freedreno/regs: update a6xx PC regs
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 void
112 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
113 struct tu_cs *cs,
114 enum vgt_event_type event)
115 {
116 bool need_seqno = false;
117 switch (event) {
118 case CACHE_FLUSH_TS:
119 case WT_DONE_TS:
120 case RB_DONE_TS:
121 case PC_CCU_FLUSH_DEPTH_TS:
122 case PC_CCU_FLUSH_COLOR_TS:
123 case PC_CCU_RESOLVE_TS:
124 need_seqno = true;
125 break;
126 default:
127 break;
128 }
129
130 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
131 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
132 if (need_seqno) {
133 tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
134 tu_cs_emit(cs, 0);
135 }
136 }
137
138 static void
139 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
140 struct tu_cs *cs,
141 enum tu_cmd_flush_bits flushes)
142 {
143 /* Experiments show that invalidating CCU while it still has data in it
144 * doesn't work, so make sure to always flush before invalidating in case
145 * any data remains that hasn't yet been made available through a barrier.
146 * However it does seem to work for UCHE.
147 */
148 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
149 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
150 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
151 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
152 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
153 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
154 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
155 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
156 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
157 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
158 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
159 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
160 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
161 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
162 if (flushes & TU_CMD_FLAG_WFI)
163 tu_cs_emit_wfi(cs);
164 }
165
166 /* "Normal" cache flushes, that don't require any special handling */
167
168 static void
169 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
170 struct tu_cs *cs)
171 {
172 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
173 cmd_buffer->state.cache.flush_bits = 0;
174 }
175
176 /* Renderpass cache flushes */
177
178 void
179 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
180 struct tu_cs *cs)
181 {
182 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
183 cmd_buffer->state.renderpass_cache.flush_bits = 0;
184 }
185
186 /* Cache flushes for things that use the color/depth read/write path (i.e.
187 * blits and draws). This deals with changing CCU state as well as the usual
188 * cache flushing.
189 */
190
191 void
192 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
193 struct tu_cs *cs,
194 enum tu_cmd_ccu_state ccu_state)
195 {
196 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
197
198 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
199
200 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
201 * the CCU may also contain data that we haven't flushed out yet, so we
202 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
203 * emit a WFI as it isn't pipelined.
204 */
205 if (ccu_state != cmd_buffer->state.ccu_state) {
206 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
207 flushes |=
208 TU_CMD_FLAG_CCU_FLUSH_COLOR |
209 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
210 cmd_buffer->state.cache.pending_flush_bits &= ~(
211 TU_CMD_FLAG_CCU_FLUSH_COLOR |
212 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
213 }
214 flushes |=
215 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
216 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
217 TU_CMD_FLAG_WFI;
218 cmd_buffer->state.cache.pending_flush_bits &= ~(
219 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
220 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
221 }
222
223 tu6_emit_flushes(cmd_buffer, cs, flushes);
224 cmd_buffer->state.cache.flush_bits = 0;
225
226 if (ccu_state != cmd_buffer->state.ccu_state) {
227 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
228 tu_cs_emit_regs(cs,
229 A6XX_RB_CCU_CNTL(.offset =
230 ccu_state == TU_CMD_CCU_GMEM ?
231 phys_dev->ccu_offset_gmem :
232 phys_dev->ccu_offset_bypass,
233 .gmem = ccu_state == TU_CMD_CCU_GMEM));
234 cmd_buffer->state.ccu_state = ccu_state;
235 }
236 }
237
238 static void
239 tu6_emit_zs(struct tu_cmd_buffer *cmd,
240 const struct tu_subpass *subpass,
241 struct tu_cs *cs)
242 {
243 const struct tu_framebuffer *fb = cmd->state.framebuffer;
244
245 const uint32_t a = subpass->depth_stencil_attachment.attachment;
246 if (a == VK_ATTACHMENT_UNUSED) {
247 tu_cs_emit_regs(cs,
248 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
249 A6XX_RB_DEPTH_BUFFER_PITCH(0),
250 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
251 A6XX_RB_DEPTH_BUFFER_BASE(0),
252 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
253
254 tu_cs_emit_regs(cs,
255 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
256
257 tu_cs_emit_regs(cs,
258 A6XX_GRAS_LRZ_BUFFER_BASE(0),
259 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
260 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
261
262 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
263
264 return;
265 }
266
267 const struct tu_image_view *iview = fb->attachments[a].attachment;
268 const struct tu_render_pass_attachment *attachment =
269 &cmd->state.pass->attachments[a];
270 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
271
272 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
273 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
274 tu_cs_image_ref(cs, iview, 0);
275 tu_cs_emit(cs, attachment->gmem_offset);
276
277 tu_cs_emit_regs(cs,
278 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
279
280 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
281 tu_cs_image_flag_ref(cs, iview, 0);
282
283 tu_cs_emit_regs(cs,
284 A6XX_GRAS_LRZ_BUFFER_BASE(0),
285 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
286 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
287
288 if (attachment->format == VK_FORMAT_S8_UINT) {
289 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
290 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
291 tu_cs_image_ref(cs, iview, 0);
292 tu_cs_emit(cs, attachment->gmem_offset);
293 } else {
294 tu_cs_emit_regs(cs,
295 A6XX_RB_STENCIL_INFO(0));
296 }
297 }
298
299 static void
300 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
301 const struct tu_subpass *subpass,
302 struct tu_cs *cs)
303 {
304 const struct tu_framebuffer *fb = cmd->state.framebuffer;
305
306 for (uint32_t i = 0; i < subpass->color_count; ++i) {
307 uint32_t a = subpass->color_attachments[i].attachment;
308 if (a == VK_ATTACHMENT_UNUSED)
309 continue;
310
311 const struct tu_image_view *iview = fb->attachments[a].attachment;
312
313 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
314 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
315 tu_cs_image_ref(cs, iview, 0);
316 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
317
318 tu_cs_emit_regs(cs,
319 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
320
321 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
322 tu_cs_image_flag_ref(cs, iview, 0);
323 }
324
325 tu_cs_emit_regs(cs,
326 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
327 tu_cs_emit_regs(cs,
328 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
329
330 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
331 }
332
333 void
334 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
335 {
336 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
337 bool msaa_disable = samples == MSAA_ONE;
338
339 tu_cs_emit_regs(cs,
340 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
341 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
342 .msaa_disable = msaa_disable));
343
344 tu_cs_emit_regs(cs,
345 A6XX_GRAS_RAS_MSAA_CNTL(samples),
346 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
347 .msaa_disable = msaa_disable));
348
349 tu_cs_emit_regs(cs,
350 A6XX_RB_RAS_MSAA_CNTL(samples),
351 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
352 .msaa_disable = msaa_disable));
353
354 tu_cs_emit_regs(cs,
355 A6XX_RB_MSAA_CNTL(samples));
356 }
357
358 static void
359 tu6_emit_bin_size(struct tu_cs *cs,
360 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
361 {
362 tu_cs_emit_regs(cs,
363 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
364 .binh = bin_h,
365 .dword = flags));
366
367 tu_cs_emit_regs(cs,
368 A6XX_RB_BIN_CONTROL(.binw = bin_w,
369 .binh = bin_h,
370 .dword = flags));
371
372 /* no flag for RB_BIN_CONTROL2... */
373 tu_cs_emit_regs(cs,
374 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
375 .binh = bin_h));
376 }
377
378 static void
379 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
380 const struct tu_subpass *subpass,
381 struct tu_cs *cs,
382 bool binning)
383 {
384 const struct tu_framebuffer *fb = cmd->state.framebuffer;
385 uint32_t cntl = 0;
386 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
387 if (binning) {
388 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
389 } else {
390 uint32_t mrts_ubwc_enable = 0;
391 for (uint32_t i = 0; i < subpass->color_count; ++i) {
392 uint32_t a = subpass->color_attachments[i].attachment;
393 if (a == VK_ATTACHMENT_UNUSED)
394 continue;
395
396 const struct tu_image_view *iview = fb->attachments[a].attachment;
397 if (iview->ubwc_enabled)
398 mrts_ubwc_enable |= 1 << i;
399 }
400
401 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
402
403 const uint32_t a = subpass->depth_stencil_attachment.attachment;
404 if (a != VK_ATTACHMENT_UNUSED) {
405 const struct tu_image_view *iview = fb->attachments[a].attachment;
406 if (iview->ubwc_enabled)
407 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
408 }
409
410 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
411 * in order to set it correctly for the different subpasses. However,
412 * that means the packets we're emitting also happen during binning. So
413 * we need to guard the write on !BINNING at CP execution time.
414 */
415 tu_cs_reserve(cs, 3 + 4);
416 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
417 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
418 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
419 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
420 }
421
422 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
423 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
424 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
425 tu_cs_emit(cs, cntl);
426 }
427
428 static void
429 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
430 {
431 const VkRect2D *render_area = &cmd->state.render_area;
432 uint32_t x1 = render_area->offset.x;
433 uint32_t y1 = render_area->offset.y;
434 uint32_t x2 = x1 + render_area->extent.width - 1;
435 uint32_t y2 = y1 + render_area->extent.height - 1;
436
437 if (align) {
438 x1 = x1 & ~(GMEM_ALIGN_W - 1);
439 y1 = y1 & ~(GMEM_ALIGN_H - 1);
440 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
441 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
442 }
443
444 tu_cs_emit_regs(cs,
445 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
446 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
447 }
448
449 void
450 tu6_emit_window_scissor(struct tu_cs *cs,
451 uint32_t x1,
452 uint32_t y1,
453 uint32_t x2,
454 uint32_t y2)
455 {
456 tu_cs_emit_regs(cs,
457 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
458 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
459
460 tu_cs_emit_regs(cs,
461 A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1),
462 A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2));
463 }
464
465 void
466 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
467 {
468 tu_cs_emit_regs(cs,
469 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
470
471 tu_cs_emit_regs(cs,
472 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
473
474 tu_cs_emit_regs(cs,
475 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
476
477 tu_cs_emit_regs(cs,
478 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
479 }
480
481 static void
482 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
483 {
484 uint32_t enable_mask;
485 switch (id) {
486 case TU_DRAW_STATE_PROGRAM:
487 case TU_DRAW_STATE_VI:
488 case TU_DRAW_STATE_FS_CONST:
489 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
490 * when resources would actually be used in the binning shader.
491 * Presumably the overhead of prefetching the resources isn't
492 * worth it.
