turnip: remove unnecessary OVERFLOW_FLAG_REG check
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 static void
112 tu_tiling_config_update_tile_layout(struct tu_tiling_config *tiling,
113 const struct tu_device *dev,
114 const struct tu_render_pass *pass)
115 {
116 const uint32_t tile_align_w = pass->tile_align_w;
117 const uint32_t max_tile_width = 1024;
118
119 /* note: don't offset the tiling config by render_area.offset,
120 * because binning pass can't deal with it
121 * this means we might end up with more tiles than necessary,
122 * but load/store/etc are still scissored to the render_area
123 */
124 tiling->tile0.offset = (VkOffset2D) {};
125
126 const uint32_t ra_width =
127 tiling->render_area.extent.width +
128 (tiling->render_area.offset.x - tiling->tile0.offset.x);
129 const uint32_t ra_height =
130 tiling->render_area.extent.height +
131 (tiling->render_area.offset.y - tiling->tile0.offset.y);
132
133 /* start from 1 tile */
134 tiling->tile_count = (VkExtent2D) {
135 .width = 1,
136 .height = 1,
137 };
138 tiling->tile0.extent = (VkExtent2D) {
139 .width = util_align_npot(ra_width, tile_align_w),
140 .height = align(ra_height, TILE_ALIGN_H),
141 };
142
143 if (unlikely(dev->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN)) {
144 /* start with 2x2 tiles */
145 tiling->tile_count.width = 2;
146 tiling->tile_count.height = 2;
147 tiling->tile0.extent.width = util_align_npot(DIV_ROUND_UP(ra_width, 2), tile_align_w);
148 tiling->tile0.extent.height = align(DIV_ROUND_UP(ra_height, 2), TILE_ALIGN_H);
149 }
150
151 /* do not exceed max tile width */
152 while (tiling->tile0.extent.width > max_tile_width) {
153 tiling->tile_count.width++;
154 tiling->tile0.extent.width =
155 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
156 }
157
158 /* will force to sysmem, don't bother trying to have a valid tile config
159 * TODO: just skip all GMEM stuff when sysmem is forced?
160 */
161 if (!pass->gmem_pixels)
162 return;
163
164 /* do not exceed gmem size */
165 while (tiling->tile0.extent.width * tiling->tile0.extent.height > pass->gmem_pixels) {
166 if (tiling->tile0.extent.width > MAX2(tile_align_w, tiling->tile0.extent.height)) {
167 tiling->tile_count.width++;
168 tiling->tile0.extent.width =
169 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
170 } else {
171 /* if this assert fails then layout is impossible.. */
172 assert(tiling->tile0.extent.height > TILE_ALIGN_H);
173 tiling->tile_count.height++;
174 tiling->tile0.extent.height =
175 align(DIV_ROUND_UP(ra_height, tiling->tile_count.height), TILE_ALIGN_H);
176 }
177 }
178 }
179
180 static void
181 tu_tiling_config_update_pipe_layout(struct tu_tiling_config *tiling,
182 const struct tu_device *dev)
183 {
184 const uint32_t max_pipe_count = 32; /* A6xx */
185
186 /* start from 1 tile per pipe */
187 tiling->pipe0 = (VkExtent2D) {
188 .width = 1,
189 .height = 1,
190 };
191 tiling->pipe_count = tiling->tile_count;
192
193 while (tiling->pipe_count.width * tiling->pipe_count.height > max_pipe_count) {
194 if (tiling->pipe0.width < tiling->pipe0.height) {
195 tiling->pipe0.width += 1;
196 tiling->pipe_count.width =
197 DIV_ROUND_UP(tiling->tile_count.width, tiling->pipe0.width);
198 } else {
199 tiling->pipe0.height += 1;
200 tiling->pipe_count.height =
201 DIV_ROUND_UP(tiling->tile_count.height, tiling->pipe0.height);
202 }
203 }
204 }
205
206 static void
207 tu_tiling_config_update_pipes(struct tu_tiling_config *tiling,
208 const struct tu_device *dev)
209 {
210 const uint32_t max_pipe_count = 32; /* A6xx */
211 const uint32_t used_pipe_count =
212 tiling->pipe_count.width * tiling->pipe_count.height;
213 const VkExtent2D last_pipe = {
214 .width = (tiling->tile_count.width - 1) % tiling->pipe0.width + 1,
215 .height = (tiling->tile_count.height - 1) % tiling->pipe0.height + 1,
216 };
217
218 assert(used_pipe_count <= max_pipe_count);
219 assert(max_pipe_count <= ARRAY_SIZE(tiling->pipe_config));
220
221 for (uint32_t y = 0; y < tiling->pipe_count.height; y++) {
222 for (uint32_t x = 0; x < tiling->pipe_count.width; x++) {
223 const uint32_t pipe_x = tiling->pipe0.width * x;
224 const uint32_t pipe_y = tiling->pipe0.height * y;
225 const uint32_t pipe_w = (x == tiling->pipe_count.width - 1)
226 ? last_pipe.width
227 : tiling->pipe0.width;
228 const uint32_t pipe_h = (y == tiling->pipe_count.height - 1)
229 ? last_pipe.height
230 : tiling->pipe0.height;
231 const uint32_t n = tiling->pipe_count.width * y + x;
232
233 tiling->pipe_config[n] = A6XX_VSC_PIPE_CONFIG_REG_X(pipe_x) |
234 A6XX_VSC_PIPE_CONFIG_REG_Y(pipe_y) |
235 A6XX_VSC_PIPE_CONFIG_REG_W(pipe_w) |
236 A6XX_VSC_PIPE_CONFIG_REG_H(pipe_h);
237 tiling->pipe_sizes[n] = CP_SET_BIN_DATA5_0_VSC_SIZE(pipe_w * pipe_h);
238 }
239 }
240
241 memset(tiling->pipe_config + used_pipe_count, 0,
242 sizeof(uint32_t) * (max_pipe_count - used_pipe_count));
243 }
244
245 static void
246 tu_tiling_config_get_tile(const struct tu_tiling_config *tiling,
247 const struct tu_device *dev,
248 uint32_t tx,
249 uint32_t ty,
250 struct tu_tile *tile)
251 {
252 /* find the pipe and the slot for tile (tx, ty) */
253 const uint32_t px = tx / tiling->pipe0.width;
254 const uint32_t py = ty / tiling->pipe0.height;
255 const uint32_t sx = tx - tiling->pipe0.width * px;
256 const uint32_t sy = ty - tiling->pipe0.height * py;
257 /* last pipe has different width */
258 const uint32_t pipe_width =
259 MIN2(tiling->pipe0.width,
260 tiling->tile_count.width - px * tiling->pipe0.width);
261
262 assert(tx < tiling->tile_count.width && ty < tiling->tile_count.height);
263 assert(px < tiling->pipe_count.width && py < tiling->pipe_count.height);
264 assert(sx < tiling->pipe0.width && sy < tiling->pipe0.height);
265
266 /* convert to 1D indices */
267 tile->pipe = tiling->pipe_count.width * py + px;
268 tile->slot = pipe_width * sy + sx;
269
270 /* get the blit area for the tile */
271 tile->begin = (VkOffset2D) {
272 .x = tiling->tile0.offset.x + tiling->tile0.extent.width * tx,
273 .y = tiling->tile0.offset.y + tiling->tile0.extent.height * ty,
274 };
275 tile->end.x =
276 (tx == tiling->tile_count.width - 1)
277 ? tiling->render_area.offset.x + tiling->render_area.extent.width
278 : tile->begin.x + tiling->tile0.extent.width;
279 tile->end.y =
280 (ty == tiling->tile_count.height - 1)
281 ? tiling->render_area.offset.y + tiling->render_area.extent.height
282 : tile->begin.y + tiling->tile0.extent.height;
283 }
284
285 void
286 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
287 struct tu_cs *cs,
288 enum vgt_event_type event)
289 {
290 bool need_seqno = false;
291 switch (event) {
292 case CACHE_FLUSH_TS:
293 case WT_DONE_TS:
294 case RB_DONE_TS:
295 case PC_CCU_FLUSH_DEPTH_TS:
296 case PC_CCU_FLUSH_COLOR_TS:
297 case PC_CCU_RESOLVE_TS:
298 need_seqno = true;
299 break;
300 default:
301 break;
302 }
303
304 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
305 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
306 if (need_seqno) {
307 tu_cs_emit_qw(cs, cmd->scratch_bo.iova);
308 tu_cs_emit(cs, 0);
309 }
310 }
311
312 static void
313 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
314 struct tu_cs *cs,
315 enum tu_cmd_flush_bits flushes)
316 {
317 /* Experiments show that invalidating CCU while it still has data in it
318 * doesn't work, so make sure to always flush before invalidating in case
319 * any data remains that hasn't yet been made available through a barrier.
320 * However it does seem to work for UCHE.
321 */
322 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
323 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
324 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
325 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
326 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
327 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
328 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
329 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
330 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
331 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
332 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
333 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
334 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
335 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
336 if (flushes & TU_CMD_FLAG_WFI)
337 tu_cs_emit_wfi(cs);
338 }
339
340 /* "Normal" cache flushes, that don't require any special handling */
341
342 static void
343 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
344 struct tu_cs *cs)
345 {
346 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
347 cmd_buffer->state.cache.flush_bits = 0;
348 }
349
350 /* Renderpass cache flushes */
351
352 void
353 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
354 struct tu_cs *cs)
355 {
356 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
357 cmd_buffer->state.renderpass_cache.flush_bits = 0;
358 }
359
360 /* Cache flushes for things that use the color/depth read/write path (i.e.
361 * blits and draws). This deals with changing CCU state as well as the usual
362 * cache flushing.
363 */
364
365 void
366 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
367 struct tu_cs *cs,
368 enum tu_cmd_ccu_state ccu_state)
369 {
370 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
371
372 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
373
374 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
375 * the CCU may also contain data that we haven't flushed out yet, so we
376 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
377 * emit a WFI as it isn't pipelined.
378 */
379 if (ccu_state != cmd_buffer->state.ccu_state) {
380 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
381 flushes |=
382 TU_CMD_FLAG_CCU_FLUSH_COLOR |
383 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
384 cmd_buffer->state.cache.pending_flush_bits &= ~(
385 TU_CMD_FLAG_CCU_FLUSH_COLOR |
386 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
387 }
388 flushes |=
389 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
390 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
391 TU_CMD_FLAG_WFI;
392 cmd_buffer->state.cache.pending_flush_bits &= ~(
393 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
394 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
395 }
396
397 tu6_emit_flushes(cmd_buffer, cs, flushes);
398 cmd_buffer->state.cache.flush_bits = 0;
399
400 if (ccu_state != cmd_buffer->state.ccu_state) {
401 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
402 tu_cs_emit_regs(cs,
403 A6XX_RB_CCU_CNTL(.offset =
404 ccu_state == TU_CMD_CCU_GMEM ?
