turnip: vsc improvements
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 void
112 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
113 struct tu_cs *cs,
114 enum vgt_event_type event)
115 {
116 bool need_seqno = false;
117 switch (event) {
118 case CACHE_FLUSH_TS:
119 case WT_DONE_TS:
120 case RB_DONE_TS:
121 case PC_CCU_FLUSH_DEPTH_TS:
122 case PC_CCU_FLUSH_COLOR_TS:
123 case PC_CCU_RESOLVE_TS:
124 need_seqno = true;
125 break;
126 default:
127 break;
128 }
129
130 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
131 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
132 if (need_seqno) {
133 tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
134 tu_cs_emit(cs, 0);
135 }
136 }
137
138 static void
139 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
140 struct tu_cs *cs,
141 enum tu_cmd_flush_bits flushes)
142 {
143 /* Experiments show that invalidating CCU while it still has data in it
144 * doesn't work, so make sure to always flush before invalidating in case
145 * any data remains that hasn't yet been made available through a barrier.
146 * However it does seem to work for UCHE.
147 */
148 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
149 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
150 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
151 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
152 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
153 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
154 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
155 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
156 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
157 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
158 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
159 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
160 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
161 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
162 if (flushes & TU_CMD_FLAG_WFI)
163 tu_cs_emit_wfi(cs);
164 }
165
166 /* "Normal" cache flushes, that don't require any special handling */
167
168 static void
169 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
170 struct tu_cs *cs)
171 {
172 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
173 cmd_buffer->state.cache.flush_bits = 0;
174 }
175
176 /* Renderpass cache flushes */
177
178 void
179 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
180 struct tu_cs *cs)
181 {
182 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
183 cmd_buffer->state.renderpass_cache.flush_bits = 0;
184 }
185
186 /* Cache flushes for things that use the color/depth read/write path (i.e.
187 * blits and draws). This deals with changing CCU state as well as the usual
188 * cache flushing.
189 */
190
191 void
192 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
193 struct tu_cs *cs,
194 enum tu_cmd_ccu_state ccu_state)
195 {
196 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
197
198 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
199
200 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
201 * the CCU may also contain data that we haven't flushed out yet, so we
202 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
203 * emit a WFI as it isn't pipelined.
204 */
205 if (ccu_state != cmd_buffer->state.ccu_state) {
206 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
207 flushes |=
208 TU_CMD_FLAG_CCU_FLUSH_COLOR |
209 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
210 cmd_buffer->state.cache.pending_flush_bits &= ~(
211 TU_CMD_FLAG_CCU_FLUSH_COLOR |
212 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
213 }
214 flushes |=
215 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
216 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
217 TU_CMD_FLAG_WFI;
218 cmd_buffer->state.cache.pending_flush_bits &= ~(
219 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
220 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
221 }
222
223 tu6_emit_flushes(cmd_buffer, cs, flushes);
224 cmd_buffer->state.cache.flush_bits = 0;
225
226 if (ccu_state != cmd_buffer->state.ccu_state) {
227 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
228 tu_cs_emit_regs(cs,
229 A6XX_RB_CCU_CNTL(.offset =
230 ccu_state == TU_CMD_CCU_GMEM ?
231 phys_dev->ccu_offset_gmem :
232 phys_dev->ccu_offset_bypass,
233 .gmem = ccu_state == TU_CMD_CCU_GMEM));
234 cmd_buffer->state.ccu_state = ccu_state;
235 }
236 }
237
238 static void
239 tu6_emit_zs(struct tu_cmd_buffer *cmd,
240 const struct tu_subpass *subpass,
241 struct tu_cs *cs)
242 {
243 const struct tu_framebuffer *fb = cmd->state.framebuffer;
244
245 const uint32_t a = subpass->depth_stencil_attachment.attachment;
246 if (a == VK_ATTACHMENT_UNUSED) {
247 tu_cs_emit_regs(cs,
248 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
249 A6XX_RB_DEPTH_BUFFER_PITCH(0),
250 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
251 A6XX_RB_DEPTH_BUFFER_BASE(0),
252 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
253
254 tu_cs_emit_regs(cs,
255 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
256
257 tu_cs_emit_regs(cs,
258 A6XX_GRAS_LRZ_BUFFER_BASE(0),
259 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
260 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
261
262 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
263
264 return;
265 }
266
267 const struct tu_image_view *iview = fb->attachments[a].attachment;
268 const struct tu_render_pass_attachment *attachment =
269 &cmd->state.pass->attachments[a];
270 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
271
272 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
273 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
274 tu_cs_image_ref(cs, iview, 0);
275 tu_cs_emit(cs, attachment->gmem_offset);
276
277 tu_cs_emit_regs(cs,
278 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
279
280 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
281 tu_cs_image_flag_ref(cs, iview, 0);
282
283 tu_cs_emit_regs(cs,
284 A6XX_GRAS_LRZ_BUFFER_BASE(0),
285 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
286 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
287
288 if (attachment->format == VK_FORMAT_S8_UINT) {
289 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