493 */
494 case TU_DRAW_STATE_DESC_SETS_LOAD:
495 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
496 CP_SET_DRAW_STATE__0_SYSMEM;
497 break;
498 case TU_DRAW_STATE_PROGRAM_BINNING:
499 case TU_DRAW_STATE_VI_BINNING:
500 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
501 break;
502 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
503 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
504 break;
505 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
506 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
507 break;
508 default:
509 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
510 CP_SET_DRAW_STATE__0_SYSMEM |
511 CP_SET_DRAW_STATE__0_BINNING;
512 break;
513 }
514
515 /* We need to reload the descriptors every time the descriptor sets
516 * change. However, the commands we send only depend on the pipeline
517 * because the whole point is to cache descriptors which are used by the
518 * pipeline. There's a problem here, in that the firmware has an
519 * "optimization" which skips executing groups that are set to the same
520 * value as the last draw. This means that if the descriptor sets change
521 * but not the pipeline, we'd try to re-execute the same buffer which
522 * the firmware would ignore and we wouldn't pre-load the new
523 * descriptors. Set the DIRTY bit to avoid this optimization
524 */
525 if (id == TU_DRAW_STATE_DESC_SETS_LOAD)
526 enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
527
528 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
529 enable_mask |
530 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
531 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
532 tu_cs_emit_qw(cs, state.iova);
533 }
534
535 static bool
536 use_hw_binning(struct tu_cmd_buffer *cmd)
537 {
538 const struct tu_framebuffer *fb = cmd->state.framebuffer;
539
540 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
541 * with non-hw binning GMEM rendering. this is required because some of the
542 * XFB commands need to only be executed once
543 */
544 if (cmd->state.xfb_used)
545 return true;
546
547 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
548 return false;
549
550 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
551 return true;
552
553 return (fb->tile_count.width * fb->tile_count.height) > 2;
554 }
555
556 static bool
557 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
558 {
559 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
560 return true;
561
562 /* can't fit attachments into gmem */
563 if (!cmd->state.pass->gmem_pixels)
564 return true;
565
566 if (cmd->state.framebuffer->layers > 1)
567 return true;
568
569 if (cmd->has_tess)
570 return true;
571
572 return false;
573 }
574
575 static void
576 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
577 struct tu_cs *cs,
578 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot)
579 {
580 const struct tu_framebuffer *fb = cmd->state.framebuffer;
581
582 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
583 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
584
585 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
586 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
587
588 const uint32_t x1 = fb->tile0.width * tx;
589 const uint32_t y1 = fb->tile0.height * ty;
590 const uint32_t x2 = x1 + fb->tile0.width - 1;
591 const uint32_t y2 = y1 + fb->tile0.height - 1;
592 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
593 tu6_emit_window_offset(cs, x1, y1);
594
595 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
596
597 if (use_hw_binning(cmd)) {
598 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
599
600 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
601 tu_cs_emit(cs, 0x0);
602
603 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
604 tu_cs_emit(cs, fb->pipe_sizes[pipe] |
605 CP_SET_BIN_DATA5_0_VSC_N(slot));
606 tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
607 tu_cs_emit(cs, pipe * 4);
608 tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
609
610 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
611 tu_cs_emit(cs, 0x0);
612
613 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
614 tu_cs_emit(cs, 0x0);
615 } else {
616 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
617 tu_cs_emit(cs, 0x1);
618
619 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
620 tu_cs_emit(cs, 0x0);
621 }
622 }
623
624 static void
625 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
626 struct tu_cs *cs,
627 uint32_t a,
628 uint32_t gmem_a)
629 {
630 const struct tu_framebuffer *fb = cmd->state.framebuffer;
631 struct tu_image_view *dst = fb->attachments[a].attachment;
632 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
633
634 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.render_area);
635 }
636
637 static void
638 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
639 struct tu_cs *cs,
640 const struct tu_subpass *subpass)
641 {
642 if (subpass->resolve_attachments) {
643 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
644 * Commands":
645 *
646 * End-of-subpass multisample resolves are treated as color
647 * attachment writes for the purposes of synchronization. That is,
648 * they are considered to execute in the
649 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
650 * their writes are synchronized with
651 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
652 * rendering within a subpass and any resolve operations at the end
653 * of the subpass occurs automatically, without need for explicit
654 * dependencies or pipeline barriers. However, if the resolve
655 * attachment is also used in a different subpass, an explicit
656 * dependency is needed.
657 *
658 * We use the CP_BLIT path for sysmem resolves, which is really a
659 * transfer command, so we have to manually flush similar to the gmem
660 * resolve case. However, a flush afterwards isn't needed because of the
661 * last sentence and the fact that we're in sysmem mode.
662 */
663 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
664 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
665
666 /* Wait for the flushes to land before using the 2D engine */
667 tu_cs_emit_wfi(cs);
668
669 for (unsigned i = 0; i < subpass->color_count; i++) {
670 uint32_t a = subpass->resolve_attachments[i].attachment;
671 if (a == VK_ATTACHMENT_UNUSED)
672 continue;
673
674 tu6_emit_sysmem_resolve(cmd, cs, a,
675 subpass->color_attachments[i].attachment);
676 }
677 }
678 }
679
680 static void
681 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
682 {
683 const struct tu_render_pass *pass = cmd->state.pass;
684 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
685
686 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
687 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
688 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
689 CP_SET_DRAW_STATE__0_GROUP_ID(0));
690 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
691 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
692
693 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
694 tu_cs_emit(cs, 0x0);
695
696 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
697 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
698
699 tu6_emit_blit_scissor(cmd, cs, true);
700
701 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
702 if (pass->attachments[a].gmem_offset >= 0)
703 tu_store_gmem_attachment(cmd, cs, a, a);
704 }
705
706 if (subpass->resolve_attachments) {
707 for (unsigned i = 0; i < subpass->color_count; i++) {
708 uint32_t a = subpass->resolve_attachments[i].attachment;
709 if (a != VK_ATTACHMENT_UNUSED)
710 tu_store_gmem_attachment(cmd, cs, a,
711 subpass->color_attachments[i].attachment);
712 }
713 }
714 }
715
716 static void
717 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
718 {
719 struct tu_device *dev = cmd->device;
720 const struct tu_physical_device *phys_dev = dev->physical_device;
721
722 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
723
724 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
725 .vs_state = true,
726 .hs_state = true,
727 .ds_state = true,
728 .gs_state = true,
729 .fs_state = true,
730 .cs_state = true,
731 .gfx_ibo = true,
732 .cs_ibo = true,
733 .gfx_shared_const = true,
734 .cs_shared_const = true,
735 .gfx_bindless = 0x1f,
736 .cs_bindless = 0x1f));
737
738 tu_cs_emit_regs(cs,
739 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
740 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
741 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
742 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
743 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
744 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
745 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
746 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
747 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
748 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
749
750 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
751 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
752 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
753 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
754 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
755 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
756 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_SHARED_CONSTS, 0);
757 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
758 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
759 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
760 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
761 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
762 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
763
764 /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
765 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
766 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
767 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
768
769 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
770
771 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
772
773 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
774 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
775 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
776 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
777 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
778 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
779 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
780 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
781 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
782 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
783 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
784
785 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
786
787 tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false));
788 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
789
790 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
791
792 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
793 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
794
795 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
796 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
797
798 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
799
800 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
801
802 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
803 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
804 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
805 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
806 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
807 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
808 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
809 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
810 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
811
812 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
813
814 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
815
816 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
817
818 /* we don't use this yet.. probably best to disable.. */
819 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
820 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
821 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
822 CP_SET_DRAW_STATE__0_GROUP_ID(0));
823 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
824 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
825
826 tu_cs_emit_regs(cs,
827 A6XX_SP_HS_CTRL_REG0(0));
828
829 tu_cs_emit_regs(cs,
830 A6XX_SP_GS_CTRL_REG0(0));
831
832 tu_cs_emit_regs(cs,
833 A6XX_GRAS_LRZ_CNTL(0));
834
835 tu_cs_emit_regs(cs,
836 A6XX_RB_LRZ_CNTL(0));
837
838 tu_cs_emit_regs(cs,
839 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
840 .bo_offset = gb_offset(border_color)));
841 tu_cs_emit_regs(cs,
842 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
843 .bo_offset = gb_offset(border_color)));
844
845 /* VSC buffers:
846 * use vsc pitches from the largest values used so far with this device
847 * if there hasn't been overflow, there will already be a scratch bo
848 * allocated for these sizes
849 *
850 * if overflow is detected, the stream size is increased by 2x
851 */
852 mtx_lock(&dev->vsc_pitch_mtx);
853
854 struct tu6_global *global = dev->global_bo.map;
855
856 uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
857 uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
858
859 if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
860 dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
861
862 if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
863 dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
864
865 cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
866 cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
867
868 mtx_unlock(&dev->vsc_pitch_mtx);
869
870 struct tu_bo *vsc_bo;
871 uint32_t size0 = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES +
872 cmd->vsc_draw_strm_pitch * MAX_VSC_PIPES;
873
874 tu_get_scratch_bo(dev, size0 + MAX_VSC_PIPES * 4, &vsc_bo);
875
876 tu_cs_emit_regs(cs,
877 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
878 tu_cs_emit_regs(cs,
879 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
880 tu_cs_emit_regs(cs,
881 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
882 .bo_offset = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES));
883
884 tu_bo_list_add(&cmd->bo_list, vsc_bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
885
886 tu_cs_sanity_check(cs);
887 }
888
889 static void
890 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
891 {
892 const struct tu_framebuffer *fb = cmd->state.framebuffer;
893
894 tu_cs_emit_regs(cs,
895 A6XX_VSC_BIN_SIZE(.width = fb->tile0.width,
896 .height = fb->tile0.height));
897
898 tu_cs_emit_regs(cs,
899 A6XX_VSC_BIN_COUNT(.nx = fb->tile_count.width,
900 .ny = fb->tile_count.height));
901
902 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
903 tu_cs_emit_array(cs, fb->pipe_config, 32);
904
905 tu_cs_emit_regs(cs,
906 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
907 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
908
909 tu_cs_emit_regs(cs,
910 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
911 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
912 }
913
914 static void
915 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
916 {
917 const struct tu_framebuffer *fb = cmd->state.framebuffer;
918 const uint32_t used_pipe_count =
919 fb->pipe_count.width * fb->pipe_count.height;
920
921 for (int i = 0; i < used_pipe_count; i++) {
922 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
923 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
924 CP_COND_WRITE5_0_WRITE_MEMORY);
925 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
926 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
927 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
928 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
929 tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
930 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
931
932 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
933 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
934 CP_COND_WRITE5_0_WRITE_MEMORY);
935 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
936 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
937 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
938 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
939 tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
940 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
941 }
942
943 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
944 }
945
946 static void
947 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
948 {
949 struct tu_physical_device *phys_dev = cmd->device->physical_device;
950 const struct tu_framebuffer *fb = cmd->state.framebuffer;
951
952 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
953
954 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
955 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
956
957 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
958 tu_cs_emit(cs, 0x1);
959
960 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
961 tu_cs_emit(cs, 0x1);
962
963 tu_cs_emit_wfi(cs);
964
965 tu_cs_emit_regs(cs,
966 A6XX_VFD_MODE_CNTL(.binning_pass = true));
967
968 update_vsc_pipe(cmd, cs);
969
970 tu_cs_emit_regs(cs,
971 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
972
973 tu_cs_emit_regs(cs,
974 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
975
976 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
977 tu_cs_emit(cs, UNK_2C);
978
979 tu_cs_emit_regs(cs,
980 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
981
982 tu_cs_emit_regs(cs,
983 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
984
985 /* emit IB to binning drawcmds: */
986 tu_cs_emit_call(cs, &cmd->draw_cs);
987
988 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
989 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
990 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
991 CP_SET_DRAW_STATE__0_GROUP_ID(0));
992 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
993 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
994
995 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
996 tu_cs_emit(cs, UNK_2D);
997
998 /* This flush is probably required because the VSC, which produces the
999 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1000 * visibility stream (without caching) to do draw skipping. The
1001 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1002 * submitted are finished before reading the VSC regs (in
1003 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1004 * part of draws).