405 phys_dev->ccu_offset_gmem :
406 phys_dev->ccu_offset_bypass,
407 .gmem = ccu_state == TU_CMD_CCU_GMEM));
408 cmd_buffer->state.ccu_state = ccu_state;
409 }
410 }
411
412 static void
413 tu6_emit_zs(struct tu_cmd_buffer *cmd,
414 const struct tu_subpass *subpass,
415 struct tu_cs *cs)
416 {
417 const struct tu_framebuffer *fb = cmd->state.framebuffer;
418
419 const uint32_t a = subpass->depth_stencil_attachment.attachment;
420 if (a == VK_ATTACHMENT_UNUSED) {
421 tu_cs_emit_regs(cs,
422 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
423 A6XX_RB_DEPTH_BUFFER_PITCH(0),
424 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
425 A6XX_RB_DEPTH_BUFFER_BASE(0),
426 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
427
428 tu_cs_emit_regs(cs,
429 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
430
431 tu_cs_emit_regs(cs,
432 A6XX_GRAS_LRZ_BUFFER_BASE(0),
433 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
434 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
435
436 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
437
438 return;
439 }
440
441 const struct tu_image_view *iview = fb->attachments[a].attachment;
442 const struct tu_render_pass_attachment *attachment =
443 &cmd->state.pass->attachments[a];
444 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
445
446 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
447 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
448 tu_cs_image_ref(cs, iview, 0);
449 tu_cs_emit(cs, attachment->gmem_offset);
450
451 tu_cs_emit_regs(cs,
452 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
453
454 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
455 tu_cs_image_flag_ref(cs, iview, 0);
456
457 tu_cs_emit_regs(cs,
458 A6XX_GRAS_LRZ_BUFFER_BASE(0),
459 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
460 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
461
462 if (attachment->format == VK_FORMAT_S8_UINT) {
463 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
464 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
465 tu_cs_image_ref(cs, iview, 0);
466 tu_cs_emit(cs, attachment->gmem_offset);
467 } else {
468 tu_cs_emit_regs(cs,
469 A6XX_RB_STENCIL_INFO(0));
470 }
471 }
472
473 static void
474 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
475 const struct tu_subpass *subpass,
476 struct tu_cs *cs)
477 {
478 const struct tu_framebuffer *fb = cmd->state.framebuffer;
479
480 for (uint32_t i = 0; i < subpass->color_count; ++i) {
481 uint32_t a = subpass->color_attachments[i].attachment;
482 if (a == VK_ATTACHMENT_UNUSED)
483 continue;
484
485 const struct tu_image_view *iview = fb->attachments[a].attachment;
486
487 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
488 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
489 tu_cs_image_ref(cs, iview, 0);
490 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
491
492 tu_cs_emit_regs(cs,
493 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
494
495 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
496 tu_cs_image_flag_ref(cs, iview, 0);
497 }
498
499 tu_cs_emit_regs(cs,
500 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
501 tu_cs_emit_regs(cs,
502 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
503
504 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
505 }
506
507 void
508 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
509 {
510 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
511 bool msaa_disable = samples == MSAA_ONE;
512
513 tu_cs_emit_regs(cs,
514 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
515 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
516 .msaa_disable = msaa_disable));
517
518 tu_cs_emit_regs(cs,
519 A6XX_GRAS_RAS_MSAA_CNTL(samples),
520 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
521 .msaa_disable = msaa_disable));
522
523 tu_cs_emit_regs(cs,
524 A6XX_RB_RAS_MSAA_CNTL(samples),
525 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
526 .msaa_disable = msaa_disable));
527
528 tu_cs_emit_regs(cs,
529 A6XX_RB_MSAA_CNTL(samples));
530 }
531
532 static void
533 tu6_emit_bin_size(struct tu_cs *cs,
534 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
535 {
536 tu_cs_emit_regs(cs,
537 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
538 .binh = bin_h,
539 .dword = flags));
540
541 tu_cs_emit_regs(cs,
542 A6XX_RB_BIN_CONTROL(.binw = bin_w,
543 .binh = bin_h,
544 .dword = flags));
545
546 /* no flag for RB_BIN_CONTROL2... */
547 tu_cs_emit_regs(cs,
548 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
549 .binh = bin_h));
550 }
551
552 static void
553 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
554 const struct tu_subpass *subpass,
555 struct tu_cs *cs,
556 bool binning)
557 {
558 const struct tu_framebuffer *fb = cmd->state.framebuffer;
559 uint32_t cntl = 0;
560 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
561 if (binning) {
562 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
563 } else {
564 uint32_t mrts_ubwc_enable = 0;
565 for (uint32_t i = 0; i < subpass->color_count; ++i) {
566 uint32_t a = subpass->color_attachments[i].attachment;
567 if (a == VK_ATTACHMENT_UNUSED)
568 continue;
569
570 const struct tu_image_view *iview = fb->attachments[a].attachment;
571 if (iview->ubwc_enabled)
572 mrts_ubwc_enable |= 1 << i;
573 }
574
575 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
576
577 const uint32_t a = subpass->depth_stencil_attachment.attachment;
578 if (a != VK_ATTACHMENT_UNUSED) {
579 const struct tu_image_view *iview = fb->attachments[a].attachment;
580 if (iview->ubwc_enabled)
581 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
582 }
583
584 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
585 * in order to set it correctly for the different subpasses. However,
586 * that means the packets we're emitting also happen during binning. So
587 * we need to guard the write on !BINNING at CP execution time.
588 */
589 tu_cs_reserve(cs, 3 + 4);
590 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
591 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
592 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
593 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
594 }
595
596 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
597 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
598 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
599 tu_cs_emit(cs, cntl);
600 }
601
602 static void
603 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
604 {
605 const VkRect2D *render_area = &cmd->state.tiling_config.render_area;
606 uint32_t x1 = render_area->offset.x;
607 uint32_t y1 = render_area->offset.y;
608 uint32_t x2 = x1 + render_area->extent.width - 1;
609 uint32_t y2 = y1 + render_area->extent.height - 1;
610
611 if (align) {
612 x1 = x1 & ~(GMEM_ALIGN_W - 1);
613 y1 = y1 & ~(GMEM_ALIGN_H - 1);
614 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
615 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
616 }
617
618 tu_cs_emit_regs(cs,
619 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
620 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
621 }
622
623 void
624 tu6_emit_window_scissor(struct tu_cs *cs,
625 uint32_t x1,
626 uint32_t y1,
627 uint32_t x2,
628 uint32_t y2)
629 {
630 tu_cs_emit_regs(cs,
631 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
632 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
633
634 tu_cs_emit_regs(cs,
635 A6XX_GRAS_RESOLVE_CNTL_1(.x = x1, .y = y1),
636 A6XX_GRAS_RESOLVE_CNTL_2(.x = x2, .y = y2));
637 }
638
639 void
640 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
641 {
642 tu_cs_emit_regs(cs,
643 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
644
645 tu_cs_emit_regs(cs,
646 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
647
648 tu_cs_emit_regs(cs,
649 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
650
651 tu_cs_emit_regs(cs,
652 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
653 }
654
655 static void
656 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
657 {
658 uint32_t enable_mask;
659 switch (id) {
660 case TU_DRAW_STATE_PROGRAM:
661 case TU_DRAW_STATE_VI:
662 case TU_DRAW_STATE_FS_CONST:
663 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
664 * when resources would actually be used in the binning shader.
665 * Presumably the overhead of prefetching the resources isn't
666 * worth it.
667 */
668 case TU_DRAW_STATE_DESC_SETS_LOAD:
669 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
670 CP_SET_DRAW_STATE__0_SYSMEM;
671 break;
672 case TU_DRAW_STATE_PROGRAM_BINNING:
673 case TU_DRAW_STATE_VI_BINNING:
674 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
675 break;
676 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
677 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
678 break;
679 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
680 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
681 break;
682 default:
683 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
684 CP_SET_DRAW_STATE__0_SYSMEM |
685 CP_SET_DRAW_STATE__0_BINNING;
686 break;
687 }
688
689 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
690 enable_mask |
691 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
692 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
693 tu_cs_emit_qw(cs, state.iova);
694 }
695
696 /* note: get rid of this eventually */
697 static void
698 tu_cs_emit_sds_ib(struct tu_cs *cs, uint32_t id, struct tu_cs_entry entry)
699 {
700 tu_cs_emit_draw_state(cs, id, (struct tu_draw_state) {
701 .iova = entry.size ? entry.bo->iova + entry.offset : 0,
702 .size = entry.size / 4,
703 });
704 }
705
706 static bool
707 use_hw_binning(struct tu_cmd_buffer *cmd)
708 {
709 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
710
711 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
712 return false;
713
714 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
715 return true;
716
717 return (tiling->tile_count.width * tiling->tile_count.height) > 2;
718 }
719
720 static bool
721 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
722 {
723 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
724 return true;
725
726 /* can't fit attachments into gmem */
727 if (!cmd->state.pass->gmem_pixels)
728 return true;
729
730 if (cmd->state.framebuffer->layers > 1)
731 return true;
732
733 return cmd->state.tiling_config.force_sysmem;
734 }
735
736 static void
737 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
738 struct tu_cs *cs,
739 const struct tu_tile *tile)
740 {
741 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
742 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
743
744 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
745 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
746
747 const uint32_t x1 = tile->begin.x;
748 const uint32_t y1 = tile->begin.y;
749 const uint32_t x2 = tile->end.x - 1;
750 const uint32_t y2 = tile->end.y - 1;
751 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
752 tu6_emit_window_offset(cs, x1, y1);
753
754 tu_cs_emit_regs(cs,
755 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
756
757 if (use_hw_binning(cmd)) {
758 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
759
760 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
761 tu_cs_emit(cs, 0x0);
762
763 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5, 7);
764 tu_cs_emit(cs, cmd->state.tiling_config.pipe_sizes[tile->pipe] |
765 CP_SET_BIN_DATA5_0_VSC_N(tile->slot));
766 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + tile->pipe * cmd->vsc_draw_strm_pitch);
767 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + (tile->pipe * 4) + (32 * cmd->vsc_draw_strm_pitch));
768 tu_cs_emit_qw(cs, cmd->vsc_prim_strm.iova + (tile->pipe * cmd->vsc_prim_strm_pitch));
769
770 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
771 tu_cs_emit(cs, 0x0);
772
773 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
774 tu_cs_emit(cs, 0x0);
775 } else {
776 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
777 tu_cs_emit(cs, 0x1);
778
779 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
780 tu_cs_emit(cs, 0x0);
781 }
782 }
783
784 static void
785 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
786 struct tu_cs *cs,
787 uint32_t a,
788 uint32_t gmem_a)
789 {
790 const struct tu_framebuffer *fb = cmd->state.framebuffer;
791 struct tu_image_view *dst = fb->attachments[a].attachment;
792 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
793
794 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.tiling_config.render_area);
795 }
796
797 static void
798 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
799 struct tu_cs *cs,
800 const struct tu_subpass *subpass)
801 {
802 if (subpass->resolve_attachments) {
803 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
804 * Commands":
805 *
806 * End-of-subpass multisample resolves are treated as color
807 * attachment writes for the purposes of synchronization. That is,
808 * they are considered to execute in the
809 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
810 * their writes are synchronized with
811 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
812 * rendering within a subpass and any resolve operations at the end
813 * of the subpass occurs automatically, without need for explicit
814 * dependencies or pipeline barriers. However, if the resolve
815 * attachment is also used in a different subpass, an explicit
816 * dependency is needed.
817 *
818 * We use the CP_BLIT path for sysmem resolves, which is really a
819 * transfer command, so we have to manually flush similar to the gmem
820 * resolve case. However, a flush afterwards isn't needed because of the
821 * last sentence and the fact that we're in sysmem mode.