290 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
291 tu_cs_image_ref(cs, iview, 0);
292 tu_cs_emit(cs, attachment->gmem_offset);
293 } else {
294 tu_cs_emit_regs(cs,
295 A6XX_RB_STENCIL_INFO(0));
296 }
297 }
298
299 static void
300 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
301 const struct tu_subpass *subpass,
302 struct tu_cs *cs)
303 {
304 const struct tu_framebuffer *fb = cmd->state.framebuffer;
305
306 for (uint32_t i = 0; i < subpass->color_count; ++i) {
307 uint32_t a = subpass->color_attachments[i].attachment;
308 if (a == VK_ATTACHMENT_UNUSED)
309 continue;
310
311 const struct tu_image_view *iview = fb->attachments[a].attachment;
312
313 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
314 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
315 tu_cs_image_ref(cs, iview, 0);
316 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
317
318 tu_cs_emit_regs(cs,
319 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
320
321 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
322 tu_cs_image_flag_ref(cs, iview, 0);
323 }
324
325 tu_cs_emit_regs(cs,
326 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
327 tu_cs_emit_regs(cs,
328 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
329
330 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
331 }
332
333 void
334 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
335 {
336 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
337 bool msaa_disable = samples == MSAA_ONE;
338
339 tu_cs_emit_regs(cs,
340 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
341 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
342 .msaa_disable = msaa_disable));
343
344 tu_cs_emit_regs(cs,
345 A6XX_GRAS_RAS_MSAA_CNTL(samples),
346 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
347 .msaa_disable = msaa_disable));
348
349 tu_cs_emit_regs(cs,
350 A6XX_RB_RAS_MSAA_CNTL(samples),
351 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
352 .msaa_disable = msaa_disable));
353
354 tu_cs_emit_regs(cs,
355 A6XX_RB_MSAA_CNTL(samples));
356 }
357
358 static void
359 tu6_emit_bin_size(struct tu_cs *cs,
360 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
361 {
362 tu_cs_emit_regs(cs,
363 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
364 .binh = bin_h,
365 .dword = flags));
366
367 tu_cs_emit_regs(cs,
368 A6XX_RB_BIN_CONTROL(.binw = bin_w,
369 .binh = bin_h,
370 .dword = flags));
371
372 /* no flag for RB_BIN_CONTROL2... */
373 tu_cs_emit_regs(cs,
374 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
375 .binh = bin_h));
376 }
377
378 static void
379 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
380 const struct tu_subpass *subpass,
381 struct tu_cs *cs,
382 bool binning)
383 {
384 const struct tu_framebuffer *fb = cmd->state.framebuffer;
385 uint32_t cntl = 0;
386 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
387 if (binning) {
388 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
389 } else {
390 uint32_t mrts_ubwc_enable = 0;
391 for (uint32_t i = 0; i < subpass->color_count; ++i) {
392 uint32_t a = subpass->color_attachments[i].attachment;
393 if (a == VK_ATTACHMENT_UNUSED)
394 continue;
395
396 const struct tu_image_view *iview = fb->attachments[a].attachment;
397 if (iview->ubwc_enabled)
398 mrts_ubwc_enable |= 1 << i;
399 }
400
401 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
402
403 const uint32_t a = subpass->depth_stencil_attachment.attachment;
404 if (a != VK_ATTACHMENT_UNUSED) {
405 const struct tu_image_view *iview = fb->attachments[a].attachment;
406 if (iview->ubwc_enabled)
407 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
408 }
409
410 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
411 * in order to set it correctly for the different subpasses. However,
412 * that means the packets we're emitting also happen during binning. So
413 * we need to guard the write on !BINNING at CP execution time.
414 */
415 tu_cs_reserve(cs, 3 + 4);
416 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
417 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
418 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
419 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
420 }
421
422 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
423 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
424 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
425 tu_cs_emit(cs, cntl);
426 }
427
428 static void
429 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
430 {
431 const VkRect2D *render_area = &cmd->state.render_area;
432 uint32_t x1 = render_area->offset.x;
433 uint32_t y1 = render_area->offset.y;
434 uint32_t x2 = x1 + render_area->extent.width - 1;
435 uint32_t y2 = y1 + render_area->extent.height - 1;
436
437 if (align) {
438 x1 = x1 & ~(GMEM_ALIGN_W - 1);
439 y1 = y1 & ~(GMEM_ALIGN_H - 1);
440 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
441 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
442 }
443
444 tu_cs_emit_regs(cs,
445 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
446 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
447 }
448
449 void
450 tu6_emit_window_scissor(struct tu_cs *cs,
451 uint32_t x1,
452 uint32_t y1,
453 uint32_t x2,
454 uint32_t y2)
455 {
456 tu_cs_emit_regs(cs,
457 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
458 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
459
460 tu_cs_emit_regs(cs,
461 A6XX_GRAS_RESOLVE_CNTL_1(.x = x1, .y = y1),
462 A6XX_GRAS_RESOLVE_CNTL_2(.x = x2, .y = y2));
463 }
464
465 void
466 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
467 {
468 tu_cs_emit_regs(cs,
469 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
470
471 tu_cs_emit_regs(cs,
472 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
473
474 tu_cs_emit_regs(cs,
475 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
476
477 tu_cs_emit_regs(cs,
478 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
479 }
480
481 static void
482 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
483 {
484 uint32_t enable_mask;
485 switch (id) {
486 case TU_DRAW_STATE_PROGRAM:
487 case TU_DRAW_STATE_VI:
488 case TU_DRAW_STATE_FS_CONST:
489 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
490 * when resources would actually be used in the binning shader.