1005 */
1006 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1007
1008 tu_cs_emit_wfi(cs);
1009
1010 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1011
1012 emit_vsc_overflow_test(cmd, cs);
1013
1014 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1015 tu_cs_emit(cs, 0x0);
1016
1017 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1018 tu_cs_emit(cs, 0x0);
1019 }
1020
1021 static struct tu_draw_state
1022 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1023 const struct tu_subpass *subpass,
1024 bool gmem)
1025 {
1026 /* note: we can probably emit input attachments just once for the whole
1027 * renderpass, this would avoid emitting both sysmem/gmem versions
1028 *
1029 * emit two texture descriptors for each input, as a workaround for
1030 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1031 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1032 * in the pair
1033 * TODO: a smarter workaround
1034 */
1035
1036 if (!subpass->input_count)
1037 return (struct tu_draw_state) {};
1038
1039 struct tu_cs_memory texture;
1040 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1041 A6XX_TEX_CONST_DWORDS, &texture);
1042 assert(result == VK_SUCCESS);
1043
1044 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1045 uint32_t a = subpass->input_attachments[i / 2].attachment;
1046 if (a == VK_ATTACHMENT_UNUSED)
1047 continue;
1048
1049 struct tu_image_view *iview =
1050 cmd->state.framebuffer->attachments[a].attachment;
1051 const struct tu_render_pass_attachment *att =
1052 &cmd->state.pass->attachments[a];
1053 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1054
1055 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1056
1057 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1058 /* note this works because spec says fb and input attachments
1059 * must use identity swizzle
1060 */
1061 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1062 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1063 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1064 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1065 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1066 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1067 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1068 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1069 }
1070
1071 if (!gmem)
1072 continue;
1073
1074 /* patched for gmem */
1075 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1076 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1077 dst[2] =
1078 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1079 A6XX_TEX_CONST_2_PITCH(cmd->state.framebuffer->tile0.width * att->cpp);
1080 dst[3] = 0;
1081 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1082 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1083 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1084 dst[i] = 0;
1085 }
1086
1087 struct tu_cs cs;
1088 struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
1089
1090 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1091 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1092 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1093 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1094 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1095 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1096 tu_cs_emit_qw(&cs, texture.iova);
1097
1098 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1099 tu_cs_emit_qw(&cs, texture.iova);
1100
1101 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1102
1103 assert(cs.cur == cs.end); /* validate draw state size */
1104
1105 return ds;
1106 }
1107
1108 static void
1109 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1110 {
1111 struct tu_cs *cs = &cmd->draw_cs;
1112
1113 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1114 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
1115 tu_emit_input_attachments(cmd, subpass, true));
1116 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
1117 tu_emit_input_attachments(cmd, subpass, false));
1118 }
1119
1120 static void
1121 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1122 const VkRenderPassBeginInfo *info)
1123 {
1124 struct tu_cs *cs = &cmd->draw_cs;
1125
1126 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1127
1128 tu6_emit_blit_scissor(cmd, cs, true);
1129
1130 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1131 tu_load_gmem_attachment(cmd, cs, i, false);
1132
1133 tu6_emit_blit_scissor(cmd, cs, false);
1134
1135 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1136 tu_clear_gmem_attachment(cmd, cs, i, info);
1137
1138 tu_cond_exec_end(cs);
1139
1140 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1141
1142 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1143 tu_clear_sysmem_attachment(cmd, cs, i, info);
1144
1145 tu_cond_exec_end(cs);
1146 }
1147
1148 static void
1149 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1150 {
1151 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1152
1153 assert(fb->width > 0 && fb->height > 0);
1154 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1155 tu6_emit_window_offset(cs, 0, 0);
1156
1157 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1158
1159 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1160
1161 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1162 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1163
1164 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1165 tu_cs_emit(cs, 0x0);
1166
1167 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1168
1169 /* enable stream-out, with sysmem there is only one pass: */
1170 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1171
1172 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1173 tu_cs_emit(cs, 0x1);
1174
1175 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1176 tu_cs_emit(cs, 0x0);
1177
1178 tu_cs_sanity_check(cs);
1179 }
1180
1181 static void
1182 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1183 {
1184 /* Do any resolves of the last subpass. These are handled in the
1185 * tile_store_ib in the gmem path.
1186 */
1187 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1188
1189 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1190
1191 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1192 tu_cs_emit(cs, 0x0);
1193
1194 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1195
1196 tu_cs_sanity_check(cs);
1197 }
1198
1199 static void
1200 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1201 {
1202 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1203
1204 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1205
1206 /* lrz clear? */
1207
1208 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1209 tu_cs_emit(cs, 0x0);
1210
1211 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1212
1213 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1214 if (use_hw_binning(cmd)) {
1215 /* enable stream-out during binning pass: */
1216 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1217
1218 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1219 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1220
1221 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1222
1223 tu6_emit_binning_pass(cmd, cs);
1224
1225 /* and disable stream-out for draw pass: */
1226 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
1227
1228 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1229 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1230
1231 tu_cs_emit_regs(cs,
1232 A6XX_VFD_MODE_CNTL(0));
1233
1234 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1235
1236 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1237
1238 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1239 tu_cs_emit(cs, 0x1);
1240 } else {
1241 /* no binning pass, so enable stream-out for draw pass:: */
1242 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1243
1244 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height, 0x6000000);
1245 }
1246
1247 tu_cs_sanity_check(cs);
1248 }
1249
1250 static void
1251 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1252 {
1253 tu_cs_emit_call(cs, &cmd->draw_cs);
1254
1255 if (use_hw_binning(cmd)) {
1256 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1257 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1258 }
1259
1260 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1261
1262 tu_cs_sanity_check(cs);
1263 }
1264
1265 static void
1266 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1267 {
1268 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1269
1270 tu_cs_emit_regs(cs,
1271 A6XX_GRAS_LRZ_CNTL(0));
1272
1273 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1274
1275 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1276
1277 tu_cs_sanity_check(cs);
1278 }
1279
1280 static void
1281 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1282 {
1283 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1284
1285 tu6_tile_render_begin(cmd, &cmd->cs);
1286
1287 uint32_t pipe = 0;
1288 for (uint32_t py = 0; py < fb->pipe_count.height; py++) {
1289 for (uint32_t px = 0; px < fb->pipe_count.width; px++, pipe++) {
1290 uint32_t tx1 = px * fb->pipe0.width;
1291 uint32_t ty1 = py * fb->pipe0.height;
1292 uint32_t tx2 = MIN2(tx1 + fb->pipe0.width, fb->tile_count.width);
1293 uint32_t ty2 = MIN2(ty1 + fb->pipe0.height, fb->tile_count.height);
1294 uint32_t slot = 0;
1295 for (uint32_t ty = ty1; ty < ty2; ty++) {
1296 for (uint32_t tx = tx1; tx < tx2; tx++, slot++) {
1297 tu6_emit_tile_select(cmd, &cmd->cs, tx, ty, pipe, slot);
1298 tu6_render_tile(cmd, &cmd->cs);
1299 }
1300 }
1301 }
1302 }
1303
1304 tu6_tile_render_end(cmd, &cmd->cs);
1305 }
1306
1307 static void
1308 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1309 {
1310 tu6_sysmem_render_begin(cmd, &cmd->cs);
1311
1312 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1313
1314 tu6_sysmem_render_end(cmd, &cmd->cs);
1315 }
1316
1317 static void
1318 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1319 {
1320 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1321 struct tu_cs sub_cs;
1322
1323 VkResult result =
1324 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1325 if (result != VK_SUCCESS) {
1326 cmd->record_result = result;
1327 return;
1328 }
1329
1330 /* emit to tile-store sub_cs */
1331 tu6_emit_tile_store(cmd, &sub_cs);
1332
1333 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1334 }
1335
1336 static VkResult
1337 tu_create_cmd_buffer(struct tu_device *device,
1338 struct tu_cmd_pool *pool,
1339 VkCommandBufferLevel level,
1340 VkCommandBuffer *pCommandBuffer)
1341 {
1342 struct tu_cmd_buffer *cmd_buffer;
1343
1344 cmd_buffer = vk_object_zalloc(&device->vk, NULL, sizeof(*cmd_buffer),
1345 VK_OBJECT_TYPE_COMMAND_BUFFER);
1346 if (cmd_buffer == NULL)
1347 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1348
1349 cmd_buffer->device = device;
1350 cmd_buffer->pool = pool;
1351 cmd_buffer->level = level;
1352
1353 if (pool) {
1354 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1355 cmd_buffer->queue_family_index = pool->queue_family_index;
1356
1357 } else {
1358 /* Init the pool_link so we can safely call list_del when we destroy
1359 * the command buffer
1360 */
1361 list_inithead(&cmd_buffer->pool_link);
1362 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1363 }
1364
1365 tu_bo_list_init(&cmd_buffer->bo_list);
1366 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1367 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1368 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1369 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1370
1371 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1372
1373 list_inithead(&cmd_buffer->upload.list);
1374
1375 return VK_SUCCESS;
1376 }
1377
1378 static void
1379 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1380 {
1381 list_del(&cmd_buffer->pool_link);
1382
1383 tu_cs_finish(&cmd_buffer->cs);
1384 tu_cs_finish(&cmd_buffer->draw_cs);
1385 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1386 tu_cs_finish(&cmd_buffer->sub_cs);
1387
1388 tu_bo_list_destroy(&cmd_buffer->bo_list);
1389 vk_object_free(&cmd_buffer->device->vk, &cmd_buffer->pool->alloc, cmd_buffer);
1390 }
1391
1392 static VkResult
1393 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1394 {
1395 cmd_buffer->record_result = VK_SUCCESS;
1396
1397 tu_bo_list_reset(&cmd_buffer->bo_list);
1398 tu_cs_reset(&cmd_buffer->cs);
1399 tu_cs_reset(&cmd_buffer->draw_cs);
1400 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1401 tu_cs_reset(&cmd_buffer->sub_cs);
1402
1403 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1404 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1405
1406 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1407
1408 return cmd_buffer->record_result;
1409 }
1410
1411 VkResult
1412 tu_AllocateCommandBuffers(VkDevice _device,
1413 const VkCommandBufferAllocateInfo *pAllocateInfo,
1414 VkCommandBuffer *pCommandBuffers)
1415 {
1416 TU_FROM_HANDLE(tu_device, device, _device);
1417 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1418
1419 VkResult result = VK_SUCCESS;
1420 uint32_t i;
1421
1422 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1423
1424 if (!list_is_empty(&pool->free_cmd_buffers)) {
1425 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1426 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1427
1428 list_del(&cmd_buffer->pool_link);
1429 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1430
1431 result = tu_reset_cmd_buffer(cmd_buffer);
1432 cmd_buffer->level = pAllocateInfo->level;
1433
1434 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1435 } else {
1436 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1437 &pCommandBuffers[i]);
1438 }
1439 if (result != VK_SUCCESS)
1440 break;
1441 }
1442
1443 if (result != VK_SUCCESS) {
1444 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1445 pCommandBuffers);
1446
1447 /* From the Vulkan 1.0.66 spec:
1448 *
1449 * "vkAllocateCommandBuffers can be used to create multiple
1450 * command buffers. If the creation of any of those command
1451 * buffers fails, the implementation must destroy all
1452 * successfully created command buffer objects from this
1453 * command, set all entries of the pCommandBuffers array to
1454 * NULL and return the error."