822 */
823 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
824 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
825
826 /* Wait for the flushes to land before using the 2D engine */
827 tu_cs_emit_wfi(cs);
828
829 for (unsigned i = 0; i < subpass->color_count; i++) {
830 uint32_t a = subpass->resolve_attachments[i].attachment;
831 if (a == VK_ATTACHMENT_UNUSED)
832 continue;
833
834 tu6_emit_sysmem_resolve(cmd, cs, a,
835 subpass->color_attachments[i].attachment);
836 }
837 }
838 }
839
840 static void
841 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
842 {
843 const struct tu_render_pass *pass = cmd->state.pass;
844 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
845
846 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
847 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
848 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
849 CP_SET_DRAW_STATE__0_GROUP_ID(0));
850 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
851 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
852
853 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
854 tu_cs_emit(cs, 0x0);
855
856 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
857 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
858
859 tu6_emit_blit_scissor(cmd, cs, true);
860
861 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
862 if (pass->attachments[a].gmem_offset >= 0)
863 tu_store_gmem_attachment(cmd, cs, a, a);
864 }
865
866 if (subpass->resolve_attachments) {
867 for (unsigned i = 0; i < subpass->color_count; i++) {
868 uint32_t a = subpass->resolve_attachments[i].attachment;
869 if (a != VK_ATTACHMENT_UNUSED)
870 tu_store_gmem_attachment(cmd, cs, a,
871 subpass->color_attachments[i].attachment);
872 }
873 }
874 }
875
876 static void
877 tu6_emit_restart_index(struct tu_cs *cs, uint32_t restart_index)
878 {
879 tu_cs_emit_regs(cs,
880 A6XX_PC_RESTART_INDEX(restart_index));
881 }
882
883 static void
884 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
885 {
886 const struct tu_physical_device *phys_dev = cmd->device->physical_device;
887
888 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
889
890 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 0xfffff);
891
892 tu_cs_emit_regs(cs,
893 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
894 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
895 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
896 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
897 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
898 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
899 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
900 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
901 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
902 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
903
904 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
905 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
906 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
907 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
908 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
909 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
910 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BB11, 0);
911 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
912 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
913 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
914 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
915 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
916 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
917 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_GS_SIV_CNTL, 0x0000ffff);
918
919 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
920 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
921 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
922
923 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
924
925 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
926
927 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
928 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
929 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
930 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
931 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
932 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
933 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
934 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
935 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
936 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
937 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
938
939 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9101, 0xffff00);
940 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
941
942 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9236,
943 A6XX_VPC_UNKNOWN_9236_POINT_COORD_INVERT(0));
944 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
945
946 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_SO_OVERRIDE,
947 A6XX_VPC_SO_OVERRIDE_SO_DISABLE);
948
949 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
950 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
951 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9990, 0);
952
953 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
954 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
955
956 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
957
958 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
959
960 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
961 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_809B, 0);
962 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
963 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
964 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
965 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
966 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
967 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9981, 0x3);
968 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
969 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9108, 0x3);
970 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
971 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8878, 0);
972 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8879, 0);
973 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
974
975 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
976
977 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
978
979 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
980
981 /* we don't use this yet.. probably best to disable.. */
982 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
983 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
984 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
985 CP_SET_DRAW_STATE__0_GROUP_ID(0));
986 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
987 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
988
989 /* Set not to use streamout by default, */
990 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 4);
991 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
992 tu_cs_emit(cs, 0);
993 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
994 tu_cs_emit(cs, 0);
995
996 tu_cs_emit_regs(cs,
997 A6XX_SP_HS_CTRL_REG0(0));
998
999 tu_cs_emit_regs(cs,
1000 A6XX_SP_GS_CTRL_REG0(0));
1001
1002 tu_cs_emit_regs(cs,
1003 A6XX_GRAS_LRZ_CNTL(0));
1004
1005 tu_cs_emit_regs(cs,
1006 A6XX_RB_LRZ_CNTL(0));
1007
1008 tu_cs_emit_regs(cs,
1009 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1010 tu_cs_emit_regs(cs,
1011 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1012
1013 tu_cs_sanity_check(cs);
1014 }
1015
1016 static void
1017 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1018 {
1019 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1020
1021 tu_cs_emit_regs(cs,
1022 A6XX_VSC_BIN_SIZE(.width = tiling->tile0.extent.width,
1023 .height = tiling->tile0.extent.height),
1024 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = &cmd->vsc_draw_strm,
1025 .bo_offset = 32 * cmd->vsc_draw_strm_pitch));
1026
1027 tu_cs_emit_regs(cs,
1028 A6XX_VSC_BIN_COUNT(.nx = tiling->tile_count.width,
1029 .ny = tiling->tile_count.height));
1030
1031 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
1032 for (unsigned i = 0; i < 32; i++)
1033 tu_cs_emit(cs, tiling->pipe_config[i]);
1034
1035 tu_cs_emit_regs(cs,
1036 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = &cmd->vsc_prim_strm),
1037 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
1038 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - 64));
1039
1040 tu_cs_emit_regs(cs,
1041 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = &cmd->vsc_draw_strm),
1042 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
1043 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - 64));
1044 }
1045
1046 static void
1047 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1048 {
1049 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1050 const uint32_t used_pipe_count =
1051 tiling->pipe_count.width * tiling->pipe_count.height;
1052
1053 /* Clear vsc_scratch: */
1054 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
1055 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1056 tu_cs_emit(cs, 0x0);
1057
1058 /* Check for overflow, write vsc_scratch if detected: */
1059 for (int i = 0; i < used_pipe_count; i++) {
1060 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1061 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1062 CP_COND_WRITE5_0_WRITE_MEMORY);
1063 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
1064 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1065 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - 64));
1066 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1067 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1068 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(1 + cmd->vsc_draw_strm_pitch));
1069
1070 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1071 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1072 CP_COND_WRITE5_0_WRITE_MEMORY);
1073 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
1074 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1075 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - 64));
1076 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1077 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1078 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(3 + cmd->vsc_prim_strm_pitch));
1079 }
1080
1081 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1082 }
1083
1084 static void
1085 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1086 {
1087 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1088 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1089
1090 uint32_t x1 = tiling->tile0.offset.x;
1091 uint32_t y1 = tiling->tile0.offset.y;
1092 uint32_t x2 = tiling->render_area.offset.x + tiling->render_area.extent.width - 1;
1093 uint32_t y2 = tiling->render_area.offset.y + tiling->render_area.extent.height - 1;
1094
1095 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
1096
1097 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1098 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
1099
1100 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1101 tu_cs_emit(cs, 0x1);
1102
1103 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1104 tu_cs_emit(cs, 0x1);
1105
1106 tu_cs_emit_wfi(cs);
1107
1108 tu_cs_emit_regs(cs,
1109 A6XX_VFD_MODE_CNTL(.binning_pass = true));
1110
1111 update_vsc_pipe(cmd, cs);
1112
1113 tu_cs_emit_regs(cs,
1114 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1115
1116 tu_cs_emit_regs(cs,
1117 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1118
1119 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1120 tu_cs_emit(cs, UNK_2C);
1121
1122 tu_cs_emit_regs(cs,
1123 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1124
1125 tu_cs_emit_regs(cs,
1126 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1127
1128 /* emit IB to binning drawcmds: */
1129 tu_cs_emit_call(cs, &cmd->draw_cs);
1130
1131 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1132 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1133 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1134 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1135 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1136 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1137
1138 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1139 tu_cs_emit(cs, UNK_2D);
1140
1141 /* This flush is probably required because the VSC, which produces the
1142 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1143 * visibility stream (without caching) to do draw skipping. The
1144 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1145 * submitted are finished before reading the VSC regs (in
1146 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1147 * part of draws).
1148 */
1149 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1150
1151 tu_cs_emit_wfi(cs);
1152
1153 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1154
1155 emit_vsc_overflow_test(cmd, cs);
1156
1157 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1158 tu_cs_emit(cs, 0x0);
1159
1160 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1161 tu_cs_emit(cs, 0x0);
1162 }
1163
1164 static void
1165 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1166 const struct tu_subpass *subpass,
1167 struct tu_cs_entry *ib,
1168 bool gmem)
1169 {
1170 /* note: we can probably emit input attachments just once for the whole
1171 * renderpass, this would avoid emitting both sysmem/gmem versions
1172 *
1173 * emit two texture descriptors for each input, as a workaround for
1174 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1175 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1176 * in the pair
1177 * TODO: a smarter workaround
1178 */
1179
1180 if (!subpass->input_count)
1181 return;
1182
1183 struct ts_cs_memory texture;
1184 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1185 A6XX_TEX_CONST_DWORDS, &texture);
1186 assert(result == VK_SUCCESS);
1187
1188 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1189 uint32_t a = subpass->input_attachments[i / 2].attachment;
1190 if (a == VK_ATTACHMENT_UNUSED)
1191 continue;
1192
1193 struct tu_image_view *iview =
1194 cmd->state.framebuffer->attachments[a].attachment;
1195 const struct tu_render_pass_attachment *att =
1196 &cmd->state.pass->attachments[a];
1197 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1198
1199 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1200
1201 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1202 /* note this works because spec says fb and input attachments
1203 * must use identity swizzle
1204 */
1205 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1206 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1207 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1208 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1209 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1210 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1211 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1212 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1213 }
1214
1215 if (!gmem)
1216 continue;
1217
1218 /* patched for gmem */
1219 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1220 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1221 dst[2] =
1222 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1223 A6XX_TEX_CONST_2_PITCH(cmd->state.tiling_config.tile0.extent.width * att->cpp);
1224 dst[3] = 0;
1225 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1226 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1227 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1228 dst[i] = 0;
1229 }
1230
1231 struct tu_cs cs;
1232 tu_cs_begin_sub_stream(&cmd->sub_cs, 9, &cs);
1233
1234 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1235 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1236 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1237 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1238 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1239 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1240 tu_cs_emit_qw(&cs, texture.iova);
1241
1242 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1243 tu_cs_emit_qw(&cs, texture.iova);
1244
1245 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1246
1247 *ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1248 }
1249
1250 static void
1251 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1252 {
1253 struct tu_cs *cs = &cmd->draw_cs;
1254
1255 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_gmem_ib, true);
1256 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_sysmem_ib, false);
1257
1258 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1259 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM, cmd->state.ia_gmem_ib);
1260 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM, cmd->state.ia_sysmem_ib);
1261 }
1262
1263 static void
1264 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1265 const VkRenderPassBeginInfo *info)
1266 {
1267 struct tu_cs *cs = &cmd->draw_cs;
1268
1269 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1270
1271 tu6_emit_blit_scissor(cmd, cs, true);
1272
1273 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1274 tu_load_gmem_attachment(cmd, cs, i, false);
1275
1276 tu6_emit_blit_scissor(cmd, cs, false);
1277
1278 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1279 tu_clear_gmem_attachment(cmd, cs, i, info);
1280
1281 tu_cond_exec_end(cs);
1282
1283 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1284
1285 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1286 tu_clear_sysmem_attachment(cmd, cs, i, info);
1287
1288 tu_cond_exec_end(cs);
1289 }
1290
1291 static void
1292 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1293 const struct VkRect2D *renderArea)
1294 {
1295 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1296
1297 assert(fb->width > 0 && fb->height > 0);
1298 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1299 tu6_emit_window_offset(cs, 0, 0);
1300
1301 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1302
1303 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1304
1305 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1306 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1307
1308 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1309 tu_cs_emit(cs, 0x0);
1310
1311 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1312
1313 /* enable stream-out, with sysmem there is only one pass: */
1314 tu_cs_emit_regs(cs,
1315 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
1316
1317 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1318 tu_cs_emit(cs, 0x1);
1319
1320 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1321 tu_cs_emit(cs, 0x0);
1322
1323 tu_cs_sanity_check(cs);
1324 }
1325
1326 static void
1327 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1328 {
1329 /* Do any resolves of the last subpass. These are handled in the
1330 * tile_store_ib in the gmem path.
1331 */
1332 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1333
1334 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1335
1336 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1337 tu_cs_emit(cs, 0x0);
1338
1339 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1340
1341 tu_cs_sanity_check(cs);
1342 }
1343
1344 static void
1345 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1346 {
1347 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1348
1349 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1350
1351 /* lrz clear? */
1352
1353 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1354 tu_cs_emit(cs, 0x0);
1355
1356 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1357
1358 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1359 if (use_hw_binning(cmd)) {
1360 /* enable stream-out during binning pass: */