491 * Presumably the overhead of prefetching the resources isn't
492 * worth it.
493 */
494 case TU_DRAW_STATE_DESC_SETS_LOAD:
495 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
496 CP_SET_DRAW_STATE__0_SYSMEM;
497 break;
498 case TU_DRAW_STATE_PROGRAM_BINNING:
499 case TU_DRAW_STATE_VI_BINNING:
500 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
501 break;
502 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
503 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
504 break;
505 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
506 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
507 break;
508 default:
509 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
510 CP_SET_DRAW_STATE__0_SYSMEM |
511 CP_SET_DRAW_STATE__0_BINNING;
512 break;
513 }
514
515 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
516 enable_mask |
517 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
518 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
519 tu_cs_emit_qw(cs, state.iova);
520 }
521
522 /* note: get rid of this eventually */
523 static void
524 tu_cs_emit_sds_ib(struct tu_cs *cs, uint32_t id, struct tu_cs_entry entry)
525 {
526 tu_cs_emit_draw_state(cs, id, (struct tu_draw_state) {
527 .iova = entry.size ? entry.bo->iova + entry.offset : 0,
528 .size = entry.size / 4,
529 });
530 }
531
532 static bool
533 use_hw_binning(struct tu_cmd_buffer *cmd)
534 {
535 const struct tu_framebuffer *fb = cmd->state.framebuffer;
536
537 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
538 * with non-hw binning GMEM rendering. this is required because some of the
539 * XFB commands need to only be executed once
540 */
541 if (cmd->state.xfb_used)
542 return true;
543
544 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
545 return false;
546
547 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
548 return true;
549
550 return (fb->tile_count.width * fb->tile_count.height) > 2;
551 }
552
553 static bool
554 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
555 {
556 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
557 return true;
558
559 /* can't fit attachments into gmem */
560 if (!cmd->state.pass->gmem_pixels)
561 return true;
562
563 if (cmd->state.framebuffer->layers > 1)
564 return true;
565
566 if (cmd->has_tess)
567 return true;
568
569 return false;
570 }
571
572 static void
573 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
574 struct tu_cs *cs,
575 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot)
576 {
577 const struct tu_framebuffer *fb = cmd->state.framebuffer;
578
579 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
580 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
581
582 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
583 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
584
585 const uint32_t x1 = fb->tile0.width * tx;
586 const uint32_t y1 = fb->tile0.height * ty;
587 const uint32_t x2 = x1 + fb->tile0.width - 1;
588 const uint32_t y2 = y1 + fb->tile0.height - 1;
589 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
590 tu6_emit_window_offset(cs, x1, y1);
591
592 tu_cs_emit_regs(cs,
593 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
594
595 if (use_hw_binning(cmd)) {
596 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
597
598 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
599 tu_cs_emit(cs, 0x0);
600
601 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
602 tu_cs_emit(cs, fb->pipe_sizes[pipe] |
603 CP_SET_BIN_DATA5_0_VSC_N(slot));
604 tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
605 tu_cs_emit(cs, pipe * 4);
606 tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
607
608 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
609 tu_cs_emit(cs, 0x0);
610
611 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
612 tu_cs_emit(cs, 0x0);
613 } else {
614 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
615 tu_cs_emit(cs, 0x1);
616
617 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
618 tu_cs_emit(cs, 0x0);
619 }
620 }
621
622 static void
623 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
624 struct tu_cs *cs,
625 uint32_t a,
626 uint32_t gmem_a)
627 {
628 const struct tu_framebuffer *fb = cmd->state.framebuffer;
629 struct tu_image_view *dst = fb->attachments[a].attachment;
630 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
631
632 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.render_area);
633 }
634
635 static void
636 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
637 struct tu_cs *cs,
638 const struct tu_subpass *subpass)
639 {
640 if (subpass->resolve_attachments) {
641 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
642 * Commands":
643 *
644 * End-of-subpass multisample resolves are treated as color
645 * attachment writes for the purposes of synchronization. That is,
646 * they are considered to execute in the
647 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
648 * their writes are synchronized with
649 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
650 * rendering within a subpass and any resolve operations at the end
651 * of the subpass occurs automatically, without need for explicit
652 * dependencies or pipeline barriers. However, if the resolve
653 * attachment is also used in a different subpass, an explicit
654 * dependency is needed.
655 *
656 * We use the CP_BLIT path for sysmem resolves, which is really a
657 * transfer command, so we have to manually flush similar to the gmem
658 * resolve case. However, a flush afterwards isn't needed because of the
659 * last sentence and the fact that we're in sysmem mode.
