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3358 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3359 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3360 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3361 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3362 tu_cs_emit(cs, 0);
3363 tu_cs_emit(cs, 0);
3364 uint32_t i;
3365 for (i = 0; i < num_consts; i++)
3366 tu_cs_emit(cs, driver_params[i]);
3367 } else {
3368 tu_finishme("Indirect driver params");
3369 }
3370 }
3371
3372 static void
3373 tu_dispatch(struct tu_cmd_buffer *cmd,
3374 const struct tu_dispatch_info *info)
3375 {
3376 struct tu_cs *cs = &cmd->cs;
3377 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3378 struct tu_descriptor_state *descriptors_state =
3379 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3380
3381 /* TODO: We could probably flush less if we add a compute_flush_bits
3382 * bitfield.
3383 */
3384 tu_emit_cache_flush(cmd, cs);
3385
3386 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_PIPELINE)
3387 tu_cs_emit_ib(cs, &pipeline->program.state_ib);
3388
3389 struct tu_cs_entry ib;
3390
3391 ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE);
3392 if (ib.size)
3393 tu_cs_emit_ib(cs, &ib);
3394
3395 tu_emit_compute_driver_params(cs, pipeline, info);
3396
3397 if ((cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS) &&
3398 pipeline->load_state.state_ib.size > 0) {
3399 tu_cs_emit_ib(cs, &pipeline->load_state.state_ib);
3400 }
3401
3402 cmd->state.dirty &=
3403 ~(TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3404
3405 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3406 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3407
3408 const uint32_t *local_size = pipeline->compute.local_size;
3409 const uint32_t *num_groups = info->blocks;
3410 tu_cs_emit_regs(cs,
3411 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3412 .localsizex = local_size[0] - 1,
3413 .localsizey = local_size[1] - 1,
3414 .localsizez = local_size[2] - 1),
3415 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3416 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3417 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3418 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3419 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3420 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3421
3422 tu_cs_emit_regs(cs,
3423 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3424 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3425 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3426
3427 if (info->indirect) {
3428 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3429
3430 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3431 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3432
3433 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3434 tu_cs_emit(cs, 0x00000000);
3435 tu_cs_emit_qw(cs, iova);
3436 tu_cs_emit(cs,
3437 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3438 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3439 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3440 } else {
3441 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3442 tu_cs_emit(cs, 0x00000000);
3443 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3444 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3445 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3446 }
3447
3448 tu_cs_emit_wfi(cs);
3449 }
3450
3451 void
3452 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3453 uint32_t base_x,
3454 uint32_t base_y,
3455 uint32_t base_z,
3456 uint32_t x,
3457 uint32_t y,
3458 uint32_t z)
3459 {
3460 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3461 struct tu_dispatch_info info = {};
3462
3463 info.blocks[0] = x;
3464 info.blocks[1] = y;
3465 info.blocks[2] = z;
3466
3467 info.offsets[0] = base_x;
3468 info.offsets[1] = base_y;
3469 info.offsets[2] = base_z;
3470 tu_dispatch(cmd_buffer, &info);
3471 }
3472
3473 void
3474 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3475 uint32_t x,
3476 uint32_t y,
3477 uint32_t z)
3478 {
3479 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3480 }
3481
3482 void
3483 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3484 VkBuffer _buffer,
3485 VkDeviceSize offset)
3486 {
3487 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3488 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3489 struct tu_dispatch_info info = {};
3490
3491 info.indirect = buffer;
3492 info.indirect_offset = offset;
3493
3494 tu_dispatch(cmd_buffer, &info);
3495 }
3496
3497 void
3498 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3499 {
3500 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3501
3502 tu_cs_end(&cmd_buffer->draw_cs);
3503 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3504
3505 if (use_sysmem_rendering(cmd_buffer))
3506 tu_cmd_render_sysmem(cmd_buffer);
3507 else
3508 tu_cmd_render_tiles(cmd_buffer);
3509
3510 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3511 rendered */
3512 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3513 tu_cs_begin(&cmd_buffer->draw_cs);
3514 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3515 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3516
3517 cmd_buffer->state.cache.pending_flush_bits |=
3518 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3519 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3520
3521 cmd_buffer->state.pass = NULL;
3522 cmd_buffer->state.subpass = NULL;
3523 cmd_buffer->state.framebuffer = NULL;
3524 }
3525
3526 void
3527 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3528 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3529 {
3530 tu_CmdEndRenderPass(commandBuffer);
3531 }
3532
3533 struct tu_barrier_info
3534 {
3535 uint32_t eventCount;
3536 const VkEvent *pEvents;
3537 VkPipelineStageFlags srcStageMask;
3538 };
3539
3540 static void
3541 tu_barrier(struct tu_cmd_buffer *cmd,
3542 uint32_t memoryBarrierCount,
3543 const VkMemoryBarrier *pMemoryBarriers,
3544 uint32_t bufferMemoryBarrierCount,
3545 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3546 uint32_t imageMemoryBarrierCount,
3547 const VkImageMemoryBarrier *pImageMemoryBarriers,
3548 const struct tu_barrier_info *info)
3549 {
3550 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3551 VkAccessFlags srcAccessMask = 0;
3552 VkAccessFlags dstAccessMask = 0;
3553
3554 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3555 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3556 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3557 }
3558
3559 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3560 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3561 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3562 }
3563
3564 enum tu_cmd_access_mask src_flags = 0;
3565 enum tu_cmd_access_mask dst_flags = 0;
3566
3567 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3568 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3569 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3570 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3571 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3572 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3573 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3574 /* The underlying memory for this image may have been used earlier
3575 * within the same queue submission for a different image, which
3576 * means that there may be old, stale cache entries which are in the
3577 * "wrong" location, which could cause problems later after writing
3578 * to the image. We don't want these entries being flushed later and
3579 * overwriting the actual image, so we need to flush the CCU.