1455 */
1456 memset(pCommandBuffers, 0,
1457 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1458 }
1459
1460 return result;
1461 }
1462
1463 void
1464 tu_FreeCommandBuffers(VkDevice device,
1465 VkCommandPool commandPool,
1466 uint32_t commandBufferCount,
1467 const VkCommandBuffer *pCommandBuffers)
1468 {
1469 for (uint32_t i = 0; i < commandBufferCount; i++) {
1470 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1471
1472 if (cmd_buffer) {
1473 if (cmd_buffer->pool) {
1474 list_del(&cmd_buffer->pool_link);
1475 list_addtail(&cmd_buffer->pool_link,
1476 &cmd_buffer->pool->free_cmd_buffers);
1477 } else
1478 tu_cmd_buffer_destroy(cmd_buffer);
1479 }
1480 }
1481 }
1482
1483 VkResult
1484 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1485 VkCommandBufferResetFlags flags)
1486 {
1487 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1488 return tu_reset_cmd_buffer(cmd_buffer);
1489 }
1490
1491 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1492 * invalidations.
1493 */
1494 static void
1495 tu_cache_init(struct tu_cache_state *cache)
1496 {
1497 cache->flush_bits = 0;
1498 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1499 }
1500
1501 VkResult
1502 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1503 const VkCommandBufferBeginInfo *pBeginInfo)
1504 {
1505 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1506 VkResult result = VK_SUCCESS;
1507
1508 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1509 /* If the command buffer has already been resetted with
1510 * vkResetCommandBuffer, no need to do it again.
1511 */
1512 result = tu_reset_cmd_buffer(cmd_buffer);
1513 if (result != VK_SUCCESS)
1514 return result;
1515 }
1516
1517 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1518 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1519
1520 tu_cache_init(&cmd_buffer->state.cache);
1521 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1522 cmd_buffer->usage_flags = pBeginInfo->flags;
1523
1524 tu_cs_begin(&cmd_buffer->cs);
1525 tu_cs_begin(&cmd_buffer->draw_cs);
1526 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1527
1528 /* setup initial configuration into command buffer */
1529 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1530 switch (cmd_buffer->queue_family_index) {
1531 case TU_QUEUE_GENERAL:
1532 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1533 break;
1534 default:
1535 break;
1536 }
1537 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1538 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1539 assert(pBeginInfo->pInheritanceInfo);
1540 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1541 cmd_buffer->state.subpass =
1542 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1543 } else {
1544 /* When executing in the middle of another command buffer, the CCU
1545 * state is unknown.
1546 */
1547 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1548 }
1549 }
1550
1551 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1552
1553 return VK_SUCCESS;
1554 }
1555
1556 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1557 * rendering can skip over unused state), so we need to collect all the
1558 * bindings together into a single state emit at draw time.
1559 */
1560 void
1561 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1562 uint32_t firstBinding,
1563 uint32_t bindingCount,
1564 const VkBuffer *pBuffers,
1565 const VkDeviceSize *pOffsets)
1566 {
1567 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1568
1569 assert(firstBinding + bindingCount <= MAX_VBS);
1570
1571 for (uint32_t i = 0; i < bindingCount; i++) {
1572 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1573
1574 cmd->state.vb.buffers[firstBinding + i] = buf;
1575 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1576
1577 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1578 }
1579
1580 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1581 }
1582
1583 void
1584 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1585 VkBuffer buffer,
1586 VkDeviceSize offset,
1587 VkIndexType indexType)
1588 {
1589 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1590 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1591
1592
1593
1594 uint32_t index_size, index_shift, restart_index;
1595
1596 switch (indexType) {
1597 case VK_INDEX_TYPE_UINT16:
1598 index_size = INDEX4_SIZE_16_BIT;
1599 index_shift = 1;
1600 restart_index = 0xffff;
1601 break;
1602 case VK_INDEX_TYPE_UINT32:
1603 index_size = INDEX4_SIZE_32_BIT;
1604 index_shift = 2;
1605 restart_index = 0xffffffff;
1606 break;
1607 case VK_INDEX_TYPE_UINT8_EXT:
1608 index_size = INDEX4_SIZE_8_BIT;
1609 index_shift = 0;
1610 restart_index = 0xff;
1611 break;
1612 default:
1613 unreachable("invalid VkIndexType");
1614 }
1615
1616 /* initialize/update the restart index */
1617 if (cmd->state.index_size != index_size)
1618 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1619
1620 assert(buf->size >= offset);
1621
1622 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1623 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1624 cmd->state.index_size = index_size;
1625
1626 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1627 }
1628
1629 void
1630 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1631 VkPipelineBindPoint pipelineBindPoint,
1632 VkPipelineLayout _layout,
1633 uint32_t firstSet,
1634 uint32_t descriptorSetCount,
1635 const VkDescriptorSet *pDescriptorSets,
1636 uint32_t dynamicOffsetCount,
1637 const uint32_t *pDynamicOffsets)
1638 {
1639 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1640 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1641 unsigned dyn_idx = 0;
1642
1643 struct tu_descriptor_state *descriptors_state =
1644 tu_get_descriptors_state(cmd, pipelineBindPoint);
1645
1646 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1647 unsigned idx = i + firstSet;
1648 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1649
1650 descriptors_state->sets[idx] = set;
1651
1652 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1653 /* update the contents of the dynamic descriptor set */
1654 unsigned src_idx = j;
1655 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1656 assert(dyn_idx < dynamicOffsetCount);
1657
1658 uint32_t *dst =
1659 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1660 uint32_t *src =
1661 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1662 uint32_t offset = pDynamicOffsets[dyn_idx];
1663
1664 /* Patch the storage/uniform descriptors right away. */
1665 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1666 /* Note: we can assume here that the addition won't roll over and
1667 * change the SIZE field.
1668 */
1669 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1670 va += offset;
1671 dst[0] = va;
1672 dst[1] = va >> 32;
1673 } else {
1674 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1675 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1676 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1677 va += offset;
1678 dst[4] = va;
1679 dst[5] = va >> 32;
1680 }
1681 }
1682
1683 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1684 if (set->buffers[j]) {
1685 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1686 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1687 }
1688 }
1689
1690 if (set->size > 0) {
1691 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1692 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1693 }
1694 }
1695 assert(dyn_idx == dynamicOffsetCount);
1696
1697 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_invalidate_value;
1698 uint64_t addr[MAX_SETS + 1] = {};
1699 struct tu_cs *cs, state_cs;
1700
1701 for (uint32_t i = 0; i < MAX_SETS; i++) {
1702 struct tu_descriptor_set *set = descriptors_state->sets[i];
1703 if (set)
1704 addr[i] = set->va | 3;
1705 }
1706
1707 if (layout->dynamic_offset_count) {
1708 /* allocate and fill out dynamic descriptor set */
1709 struct tu_cs_memory dynamic_desc_set;
1710 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1711 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1712 assert(result == VK_SUCCESS);
1713
1714 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1715 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1716 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1717 }
1718
1719 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1720 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1721 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1722 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_GFX_BINDLESS(0x1f);
1723
1724 cmd->state.desc_sets = tu_cs_draw_state(&cmd->sub_cs, &state_cs, 24);
1725 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
1726 cs = &state_cs;
1727 } else {
1728 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1729
1730 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1731 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1732 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_CS_BINDLESS(0x1f);
1733
1734 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
1735 cs = &cmd->cs;
1736 }
1737
1738 tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 10);
1739 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1740 tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 10);
1741 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1742 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(.dword = hlsq_invalidate_value));
1743
1744 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1745 assert(cs->cur == cs->end); /* validate draw state size */
1746 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1747 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
1748 }
1749 }
1750
1751 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1752 uint32_t firstBinding,
1753 uint32_t bindingCount,
1754 const VkBuffer *pBuffers,
1755 const VkDeviceSize *pOffsets,
1756 const VkDeviceSize *pSizes)
1757 {
1758 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1759 struct tu_cs *cs = &cmd->draw_cs;
1760
1761 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1762 * presumably there isn't any benefit using a draw state when the
1763 * condition is (SYSMEM | BINNING)
1764 */
1765 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1766 CP_COND_REG_EXEC_0_SYSMEM |
1767 CP_COND_REG_EXEC_0_BINNING);
1768
1769 for (uint32_t i = 0; i < bindingCount; i++) {
1770 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1771 uint64_t iova = buf->bo->iova + pOffsets[i];
1772 uint32_t size = buf->bo->size - pOffsets[i];
1773 uint32_t idx = i + firstBinding;
1774
1775 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1776 size = pSizes[i];
1777
1778 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1779 uint32_t offset = iova & 0x1f;
1780 iova &= ~(uint64_t) 0x1f;
1781
1782 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1783 tu_cs_emit_qw(cs, iova);
1784 tu_cs_emit(cs, size + offset);
1785
1786 cmd->state.streamout_offset[idx] = offset;
1787
1788 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1789 }
1790
1791 tu_cond_exec_end(cs);
1792 }
1793
1794 void
1795 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1796 uint32_t firstCounterBuffer,
1797 uint32_t counterBufferCount,
1798 const VkBuffer *pCounterBuffers,
1799 const VkDeviceSize *pCounterBufferOffsets)
1800 {
1801 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1802 struct tu_cs *cs = &cmd->draw_cs;
1803
1804 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1805 CP_COND_REG_EXEC_0_SYSMEM |
1806 CP_COND_REG_EXEC_0_BINNING);
1807
1808 /* TODO: only update offset for active buffers */
1809 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1810 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1811
1812 for (uint32_t i = 0; i < counterBufferCount; i++) {
1813 uint32_t idx = firstCounterBuffer + i;
1814 uint32_t offset = cmd->state.streamout_offset[idx];
1815
1816 if (!pCounterBuffers[i])
1817 continue;
1818
1819 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1820
1821 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1822
1823 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1824 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1825 CP_MEM_TO_REG_0_UNK31 |
1826 CP_MEM_TO_REG_0_CNT(1));
1827 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1828
1829 if (offset) {
1830 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1831 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1832 CP_REG_RMW_0_SRC1_ADD);
1833 tu_cs_emit_qw(cs, 0xffffffff);
1834 tu_cs_emit_qw(cs, offset);
1835 }
1836 }
1837
1838 tu_cond_exec_end(cs);
1839 }
1840
1841 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1842 uint32_t firstCounterBuffer,
1843 uint32_t counterBufferCount,
1844 const VkBuffer *pCounterBuffers,
1845 const VkDeviceSize *pCounterBufferOffsets)
1846 {
1847 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1848 struct tu_cs *cs = &cmd->draw_cs;
1849
1850 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1851 CP_COND_REG_EXEC_0_SYSMEM |
1852 CP_COND_REG_EXEC_0_BINNING);
1853
1854 /* TODO: only flush buffers that need to be flushed */
1855 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
1856 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
1857 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
1858 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[i]));
1859 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
1860 }
1861
1862 for (uint32_t i = 0; i < counterBufferCount; i++) {
1863 uint32_t idx = firstCounterBuffer + i;
1864 uint32_t offset = cmd->state.streamout_offset[idx];
1865
1866 if (!pCounterBuffers[i])
1867 continue;
1868
1869 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1870
1871 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1872
1873 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
1874 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1875 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1876 CP_MEM_TO_REG_0_SHIFT_BY_2 |
1877 0x40000 | /* ??? */
1878 CP_MEM_TO_REG_0_UNK31 |
1879 CP_MEM_TO_REG_0_CNT(1));
1880 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[idx]));
1881
1882 if (offset) {
1883 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1884 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1885 CP_REG_RMW_0_SRC1_ADD);
1886 tu_cs_emit_qw(cs, 0xffffffff);
1887 tu_cs_emit_qw(cs, -offset);
1888 }
1889
1890 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
1891 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1892 CP_REG_TO_MEM_0_CNT(1));
1893 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1894 }
1895
1896 tu_cond_exec_end(cs);
1897
1898 cmd->state.xfb_used = true;
1899 }
1900
1901 void
1902 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
1903 VkPipelineLayout layout,
1904 VkShaderStageFlags stageFlags,
1905 uint32_t offset,
1906 uint32_t size,
1907 const void *pValues)
1908 {
1909 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1910 memcpy((void*) cmd->push_constants + offset, pValues, size);
1911 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
1912 }
1913
1914 /* Flush everything which has been made available but we haven't actually
1915 * flushed yet.