660 */
661 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
662 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
663
664 /* Wait for the flushes to land before using the 2D engine */
665 tu_cs_emit_wfi(cs);
666
667 for (unsigned i = 0; i < subpass->color_count; i++) {
668 uint32_t a = subpass->resolve_attachments[i].attachment;
669 if (a == VK_ATTACHMENT_UNUSED)
670 continue;
671
672 tu6_emit_sysmem_resolve(cmd, cs, a,
673 subpass->color_attachments[i].attachment);
674 }
675 }
676 }
677
678 static void
679 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
680 {
681 const struct tu_render_pass *pass = cmd->state.pass;
682 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
683
684 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
685 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
686 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
687 CP_SET_DRAW_STATE__0_GROUP_ID(0));
688 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
689 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
690
691 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
692 tu_cs_emit(cs, 0x0);
693
694 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
695 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
696
697 tu6_emit_blit_scissor(cmd, cs, true);
698
699 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
700 if (pass->attachments[a].gmem_offset >= 0)
701 tu_store_gmem_attachment(cmd, cs, a, a);
702 }
703
704 if (subpass->resolve_attachments) {
705 for (unsigned i = 0; i < subpass->color_count; i++) {
706 uint32_t a = subpass->resolve_attachments[i].attachment;
707 if (a != VK_ATTACHMENT_UNUSED)
708 tu_store_gmem_attachment(cmd, cs, a,
709 subpass->color_attachments[i].attachment);
710 }
711 }
712 }
713
714 static void
715 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
716 {
717 struct tu_device *dev = cmd->device;
718 const struct tu_physical_device *phys_dev = dev->physical_device;
719
720 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
721
722 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 0xfffff);
723
724 tu_cs_emit_regs(cs,
725 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
726 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
727 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
728 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
729 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
730 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
731 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
732 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
733 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
734 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
735
736 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
737 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
738 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
739 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
740 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
741 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
742 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BB11, 0);
743 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
744 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
745 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
746 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
747 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
748 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
749 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_GS_SIV_CNTL, 0x0000ffff);
750
751 /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
752 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
753 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
754 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
755
756 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
757
758 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
759
760 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
761 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
762 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
763 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
764 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
765 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
766 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
767 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
768 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
769 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
770 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
771
772 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9101, 0xffff00);
773 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
774
775 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9236,
776 A6XX_VPC_UNKNOWN_9236_POINT_COORD_INVERT(0));
777 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
778
779 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_SO_OVERRIDE,
780 A6XX_VPC_SO_OVERRIDE_SO_DISABLE);
781
782 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
783 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
784 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9990, 0);
785
786 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
787 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
788
789 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
790
791 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
792
793 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
794 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_809B, 0);
795 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
796 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
797 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
798 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
799 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
800 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
801 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
802 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
803
804 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
805
806 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
807
808 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
809
810 /* we don't use this yet.. probably best to disable.. */
811 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
812 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
813 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
814 CP_SET_DRAW_STATE__0_GROUP_ID(0));
815 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
816 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
817
818 tu_cs_emit_regs(cs,
819 A6XX_SP_HS_CTRL_REG0(0));
820
821 tu_cs_emit_regs(cs,
822 A6XX_SP_GS_CTRL_REG0(0));
823
824 tu_cs_emit_regs(cs,
825 A6XX_GRAS_LRZ_CNTL(0));
826
827 tu_cs_emit_regs(cs,
828 A6XX_RB_LRZ_CNTL(0));
829
830 tu_cs_emit_regs(cs,
831 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
832 .bo_offset = gb_offset(border_color)));
833 tu_cs_emit_regs(cs,
834 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
835 .bo_offset = gb_offset(border_color)));
836
837 /* VSC buffers:
838 * use vsc pitches from the largest values used so far with this device
839 * if there hasn't been overflow, there will already be a scratch bo
840 * allocated for these sizes
841 *
842 * if overflow is detected, the stream size is increased by 2x
843 */
844 mtx_lock(&dev->vsc_pitch_mtx);
845
846 struct tu6_global *global = dev->global_bo.map;
847
848 uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
849 uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
850
851 if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
852 dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
853
854 if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
855 dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
856
857 cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
858 cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
859
860 mtx_unlock(&dev->vsc_pitch_mtx);
861
862 struct tu_bo *vsc_bo;
863 uint32_t size0 = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES +
864 cmd->vsc_draw_strm_pitch * MAX_VSC_PIPES;
865
866 tu_get_scratch_bo(dev, size0 + MAX_VSC_PIPES * 4, &vsc_bo);
867
868 tu_cs_emit_regs(cs,
869 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
870 tu_cs_emit_regs(cs,
871 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
872 tu_cs_emit_regs(cs,
873 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
874 .bo_offset = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES));
875
876 tu_bo_list_add(&cmd->bo_list, vsc_bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
877
878 tu_cs_sanity_check(cs);
879 }
880
881 static void
882 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
883 {
884 const struct tu_framebuffer *fb = cmd->state.framebuffer;
885
886 tu_cs_emit_regs(cs,
887 A6XX_VSC_BIN_SIZE(.width = fb->tile0.width,
888 .height = fb->tile0.height));
889
890 tu_cs_emit_regs(cs,
891 A6XX_VSC_BIN_COUNT(.nx = fb->tile_count.width,
892 .ny = fb->tile_count.height));
893
894 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
895 tu_cs_emit_array(cs, fb->pipe_config, 32);
896
897 tu_cs_emit_regs(cs,
898 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
899 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
900
901 tu_cs_emit_regs(cs,
902 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
903 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
904 }
905
906 static void
907 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
908 {