1361 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1362
1363 tu6_emit_bin_size(cs,
1364 tiling->tile0.extent.width,
1365 tiling->tile0.extent.height,
1366 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1367
1368 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1369
1370 tu6_emit_binning_pass(cmd, cs);
1371
1372 /* and disable stream-out for draw pass: */
1373 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=true));
1374
1375 tu6_emit_bin_size(cs,
1376 tiling->tile0.extent.width,
1377 tiling->tile0.extent.height,
1378 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1379
1380 tu_cs_emit_regs(cs,
1381 A6XX_VFD_MODE_CNTL(0));
1382
1383 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1384
1385 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1386
1387 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1388 tu_cs_emit(cs, 0x1);
1389 } else {
1390 /* no binning pass, so enable stream-out for draw pass:: */
1391 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1392
1393 tu6_emit_bin_size(cs,
1394 tiling->tile0.extent.width,
1395 tiling->tile0.extent.height,
1396 0x6000000);
1397 }
1398
1399 tu_cs_sanity_check(cs);
1400 }
1401
1402 static void
1403 tu6_render_tile(struct tu_cmd_buffer *cmd,
1404 struct tu_cs *cs,
1405 const struct tu_tile *tile)
1406 {
1407 tu6_emit_tile_select(cmd, cs, tile);
1408
1409 tu_cs_emit_call(cs, &cmd->draw_cs);
1410
1411 if (use_hw_binning(cmd)) {
1412 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1413 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1414 }
1415
1416 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1417
1418 tu_cs_sanity_check(cs);
1419 }
1420
1421 static void
1422 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1423 {
1424 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1425
1426 tu_cs_emit_regs(cs,
1427 A6XX_GRAS_LRZ_CNTL(0));
1428
1429 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1430
1431 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1432
1433 tu_cs_sanity_check(cs);
1434 }
1435
1436 static void
1437 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1438 {
1439 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1440
1441 tu6_tile_render_begin(cmd, &cmd->cs);
1442
1443 for (uint32_t y = 0; y < tiling->tile_count.height; y++) {
1444 for (uint32_t x = 0; x < tiling->tile_count.width; x++) {
1445 struct tu_tile tile;
1446 tu_tiling_config_get_tile(tiling, cmd->device, x, y, &tile);
1447 tu6_render_tile(cmd, &cmd->cs, &tile);
1448 }
1449 }
1450
1451 tu6_tile_render_end(cmd, &cmd->cs);
1452 }
1453
1454 static void
1455 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1456 {
1457 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1458
1459 tu6_sysmem_render_begin(cmd, &cmd->cs, &tiling->render_area);
1460
1461 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1462
1463 tu6_sysmem_render_end(cmd, &cmd->cs);
1464 }
1465
1466 static void
1467 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1468 {
1469 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1470 struct tu_cs sub_cs;
1471
1472 VkResult result =
1473 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1474 if (result != VK_SUCCESS) {
1475 cmd->record_result = result;
1476 return;
1477 }
1478
1479 /* emit to tile-store sub_cs */
1480 tu6_emit_tile_store(cmd, &sub_cs);
1481
1482 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1483 }
1484
1485 static void
1486 tu_cmd_update_tiling_config(struct tu_cmd_buffer *cmd,
1487 const VkRect2D *render_area)
1488 {
1489 const struct tu_device *dev = cmd->device;
1490 struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1491
1492 tiling->render_area = *render_area;
1493 tiling->force_sysmem = false;
1494
1495 tu_tiling_config_update_tile_layout(tiling, dev, cmd->state.pass);
1496 tu_tiling_config_update_pipe_layout(tiling, dev);
1497 tu_tiling_config_update_pipes(tiling, dev);
1498 }
1499
1500 static VkResult
1501 tu_create_cmd_buffer(struct tu_device *device,
1502 struct tu_cmd_pool *pool,
1503 VkCommandBufferLevel level,
1504 VkCommandBuffer *pCommandBuffer)
1505 {
1506 struct tu_cmd_buffer *cmd_buffer;
1507 cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8,
1508 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1509 if (cmd_buffer == NULL)
1510 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1511
1512 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1513 cmd_buffer->device = device;
1514 cmd_buffer->pool = pool;
1515 cmd_buffer->level = level;
1516
1517 if (pool) {
1518 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1519 cmd_buffer->queue_family_index = pool->queue_family_index;
1520
1521 } else {
1522 /* Init the pool_link so we can safely call list_del when we destroy
1523 * the command buffer
1524 */
1525 list_inithead(&cmd_buffer->pool_link);
1526 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1527 }
1528
1529 tu_bo_list_init(&cmd_buffer->bo_list);
1530 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1531 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1532 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1533 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1534
1535 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1536
1537 list_inithead(&cmd_buffer->upload.list);
1538
1539 VkResult result = tu_bo_init_new(device, &cmd_buffer->scratch_bo, 0x1000);
1540 if (result != VK_SUCCESS)
1541 goto fail_scratch_bo;
1542
1543 /* TODO: resize on overflow */
1544 cmd_buffer->vsc_draw_strm_pitch = device->vsc_draw_strm_pitch;
1545 cmd_buffer->vsc_prim_strm_pitch = device->vsc_prim_strm_pitch;
1546 cmd_buffer->vsc_draw_strm = device->vsc_draw_strm;
1547 cmd_buffer->vsc_prim_strm = device->vsc_prim_strm;
1548
1549 return VK_SUCCESS;
1550
1551 fail_scratch_bo:
1552 list_del(&cmd_buffer->pool_link);
1553 return result;
1554 }
1555
1556 static void
1557 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1558 {
1559 tu_bo_finish(cmd_buffer->device, &cmd_buffer->scratch_bo);
1560
1561 list_del(&cmd_buffer->pool_link);
1562
1563 tu_cs_finish(&cmd_buffer->cs);
1564 tu_cs_finish(&cmd_buffer->draw_cs);
1565 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1566 tu_cs_finish(&cmd_buffer->sub_cs);
1567
1568 tu_bo_list_destroy(&cmd_buffer->bo_list);
1569 vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
1570 }
1571
1572 static VkResult
1573 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1574 {
1575 cmd_buffer->record_result = VK_SUCCESS;
1576
1577 tu_bo_list_reset(&cmd_buffer->bo_list);
1578 tu_cs_reset(&cmd_buffer->cs);
1579 tu_cs_reset(&cmd_buffer->draw_cs);
1580 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1581 tu_cs_reset(&cmd_buffer->sub_cs);
1582
1583 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1584 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1585
1586 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1587
1588 return cmd_buffer->record_result;
1589 }
1590
1591 VkResult
1592 tu_AllocateCommandBuffers(VkDevice _device,
1593 const VkCommandBufferAllocateInfo *pAllocateInfo,
1594 VkCommandBuffer *pCommandBuffers)
1595 {
1596 TU_FROM_HANDLE(tu_device, device, _device);
1597 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1598
1599 VkResult result = VK_SUCCESS;
1600 uint32_t i;
1601
1602 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1603
1604 if (!list_is_empty(&pool->free_cmd_buffers)) {
1605 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1606 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1607
1608 list_del(&cmd_buffer->pool_link);
1609 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1610
1611 result = tu_reset_cmd_buffer(cmd_buffer);
1612 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1613 cmd_buffer->level = pAllocateInfo->level;
1614
1615 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1616 } else {
1617 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1618 &pCommandBuffers[i]);
1619 }
1620 if (result != VK_SUCCESS)
1621 break;
1622 }
1623
1624 if (result != VK_SUCCESS) {
1625 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1626 pCommandBuffers);
1627
1628 /* From the Vulkan 1.0.66 spec:
1629 *
1630 * "vkAllocateCommandBuffers can be used to create multiple
1631 * command buffers. If the creation of any of those command
1632 * buffers fails, the implementation must destroy all
1633 * successfully created command buffer objects from this
1634 * command, set all entries of the pCommandBuffers array to
1635 * NULL and return the error."
1636 */
1637 memset(pCommandBuffers, 0,
1638 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1639 }
1640
1641 return result;
1642 }
1643
1644 void
1645 tu_FreeCommandBuffers(VkDevice device,
1646 VkCommandPool commandPool,
1647 uint32_t commandBufferCount,
1648 const VkCommandBuffer *pCommandBuffers)
1649 {
1650 for (uint32_t i = 0; i < commandBufferCount; i++) {
1651 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1652
1653 if (cmd_buffer) {
1654 if (cmd_buffer->pool) {
1655 list_del(&cmd_buffer->pool_link);
1656 list_addtail(&cmd_buffer->pool_link,
1657 &cmd_buffer->pool->free_cmd_buffers);
1658 } else
1659 tu_cmd_buffer_destroy(cmd_buffer);
1660 }
1661 }
1662 }
1663
1664 VkResult
1665 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1666 VkCommandBufferResetFlags flags)
1667 {
1668 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1669 return tu_reset_cmd_buffer(cmd_buffer);
1670 }
1671
1672 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1673 * invalidations.
1674 */
1675 static void
1676 tu_cache_init(struct tu_cache_state *cache)
1677 {
1678 cache->flush_bits = 0;
1679 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1680 }
1681
1682 VkResult
1683 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1684 const VkCommandBufferBeginInfo *pBeginInfo)
1685 {
1686 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1687 VkResult result = VK_SUCCESS;
1688
1689 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1690 /* If the command buffer has already been resetted with
1691 * vkResetCommandBuffer, no need to do it again.
1692 */
1693 result = tu_reset_cmd_buffer(cmd_buffer);
1694 if (result != VK_SUCCESS)
1695 return result;
1696 }
1697
1698 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1699 tu_cache_init(&cmd_buffer->state.cache);
1700 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1701 cmd_buffer->usage_flags = pBeginInfo->flags;
1702
1703 tu_cs_begin(&cmd_buffer->cs);
1704 tu_cs_begin(&cmd_buffer->draw_cs);
1705 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1706
1707 /* setup initial configuration into command buffer */
1708 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1709 switch (cmd_buffer->queue_family_index) {
1710 case TU_QUEUE_GENERAL:
1711 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1712 break;
1713 default:
1714 break;
1715 }
1716 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1717 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1718 assert(pBeginInfo->pInheritanceInfo);
1719 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1720 cmd_buffer->state.subpass =
1721 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1722 } else {
1723 /* When executing in the middle of another command buffer, the CCU
1724 * state is unknown.
1725 */
1726 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1727 }
1728 }
1729
1730 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1731
1732 return VK_SUCCESS;
1733 }
1734
1735 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1736 * rendering can skip over unused state), so we need to collect all the
1737 * bindings together into a single state emit at draw time.
1738 */
1739 void
1740 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1741 uint32_t firstBinding,
1742 uint32_t bindingCount,
1743 const VkBuffer *pBuffers,
1744 const VkDeviceSize *pOffsets)
1745 {
1746 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1747
1748 assert(firstBinding + bindingCount <= MAX_VBS);
1749
1750 for (uint32_t i = 0; i < bindingCount; i++) {
1751 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1752
1753 cmd->state.vb.buffers[firstBinding + i] = buf;
1754 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1755
1756 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1757 }
1758
1759 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1760 }
1761
1762 void
1763 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1764 VkBuffer buffer,
1765 VkDeviceSize offset,
1766 VkIndexType indexType)
1767 {
1768 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1769 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1770
1771 /* initialize/update the restart index */
1772 if (!cmd->state.index_buffer || cmd->state.index_type != indexType) {
1773 struct tu_cs *draw_cs = &cmd->draw_cs;
1774
1775 tu6_emit_restart_index(
1776 draw_cs, indexType == VK_INDEX_TYPE_UINT32 ? 0xffffffff : 0xffff);
1777
1778 tu_cs_sanity_check(draw_cs);
1779 }
1780
1781 /* track the BO */
1782 if (cmd->state.index_buffer != buf)
1783 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1784
1785 cmd->state.index_buffer = buf;
1786 cmd->state.index_offset = offset;
1787 cmd->state.index_type = indexType;
1788 }
1789
1790 void
1791 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1792 VkPipelineBindPoint pipelineBindPoint,
1793 VkPipelineLayout _layout,
1794 uint32_t firstSet,
1795 uint32_t descriptorSetCount,
1796 const VkDescriptorSet *pDescriptorSets,
1797 uint32_t dynamicOffsetCount,
1798 const uint32_t *pDynamicOffsets)
1799 {
1800 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1801 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1802 unsigned dyn_idx = 0;
1803
1804 struct tu_descriptor_state *descriptors_state =
1805 tu_get_descriptors_state(cmd, pipelineBindPoint);
1806
1807 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1808 unsigned idx = i + firstSet;
1809 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1810
1811 descriptors_state->sets[idx] = set;
1812
1813 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1814 /* update the contents of the dynamic descriptor set */
1815 unsigned src_idx = j;
1816 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1817 assert(dyn_idx < dynamicOffsetCount);
1818
1819 uint32_t *dst =
1820 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1821 uint32_t *src =
1822 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1823 uint32_t offset = pDynamicOffsets[dyn_idx];
1824
1825 /* Patch the storage/uniform descriptors right away. */
1826 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1827 /* Note: we can assume here that the addition won't roll over and
1828 * change the SIZE field.
1829 */
1830 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1831 va += offset;
1832 dst[0] = va;
1833 dst[1] = va >> 32;
1834 } else {
1835 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1836 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1837 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1838 va += offset;
1839 dst[4] = va;
1840 dst[5] = va >> 32;
1841 }
1842 }
1843
1844 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1845 if (set->buffers[j]) {
1846 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1847 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1848 }
1849 }
1850
1851 if (set->size > 0) {
1852 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1853 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1854 }
1855 }
1856 assert(dyn_idx == dynamicOffsetCount);
1857
1858 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_update_value;
1859 uint64_t addr[MAX_SETS + 1] = {};
1860 struct tu_cs cs;
1861
1862 for (uint32_t i = 0; i < MAX_SETS; i++) {
1863 struct tu_descriptor_set *set = descriptors_state->sets[i];
1864 if (set)
1865 addr[i] = set->va | 3;
1866 }
1867
1868 if (layout->dynamic_offset_count) {
1869 /* allocate and fill out dynamic descriptor set */
1870 struct ts_cs_memory dynamic_desc_set;
1871 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1872 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1873 assert(result == VK_SUCCESS);
1874
1875 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1876 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1877 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1878 }
1879
1880 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1881 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1882 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1883 hlsq_update_value = 0x7c000;
1884
1885 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS | TU_CMD_DIRTY_SHADER_CONSTS;
1886 } else {
1887 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1888
1889 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1890 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1891 hlsq_update_value = 0x3e00;
1892
1893 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS;
1894 }
1895
1896 tu_cs_begin_sub_stream(&cmd->sub_cs, 24, &cs);
1897
1898 tu_cs_emit_pkt4(&cs, sp_bindless_base_reg, 10);
1899 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1900 tu_cs_emit_pkt4(&cs, hlsq_bindless_base_reg, 10);
1901 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1902 tu_cs_emit_regs(&cs, A6XX_HLSQ_UPDATE_CNTL(.dword = hlsq_update_value));
1903
1904 struct tu_cs_entry ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1905 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1906 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1907 tu_cs_emit_sds_ib(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, ib);
1908 cmd->state.desc_sets_ib = ib;
1909 } else {
1910 /* note: for compute we could emit directly, instead of a CP_INDIRECT
1911 * however, the blob uses draw states for compute
1912 */
1913 tu_cs_emit_ib(&cmd->cs, &ib);
1914 }
1915 }
1916
1917 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1918 uint32_t firstBinding,
1919 uint32_t bindingCount,
1920 const VkBuffer *pBuffers,
1921 const VkDeviceSize *pOffsets,
1922 const VkDeviceSize *pSizes)
1923 {
1924 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1925 assert(firstBinding + bindingCount <= IR3_MAX_SO_BUFFERS);
1926
1927 for (uint32_t i = 0; i < bindingCount; i++) {
1928 uint32_t idx = firstBinding + i;
1929 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1930
1931 if (pOffsets[i] != 0)
1932 cmd->state.streamout_reset |= 1 << idx;
1933
1934 cmd->state.streamout_buf.buffers[idx] = buf;
1935 cmd->state.streamout_buf.offsets[idx] = pOffsets[i];
1936 cmd->state.streamout_buf.sizes[idx] = pSizes[i];
1937
1938 cmd->state.streamout_enabled |= 1 << idx;
1939 }
1940
1941 cmd->state.dirty |= TU_CMD_DIRTY_STREAMOUT_BUFFERS;
1942 }
1943
1944 void tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1945 uint32_t firstCounterBuffer,
1946 uint32_t counterBufferCount,
1947 const VkBuffer *pCounterBuffers,
1948 const VkDeviceSize *pCounterBufferOffsets)
1949 {
1950 assert(firstCounterBuffer + counterBufferCount <= IR3_MAX_SO_BUFFERS);
1951 /* TODO do something with counter buffer? */
1952 }
1953
1954 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1955 uint32_t firstCounterBuffer,
1956 uint32_t counterBufferCount,
1957 const VkBuffer *pCounterBuffers,
1958 const VkDeviceSize *pCounterBufferOffsets)
1959 {
1960 assert(firstCounterBuffer + counterBufferCount <= IR3_MAX_SO_BUFFERS);
1961 /* TODO do something with counter buffer? */
1962
1963 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1964 cmd->state.streamout_enabled = 0;
1965 }
1966
1967 void
1968 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
1969 VkPipelineLayout layout,
1970 VkShaderStageFlags stageFlags,
1971 uint32_t offset,
1972 uint32_t size,
1973 const void *pValues)
1974 {
1975 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1976 memcpy((void*) cmd->push_constants + offset, pValues, size);
1977 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
1978 }
1979
1980 /* Flush everything which has been made available but we haven't actually
1981 * flushed yet.