1916 */
1917 static void
1918 tu_flush_all_pending(struct tu_cache_state *cache)
1919 {
1920 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
1921 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
1922 }
1923
1924 VkResult
1925 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
1926 {
1927 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1928
1929 /* We currently flush CCU at the end of the command buffer, like
1930 * what the blob does. There's implicit synchronization around every
1931 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
1932 * know yet if this command buffer will be the last in the submit so we
1933 * have to defensively flush everything else.
1934 *
1935 * TODO: We could definitely do better than this, since these flushes
1936 * aren't required by Vulkan, but we'd need kernel support to do that.
1937 * Ideally, we'd like the kernel to flush everything afterwards, so that we
1938 * wouldn't have to do any flushes here, and when submitting multiple
1939 * command buffers there wouldn't be any unnecessary flushes in between.
1940 */
1941 if (cmd_buffer->state.pass) {
1942 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
1943 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
1944 } else {
1945 tu_flush_all_pending(&cmd_buffer->state.cache);
1946 cmd_buffer->state.cache.flush_bits |=
1947 TU_CMD_FLAG_CCU_FLUSH_COLOR |
1948 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
1949 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
1950 }
1951
1952 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->global_bo,
1953 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1954
1955 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
1956 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
1957 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1958 }
1959
1960 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
1961 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
1962 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1963 }
1964
1965 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
1966 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
1967 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1968 }
1969
1970 tu_cs_end(&cmd_buffer->cs);
1971 tu_cs_end(&cmd_buffer->draw_cs);
1972 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
1973
1974 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
1975
1976 return cmd_buffer->record_result;
1977 }
1978
1979 static struct tu_cs
1980 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
1981 {
1982 struct tu_cs cs;
1983
1984 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
1985 cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
1986
1987 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1988 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
1989
1990 return cs;
1991 }
1992
1993 void
1994 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
1995 VkPipelineBindPoint pipelineBindPoint,
1996 VkPipeline _pipeline)
1997 {
1998 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1999 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2000
2001 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2002 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2003 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2004 }
2005
2006 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2007 cmd->state.compute_pipeline = pipeline;
2008 tu_cs_emit_state_ib(&cmd->cs, pipeline->program.state);
2009 return;
2010 }
2011
2012 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2013
2014 cmd->state.pipeline = pipeline;
2015 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
2016
2017 struct tu_cs *cs = &cmd->draw_cs;
2018 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2019 uint32_t i;
2020
2021 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2022 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
2023 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
2024 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
2025 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
2026 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
2027 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
2028 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
2029 for_each_bit(i, mask)
2030 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2031
2032 /* If the new pipeline requires more VBs than we had previously set up, we
2033 * need to re-emit them in SDS. If it requires the same set or fewer, we
2034 * can just re-use the old SDS.
2035 */
2036 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2037 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2038
2039 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2040 * so the dynamic state ib must be updated when pipeline changes
2041 */
2042 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2043 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2044
2045 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2046 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2047
2048 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2049 }
2050 }
2051
2052 void
2053 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2054 uint32_t firstViewport,
2055 uint32_t viewportCount,
2056 const VkViewport *pViewports)
2057 {
2058 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2059 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2060
2061 assert(firstViewport == 0 && viewportCount == 1);
2062
2063 tu6_emit_viewport(&cs, pViewports);
2064 }
2065
2066 void
2067 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2068 uint32_t firstScissor,
2069 uint32_t scissorCount,
2070 const VkRect2D *pScissors)
2071 {
2072 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2073 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2074
2075 assert(firstScissor == 0 && scissorCount == 1);
2076
2077 tu6_emit_scissor(&cs, pScissors);
2078 }
2079
2080 void
2081 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2082 {
2083 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2084 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2085
2086 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2087 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2088
2089 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2090 }
2091
2092 void
2093 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2094 float depthBiasConstantFactor,
2095 float depthBiasClamp,
2096 float depthBiasSlopeFactor)
2097 {
2098 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2099 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2100
2101 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2102 }
2103
2104 void
2105 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2106 const float blendConstants[4])
2107 {
2108 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2109 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2110
2111 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2112 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2113 }
2114
2115 void
2116 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2117 float minDepthBounds,
2118 float maxDepthBounds)
2119 {
2120 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2121 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
2122
2123 tu_cs_emit_regs(&cs,
2124 A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
2125 A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
2126 }
2127
2128 static void
2129 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2130 {
2131 if (face & VK_STENCIL_FACE_FRONT_BIT)
2132 *value = (*value & 0xff00) | (mask & 0xff);
2133 if (face & VK_STENCIL_FACE_BACK_BIT)
2134 *value = (*value & 0xff) | (mask & 0xff) << 8;
2135 }
2136
2137 void
2138 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2139 VkStencilFaceFlags faceMask,
2140 uint32_t compareMask)
2141 {
2142 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2143 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2144
2145 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2146
2147 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2148 }
2149
2150 void
2151 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2152 VkStencilFaceFlags faceMask,
2153 uint32_t writeMask)
2154 {
2155 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2156 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2157
2158 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2159
2160 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2161 }
2162
2163 void
2164 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2165 VkStencilFaceFlags faceMask,
2166 uint32_t reference)
2167 {
2168 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2169 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2170
2171 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2172
2173 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2174 }
2175
2176 void
2177 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2178 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2179 {
2180 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2181 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2182
2183 assert(pSampleLocationsInfo);
2184
2185 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2186 }
2187
2188 static void
2189 tu_flush_for_access(struct tu_cache_state *cache,
2190 enum tu_cmd_access_mask src_mask,
2191 enum tu_cmd_access_mask dst_mask)
2192 {
2193 enum tu_cmd_flush_bits flush_bits = 0;
2194
2195 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2196 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2197 }
2198
2199 #define SRC_FLUSH(domain, flush, invalidate) \
2200 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2201 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2202 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2203 }
2204
2205 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2206 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2207 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2208
2209 #undef SRC_FLUSH
2210
2211 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2212 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2213 flush_bits |= TU_CMD_FLAG_##flush; \
2214 cache->pending_flush_bits |= \
2215 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2216 }
2217
2218 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2219 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2220
2221 #undef SRC_INCOHERENT_FLUSH
2222
2223 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
2224 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2225 }
2226
2227 #define DST_FLUSH(domain, flush, invalidate) \
2228 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2229 TU_ACCESS_##domain##_WRITE)) { \
2230 flush_bits |= cache->pending_flush_bits & \
2231 (TU_CMD_FLAG_##invalidate | \
2232 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2233 }
2234
2235 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2236 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2237 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2238
2239 #undef DST_FLUSH
2240
2241 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2242 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2243 TU_ACCESS_##domain##_WRITE)) { \
2244 flush_bits |= TU_CMD_FLAG_##invalidate | \
2245 (cache->pending_flush_bits & \
2246 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2247 }
2248
2249 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2250 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2251
2252 #undef DST_INCOHERENT_FLUSH
2253
2254 if (dst_mask & TU_ACCESS_WFI_READ) {
2255 flush_bits |= TU_CMD_FLAG_WFI;
2256 }
2257
2258 cache->flush_bits |= flush_bits;
2259 cache->pending_flush_bits &= ~flush_bits;
2260 }
2261
2262 static enum tu_cmd_access_mask
2263 vk2tu_access(VkAccessFlags flags, bool gmem)
2264 {
2265 enum tu_cmd_access_mask mask = 0;
2266
2267 /* If the GPU writes a buffer that is then read by an indirect draw
2268 * command, we theoretically need a WFI + WAIT_FOR_ME combination to
2269 * wait for the writes to complete. The WAIT_FOR_ME is performed as part
2270 * of the draw by the firmware, so we just need to execute a WFI.
2271 */
2272 if (flags &
2273 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2274 VK_ACCESS_MEMORY_READ_BIT)) {
2275 mask |= TU_ACCESS_WFI_READ;
2276 }
2277
2278 if (flags &
2279 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2280 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
2281 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2282 VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
2283 VK_ACCESS_MEMORY_READ_BIT)) {
2284 mask |= TU_ACCESS_SYSMEM_READ;
2285 }
2286
2287 if (flags &
2288 (VK_ACCESS_HOST_WRITE_BIT |
2289 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
2290 VK_ACCESS_MEMORY_WRITE_BIT)) {
2291 mask |= TU_ACCESS_SYSMEM_WRITE;
2292 }
2293
2294 if (flags &
2295 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2296 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2297 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2298 /* TODO: Is there a no-cache bit for textures so that we can ignore
2299 * these?
2300 */
2301 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2302 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2303 VK_ACCESS_MEMORY_READ_BIT)) {
2304 mask |= TU_ACCESS_UCHE_READ;
2305 }
2306
2307 if (flags &
2308 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2309 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2310 VK_ACCESS_MEMORY_WRITE_BIT)) {
2311 mask |= TU_ACCESS_UCHE_WRITE;
2312 }
2313
2314 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2315 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2316 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2317 * can ignore CCU and pretend that color attachments and transfers use
2318 * sysmem directly.
2319 */
2320
2321 if (flags &
2322 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2323 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2324 VK_ACCESS_MEMORY_READ_BIT)) {
2325 if (gmem)
2326 mask |= TU_ACCESS_SYSMEM_READ;
2327 else
2328 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2329 }
2330
2331 if (flags &
2332 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2333 VK_ACCESS_MEMORY_READ_BIT)) {
2334 if (gmem)
2335 mask |= TU_ACCESS_SYSMEM_READ;
2336 else
2337 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2338 }
2339
2340 if (flags &
2341 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2342 VK_ACCESS_MEMORY_WRITE_BIT)) {
2343 if (gmem) {
2344 mask |= TU_ACCESS_SYSMEM_WRITE;
2345 } else {
2346 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2347 }
2348 }
2349
2350 if (flags &
2351 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2352 VK_ACCESS_MEMORY_WRITE_BIT)) {
2353 if (gmem) {
2354 mask |= TU_ACCESS_SYSMEM_WRITE;
2355 } else {
2356 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2357 }
2358 }
2359
2360 /* When the dst access is a transfer read/write, it seems we sometimes need
2361 * to insert a WFI after any flushes, to guarantee that the flushes finish
2362 * before the 2D engine starts. However the opposite (i.e. a WFI after
2363 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2364 * the blob doesn't emit such a WFI.