909 const struct tu_framebuffer *fb = cmd->state.framebuffer;
910 const uint32_t used_pipe_count =
911 fb->pipe_count.width * fb->pipe_count.height;
912
913 for (int i = 0; i < used_pipe_count; i++) {
914 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
915 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
916 CP_COND_WRITE5_0_WRITE_MEMORY);
917 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
918 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
919 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
920 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
921 tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
922 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
923
924 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
925 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
926 CP_COND_WRITE5_0_WRITE_MEMORY);
927 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
928 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
929 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
930 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
931 tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
932 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
933 }
934
935 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
936 }
937
938 static void
939 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
940 {
941 struct tu_physical_device *phys_dev = cmd->device->physical_device;
942 const struct tu_framebuffer *fb = cmd->state.framebuffer;
943
944 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
945
946 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
947 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
948
949 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
950 tu_cs_emit(cs, 0x1);
951
952 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
953 tu_cs_emit(cs, 0x1);
954
955 tu_cs_emit_wfi(cs);
956
957 tu_cs_emit_regs(cs,
958 A6XX_VFD_MODE_CNTL(.binning_pass = true));
959
960 update_vsc_pipe(cmd, cs);
961
962 tu_cs_emit_regs(cs,
963 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
964
965 tu_cs_emit_regs(cs,
966 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
967
968 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
969 tu_cs_emit(cs, UNK_2C);
970
971 tu_cs_emit_regs(cs,
972 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
973
974 tu_cs_emit_regs(cs,
975 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
976
977 /* emit IB to binning drawcmds: */
978 tu_cs_emit_call(cs, &cmd->draw_cs);
979
980 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
981 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
982 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
983 CP_SET_DRAW_STATE__0_GROUP_ID(0));
984 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
985 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
986
987 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
988 tu_cs_emit(cs, UNK_2D);
989
990 /* This flush is probably required because the VSC, which produces the
991 * visibility stream, is a client of UCHE, whereas the CP needs to read the
992 * visibility stream (without caching) to do draw skipping. The
993 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
994 * submitted are finished before reading the VSC regs (in
995 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
996 * part of draws).
997 */
998 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
999
1000 tu_cs_emit_wfi(cs);
1001
1002 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1003
1004 emit_vsc_overflow_test(cmd, cs);
1005
1006 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1007 tu_cs_emit(cs, 0x0);
1008
1009 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1010 tu_cs_emit(cs, 0x0);
1011 }
1012
1013 static void
1014 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1015 const struct tu_subpass *subpass,
1016 struct tu_cs_entry *ib,
1017 bool gmem)
1018 {
1019 /* note: we can probably emit input attachments just once for the whole
1020 * renderpass, this would avoid emitting both sysmem/gmem versions
1021 *
1022 * emit two texture descriptors for each input, as a workaround for
1023 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1024 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1025 * in the pair
1026 * TODO: a smarter workaround
1027 */
1028
1029 if (!subpass->input_count)
1030 return;
1031
1032 struct tu_cs_memory texture;
1033 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1034 A6XX_TEX_CONST_DWORDS, &texture);
1035 assert(result == VK_SUCCESS);
1036
1037 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1038 uint32_t a = subpass->input_attachments[i / 2].attachment;
1039 if (a == VK_ATTACHMENT_UNUSED)
1040 continue;
1041
1042 struct tu_image_view *iview =
1043 cmd->state.framebuffer->attachments[a].attachment;
1044 const struct tu_render_pass_attachment *att =
1045 &cmd->state.pass->attachments[a];
1046 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1047
1048 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1049
1050 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1051 /* note this works because spec says fb and input attachments
1052 * must use identity swizzle
1053 */
1054 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1055 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1056 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1057 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1058 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1059 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1060 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1061 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1062 }
1063
1064 if (!gmem)
1065 continue;
1066
1067 /* patched for gmem */
1068 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1069 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1070 dst[2] =
1071 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1072 A6XX_TEX_CONST_2_PITCH(cmd->state.framebuffer->tile0.width * att->cpp);
1073 dst[3] = 0;
1074 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1075 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1076 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1077 dst[i] = 0;
1078 }
1079
1080 struct tu_cs cs;
1081 tu_cs_begin_sub_stream(&cmd->sub_cs, 9, &cs);
1082
1083 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1084 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1085 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1086 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1087 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1088 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1089 tu_cs_emit_qw(&cs, texture.iova);
1090
1091 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1092 tu_cs_emit_qw(&cs, texture.iova);
1093
1094 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1095
1096 *ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1097 }
1098
1099 static void
1100 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1101 {
1102 struct tu_cs *cs = &cmd->draw_cs;
1103
1104 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_gmem_ib, true);
1105 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_sysmem_ib, false);
1106
1107 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1108 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM, cmd->state.ia_gmem_ib);
1109 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM, cmd->state.ia_sysmem_ib);
1110 }
1111
1112 static void
1113 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1114 const VkRenderPassBeginInfo *info)
1115 {
1116 struct tu_cs *cs = &cmd->draw_cs;
1117
1118 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1119
1120 tu6_emit_blit_scissor(cmd, cs, true);
1121
1122 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1123 tu_load_gmem_attachment(cmd, cs, i, false);
1124
1125 tu6_emit_blit_scissor(cmd, cs, false);
1126
1127 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1128 tu_clear_gmem_attachment(cmd, cs, i, info);
1129
1130 tu_cond_exec_end(cs);
1131
1132 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1133
1134 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1135 tu_clear_sysmem_attachment(cmd, cs, i, info);
1136
1137 tu_cond_exec_end(cs);
1138 }
1139
1140 static void
1141 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1142 {
1143 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1144
1145 assert(fb->width > 0 && fb->height > 0);
1146 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1147 tu6_emit_window_offset(cs, 0, 0);
1148
1149 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1150
1151 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1152
1153 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1154 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1155
1156 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1157 tu_cs_emit(cs, 0x0);
1158
1159 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1160
1161 /* enable stream-out, with sysmem there is only one pass: */
1162 tu_cs_emit_regs(cs,
1163 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
1164
1165 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1166 tu_cs_emit(cs, 0x1);
1167
1168 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1169 tu_cs_emit(cs, 0x0);
1170
1171 tu_cs_sanity_check(cs);
1172 }
1173
1174 static void
1175 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1176 {
1177 /* Do any resolves of the last subpass. These are handled in the
1178 * tile_store_ib in the gmem path.