1982 */
1983 static void
1984 tu_flush_all_pending(struct tu_cache_state *cache)
1985 {
1986 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
1987 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
1988 }
1989
1990 VkResult
1991 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
1992 {
1993 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1994
1995 /* We currently flush CCU at the end of the command buffer, like
1996 * what the blob does. There's implicit synchronization around every
1997 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
1998 * know yet if this command buffer will be the last in the submit so we
1999 * have to defensively flush everything else.
2000 *
2001 * TODO: We could definitely do better than this, since these flushes
2002 * aren't required by Vulkan, but we'd need kernel support to do that.
2003 * Ideally, we'd like the kernel to flush everything afterwards, so that we
2004 * wouldn't have to do any flushes here, and when submitting multiple
2005 * command buffers there wouldn't be any unnecessary flushes in between.
2006 */
2007 if (cmd_buffer->state.pass) {
2008 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
2009 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
2010 } else {
2011 tu_flush_all_pending(&cmd_buffer->state.cache);
2012 cmd_buffer->state.cache.flush_bits |=
2013 TU_CMD_FLAG_CCU_FLUSH_COLOR |
2014 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
2015 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
2016 }
2017
2018 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->scratch_bo,
2019 MSM_SUBMIT_BO_WRITE);
2020
2021 if (cmd_buffer->use_vsc_data) {
2022 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_draw_strm,
2023 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2024 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_prim_strm,
2025 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2026 }
2027
2028 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->border_color,
2029 MSM_SUBMIT_BO_READ);
2030
2031 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
2032 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
2033 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2034 }
2035
2036 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
2037 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
2038 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2039 }
2040
2041 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
2042 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
2043 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2044 }
2045
2046 tu_cs_end(&cmd_buffer->cs);
2047 tu_cs_end(&cmd_buffer->draw_cs);
2048 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
2049
2050 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
2051
2052 return cmd_buffer->record_result;
2053 }
2054
2055 static struct tu_cs
2056 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2057 {
2058 struct ts_cs_memory memory;
2059 struct tu_cs cs;
2060
2061 /* TODO: share this logic with tu_pipeline_static_state */
2062 tu_cs_alloc(&cmd->sub_cs, size, 1, &memory);
2063 tu_cs_init_external(&cs, memory.map, memory.map + size);
2064 tu_cs_begin(&cs);
2065 tu_cs_reserve_space(&cs, size);
2066
2067 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2068 cmd->state.dynamic_state[id].iova = memory.iova;
2069 cmd->state.dynamic_state[id].size = size;
2070
2071 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2072 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2073
2074 return cs;
2075 }
2076
2077 void
2078 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2079 VkPipelineBindPoint pipelineBindPoint,
2080 VkPipeline _pipeline)
2081 {
2082 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2083 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2084
2085 tu_bo_list_add(&cmd->bo_list, &pipeline->program.binary_bo,
2086 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2087 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2088 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2089 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2090 }
2091
2092 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2093 cmd->state.compute_pipeline = pipeline;
2094 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_PIPELINE;
2095 return;
2096 }
2097
2098 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2099
2100 cmd->state.pipeline = pipeline;
2101 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2102
2103 struct tu_cs *cs = &cmd->draw_cs;
2104 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2105 uint32_t i;
2106
2107 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2108 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
2109 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
2110 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
2111 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
2112 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
2113 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
2114 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
2115
2116 for_each_bit(i, mask)
2117 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2118
2119 /* If the new pipeline requires more VBs than we had previously set up, we
2120 * need to re-emit them in SDS. If it requires the same set or fewer, we
2121 * can just re-use the old SDS.
2122 */
2123 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2124 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2125
2126 /* If the pipeline needs a dynamic descriptor, re-emit descriptor sets */
2127 if (pipeline->layout->dynamic_offset_count)
2128 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS;
2129
2130 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2131 * so the dynamic state ib must be updated when pipeline changes
2132 */
2133 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2134 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2135
2136 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2137 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2138
2139 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2140 }
2141 }
2142
2143 void
2144 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2145 uint32_t firstViewport,
2146 uint32_t viewportCount,
2147 const VkViewport *pViewports)
2148 {
2149 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2150 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2151
2152 assert(firstViewport == 0 && viewportCount == 1);
2153
2154 tu6_emit_viewport(&cs, pViewports);
2155 }
2156
2157 void
2158 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2159 uint32_t firstScissor,
2160 uint32_t scissorCount,
2161 const VkRect2D *pScissors)
2162 {
2163 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2164 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2165
2166 assert(firstScissor == 0 && scissorCount == 1);
2167
2168 tu6_emit_scissor(&cs, pScissors);
2169 }
2170
2171 void
2172 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2173 {
2174 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2175 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2176
2177 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2178 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2179
2180 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2181 }
2182
2183 void
2184 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2185 float depthBiasConstantFactor,
2186 float depthBiasClamp,
2187 float depthBiasSlopeFactor)
2188 {
2189 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2190 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2191
2192 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2193 }
2194
2195 void
2196 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2197 const float blendConstants[4])
2198 {
2199 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2200 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2201
2202 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2203 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2204 }
2205
2206 void
2207 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2208 float minDepthBounds,
2209 float maxDepthBounds)
2210 {
2211 }
2212
2213 static void
2214 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2215 {
2216 if (face & VK_STENCIL_FACE_FRONT_BIT)
2217 *value |= A6XX_RB_STENCILMASK_MASK(mask);
2218 if (face & VK_STENCIL_FACE_BACK_BIT)
2219 *value |= A6XX_RB_STENCILMASK_BFMASK(mask);
2220 }
2221
2222 void
2223 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2224 VkStencilFaceFlags faceMask,
2225 uint32_t compareMask)
2226 {
2227 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2228 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2229
2230 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2231
2232 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2233 }
2234
2235 void
2236 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2237 VkStencilFaceFlags faceMask,
2238 uint32_t writeMask)
2239 {
2240 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2241 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2242
2243 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2244
2245 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2246 }
2247
2248 void
2249 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2250 VkStencilFaceFlags faceMask,
2251 uint32_t reference)
2252 {
2253 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2254 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2255
2256 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2257
2258 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2259 }
2260
2261 void
2262 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2263 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2264 {
2265 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2266 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2267
2268 assert(pSampleLocationsInfo);
2269
2270 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2271 }
2272
2273 static void
2274 tu_flush_for_access(struct tu_cache_state *cache,
2275 enum tu_cmd_access_mask src_mask,
2276 enum tu_cmd_access_mask dst_mask)
2277 {
2278 enum tu_cmd_flush_bits flush_bits = 0;
2279
2280 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2281 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2282 }
2283
2284 #define SRC_FLUSH(domain, flush, invalidate) \
2285 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2286 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2287 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2288 }
2289
2290 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2291 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2292 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2293
2294 #undef SRC_FLUSH
2295
2296 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2297 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2298 flush_bits |= TU_CMD_FLAG_##flush; \
2299 cache->pending_flush_bits |= \
2300 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2301 }
2302
2303 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2304 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2305
2306 #undef SRC_INCOHERENT_FLUSH
2307
2308 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
2309 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2310 }
2311
2312 #define DST_FLUSH(domain, flush, invalidate) \
2313 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2314 TU_ACCESS_##domain##_WRITE)) { \
2315 flush_bits |= cache->pending_flush_bits & \
2316 (TU_CMD_FLAG_##invalidate | \
2317 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2318 }
2319
2320 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2321 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2322 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2323
2324 #undef DST_FLUSH
2325
2326 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2327 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2328 TU_ACCESS_##domain##_WRITE)) { \
2329 flush_bits |= TU_CMD_FLAG_##invalidate | \
2330 (cache->pending_flush_bits & \
2331 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2332 }
2333
2334 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2335 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2336
2337 #undef DST_INCOHERENT_FLUSH
2338
2339 if (dst_mask & TU_ACCESS_WFI_READ) {
2340 flush_bits |= TU_CMD_FLAG_WFI;
2341 }
2342
2343 cache->flush_bits |= flush_bits;
2344 cache->pending_flush_bits &= ~flush_bits;
2345 }
2346
2347 static enum tu_cmd_access_mask
2348 vk2tu_access(VkAccessFlags flags, bool gmem)
2349 {
2350 enum tu_cmd_access_mask mask = 0;
2351
2352 /* If the GPU writes a buffer that is then read by an indirect draw
2353 * command, we theoretically need a WFI + WAIT_FOR_ME combination to
2354 * wait for the writes to complete. The WAIT_FOR_ME is performed as part
2355 * of the draw by the firmware, so we just need to execute a WFI.
2356 */
2357 if (flags &
2358 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2359 VK_ACCESS_MEMORY_READ_BIT)) {
2360 mask |= TU_ACCESS_WFI_READ;
2361 }
2362
2363 if (flags &
2364 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2365 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
2366 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2367 VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
2368 VK_ACCESS_MEMORY_READ_BIT)) {
2369 mask |= TU_ACCESS_SYSMEM_READ;
2370 }
2371
2372 if (flags &
2373 (VK_ACCESS_HOST_WRITE_BIT |
2374 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
2375 VK_ACCESS_MEMORY_WRITE_BIT)) {
2376 mask |= TU_ACCESS_SYSMEM_WRITE;
2377 }
2378
2379 if (flags &
2380 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2381 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2382 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2383 /* TODO: Is there a no-cache bit for textures so that we can ignore
2384 * these?
2385 */
2386 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2387 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2388 VK_ACCESS_MEMORY_READ_BIT)) {
2389 mask |= TU_ACCESS_UCHE_READ;
2390 }
2391
2392 if (flags &
2393 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2394 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2395 VK_ACCESS_MEMORY_WRITE_BIT)) {
2396 mask |= TU_ACCESS_UCHE_WRITE;
2397 }
2398
2399 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2400 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2401 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2402 * can ignore CCU and pretend that color attachments and transfers use
2403 * sysmem directly.
2404 */
2405
2406 if (flags &
2407 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2408 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2409 VK_ACCESS_MEMORY_READ_BIT)) {
2410 if (gmem)
2411 mask |= TU_ACCESS_SYSMEM_READ;
2412 else
2413 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2414 }
2415
2416 if (flags &
2417 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2418 VK_ACCESS_MEMORY_READ_BIT)) {
2419 if (gmem)
2420 mask |= TU_ACCESS_SYSMEM_READ;
2421 else
2422 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2423 }
2424
2425 if (flags &
2426 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2427 VK_ACCESS_MEMORY_WRITE_BIT)) {
2428 if (gmem) {
2429 mask |= TU_ACCESS_SYSMEM_WRITE;
2430 } else {
2431 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2432 }
2433 }
2434
2435 if (flags &
2436 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2437 VK_ACCESS_MEMORY_WRITE_BIT)) {
2438 if (gmem) {
2439 mask |= TU_ACCESS_SYSMEM_WRITE;
2440 } else {
2441 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2442 }
2443 }
2444
2445 /* When the dst access is a transfer read/write, it seems we sometimes need
2446 * to insert a WFI after any flushes, to guarantee that the flushes finish
2447 * before the 2D engine starts. However the opposite (i.e. a WFI after
2448 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2449 * the blob doesn't emit such a WFI.