2365 */
2366
2367 if (flags &
2368 (VK_ACCESS_TRANSFER_WRITE_BIT |
2369 VK_ACCESS_MEMORY_WRITE_BIT)) {
2370 if (gmem) {
2371 mask |= TU_ACCESS_SYSMEM_WRITE;
2372 } else {
2373 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2374 }
2375 mask |= TU_ACCESS_WFI_READ;
2376 }
2377
2378 if (flags &
2379 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2380 VK_ACCESS_MEMORY_READ_BIT)) {
2381 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2382 }
2383
2384 return mask;
2385 }
2386
2387
2388 void
2389 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2390 uint32_t commandBufferCount,
2391 const VkCommandBuffer *pCmdBuffers)
2392 {
2393 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2394 VkResult result;
2395
2396 assert(commandBufferCount > 0);
2397
2398 /* Emit any pending flushes. */
2399 if (cmd->state.pass) {
2400 tu_flush_all_pending(&cmd->state.renderpass_cache);
2401 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2402 } else {
2403 tu_flush_all_pending(&cmd->state.cache);
2404 tu_emit_cache_flush(cmd, &cmd->cs);
2405 }
2406
2407 for (uint32_t i = 0; i < commandBufferCount; i++) {
2408 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2409
2410 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2411 if (result != VK_SUCCESS) {
2412 cmd->record_result = result;
2413 break;
2414 }
2415
2416 if (secondary->usage_flags &
2417 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2418 assert(tu_cs_is_empty(&secondary->cs));
2419
2420 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2421 if (result != VK_SUCCESS) {
2422 cmd->record_result = result;
2423 break;
2424 }
2425
2426 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2427 &secondary->draw_epilogue_cs);
2428 if (result != VK_SUCCESS) {
2429 cmd->record_result = result;
2430 break;
2431 }
2432
2433 if (secondary->has_tess)
2434 cmd->has_tess = true;
2435 } else {
2436 assert(tu_cs_is_empty(&secondary->draw_cs));
2437 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2438
2439 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2440 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2441 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2442 }
2443
2444 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2445 }
2446
2447 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2448 }
2449 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2450
2451 /* After executing secondary command buffers, there may have been arbitrary
2452 * flushes executed, so when we encounter a pipeline barrier with a
2453 * srcMask, we have to assume that we need to invalidate. Therefore we need
2454 * to re-initialize the cache with all pending invalidate bits set.
2455 */
2456 if (cmd->state.pass) {
2457 tu_cache_init(&cmd->state.renderpass_cache);
2458 } else {
2459 tu_cache_init(&cmd->state.cache);
2460 }
2461 }
2462
2463 VkResult
2464 tu_CreateCommandPool(VkDevice _device,
2465 const VkCommandPoolCreateInfo *pCreateInfo,
2466 const VkAllocationCallbacks *pAllocator,
2467 VkCommandPool *pCmdPool)
2468 {
2469 TU_FROM_HANDLE(tu_device, device, _device);
2470 struct tu_cmd_pool *pool;
2471
2472 pool = vk_object_alloc(&device->vk, pAllocator, sizeof(*pool),
2473 VK_OBJECT_TYPE_COMMAND_POOL);
2474 if (pool == NULL)
2475 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2476
2477 if (pAllocator)
2478 pool->alloc = *pAllocator;
2479 else
2480 pool->alloc = device->vk.alloc;
2481
2482 list_inithead(&pool->cmd_buffers);
2483 list_inithead(&pool->free_cmd_buffers);
2484
2485 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2486
2487 *pCmdPool = tu_cmd_pool_to_handle(pool);
2488
2489 return VK_SUCCESS;
2490 }
2491
2492 void
2493 tu_DestroyCommandPool(VkDevice _device,
2494 VkCommandPool commandPool,
2495 const VkAllocationCallbacks *pAllocator)
2496 {
2497 TU_FROM_HANDLE(tu_device, device, _device);
2498 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2499
2500 if (!pool)
2501 return;
2502
2503 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2504 &pool->cmd_buffers, pool_link)
2505 {
2506 tu_cmd_buffer_destroy(cmd_buffer);
2507 }
2508
2509 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2510 &pool->free_cmd_buffers, pool_link)
2511 {
2512 tu_cmd_buffer_destroy(cmd_buffer);
2513 }
2514
2515 vk_object_free(&device->vk, pAllocator, pool);
2516 }
2517
2518 VkResult
2519 tu_ResetCommandPool(VkDevice device,
2520 VkCommandPool commandPool,
2521 VkCommandPoolResetFlags flags)
2522 {
2523 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2524 VkResult result;
2525
2526 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2527 pool_link)
2528 {
2529 result = tu_reset_cmd_buffer(cmd_buffer);
2530 if (result != VK_SUCCESS)
2531 return result;
2532 }
2533
2534 return VK_SUCCESS;
2535 }
2536
2537 void
2538 tu_TrimCommandPool(VkDevice device,
2539 VkCommandPool commandPool,
2540 VkCommandPoolTrimFlags flags)
2541 {
2542 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2543
2544 if (!pool)
2545 return;
2546
2547 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2548 &pool->free_cmd_buffers, pool_link)
2549 {
2550 tu_cmd_buffer_destroy(cmd_buffer);
2551 }
2552 }
2553
2554 static void
2555 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2556 const struct tu_subpass_barrier *barrier,
2557 bool external)
2558 {
2559 /* Note: we don't know until the end of the subpass whether we'll use
2560 * sysmem, so assume sysmem here to be safe.
2561 */
2562 struct tu_cache_state *cache =
2563 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2564 enum tu_cmd_access_mask src_flags =
2565 vk2tu_access(barrier->src_access_mask, false);
2566 enum tu_cmd_access_mask dst_flags =
2567 vk2tu_access(barrier->dst_access_mask, false);
2568
2569 if (barrier->incoherent_ccu_color)
2570 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2571 if (barrier->incoherent_ccu_depth)
2572 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2573
2574 tu_flush_for_access(cache, src_flags, dst_flags);
2575 }
2576
2577 void
2578 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2579 const VkRenderPassBeginInfo *pRenderPassBegin,
2580 VkSubpassContents contents)
2581 {
2582 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2583 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2584 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2585
2586 cmd->state.pass = pass;
2587 cmd->state.subpass = pass->subpasses;
2588 cmd->state.framebuffer = fb;
2589 cmd->state.render_area = pRenderPassBegin->renderArea;
2590
2591 tu_cmd_prepare_tile_store_ib(cmd);
2592
2593 /* Note: because this is external, any flushes will happen before draw_cs
2594 * gets called. However deferred flushes could have to happen later as part
2595 * of the subpass.
2596 */
2597 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2598 cmd->state.renderpass_cache.pending_flush_bits =
2599 cmd->state.cache.pending_flush_bits;
2600 cmd->state.renderpass_cache.flush_bits = 0;
2601
2602 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2603
2604 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2605 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2606 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2607 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2608
2609 tu_set_input_attachments(cmd, cmd->state.subpass);
2610
2611 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2612 const struct tu_image_view *iview = fb->attachments[i].attachment;
2613 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2614 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2615 }
2616
2617 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2618 }
2619
2620 void
2621 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2622 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2623 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2624 {
2625 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2626 pSubpassBeginInfo->contents);
2627 }
2628
2629 void
2630 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2631 {
2632 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2633 const struct tu_render_pass *pass = cmd->state.pass;
2634 struct tu_cs *cs = &cmd->draw_cs;
2635
2636 const struct tu_subpass *subpass = cmd->state.subpass++;
2637
2638 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2639
2640 if (subpass->resolve_attachments) {
2641 tu6_emit_blit_scissor(cmd, cs, true);
2642
2643 for (unsigned i = 0; i < subpass->color_count; i++) {
2644 uint32_t a = subpass->resolve_attachments[i].attachment;
2645 if (a == VK_ATTACHMENT_UNUSED)
2646 continue;
2647
2648 tu_store_gmem_attachment(cmd, cs, a,
2649 subpass->color_attachments[i].attachment);
2650
2651 if (pass->attachments[a].gmem_offset < 0)
2652 continue;
2653
2654 /* TODO:
2655 * check if the resolved attachment is needed by later subpasses,
2656 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2657 */
2658 tu_finishme("missing GMEM->GMEM resolve path\n");
2659 tu_load_gmem_attachment(cmd, cs, a, true);
2660 }
2661 }
2662
2663 tu_cond_exec_end(cs);
2664
2665 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2666
2667 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2668
2669 tu_cond_exec_end(cs);
2670
2671 /* Handle dependencies for the next subpass */
2672 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2673
2674 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2675 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2676 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2677 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2678 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2679
2680 tu_set_input_attachments(cmd, cmd->state.subpass);
2681 }
2682
2683 void
2684 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2685 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2686 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2687 {
2688 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2689 }
2690
2691 static void
2692 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2693 struct tu_descriptor_state *descriptors_state,
2694 gl_shader_stage type,
2695 uint32_t *push_constants)
2696 {
2697 const struct tu_program_descriptor_linkage *link =
2698 &pipeline->program.link[type];
2699 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2700
2701 if (link->push_consts.count > 0) {
2702 unsigned num_units = link->push_consts.count;
2703 unsigned offset = link->push_consts.lo;
2704 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2705 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2706 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2707 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2708 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2709 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2710 tu_cs_emit(cs, 0);
2711 tu_cs_emit(cs, 0);
2712 for (unsigned i = 0; i < num_units * 4; i++)
2713 tu_cs_emit(cs, push_constants[i + offset * 4]);
2714 }
2715
2716 for (uint32_t i = 0; i < state->num_enabled; i++) {
2717 uint32_t size = state->range[i].end - state->range[i].start;
2718 uint32_t offset = state->range[i].start;
2719
2720 /* and even if the start of the const buffer is before
2721 * first_immediate, the end may not be:
2722 */
2723 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2724
2725 if (size == 0)
2726 continue;
2727
2728 /* things should be aligned to vec4: */
2729 debug_assert((state->range[i].offset % 16) == 0);
2730 debug_assert((size % 16) == 0);
2731 debug_assert((offset % 16) == 0);
2732
2733 /* Dig out the descriptor from the descriptor state and read the VA from
2734 * it.