1179 */
1180 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1181
1182 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1183
1184 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1185 tu_cs_emit(cs, 0x0);
1186
1187 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1188
1189 tu_cs_sanity_check(cs);
1190 }
1191
1192 static void
1193 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1194 {
1195 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1196
1197 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1198
1199 /* lrz clear? */
1200
1201 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1202 tu_cs_emit(cs, 0x0);
1203
1204 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1205
1206 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1207 if (use_hw_binning(cmd)) {
1208 /* enable stream-out during binning pass: */
1209 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1210
1211 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1212 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1213
1214 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1215
1216 tu6_emit_binning_pass(cmd, cs);
1217
1218 /* and disable stream-out for draw pass: */
1219 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=true));
1220
1221 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1222 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1223
1224 tu_cs_emit_regs(cs,
1225 A6XX_VFD_MODE_CNTL(0));
1226
1227 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1228
1229 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1230
1231 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1232 tu_cs_emit(cs, 0x1);
1233 } else {
1234 /* no binning pass, so enable stream-out for draw pass:: */
1235 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1236
1237 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height, 0x6000000);
1238 }
1239
1240 tu_cs_sanity_check(cs);
1241 }
1242
1243 static void
1244 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1245 {
1246 tu_cs_emit_call(cs, &cmd->draw_cs);
1247
1248 if (use_hw_binning(cmd)) {
1249 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1250 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1251 }
1252
1253 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1254
1255 tu_cs_sanity_check(cs);
1256 }
1257
1258 static void
1259 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1260 {
1261 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1262
1263 tu_cs_emit_regs(cs,
1264 A6XX_GRAS_LRZ_CNTL(0));
1265
1266 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1267
1268 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1269
1270 tu_cs_sanity_check(cs);
1271 }
1272
1273 static void
1274 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1275 {
1276 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1277
1278 tu6_tile_render_begin(cmd, &cmd->cs);
1279
1280 uint32_t pipe = 0;
1281 for (uint32_t py = 0; py < fb->pipe_count.height; py++) {
1282 for (uint32_t px = 0; px < fb->pipe_count.width; px++, pipe++) {
1283 uint32_t tx1 = px * fb->pipe0.width;
1284 uint32_t ty1 = py * fb->pipe0.height;
1285 uint32_t tx2 = MIN2(tx1 + fb->pipe0.width, fb->tile_count.width);
1286 uint32_t ty2 = MIN2(ty1 + fb->pipe0.height, fb->tile_count.height);
1287 uint32_t slot = 0;
1288 for (uint32_t ty = ty1; ty < ty2; ty++) {
1289 for (uint32_t tx = tx1; tx < tx2; tx++, slot++) {
1290 tu6_emit_tile_select(cmd, &cmd->cs, tx, ty, pipe, slot);
1291 tu6_render_tile(cmd, &cmd->cs);
1292 }
1293 }
1294 }
1295 }
1296
1297 tu6_tile_render_end(cmd, &cmd->cs);
1298 }
1299
1300 static void
1301 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1302 {
1303 tu6_sysmem_render_begin(cmd, &cmd->cs);
1304
1305 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1306
1307 tu6_sysmem_render_end(cmd, &cmd->cs);
1308 }
1309
1310 static void
1311 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1312 {
1313 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1314 struct tu_cs sub_cs;
1315
1316 VkResult result =
1317 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1318 if (result != VK_SUCCESS) {
1319 cmd->record_result = result;
1320 return;
1321 }
1322
1323 /* emit to tile-store sub_cs */
1324 tu6_emit_tile_store(cmd, &sub_cs);
1325
1326 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1327 }
1328
1329 static VkResult
1330 tu_create_cmd_buffer(struct tu_device *device,
1331 struct tu_cmd_pool *pool,
1332 VkCommandBufferLevel level,
1333 VkCommandBuffer *pCommandBuffer)
1334 {
1335 struct tu_cmd_buffer *cmd_buffer;
1336 cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8,
1337 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1338 if (cmd_buffer == NULL)
1339 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1340
1341 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1342 cmd_buffer->device = device;
1343 cmd_buffer->pool = pool;
1344 cmd_buffer->level = level;
1345
1346 if (pool) {
1347 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1348 cmd_buffer->queue_family_index = pool->queue_family_index;
1349
1350 } else {
1351 /* Init the pool_link so we can safely call list_del when we destroy
1352 * the command buffer
1353 */
1354 list_inithead(&cmd_buffer->pool_link);
1355 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1356 }
1357
1358 tu_bo_list_init(&cmd_buffer->bo_list);
1359 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1360 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1361 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1362 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1363