2450 */
2451
2452 if (flags &
2453 (VK_ACCESS_TRANSFER_WRITE_BIT |
2454 VK_ACCESS_MEMORY_WRITE_BIT)) {
2455 if (gmem) {
2456 mask |= TU_ACCESS_SYSMEM_WRITE;
2457 } else {
2458 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2459 }
2460 mask |= TU_ACCESS_WFI_READ;
2461 }
2462
2463 if (flags &
2464 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2465 VK_ACCESS_MEMORY_READ_BIT)) {
2466 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2467 }
2468
2469 return mask;
2470 }
2471
2472
2473 void
2474 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2475 uint32_t commandBufferCount,
2476 const VkCommandBuffer *pCmdBuffers)
2477 {
2478 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2479 VkResult result;
2480
2481 assert(commandBufferCount > 0);
2482
2483 /* Emit any pending flushes. */
2484 if (cmd->state.pass) {
2485 tu_flush_all_pending(&cmd->state.renderpass_cache);
2486 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2487 } else {
2488 tu_flush_all_pending(&cmd->state.cache);
2489 tu_emit_cache_flush(cmd, &cmd->cs);
2490 }
2491
2492 for (uint32_t i = 0; i < commandBufferCount; i++) {
2493 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2494
2495 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2496 if (result != VK_SUCCESS) {
2497 cmd->record_result = result;
2498 break;
2499 }
2500
2501 if (secondary->usage_flags &
2502 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2503 assert(tu_cs_is_empty(&secondary->cs));
2504
2505 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2506 if (result != VK_SUCCESS) {
2507 cmd->record_result = result;
2508 break;
2509 }
2510
2511 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2512 &secondary->draw_epilogue_cs);
2513 if (result != VK_SUCCESS) {
2514 cmd->record_result = result;
2515 break;
2516 }
2517 } else {
2518 assert(tu_cs_is_empty(&secondary->draw_cs));
2519 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2520
2521 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2522 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2523 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2524 }
2525
2526 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2527 }
2528 }
2529 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2530
2531 /* After executing secondary command buffers, there may have been arbitrary
2532 * flushes executed, so when we encounter a pipeline barrier with a
2533 * srcMask, we have to assume that we need to invalidate. Therefore we need
2534 * to re-initialize the cache with all pending invalidate bits set.
2535 */
2536 if (cmd->state.pass) {
2537 tu_cache_init(&cmd->state.renderpass_cache);
2538 } else {
2539 tu_cache_init(&cmd->state.cache);
2540 }
2541 }
2542
2543 VkResult
2544 tu_CreateCommandPool(VkDevice _device,
2545 const VkCommandPoolCreateInfo *pCreateInfo,
2546 const VkAllocationCallbacks *pAllocator,
2547 VkCommandPool *pCmdPool)
2548 {
2549 TU_FROM_HANDLE(tu_device, device, _device);
2550 struct tu_cmd_pool *pool;
2551
2552 pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
2553 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2554 if (pool == NULL)
2555 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2556
2557 if (pAllocator)
2558 pool->alloc = *pAllocator;
2559 else
2560 pool->alloc = device->alloc;
2561
2562 list_inithead(&pool->cmd_buffers);
2563 list_inithead(&pool->free_cmd_buffers);
2564
2565 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2566
2567 *pCmdPool = tu_cmd_pool_to_handle(pool);
2568
2569 return VK_SUCCESS;
2570 }
2571
2572 void
2573 tu_DestroyCommandPool(VkDevice _device,
2574 VkCommandPool commandPool,
2575 const VkAllocationCallbacks *pAllocator)
2576 {
2577 TU_FROM_HANDLE(tu_device, device, _device);
2578 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2579
2580 if (!pool)
2581 return;
2582
2583 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2584 &pool->cmd_buffers, pool_link)
2585 {
2586 tu_cmd_buffer_destroy(cmd_buffer);
2587 }
2588
2589 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2590 &pool->free_cmd_buffers, pool_link)
2591 {
2592 tu_cmd_buffer_destroy(cmd_buffer);
2593 }
2594
2595 vk_free2(&device->alloc, pAllocator, pool);
2596 }
2597
2598 VkResult
2599 tu_ResetCommandPool(VkDevice device,
2600 VkCommandPool commandPool,
2601 VkCommandPoolResetFlags flags)
2602 {
2603 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2604 VkResult result;
2605
2606 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2607 pool_link)
2608 {
2609 result = tu_reset_cmd_buffer(cmd_buffer);
2610 if (result != VK_SUCCESS)
2611 return result;
2612 }
2613
2614 return VK_SUCCESS;
2615 }
2616
2617 void
2618 tu_TrimCommandPool(VkDevice device,
2619 VkCommandPool commandPool,
2620 VkCommandPoolTrimFlags flags)
2621 {
2622 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2623
2624 if (!pool)
2625 return;
2626
2627 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2628 &pool->free_cmd_buffers, pool_link)
2629 {
2630 tu_cmd_buffer_destroy(cmd_buffer);
2631 }
2632 }
2633
2634 static void
2635 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2636 const struct tu_subpass_barrier *barrier,
2637 bool external)
2638 {
2639 /* Note: we don't know until the end of the subpass whether we'll use
2640 * sysmem, so assume sysmem here to be safe.
2641 */
2642 struct tu_cache_state *cache =
2643 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2644 enum tu_cmd_access_mask src_flags =
2645 vk2tu_access(barrier->src_access_mask, false);
2646 enum tu_cmd_access_mask dst_flags =
2647 vk2tu_access(barrier->dst_access_mask, false);
2648
2649 if (barrier->incoherent_ccu_color)
2650 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2651 if (barrier->incoherent_ccu_depth)
2652 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2653
2654 tu_flush_for_access(cache, src_flags, dst_flags);
2655 }
2656
2657 void
2658 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2659 const VkRenderPassBeginInfo *pRenderPassBegin,
2660 VkSubpassContents contents)
2661 {
2662 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2663 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2664 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2665
2666 cmd->state.pass = pass;
2667 cmd->state.subpass = pass->subpasses;
2668 cmd->state.framebuffer = fb;
2669
2670 tu_cmd_update_tiling_config(cmd, &pRenderPassBegin->renderArea);
2671 tu_cmd_prepare_tile_store_ib(cmd);
2672
2673 /* Note: because this is external, any flushes will happen before draw_cs
2674 * gets called. However deferred flushes could have to happen later as part
2675 * of the subpass.
2676 */
2677 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2678 cmd->state.renderpass_cache.pending_flush_bits =
2679 cmd->state.cache.pending_flush_bits;
2680 cmd->state.renderpass_cache.flush_bits = 0;
2681
2682 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2683
2684 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2685 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2686 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2687 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2688
2689 tu_set_input_attachments(cmd, cmd->state.subpass);
2690
2691 /* note: use_hw_binning only checks tiling config */
2692 if (use_hw_binning(cmd))
2693 cmd->use_vsc_data = true;
2694
2695 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2696 const struct tu_image_view *iview = fb->attachments[i].attachment;
2697 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2698 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2699 }
2700
2701 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2702 }
2703
2704 void
2705 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2706 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2707 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2708 {
2709 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2710 pSubpassBeginInfo->contents);
2711 }
2712
2713 void
2714 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2715 {
2716 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2717 const struct tu_render_pass *pass = cmd->state.pass;
2718 struct tu_cs *cs = &cmd->draw_cs;
2719
2720 const struct tu_subpass *subpass = cmd->state.subpass++;
2721
2722 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2723
2724 if (subpass->resolve_attachments) {
2725 tu6_emit_blit_scissor(cmd, cs, true);
2726
2727 for (unsigned i = 0; i < subpass->color_count; i++) {
2728 uint32_t a = subpass->resolve_attachments[i].attachment;
2729 if (a == VK_ATTACHMENT_UNUSED)
2730 continue;
2731
2732 tu_store_gmem_attachment(cmd, cs, a,
2733 subpass->color_attachments[i].attachment);
2734
2735 if (pass->attachments[a].gmem_offset < 0)
2736 continue;
2737
2738 /* TODO:
2739 * check if the resolved attachment is needed by later subpasses,
2740 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2741 */
2742 tu_finishme("missing GMEM->GMEM resolve path\n");
2743 tu_load_gmem_attachment(cmd, cs, a, true);
2744 }
2745 }
2746
2747 tu_cond_exec_end(cs);
2748
2749 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2750
2751 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2752
2753 tu_cond_exec_end(cs);
2754
2755 /* Handle dependencies for the next subpass */
2756 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2757
2758 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2759 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2760 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2761 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2762 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2763
2764 tu_set_input_attachments(cmd, cmd->state.subpass);
2765 }
2766
2767 void
2768 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2769 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2770 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2771 {
2772 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2773 }
2774
2775 struct tu_draw_info
2776 {
2777 /**
2778 * Number of vertices.
2779 */
2780 uint32_t count;
2781
2782 /**
2783 * Index of the first vertex.
2784 */
2785 int32_t vertex_offset;
2786
2787 /**
2788 * First instance id.
2789 */
2790 uint32_t first_instance;
2791
2792 /**
2793 * Number of instances.
2794 */
2795 uint32_t instance_count;
2796
2797 /**
2798 * First index (indexed draws only).
2799 */
2800 uint32_t first_index;
2801
2802 /**
2803 * Whether it's an indexed draw.
2804 */
2805 bool indexed;
2806
2807 /**
2808 * Indirect draw parameters resource.
2809 */
2810 struct tu_buffer *indirect;
2811 uint64_t indirect_offset;
2812 uint32_t stride;
2813
2814 /**
2815 * Draw count parameters resource.
2816 */
2817 struct tu_buffer *count_buffer;
2818 uint64_t count_buffer_offset;
2819
2820 /**
2821 * Stream output parameters resource.
2822 */
2823 struct tu_buffer *streamout_buffer;
2824 uint64_t streamout_buffer_offset;
2825 };
2826
2827 static void
2828 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2829 struct tu_descriptor_state *descriptors_state,
2830 gl_shader_stage type,
2831 uint32_t *push_constants)
2832 {
2833 const struct tu_program_descriptor_linkage *link =
2834 &pipeline->program.link[type];
2835 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2836
2837 if (link->push_consts.count > 0) {
2838 unsigned num_units = link->push_consts.count;
2839 unsigned offset = link->push_consts.lo;
2840 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2841 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2842 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2843 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2844 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2845 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2846 tu_cs_emit(cs, 0);
2847 tu_cs_emit(cs, 0);
2848 for (unsigned i = 0; i < num_units * 4; i++)
2849 tu_cs_emit(cs, push_constants[i + offset * 4]);
2850 }
2851
2852 for (uint32_t i = 0; i < state->num_enabled; i++) {
2853 uint32_t size = state->range[i].end - state->range[i].start;
2854 uint32_t offset = state->range[i].start;
2855
2856 /* and even if the start of the const buffer is before
2857 * first_immediate, the end may not be:
2858 */
2859 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2860
2861 if (size == 0)
2862 continue;
2863
2864 /* things should be aligned to vec4: */
2865 debug_assert((state->range[i].offset % 16) == 0);
2866 debug_assert((size % 16) == 0);
2867 debug_assert((offset % 16) == 0);
2868
2869 /* Dig out the descriptor from the descriptor state and read the VA from
2870 * it.
2871 */
2872 assert(state->range[i].bindless);
2873 uint32_t *base = state->range[i].bindless_base == MAX_SETS ?