3580 */
3581 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3582 }
3583 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3584 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3585 }
3586
3587 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3588 * so we have to use the sysmem flushes.
3589 */
3590 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3591 !cmd->state.pass;
3592 src_flags |= vk2tu_access(srcAccessMask, gmem);
3593 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3594
3595 struct tu_cache_state *cache =
3596 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3597 tu_flush_for_access(cache, src_flags, dst_flags);
3598
3599 for (uint32_t i = 0; i < info->eventCount; i++) {
3600 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3601
3602 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3603
3604 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3605 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3606 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3607 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3608 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3609 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3610 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3611 }
3612 }
3613
3614 void
3615 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3616 VkPipelineStageFlags srcStageMask,
3617 VkPipelineStageFlags dstStageMask,
3618 VkDependencyFlags dependencyFlags,
3619 uint32_t memoryBarrierCount,
3620 const VkMemoryBarrier *pMemoryBarriers,
3621 uint32_t bufferMemoryBarrierCount,
3622 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3623 uint32_t imageMemoryBarrierCount,
3624 const VkImageMemoryBarrier *pImageMemoryBarriers)
3625 {
3626 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3627 struct tu_barrier_info info;
3628
3629 info.eventCount = 0;
3630 info.pEvents = NULL;
3631 info.srcStageMask = srcStageMask;
3632
3633 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3634 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3635 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3636 }
3637
3638 static void
3639 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3640 VkPipelineStageFlags stageMask, unsigned value)
3641 {
3642 struct tu_cs *cs = &cmd->cs;
3643
3644 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3645 assert(!cmd->state.pass);
3646
3647 tu_emit_cache_flush(cmd, cs);
3648
3649 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3650
3651 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3652 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3653 */
3654 VkPipelineStageFlags top_of_pipe_flags =
3655 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3656 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3657
3658 if (!(stageMask & ~top_of_pipe_flags)) {
3659 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3660 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3661 tu_cs_emit(cs, value);
3662 } else {
3663 /* Use a RB_DONE_TS event to wait for everything to complete. */
3664 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3665 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3666 tu_cs_emit_qw(cs, event->bo.iova);
3667 tu_cs_emit(cs, value);
3668 }
3669 }
3670
3671 void
3672 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3673 VkEvent _event,
3674 VkPipelineStageFlags stageMask)
3675 {
3676 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3677 TU_FROM_HANDLE(tu_event, event, _event);
3678
3679 write_event(cmd, event, stageMask, 1);
3680 }
3681
3682 void
3683 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3684 VkEvent _event,
3685 VkPipelineStageFlags stageMask)
3686 {
3687 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3688 TU_FROM_HANDLE(tu_event, event, _event);
3689
3690 write_event(cmd, event, stageMask, 0);
3691 }
3692
3693 void
3694 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3695 uint32_t eventCount,
3696 const VkEvent *pEvents,
3697 VkPipelineStageFlags srcStageMask,
3698 VkPipelineStageFlags dstStageMask,
3699 uint32_t memoryBarrierCount,
3700 const VkMemoryBarrier *pMemoryBarriers,
3701 uint32_t bufferMemoryBarrierCount,
3702 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3703 uint32_t imageMemoryBarrierCount,
3704 const VkImageMemoryBarrier *pImageMemoryBarriers)
3705 {
3706 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3707 struct tu_barrier_info info;
3708
3709 info.eventCount = eventCount;
3710 info.pEvents = pEvents;
3711 info.srcStageMask = 0;
3712
3713 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3714 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3715 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3716 }
3717
3718 void
3719 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3720 {
3721 /* No-op */
3722 }