1364 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1365
1366 list_inithead(&cmd_buffer->upload.list);
1367
1368 return VK_SUCCESS;
1369 }
1370
1371 static void
1372 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1373 {
1374 list_del(&cmd_buffer->pool_link);
1375
1376 tu_cs_finish(&cmd_buffer->cs);
1377 tu_cs_finish(&cmd_buffer->draw_cs);
1378 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1379 tu_cs_finish(&cmd_buffer->sub_cs);
1380
1381 tu_bo_list_destroy(&cmd_buffer->bo_list);
1382 vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
1383 }
1384
1385 static VkResult
1386 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1387 {
1388 cmd_buffer->record_result = VK_SUCCESS;
1389
1390 tu_bo_list_reset(&cmd_buffer->bo_list);
1391 tu_cs_reset(&cmd_buffer->cs);
1392 tu_cs_reset(&cmd_buffer->draw_cs);
1393 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1394 tu_cs_reset(&cmd_buffer->sub_cs);
1395
1396 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1397 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1398
1399 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1400
1401 return cmd_buffer->record_result;
1402 }
1403
1404 VkResult
1405 tu_AllocateCommandBuffers(VkDevice _device,
1406 const VkCommandBufferAllocateInfo *pAllocateInfo,
1407 VkCommandBuffer *pCommandBuffers)
1408 {
1409 TU_FROM_HANDLE(tu_device, device, _device);
1410 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1411
1412 VkResult result = VK_SUCCESS;
1413 uint32_t i;
1414
1415 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1416
1417 if (!list_is_empty(&pool->free_cmd_buffers)) {
1418 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1419 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1420
1421 list_del(&cmd_buffer->pool_link);
1422 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1423
1424 result = tu_reset_cmd_buffer(cmd_buffer);
1425 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1426 cmd_buffer->level = pAllocateInfo->level;
1427
1428 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1429 } else {
1430 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1431 &pCommandBuffers[i]);
1432 }
1433 if (result != VK_SUCCESS)
1434 break;
1435 }
1436
1437 if (result != VK_SUCCESS) {
1438 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1439 pCommandBuffers);
1440
1441 /* From the Vulkan 1.0.66 spec:
1442 *
1443 * "vkAllocateCommandBuffers can be used to create multiple
1444 * command buffers. If the creation of any of those command
1445 * buffers fails, the implementation must destroy all
1446 * successfully created command buffer objects from this
1447 * command, set all entries of the pCommandBuffers array to
1448 * NULL and return the error."
1449 */
1450 memset(pCommandBuffers, 0,
1451 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1452 }
1453
1454 return result;
1455 }
1456
1457 void
1458 tu_FreeCommandBuffers(VkDevice device,
1459 VkCommandPool commandPool,
1460 uint32_t commandBufferCount,
1461 const VkCommandBuffer *pCommandBuffers)
1462 {
1463 for (uint32_t i = 0; i < commandBufferCount; i++) {
1464 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1465
1466 if (cmd_buffer) {
1467 if (cmd_buffer->pool) {
1468 list_del(&cmd_buffer->pool_link);
1469 list_addtail(&cmd_buffer->pool_link,
1470 &cmd_buffer->pool->free_cmd_buffers);
1471 } else
1472 tu_cmd_buffer_destroy(cmd_buffer);
1473 }
1474 }
1475 }
1476
1477 VkResult
1478 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1479 VkCommandBufferResetFlags flags)
1480 {
1481 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1482 return tu_reset_cmd_buffer(cmd_buffer);
1483 }
1484
1485 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1486 * invalidations.
1487 */
1488 static void
1489 tu_cache_init(struct tu_cache_state *cache)
1490 {
1491 cache->flush_bits = 0;
1492 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1493 }
1494
1495 VkResult
1496 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1497 const VkCommandBufferBeginInfo *pBeginInfo)
1498 {
1499 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1500 VkResult result = VK_SUCCESS;
1501
1502 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1503 /* If the command buffer has already been resetted with
1504 * vkResetCommandBuffer, no need to do it again.
1505 */
1506 result = tu_reset_cmd_buffer(cmd_buffer);
1507 if (result != VK_SUCCESS)
1508 return result;
1509 }
1510
1511 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1512 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1513
1514 tu_cache_init(&cmd_buffer->state.cache);
1515 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1516 cmd_buffer->usage_flags = pBeginInfo->flags;
1517
1518 tu_cs_begin(&cmd_buffer->cs);
1519 tu_cs_begin(&cmd_buffer->draw_cs);
1520 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1521
1522 /* setup initial configuration into command buffer */
1523 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1524 switch (cmd_buffer->queue_family_index) {
1525 case TU_QUEUE_GENERAL:
1526 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1527 break;
1528 default:
1529 break;
1530 }
1531 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1532 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1533 assert(pBeginInfo->pInheritanceInfo);
1534 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1535 cmd_buffer->state.subpass =
1536 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1537 } else {
1538 /* When executing in the middle of another command buffer, the CCU
1539 * state is unknown.