2874 descriptors_state->dynamic_descriptors :
2875 descriptors_state->sets[state->range[i].bindless_base]->mapped_ptr;
2876 unsigned block = state->range[i].block;
2877 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2878 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2879 assert(va);
2880
2881 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2882 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2883 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2884 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2885 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2886 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2887 tu_cs_emit_qw(cs, va + offset);
2888 }
2889 }
2890
2891 static struct tu_cs_entry
2892 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2893 const struct tu_pipeline *pipeline,
2894 struct tu_descriptor_state *descriptors_state,
2895 gl_shader_stage type)
2896 {
2897 struct tu_cs cs;
2898 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2899
2900 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2901
2902 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2903 }
2904
2905 static VkResult
2906 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
2907 const struct tu_draw_info *draw,
2908 struct tu_cs_entry *entry)
2909 {
2910 /* TODO: fill out more than just base instance */
2911 const struct tu_program_descriptor_linkage *link =
2912 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
2913 const struct ir3_const_state *const_state = &link->const_state;
2914 struct tu_cs cs;
2915
2916 if (const_state->offsets.driver_param >= link->constlen) {
2917 *entry = (struct tu_cs_entry) {};
2918 return VK_SUCCESS;
2919 }
2920
2921 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 8, &cs);
2922 if (result != VK_SUCCESS)
2923 return result;
2924
2925 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2926 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(const_state->offsets.driver_param) |
2927 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2928 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2929 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
2930 CP_LOAD_STATE6_0_NUM_UNIT(1));
2931 tu_cs_emit(&cs, 0);
2932 tu_cs_emit(&cs, 0);
2933
2934 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
2935
2936 tu_cs_emit(&cs, 0);
2937 tu_cs_emit(&cs, 0);
2938 tu_cs_emit(&cs, draw->first_instance);
2939 tu_cs_emit(&cs, 0);
2940
2941 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2942 return VK_SUCCESS;
2943 }
2944
2945 static struct tu_cs_entry
2946 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
2947 const struct tu_pipeline *pipeline)
2948 {
2949 struct tu_cs cs;
2950 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
2951
2952 int binding;
2953 for_each_bit(binding, pipeline->vi.bindings_used) {
2954 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
2955 const VkDeviceSize offset = buf->bo_offset +
2956 cmd->state.vb.offsets[binding];
2957
2958 tu_cs_emit_regs(&cs,
2959 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
2960 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
2961
2962 }
2963
2964 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
2965
2966 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2967 }
2968
2969 static void
2970 tu6_emit_streamout(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
2971 {
2972 struct tu_streamout_state *tf = &cmd->state.pipeline->streamout;
2973
2974 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
2975 struct tu_buffer *buf = cmd->state.streamout_buf.buffers[i];
2976 if (!buf)
2977 continue;
2978
2979 uint32_t offset;
2980 offset = cmd->state.streamout_buf.offsets[i];
2981
2982 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_BASE(i, .bo = buf->bo,
2983 .bo_offset = buf->bo_offset));
2984 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_SIZE(i, buf->size));
2985
2986 if (cmd->state.streamout_reset & (1 << i)) {
2987 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, offset));
2988 cmd->state.streamout_reset &= ~(1 << i);
2989 } else {
2990 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
2991 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(i)) |
2992 CP_MEM_TO_REG_0_SHIFT_BY_2 | CP_MEM_TO_REG_0_UNK31 |
2993 CP_MEM_TO_REG_0_CNT(0));
2994 tu_cs_emit_qw(cs, cmd->scratch_bo.iova +
2995 ctrl_offset(flush_base[i].offset));
2996 }
2997
2998 tu_cs_emit_regs(cs, A6XX_VPC_SO_FLUSH_BASE(i, .bo = &cmd->scratch_bo,
2999 .bo_offset =
3000 ctrl_offset(flush_base[i])));
3001 }
3002
3003 if (cmd->state.streamout_enabled) {
3004 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 12 + (2 * tf->prog_count));
3005 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
3006 tu_cs_emit(cs, tf->vpc_so_buf_cntl);
3007 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(0));
3008 tu_cs_emit(cs, tf->ncomp[0]);
3009 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(1));
3010 tu_cs_emit(cs, tf->ncomp[1]);
3011 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(2));
3012 tu_cs_emit(cs, tf->ncomp[2]);
3013 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(3));
3014 tu_cs_emit(cs, tf->ncomp[3]);
3015 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
3016 tu_cs_emit(cs, A6XX_VPC_SO_CNTL_ENABLE);
3017 for (unsigned i = 0; i < tf->prog_count; i++) {
3018 tu_cs_emit(cs, REG_A6XX_VPC_SO_PROG);
3019 tu_cs_emit(cs, tf->prog[i]);
3020 }
3021 } else {
3022 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 4);
3023 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
3024 tu_cs_emit(cs, 0);
3025 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
3026 tu_cs_emit(cs, 0);
3027 }
3028 }
3029
3030 static VkResult
3031 tu6_bind_draw_states(struct tu_cmd_buffer *cmd,
3032 struct tu_cs *cs,
3033 const struct tu_draw_info *draw)
3034 {
3035 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3036 VkResult result;
3037
3038 struct tu_descriptor_state *descriptors_state =
3039 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
3040
3041 /* TODO lrz */
3042
3043 tu_cs_emit_regs(cs,
3044 A6XX_PC_PRIMITIVE_CNTL_0(.primitive_restart =
3045 pipeline->ia.primitive_restart && draw->indexed));
3046
3047 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3048 cmd->state.shader_const_ib[MESA_SHADER_VERTEX] =
3049 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
3050 cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY] =
3051 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
3052 cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT] =
3053 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
3054 }
3055
3056 if (cmd->state.dirty & TU_CMD_DIRTY_STREAMOUT_BUFFERS)
3057 tu6_emit_streamout(cmd, cs);
3058
3059 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) {
3060 /* We need to reload the descriptors every time the descriptor sets
3061 * change. However, the commands we send only depend on the pipeline
3062 * because the whole point is to cache descriptors which are used by the
3063 * pipeline. There's a problem here, in that the firmware has an
3064 * "optimization" which skips executing groups that are set to the same
3065 * value as the last draw. This means that if the descriptor sets change
3066 * but not the pipeline, we'd try to re-execute the same buffer which
3067 * the firmware would ignore and we wouldn't pre-load the new
3068 * descriptors. The blob seems to re-emit the LOAD_STATE group whenever
3069 * the descriptor sets change, which we emulate here by copying the
3070 * pre-prepared buffer.
3071 */
3072 const struct tu_cs_entry *load_entry = &pipeline->load_state.state_ib;
3073 if (load_entry->size > 0) {
3074 struct tu_cs load_cs;
3075 result = tu_cs_begin_sub_stream(&cmd->sub_cs, load_entry->size, &load_cs);
3076 if (result != VK_SUCCESS)
3077 return result;
3078 tu_cs_emit_array(&load_cs,
3079 (uint32_t *)((char *)load_entry->bo->map + load_entry->offset),
3080 load_entry->size / 4);
3081 cmd->state.desc_sets_load_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &load_cs);
3082 } else {
3083 cmd->state.desc_sets_load_ib.size = 0;
3084 }
3085 }
3086
3087 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3088 cmd->state.vertex_buffers_ib = tu6_emit_vertex_buffers(cmd, pipeline);
3089
3090 struct tu_cs_entry vs_params;
3091 result = tu6_emit_vs_params(cmd, draw, &vs_params);
3092 if (result != VK_SUCCESS)
3093 return result;
3094
3095 /* for the first draw in a renderpass, re-emit all the draw states
3096 *
3097 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3098 * used, then draw states must be re-emitted. note however this only happens
3099 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3100 *
3101 * the two input attachment states are excluded because secondary command
3102 * buffer doesn't have a state ib to restore it, and not re-emitting them
3103 * is OK since CmdClearAttachments won't disable/overwrite them
3104 */
3105 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3106 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3107
3108 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
3109 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
3110 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
3111 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
3112 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
3113 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
3114 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
3115 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3116 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3117 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3118 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets_ib);
3119 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3120 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3121 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_PARAMS, vs_params);
3122
3123 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3124 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3125 ((pipeline->dynamic_state_mask & BIT(i)) ?
3126 cmd->state.dynamic_state[i] :
3127 pipeline->dynamic_state[i]));
3128 }
3129 } else {
3130
3131 /* emit draw states that were just updated
3132 * note we eventually don't want to have to emit anything here
3133 */
3134 uint32_t draw_state_count =
3135 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 3 : 0) +
3136 ((cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) ? 1 : 0) +
3137 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3138 1; /* vs_params */
3139
3140 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3141
3142 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3143 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3144 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3145 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3146 }
3147 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS)
3148 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3149 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3150 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3151 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_PARAMS, vs_params);
3152 }
3153
3154 tu_cs_sanity_check(cs);
3155
3156 /* track BOs */
3157 if (cmd->state.dirty & TU_CMD_DIRTY_STREAMOUT_BUFFERS) {
3158 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
3159 const struct tu_buffer *buf = cmd->state.streamout_buf.buffers[i];
3160 if (buf) {
3161 tu_bo_list_add(&cmd->bo_list, buf->bo,
3162 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3163 }
3164 }
3165 }
3166
3167 /* There are too many graphics dirty bits to list here, so just list the
3168 * bits to preserve instead. The only things not emitted here are
3169 * compute-related state.
3170 */
3171 cmd->state.dirty &= (TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3172 return VK_SUCCESS;
3173 }
3174
3175 static void
3176 tu6_emit_draw_indirect(struct tu_cmd_buffer *cmd,
3177 struct tu_cs *cs,
3178 const struct tu_draw_info *draw)
3179 {
3180 const enum pc_di_primtype primtype = cmd->state.pipeline->ia.primtype;
3181 bool has_gs = cmd->state.pipeline->active_stages &
3182 VK_SHADER_STAGE_GEOMETRY_BIT;
3183
3184 tu_cs_emit_regs(cs,
3185 A6XX_VFD_INDEX_OFFSET(draw->vertex_offset),
3186 A6XX_VFD_INSTANCE_START_OFFSET(draw->first_instance));
3187
3188 if (draw->indexed) {
3189 const enum a4xx_index_size index_size =
3190 tu6_index_size(cmd->state.index_type);
3191 const uint32_t index_bytes =
3192 (cmd->state.index_type == VK_INDEX_TYPE_UINT32) ? 4 : 2;
3193 const struct tu_buffer *index_buf = cmd->state.index_buffer;
3194 unsigned max_indicies =
3195 (index_buf->size - cmd->state.index_offset) / index_bytes;
3196
3197 const uint32_t cp_draw_indx =
3198 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3199 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_DMA) |
3200 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(index_size) |
3201 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3202 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
3203
3204 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_INDIRECT, 6);
3205 tu_cs_emit(cs, cp_draw_indx);
3206 tu_cs_emit_qw(cs, index_buf->bo->iova + cmd->state.index_offset);
3207 tu_cs_emit(cs, A5XX_CP_DRAW_INDX_INDIRECT_3_MAX_INDICES(max_indicies));
3208 tu_cs_emit_qw(cs, draw->indirect->bo->iova + draw->indirect_offset);
3209 } else {
3210 const uint32_t cp_draw_indx =
3211 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3212 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_AUTO_INDEX) |
3213 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3214 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
3215
3216 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT, 3);
3217 tu_cs_emit(cs, cp_draw_indx);
3218 tu_cs_emit_qw(cs, draw->indirect->bo->iova + draw->indirect_offset);
3219 }
3220
3221 tu_bo_list_add(&cmd->bo_list, draw->indirect->bo, MSM_SUBMIT_BO_READ);
3222 }
3223
3224 static void
3225 tu6_emit_draw_direct(struct tu_cmd_buffer *cmd,
3226 struct tu_cs *cs,
3227 const struct tu_draw_info *draw)
3228 {
3229
3230 const enum pc_di_primtype primtype = cmd->state.pipeline->ia.primtype;
3231 bool has_gs = cmd->state.pipeline->active_stages &
3232 VK_SHADER_STAGE_GEOMETRY_BIT;
3233
3234 tu_cs_emit_regs(cs,
3235 A6XX_VFD_INDEX_OFFSET(draw->vertex_offset),
3236 A6XX_VFD_INSTANCE_START_OFFSET(draw->first_instance));
3237
3238 /* TODO hw binning */
3239 if (draw->indexed) {
3240 const enum a4xx_index_size index_size =
3241 tu6_index_size(cmd->state.index_type);
3242 const uint32_t index_bytes =
3243 (cmd->state.index_type == VK_INDEX_TYPE_UINT32) ? 4 : 2;
3244 const struct tu_buffer *buf = cmd->state.index_buffer;
3245 const VkDeviceSize offset = buf->bo_offset + cmd->state.index_offset +
3246 index_bytes * draw->first_index;
3247 const uint32_t size = index_bytes * draw->count;
3248
3249 const uint32_t cp_draw_indx =
3250 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3251 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_DMA) |
3252 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(index_size) |
3253 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3254 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
3255
3256 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3257 tu_cs_emit(cs, cp_draw_indx);
3258 tu_cs_emit(cs, draw->instance_count);
3259 tu_cs_emit(cs, draw->count);
3260 tu_cs_emit(cs, 0x0); /* XXX */
3261 tu_cs_emit_qw(cs, buf->bo->iova + offset);
3262 tu_cs_emit(cs, size);
3263 } else {
3264 const uint32_t cp_draw_indx =
3265 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3266 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_AUTO_INDEX) |
3267 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3268 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
3269
3270 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3271 tu_cs_emit(cs, cp_draw_indx);
3272 tu_cs_emit(cs, draw->instance_count);
3273 tu_cs_emit(cs, draw->count);
3274 }
3275 }
3276
3277 static void
3278 tu_draw(struct tu_cmd_buffer *cmd, const struct tu_draw_info *draw)
3279 {
3280 struct tu_cs *cs = &cmd->draw_cs;
3281 VkResult result;
3282
3283 tu_emit_cache_flush_renderpass(cmd, cs);
3284
3285 result = tu6_bind_draw_states(cmd, cs, draw);
3286 if (result != VK_SUCCESS) {
3287 cmd->record_result = result;
3288 return;
3289 }
3290
3291 if (draw->indirect)
3292 tu6_emit_draw_indirect(cmd, cs, draw);
3293 else
3294 tu6_emit_draw_direct(cmd, cs, draw);
3295
3296 if (cmd->state.streamout_enabled) {
3297 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
3298 if (cmd->state.streamout_enabled & (1 << i))
3299 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
3300 }
3301 }
3302
3303 tu_cs_sanity_check(cs);
3304 }
3305
3306 void
3307 tu_CmdDraw(VkCommandBuffer commandBuffer,
3308 uint32_t vertexCount,
3309 uint32_t instanceCount,
3310 uint32_t firstVertex,
3311 uint32_t firstInstance)
3312 {
3313 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3314 struct tu_draw_info info = {};
3315
3316 info.count = vertexCount;
3317 info.instance_count = instanceCount;
3318 info.first_instance = firstInstance;
3319 info.vertex_offset = firstVertex;
3320
3321 tu_draw(cmd_buffer, &info);
3322 }
3323
3324 void
3325 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3326 uint32_t indexCount,
3327 uint32_t instanceCount,
3328 uint32_t firstIndex,
3329 int32_t vertexOffset,
3330 uint32_t firstInstance)
3331 {
3332 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3333 struct tu_draw_info info = {};
3334
3335 info.indexed = true;
3336 info.count = indexCount;
3337 info.instance_count = instanceCount;
3338 info.first_index = firstIndex;
3339 info.vertex_offset = vertexOffset;
3340 info.first_instance = firstInstance;
3341
3342 tu_draw(cmd_buffer, &info);
3343 }
3344
3345 void
3346 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3347 VkBuffer _buffer,
3348 VkDeviceSize offset,
3349 uint32_t drawCount,
3350 uint32_t stride)
3351 {
3352 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3353 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3354 struct tu_draw_info info = {};
3355
3356 info.count = drawCount;
3357 info.indirect = buffer;
3358 info.indirect_offset = offset;
3359 info.stride = stride;
3360
3361 tu_draw(cmd_buffer, &info);
3362 }
3363
3364 void
3365 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3366 VkBuffer _buffer,
3367 VkDeviceSize offset,
3368 uint32_t drawCount,
3369 uint32_t stride)
3370 {
3371 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3372 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3373 struct tu_draw_info info = {};
3374
3375 info.indexed = true;
3376 info.count = drawCount;
3377 info.indirect = buffer;
3378 info.indirect_offset = offset;
3379 info.stride = stride;
3380
3381 tu_draw(cmd_buffer, &info);
3382 }
3383
3384 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3385 uint32_t instanceCount,
3386 uint32_t firstInstance,
3387 VkBuffer _counterBuffer,
3388 VkDeviceSize counterBufferOffset,
3389 uint32_t counterOffset,
3390 uint32_t vertexStride)
3391 {
3392 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3393 TU_FROM_HANDLE(tu_buffer, buffer, _counterBuffer);
3394
3395 struct tu_draw_info info = {};
3396
3397 info.instance_count = instanceCount;
3398 info.first_instance = firstInstance;
3399 info.streamout_buffer = buffer;
3400 info.streamout_buffer_offset = counterBufferOffset;
3401 info.stride = vertexStride;
3402
3403 tu_draw(cmd_buffer, &info);
3404 }
3405
3406 struct tu_dispatch_info
3407 {
3408 /**
3409 * Determine the layout of the grid (in block units) to be used.