2735 */
2736 assert(state->range[i].ubo.bindless);
2737 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2738 descriptors_state->dynamic_descriptors :
2739 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2740 unsigned block = state->range[i].ubo.block;
2741 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2742 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2743 assert(va);
2744
2745 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2746 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2747 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2748 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2749 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2750 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2751 tu_cs_emit_qw(cs, va + offset);
2752 }
2753 }
2754
2755 static struct tu_draw_state
2756 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2757 const struct tu_pipeline *pipeline,
2758 struct tu_descriptor_state *descriptors_state,
2759 gl_shader_stage type)
2760 {
2761 struct tu_cs cs;
2762 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2763
2764 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2765
2766 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2767 }
2768
2769 static struct tu_draw_state
2770 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
2771 const struct tu_pipeline *pipeline)
2772 {
2773 struct tu_cs cs;
2774 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
2775
2776 int binding;
2777 for_each_bit(binding, pipeline->vi.bindings_used) {
2778 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
2779 const VkDeviceSize offset = buf->bo_offset +
2780 cmd->state.vb.offsets[binding];
2781
2782 tu_cs_emit_regs(&cs,
2783 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
2784 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
2785
2786 }
2787
2788 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
2789
2790 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2791 }
2792
2793 static uint64_t
2794 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
2795 uint32_t draw_count)
2796 {
2797 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2798 * Still not sure what to do here, so just allocate a reasonably large
2799 * BO and hope for the best for now. */
2800 if (!draw_count)
2801 draw_count = 2048;
2802
2803 /* the tess param BO is pipeline->tess.param_stride bytes per patch,
2804 * which includes both the per-vertex outputs and per-patch outputs
2805 * build_primitive_map in ir3 calculates this stride
2806 */
2807 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2808 uint32_t num_patches = draw_count / verts_per_patch;
2809 return num_patches * pipeline->tess.param_stride;
2810 }
2811
2812 static uint64_t
2813 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
2814 uint32_t draw_count)
2815 {
2816 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2817 * Still not sure what to do here, so just allocate a reasonably large
2818 * BO and hope for the best for now. */
2819 if (!draw_count)
2820 draw_count = 2048;
2821
2822 /* Each distinct patch gets its own tess factor output. */
2823 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2824 uint32_t num_patches = draw_count / verts_per_patch;
2825 uint32_t factor_stride;
2826 switch (pipeline->tess.patch_type) {
2827 case IR3_TESS_ISOLINES:
2828 factor_stride = 12;
2829 break;
2830 case IR3_TESS_TRIANGLES:
2831 factor_stride = 20;
2832 break;
2833 case IR3_TESS_QUADS:
2834 factor_stride = 28;
2835 break;
2836 default:
2837 unreachable("bad tessmode");
2838 }
2839 return factor_stride * num_patches;
2840 }
2841
2842 static VkResult
2843 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
2844 uint32_t draw_count,
2845 const struct tu_pipeline *pipeline,
2846 struct tu_draw_state *state)
2847 {
2848 struct tu_cs cs;
2849 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 20, &cs);
2850 if (result != VK_SUCCESS)
2851 return result;
2852
2853 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
2854 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
2855 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
2856 if (tess_bo_size > 0) {
2857 struct tu_bo *tess_bo;
2858 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
2859 if (result != VK_SUCCESS)
2860 return result;
2861
2862 tu_bo_list_add(&cmd->bo_list, tess_bo,
2863 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2864 uint64_t tess_factor_iova = tess_bo->iova;
2865 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
2866
2867 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2868 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
2869 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2870 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2871 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
2872 CP_LOAD_STATE6_0_NUM_UNIT(1));
2873 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2874 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2875 tu_cs_emit_qw(&cs, tess_param_iova);
2876 tu_cs_emit_qw(&cs, tess_factor_iova);
2877
2878 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2879 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
2880 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2881 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2882 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
2883 CP_LOAD_STATE6_0_NUM_UNIT(1));
2884 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2885 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2886 tu_cs_emit_qw(&cs, tess_param_iova);
2887 tu_cs_emit_qw(&cs, tess_factor_iova);
2888
2889 tu_cs_emit_pkt4(&cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
2890 tu_cs_emit_qw(&cs, tess_factor_iova);
2891
2892 /* TODO: Without this WFI here, the hardware seems unable to read these
2893 * addresses we just emitted. Freedreno emits these consts as part of
2894 * IB1 instead of in a draw state which might make this WFI unnecessary,
2895 * but it requires a bit more indirection (SS6_INDIRECT for consts). */
2896 tu_cs_emit_wfi(&cs);
2897 }
2898 *state = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2899 return VK_SUCCESS;
2900 }
2901
2902 static VkResult
2903 tu6_draw_common(struct tu_cmd_buffer *cmd,
2904 struct tu_cs *cs,
2905 bool indexed,
2906 /* note: draw_count is 0 for indirect */
2907 uint32_t draw_count)
2908 {
2909 const struct tu_pipeline *pipeline = cmd->state.pipeline;
2910 VkResult result;
2911
2912 struct tu_descriptor_state *descriptors_state =
2913 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
2914
2915 tu_emit_cache_flush_renderpass(cmd, cs);
2916
2917 /* TODO lrz */
2918
2919 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
2920 .primitive_restart =
2921 pipeline->ia.primitive_restart && indexed,
2922 .tess_upper_left_domain_origin =
2923 pipeline->tess.upper_left_domain_origin));
2924
2925 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
2926 cmd->state.shader_const[MESA_SHADER_VERTEX] =
2927 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
2928 cmd->state.shader_const[MESA_SHADER_TESS_CTRL] =
2929 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
2930 cmd->state.shader_const[MESA_SHADER_TESS_EVAL] =
2931 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
2932 cmd->state.shader_const[MESA_SHADER_GEOMETRY] =
2933 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
2934 cmd->state.shader_const[MESA_SHADER_FRAGMENT] =
2935 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
2936 }
2937
2938 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
2939 cmd->state.vertex_buffers = tu6_emit_vertex_buffers(cmd, pipeline);
2940
2941 bool has_tess =
2942 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
2943 struct tu_draw_state tess_consts = {};
2944 if (has_tess) {
2945 cmd->has_tess = true;
2946 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts);
2947 if (result != VK_SUCCESS)
2948 return result;
2949 }
2950
2951 /* for the first draw in a renderpass, re-emit all the draw states
2952 *
2953 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
2954 * used, then draw states must be re-emitted. note however this only happens
2955 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
2956 *
2957 * the two input attachment states are excluded because secondary command
2958 * buffer doesn't have a state ib to restore it, and not re-emitting them
2959 * is OK since CmdClearAttachments won't disable/overwrite them
2960 */
2961 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
2962 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
2963
2964 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
2965 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
2966 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
2967 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
2968 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
2969 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
2970 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
2971 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
2972 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
2973 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
2974 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
2975 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
2976 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
2977 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
2978 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
2979 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
2980 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
2981
2982 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
2983 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
2984 ((pipeline->dynamic_state_mask & BIT(i)) ?
2985 cmd->state.dynamic_state[i] :
2986 pipeline->dynamic_state[i]));
2987 }
2988 } else {
2989
2990 /* emit draw states that were just updated
2991 * note we eventually don't want to have to emit anything here
2992 */
2993 uint32_t draw_state_count =
2994 has_tess +
2995 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
2996 ((cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD) ? 1 : 0) +
2997 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
2998 1; /* vs_params */
2999
3000 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3001
3002 /* We may need to re-emit tess consts if the current draw call is
3003 * sufficiently larger than the last draw call. */
3004 if (has_tess)
3005 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
3006 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3007 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
3008 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
3009 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
3010 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
3011 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
3012 }
3013 if (cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD)
3014 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
3015 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3016 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
3017 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3018 }
3019
3020 tu_cs_sanity_check(cs);
3021
3022 /* There are too many graphics dirty bits to list here, so just list the
3023 * bits to preserve instead. The only things not emitted here are
3024 * compute-related state.
3025 */
3026 cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3027 return VK_SUCCESS;
3028 }
3029
3030 static uint32_t
3031 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
3032 {
3033 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3034 uint32_t initiator =
3035 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3036 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
3037 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3038 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3039
3040 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3041 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3042
3043 switch (pipeline->tess.patch_type) {
3044 case IR3_TESS_TRIANGLES:
3045 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3046 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3047 break;
3048 case IR3_TESS_ISOLINES:
3049 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3050 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3051 break;
3052 case IR3_TESS_NONE:
3053 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3054 break;
3055 case IR3_TESS_QUADS:
3056 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3057 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3058 break;
3059 }
3060 return initiator;
3061 }
3062
3063
3064 static uint32_t
3065 vs_params_offset(struct tu_cmd_buffer *cmd)
3066 {
3067 const struct tu_program_descriptor_linkage *link =
3068 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
3069 const struct ir3_const_state *const_state = &link->const_state;
3070
3071 if (const_state->offsets.driver_param >= link->constlen)
3072 return 0;
3073
3074 /* this layout is required by CP_DRAW_INDIRECT_MULTI */
3075 STATIC_ASSERT(IR3_DP_DRAWID == 0);
3076 STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
3077 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3078
3079 /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
3080 assert(const_state->offsets.driver_param != 0);
3081
3082 return const_state->offsets.driver_param;
3083 }
3084
3085 static struct tu_draw_state
3086 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
3087 uint32_t vertex_offset,
3088 uint32_t first_instance)
3089 {
3090 uint32_t offset = vs_params_offset(cmd);
3091
3092 struct tu_cs cs;
3093 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 8 : 0), &cs);
3094 if (result != VK_SUCCESS) {
3095 cmd->record_result = result;
3096 return (struct tu_draw_state) {};
3097 }
3098
3099 /* TODO: don't make a new draw state when it doesn't change */
3100
3101 tu_cs_emit_regs(&cs,
3102 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3103 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3104
3105 if (offset) {
3106 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3107 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3108 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3109 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3110 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3111 CP_LOAD_STATE6_0_NUM_UNIT(1));
3112 tu_cs_emit(&cs, 0);
3113 tu_cs_emit(&cs, 0);
3114
3115 tu_cs_emit(&cs, 0);
3116 tu_cs_emit(&cs, vertex_offset);
3117 tu_cs_emit(&cs, first_instance);
3118 tu_cs_emit(&cs, 0);
3119 }
3120
3121 struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3122 return (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
3123 }
3124
3125 void
3126 tu_CmdDraw(VkCommandBuffer commandBuffer,
3127 uint32_t vertexCount,
3128 uint32_t instanceCount,
3129 uint32_t firstVertex,
3130 uint32_t firstInstance)
3131 {
3132 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3133 struct tu_cs *cs = &cmd->draw_cs;
3134
3135 cmd->state.vs_params = tu6_emit_vs_params(cmd, firstVertex, firstInstance);
3136
3137 tu6_draw_common(cmd, cs, false, vertexCount);
3138
3139 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3140 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3141 tu_cs_emit(cs, instanceCount);
3142 tu_cs_emit(cs, vertexCount);
3143 }
3144
3145 void
3146 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3147 uint32_t indexCount,
3148 uint32_t instanceCount,
3149 uint32_t firstIndex,
3150 int32_t vertexOffset,
3151 uint32_t firstInstance)
3152 {
3153 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3154 struct tu_cs *cs = &cmd->draw_cs;
3155
3156 cmd->state.vs_params = tu6_emit_vs_params(cmd, vertexOffset, firstInstance);
3157
3158 tu6_draw_common(cmd, cs, true, indexCount);
3159
3160 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3161 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3162 tu_cs_emit(cs, instanceCount);
3163 tu_cs_emit(cs, indexCount);
3164 tu_cs_emit(cs, firstIndex);
3165 tu_cs_emit_qw(cs, cmd->state.index_va);
3166 tu_cs_emit(cs, cmd->state.max_index_count);
3167 }
3168
3169 void
3170 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3171 VkBuffer _buffer,
3172 VkDeviceSize offset,
3173 uint32_t drawCount,
3174 uint32_t stride)
3175 {
3176 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3177 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3178 struct tu_cs *cs = &cmd->draw_cs;
3179
3180 cmd->state.vs_params = (struct tu_draw_state) {};
3181
3182 tu6_draw_common(cmd, cs, false, 0);
3183
3184 /* workaround for a firmware bug with CP_DRAW_INDIRECT_MULTI, where it
3185 * doesn't wait for WFIs to be completed and leads to GPU fault/hang
3186 * TODO: this could be worked around in a more performant way,
3187 * or there may exist newer firmware that has been fixed
3188 */
3189 if (cmd->device->physical_device->gpu_id != 650)
3190 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
3191
3192 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
3193 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3194 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
3195 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3196 tu_cs_emit(cs, drawCount);
3197 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3198 tu_cs_emit(cs, stride);
3199
3200 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3201 }
3202
3203 void
3204 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3205 VkBuffer _buffer,
3206 VkDeviceSize offset,
3207 uint32_t drawCount,
3208 uint32_t stride)
3209 {
3210 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3211 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3212 struct tu_cs *cs = &cmd->draw_cs;
3213
3214 cmd->state.vs_params = (struct tu_draw_state) {};
3215
3216 tu6_draw_common(cmd, cs, true, 0);
3217
3218 /* workaround for a firmware bug with CP_DRAW_INDIRECT_MULTI, where it
3219 * doesn't wait for WFIs to be completed and leads to GPU fault/hang
3220 * TODO: this could be worked around in a more performant way,
3221 * or there may exist newer firmware that has been fixed
3222 */
3223 if (cmd->device->physical_device->gpu_id != 650)
3224 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
3225
3226 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
3227 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3228 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
3229 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3230 tu_cs_emit(cs, drawCount);
3231 tu_cs_emit_qw(cs, cmd->state.index_va);
3232 tu_cs_emit(cs, cmd->state.max_index_count);
3233 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3234 tu_cs_emit(cs, stride);
3235
3236 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3237 }
3238
3239 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3240 uint32_t instanceCount,
3241 uint32_t firstInstance,
3242 VkBuffer _counterBuffer,
3243 VkDeviceSize counterBufferOffset,
3244 uint32_t counterOffset,
3245 uint32_t vertexStride)
3246 {
3247 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3248 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
3249 struct tu_cs *cs = &cmd->draw_cs;
3250
3251 cmd->state.vs_params = tu6_emit_vs_params(cmd, 0, firstInstance);
3252
3253 tu6_draw_common(cmd, cs, false, 0);
3254
3255 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
3256 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
3257 tu_cs_emit(cs, instanceCount);
3258 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
3259 tu_cs_emit(cs, counterOffset);
3260 tu_cs_emit(cs, vertexStride);
3261
3262 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3263 }
3264
3265 struct tu_dispatch_info
3266 {
3267 /**
3268 * Determine the layout of the grid (in block units) to be used.
3269 */
3270 uint32_t blocks[3];
3271
3272 /**
3273 * A starting offset for the grid. If unaligned is set, the offset
3274 * must still be aligned.
3275 */
3276 uint32_t offsets[3];
3277 /**
3278 * Whether it's an unaligned compute dispatch.
3279 */
3280 bool unaligned;
3281
3282 /**
3283 * Indirect compute parameters resource.
3284 */
3285 struct tu_buffer *indirect;
3286 uint64_t indirect_offset;
3287 };
3288
3289 static void
3290 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3291 const struct tu_dispatch_info *info)
3292 {
3293 gl_shader_stage type = MESA_SHADER_COMPUTE;
3294 const struct tu_program_descriptor_linkage *link =
3295 &pipeline->program.link[type];
3296 const struct ir3_const_state *const_state = &link->const_state;
3297 uint32_t offset = const_state->offsets.driver_param;
3298
3299 if (link->constlen <= offset)
3300 return;
3301
3302 if (!info->indirect) {
3303 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3304 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3305 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3306 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3307 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3308 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3309 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3310 };
3311
3312 uint32_t num_consts = MIN2(const_state->num_driver_params,
3313 (link->constlen - offset) * 4);
3314 /* push constants */
3315 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3316 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3317 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3318 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3319 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3320 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3321 tu_cs_emit(cs, 0);
3322 tu_cs_emit(cs, 0);
3323 uint32_t i;
3324 for (i = 0; i < num_consts; i++)
3325 tu_cs_emit(cs, driver_params[i]);
3326 } else {
3327 tu_finishme("Indirect driver params");
3328 }
3329 }
3330
3331 static void
3332 tu_dispatch(struct tu_cmd_buffer *cmd,
3333 const struct tu_dispatch_info *info)
3334 {
3335 struct tu_cs *cs = &cmd->cs;
3336 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3337 struct tu_descriptor_state *descriptors_state =
3338 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3339
3340 /* TODO: We could probably flush less if we add a compute_flush_bits
3341 * bitfield.
3342 */
3343 tu_emit_cache_flush(cmd, cs);
3344
3345 /* note: no reason to have this in a separate IB */
3346 tu_cs_emit_state_ib(cs,
3347 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE));
3348
3349 tu_emit_compute_driver_params(cs, pipeline, info);
3350
3351 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD)
3352 tu_cs_emit_state_ib(cs, pipeline->load_state);
3353
3354 cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3355
3356 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3357 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3358
3359 const uint32_t *local_size = pipeline->compute.local_size;
3360 const uint32_t *num_groups = info->blocks;
3361 tu_cs_emit_regs(cs,
3362 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3363 .localsizex = local_size[0] - 1,
3364 .localsizey = local_size[1] - 1,
3365 .localsizez = local_size[2] - 1),
3366 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3367 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3368 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3369 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3370 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3371 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3372
3373 tu_cs_emit_regs(cs,
3374 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3375 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3376 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3377
3378 if (info->indirect) {
3379 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3380
3381 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3382 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3383
3384 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3385 tu_cs_emit(cs, 0x00000000);
3386 tu_cs_emit_qw(cs, iova);
3387 tu_cs_emit(cs,
3388 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3389 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3390 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3391 } else {
3392 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3393 tu_cs_emit(cs, 0x00000000);
3394 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3395 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3396 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3397 }
3398
3399 tu_cs_emit_wfi(cs);
3400 }
3401
3402 void
3403 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3404 uint32_t base_x,
3405 uint32_t base_y,
3406 uint32_t base_z,
3407 uint32_t x,
3408 uint32_t y,
3409 uint32_t z)
3410 {
3411 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3412 struct tu_dispatch_info info = {};
3413
3414 info.blocks[0] = x;
3415 info.blocks[1] = y;
3416 info.blocks[2] = z;
3417
3418 info.offsets[0] = base_x;
3419 info.offsets[1] = base_y;
3420 info.offsets[2] = base_z;
3421 tu_dispatch(cmd_buffer, &info);
3422 }
3423
3424 void
3425 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3426 uint32_t x,
3427 uint32_t y,
3428 uint32_t z)
3429 {
3430 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3431 }
3432
3433 void
3434 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3435 VkBuffer _buffer,
3436 VkDeviceSize offset)
3437 {
3438 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3439 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3440 struct tu_dispatch_info info = {};
3441
3442 info.indirect = buffer;
3443 info.indirect_offset = offset;
3444
3445 tu_dispatch(cmd_buffer, &info);
3446 }
3447
3448 void
3449 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3450 {
3451 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3452
3453 tu_cs_end(&cmd_buffer->draw_cs);
3454 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3455
3456 if (use_sysmem_rendering(cmd_buffer))
3457 tu_cmd_render_sysmem(cmd_buffer);
3458 else
3459 tu_cmd_render_tiles(cmd_buffer);
3460
3461 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3462 rendered */
3463 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3464 tu_cs_begin(&cmd_buffer->draw_cs);
3465 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3466 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3467
3468 cmd_buffer->state.cache.pending_flush_bits |=
3469 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3470 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3471
3472 cmd_buffer->state.pass = NULL;
3473 cmd_buffer->state.subpass = NULL;
3474 cmd_buffer->state.framebuffer = NULL;
3475 }
3476
3477 void
3478 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3479 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3480 {
3481 tu_CmdEndRenderPass(commandBuffer);
3482 }
3483
3484 struct tu_barrier_info
3485 {
3486 uint32_t eventCount;
3487 const VkEvent *pEvents;
3488 VkPipelineStageFlags srcStageMask;
3489 };
3490
3491 static void
3492 tu_barrier(struct tu_cmd_buffer *cmd,
3493 uint32_t memoryBarrierCount,
3494 const VkMemoryBarrier *pMemoryBarriers,
3495 uint32_t bufferMemoryBarrierCount,
3496 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3497 uint32_t imageMemoryBarrierCount,
3498 const VkImageMemoryBarrier *pImageMemoryBarriers,
3499 const struct tu_barrier_info *info)
3500 {
3501 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3502 VkAccessFlags srcAccessMask = 0;
3503 VkAccessFlags dstAccessMask = 0;
3504
3505 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3506 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3507 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3508 }
3509
3510 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3511 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3512 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3513 }
3514
3515 enum tu_cmd_access_mask src_flags = 0;
3516 enum tu_cmd_access_mask dst_flags = 0;
3517
3518 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3519 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3520 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3521 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3522 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3523 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3524 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3525 /* The underlying memory for this image may have been used earlier
3526 * within the same queue submission for a different image, which
3527 * means that there may be old, stale cache entries which are in the
3528 * "wrong" location, which could cause problems later after writing
3529 * to the image. We don't want these entries being flushed later and
3530 * overwriting the actual image, so we need to flush the CCU.
3531 */
3532 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3533 }
3534 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3535 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3536 }
3537
3538 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3539 * so we have to use the sysmem flushes.
3540 */
3541 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3542 !cmd->state.pass;
3543 src_flags |= vk2tu_access(srcAccessMask, gmem);
3544 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3545
3546 struct tu_cache_state *cache =
3547 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3548 tu_flush_for_access(cache, src_flags, dst_flags);
3549
3550 for (uint32_t i = 0; i < info->eventCount; i++) {
3551 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3552
3553 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3554
3555 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3556 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3557 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3558 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3559 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3560 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3561 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3562 }
3563 }
3564
3565 void
3566 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3567 VkPipelineStageFlags srcStageMask,
3568 VkPipelineStageFlags dstStageMask,
3569 VkDependencyFlags dependencyFlags,
3570 uint32_t memoryBarrierCount,
3571 const VkMemoryBarrier *pMemoryBarriers,
3572 uint32_t bufferMemoryBarrierCount,
3573 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3574 uint32_t imageMemoryBarrierCount,
3575 const VkImageMemoryBarrier *pImageMemoryBarriers)
3576 {
3577 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3578 struct tu_barrier_info info;
3579
3580 info.eventCount = 0;
3581 info.pEvents = NULL;
3582 info.srcStageMask = srcStageMask;
3583
3584 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3585 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3586 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3587 }
3588
3589 static void
3590 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3591 VkPipelineStageFlags stageMask, unsigned value)
3592 {
3593 struct tu_cs *cs = &cmd->cs;
3594
3595 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3596 assert(!cmd->state.pass);
3597
3598 tu_emit_cache_flush(cmd, cs);
3599
3600 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3601
3602 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3603 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3604 */
3605 VkPipelineStageFlags top_of_pipe_flags =
3606 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3607 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3608
3609 if (!(stageMask & ~top_of_pipe_flags)) {
3610 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3611 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3612 tu_cs_emit(cs, value);
3613 } else {
3614 /* Use a RB_DONE_TS event to wait for everything to complete. */
3615 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3616 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3617 tu_cs_emit_qw(cs, event->bo.iova);
3618 tu_cs_emit(cs, value);
3619 }
3620 }
3621
3622 void
3623 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3624 VkEvent _event,
3625 VkPipelineStageFlags stageMask)
3626 {
3627 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3628 TU_FROM_HANDLE(tu_event, event, _event);
3629
3630 write_event(cmd, event, stageMask, 1);
3631 }
3632
3633 void
3634 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3635 VkEvent _event,
3636 VkPipelineStageFlags stageMask)
3637 {
3638 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3639 TU_FROM_HANDLE(tu_event, event, _event);
3640
3641 write_event(cmd, event, stageMask, 0);
3642 }
3643
3644 void
3645 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3646 uint32_t eventCount,
3647 const VkEvent *pEvents,
3648 VkPipelineStageFlags srcStageMask,
3649 VkPipelineStageFlags dstStageMask,
3650 uint32_t memoryBarrierCount,
3651 const VkMemoryBarrier *pMemoryBarriers,
3652 uint32_t bufferMemoryBarrierCount,
3653 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3654 uint32_t imageMemoryBarrierCount,
3655 const VkImageMemoryBarrier *pImageMemoryBarriers)
3656 {
3657 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3658 struct tu_barrier_info info;
3659
3660 info.eventCount = eventCount;
3661 info.pEvents = pEvents;
3662 info.srcStageMask = 0;
3663
3664 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3665 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3666 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3667 }
3668
3669 void
3670 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3671 {
3672 /* No-op */
3673 }