3410 */
3411 uint32_t blocks[3];
3412
3413 /**
3414 * A starting offset for the grid. If unaligned is set, the offset
3415 * must still be aligned.
3416 */
3417 uint32_t offsets[3];
3418 /**
3419 * Whether it's an unaligned compute dispatch.
3420 */
3421 bool unaligned;
3422
3423 /**
3424 * Indirect compute parameters resource.
3425 */
3426 struct tu_buffer *indirect;
3427 uint64_t indirect_offset;
3428 };
3429
3430 static void
3431 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3432 const struct tu_dispatch_info *info)
3433 {
3434 gl_shader_stage type = MESA_SHADER_COMPUTE;
3435 const struct tu_program_descriptor_linkage *link =
3436 &pipeline->program.link[type];
3437 const struct ir3_const_state *const_state = &link->const_state;
3438 uint32_t offset = const_state->offsets.driver_param;
3439
3440 if (link->constlen <= offset)
3441 return;
3442
3443 if (!info->indirect) {
3444 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3445 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3446 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3447 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3448 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3449 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3450 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3451 };
3452
3453 uint32_t num_consts = MIN2(const_state->num_driver_params,
3454 (link->constlen - offset) * 4);
3455 /* push constants */
3456 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3457 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3458 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3459 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3460 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3461 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3462 tu_cs_emit(cs, 0);
3463 tu_cs_emit(cs, 0);
3464 uint32_t i;
3465 for (i = 0; i < num_consts; i++)
3466 tu_cs_emit(cs, driver_params[i]);
3467 } else {
3468 tu_finishme("Indirect driver params");
3469 }
3470 }
3471
3472 static void
3473 tu_dispatch(struct tu_cmd_buffer *cmd,
3474 const struct tu_dispatch_info *info)
3475 {
3476 struct tu_cs *cs = &cmd->cs;
3477 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3478 struct tu_descriptor_state *descriptors_state =
3479 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3480
3481 /* TODO: We could probably flush less if we add a compute_flush_bits
3482 * bitfield.
3483 */
3484 tu_emit_cache_flush(cmd, cs);
3485
3486 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_PIPELINE)
3487 tu_cs_emit_ib(cs, &pipeline->program.state_ib);
3488
3489 struct tu_cs_entry ib;
3490
3491 ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE);
3492 if (ib.size)
3493 tu_cs_emit_ib(cs, &ib);
3494
3495 tu_emit_compute_driver_params(cs, pipeline, info);
3496
3497 if ((cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS) &&
3498 pipeline->load_state.state_ib.size > 0) {
3499 tu_cs_emit_ib(cs, &pipeline->load_state.state_ib);
3500 }
3501
3502 cmd->state.dirty &=
3503 ~(TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3504
3505 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3506 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3507
3508 const uint32_t *local_size = pipeline->compute.local_size;
3509 const uint32_t *num_groups = info->blocks;
3510 tu_cs_emit_regs(cs,
3511 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3512 .localsizex = local_size[0] - 1,
3513 .localsizey = local_size[1] - 1,
3514 .localsizez = local_size[2] - 1),
3515 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3516 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3517 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3518 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3519 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3520 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3521
3522 tu_cs_emit_regs(cs,
3523 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3524 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3525 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3526
3527 if (info->indirect) {
3528 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3529
3530 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3531 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3532
3533 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3534 tu_cs_emit(cs, 0x00000000);
3535 tu_cs_emit_qw(cs, iova);
3536 tu_cs_emit(cs,
3537 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3538 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3539 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3540 } else {
3541 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3542 tu_cs_emit(cs, 0x00000000);
3543 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3544 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3545 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3546 }
3547
3548 tu_cs_emit_wfi(cs);
3549 }
3550
3551 void
3552 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3553 uint32_t base_x,
3554 uint32_t base_y,
3555 uint32_t base_z,
3556 uint32_t x,
3557 uint32_t y,
3558 uint32_t z)
3559 {
3560 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3561 struct tu_dispatch_info info = {};
3562
3563 info.blocks[0] = x;
3564 info.blocks[1] = y;
3565 info.blocks[2] = z;
3566
3567 info.offsets[0] = base_x;
3568 info.offsets[1] = base_y;
3569 info.offsets[2] = base_z;
3570 tu_dispatch(cmd_buffer, &info);
3571 }
3572
3573 void
3574 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3575 uint32_t x,
3576 uint32_t y,
3577 uint32_t z)
3578 {
3579 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3580 }
3581
3582 void
3583 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3584 VkBuffer _buffer,
3585 VkDeviceSize offset)
3586 {
3587 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3588 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3589 struct tu_dispatch_info info = {};
3590
3591 info.indirect = buffer;
3592 info.indirect_offset = offset;
3593
3594 tu_dispatch(cmd_buffer, &info);
3595 }
3596
3597 void
3598 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3599 {
3600 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3601
3602 tu_cs_end(&cmd_buffer->draw_cs);
3603 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3604
3605 if (use_sysmem_rendering(cmd_buffer))
3606 tu_cmd_render_sysmem(cmd_buffer);
3607 else
3608 tu_cmd_render_tiles(cmd_buffer);
3609
3610 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3611 rendered */
3612 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3613 tu_cs_begin(&cmd_buffer->draw_cs);
3614 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3615 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3616
3617 cmd_buffer->state.cache.pending_flush_bits |=
3618 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3619 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3620
3621 cmd_buffer->state.pass = NULL;
3622 cmd_buffer->state.subpass = NULL;
3623 cmd_buffer->state.framebuffer = NULL;
3624 }
3625
3626 void
3627 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3628 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3629 {
3630 tu_CmdEndRenderPass(commandBuffer);
3631 }
3632
3633 struct tu_barrier_info
3634 {
3635 uint32_t eventCount;
3636 const VkEvent *pEvents;
3637 VkPipelineStageFlags srcStageMask;
3638 };
3639
3640 static void
3641 tu_barrier(struct tu_cmd_buffer *cmd,
3642 uint32_t memoryBarrierCount,
3643 const VkMemoryBarrier *pMemoryBarriers,
3644 uint32_t bufferMemoryBarrierCount,
3645 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3646 uint32_t imageMemoryBarrierCount,
3647 const VkImageMemoryBarrier *pImageMemoryBarriers,
3648 const struct tu_barrier_info *info)
3649 {
3650 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3651 VkAccessFlags srcAccessMask = 0;
3652 VkAccessFlags dstAccessMask = 0;
3653
3654 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3655 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3656 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3657 }
3658
3659 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3660 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3661 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3662 }
3663
3664 enum tu_cmd_access_mask src_flags = 0;
3665 enum tu_cmd_access_mask dst_flags = 0;
3666
3667 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3668 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3669 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3670 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3671 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3672 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3673 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3674 /* The underlying memory for this image may have been used earlier
3675 * within the same queue submission for a different image, which
3676 * means that there may be old, stale cache entries which are in the
3677 * "wrong" location, which could cause problems later after writing
3678 * to the image. We don't want these entries being flushed later and
3679 * overwriting the actual image, so we need to flush the CCU.
3680 */
3681 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3682 }
3683 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3684 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3685 }
3686
3687 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3688 * so we have to use the sysmem flushes.
3689 */
3690 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3691 !cmd->state.pass;
3692 src_flags |= vk2tu_access(srcAccessMask, gmem);
3693 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3694
3695 struct tu_cache_state *cache =
3696 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3697 tu_flush_for_access(cache, src_flags, dst_flags);
3698
3699 for (uint32_t i = 0; i < info->eventCount; i++) {
3700 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3701
3702 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3703
3704 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3705 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3706 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3707 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3708 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3709 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3710 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3711 }
3712 }
3713
3714 void
3715 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3716 VkPipelineStageFlags srcStageMask,
3717 VkPipelineStageFlags dstStageMask,
3718 VkDependencyFlags dependencyFlags,
3719 uint32_t memoryBarrierCount,
3720 const VkMemoryBarrier *pMemoryBarriers,
3721 uint32_t bufferMemoryBarrierCount,
3722 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3723 uint32_t imageMemoryBarrierCount,
3724 const VkImageMemoryBarrier *pImageMemoryBarriers)
3725 {
3726 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3727 struct tu_barrier_info info;
3728
3729 info.eventCount = 0;
3730 info.pEvents = NULL;
3731 info.srcStageMask = srcStageMask;
3732
3733 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3734 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3735 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3736 }
3737
3738 static void
3739 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3740 VkPipelineStageFlags stageMask, unsigned value)
3741 {
3742 struct tu_cs *cs = &cmd->cs;
3743
3744 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3745 assert(!cmd->state.pass);
3746
3747 tu_emit_cache_flush(cmd, cs);
3748
3749 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3750
3751 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3752 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3753 */
3754 VkPipelineStageFlags top_of_pipe_flags =
3755 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3756 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3757
3758 if (!(stageMask & ~top_of_pipe_flags)) {
3759 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3760 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3761 tu_cs_emit(cs, value);
3762 } else {
3763 /* Use a RB_DONE_TS event to wait for everything to complete. */
3764 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3765 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3766 tu_cs_emit_qw(cs, event->bo.iova);
3767 tu_cs_emit(cs, value);
3768 }
3769 }
3770
3771 void
3772 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3773 VkEvent _event,
3774 VkPipelineStageFlags stageMask)
3775 {
3776 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3777 TU_FROM_HANDLE(tu_event, event, _event);
3778
3779 write_event(cmd, event, stageMask, 1);
3780 }
3781
3782 void
3783 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3784 VkEvent _event,
3785 VkPipelineStageFlags stageMask)
3786 {
3787 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3788 TU_FROM_HANDLE(tu_event, event, _event);
3789
3790 write_event(cmd, event, stageMask, 0);
3791 }
3792
3793 void
3794 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3795 uint32_t eventCount,
3796 const VkEvent *pEvents,
3797 VkPipelineStageFlags srcStageMask,
3798 VkPipelineStageFlags dstStageMask,
3799 uint32_t memoryBarrierCount,
3800 const VkMemoryBarrier *pMemoryBarriers,
3801 uint32_t bufferMemoryBarrierCount,
3802 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3803 uint32_t imageMemoryBarrierCount,
3804 const VkImageMemoryBarrier *pImageMemoryBarriers)
3805 {
3806 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3807 struct tu_barrier_info info;
3808
3809 info.eventCount = eventCount;
3810 info.pEvents = pEvents;
3811 info.srcStageMask = 0;
3812
3813 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3814 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3815 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3816 }
3817
3818 void
3819 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3820 {
3821 /* No-op */
3822 }