1540 */
1541 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1542 }
1543 }
1544
1545 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1546
1547 return VK_SUCCESS;
1548 }
1549
1550 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1551 * rendering can skip over unused state), so we need to collect all the
1552 * bindings together into a single state emit at draw time.
1553 */
1554 void
1555 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1556 uint32_t firstBinding,
1557 uint32_t bindingCount,
1558 const VkBuffer *pBuffers,
1559 const VkDeviceSize *pOffsets)
1560 {
1561 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1562
1563 assert(firstBinding + bindingCount <= MAX_VBS);
1564
1565 for (uint32_t i = 0; i < bindingCount; i++) {
1566 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1567
1568 cmd->state.vb.buffers[firstBinding + i] = buf;
1569 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1570
1571 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1572 }
1573
1574 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1575 }
1576
1577 void
1578 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1579 VkBuffer buffer,
1580 VkDeviceSize offset,
1581 VkIndexType indexType)
1582 {
1583 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1584 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1585
1586
1587
1588 uint32_t index_size, index_shift, restart_index;
1589
1590 switch (indexType) {
1591 case VK_INDEX_TYPE_UINT16:
1592 index_size = INDEX4_SIZE_16_BIT;
1593 index_shift = 1;
1594 restart_index = 0xffff;
1595 break;
1596 case VK_INDEX_TYPE_UINT32:
1597 index_size = INDEX4_SIZE_32_BIT;
1598 index_shift = 2;
1599 restart_index = 0xffffffff;
1600 break;
1601 case VK_INDEX_TYPE_UINT8_EXT:
1602 index_size = INDEX4_SIZE_8_BIT;
1603 index_shift = 0;
1604 restart_index = 0xff;
1605 break;
1606 default:
1607 unreachable("invalid VkIndexType");
1608 }
1609
1610 /* initialize/update the restart index */
1611 if (cmd->state.index_size != index_size)
1612 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1613
1614 assert(buf->size >= offset);
1615
1616 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1617 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1618 cmd->state.index_size = index_size;
1619
1620 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1621 }
1622
1623 void
1624 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1625 VkPipelineBindPoint pipelineBindPoint,
1626 VkPipelineLayout _layout,
1627 uint32_t firstSet,
1628 uint32_t descriptorSetCount,
1629 const VkDescriptorSet *pDescriptorSets,
1630 uint32_t dynamicOffsetCount,
1631 const uint32_t *pDynamicOffsets)
1632 {
1633 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1634 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1635 unsigned dyn_idx = 0;
1636
1637 struct tu_descriptor_state *descriptors_state =
1638 tu_get_descriptors_state(cmd, pipelineBindPoint);
1639
1640 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1641 unsigned idx = i + firstSet;
1642 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1643
1644 descriptors_state->sets[idx] = set;
1645
1646 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1647 /* update the contents of the dynamic descriptor set */
1648 unsigned src_idx = j;
1649 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1650 assert(dyn_idx < dynamicOffsetCount);
1651
1652 uint32_t *dst =
1653 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1654 uint32_t *src =
1655 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1656 uint32_t offset = pDynamicOffsets[dyn_idx];
1657
1658 /* Patch the storage/uniform descriptors right away. */
1659 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1660 /* Note: we can assume here that the addition won't roll over and
1661 * change the SIZE field.
1662 */
1663 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1664 va += offset;
1665 dst[0] = va;
1666 dst[1] = va >> 32;
1667 } else {
1668 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1669 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1670 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1671 va += offset;
1672 dst[4] = va;
1673 dst[5] = va >> 32;
1674 }
1675 }
1676
1677 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1678 if (set->buffers[j]) {
1679 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1680 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1681 }
1682 }
1683
1684 if (set->size > 0) {
1685 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1686 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1687 }
1688 }
1689 assert(dyn_idx == dynamicOffsetCount);
1690
1691 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_update_value;
1692 uint64_t addr[MAX_SETS + 1] = {};
1693 struct tu_cs cs;
1694
1695 for (uint32_t i = 0; i < MAX_SETS; i++) {
1696 struct tu_descriptor_set *set = descriptors_state->sets[i];
1697 if (set)
1698 addr[i] = set->va | 3;
1699 }
1700
1701 if (layout->dynamic_offset_count) {
1702 /* allocate and fill out dynamic descriptor set */
1703 struct tu_cs_memory dynamic_desc_set;
1704 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1705 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1706 assert(result == VK_SUCCESS);
1707
1708 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1709 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1710 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1711 }
1712
1713 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1714 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1715 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1716 hlsq_update_value = 0x7c000;
1717
1718 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS | TU_CMD_DIRTY_SHADER_CONSTS;
1719 } else {
1720 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1721
1722 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1723 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1724 hlsq_update_value = 0x3e00;
1725
1726 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS;
1727 }
1728
1729 tu_cs_begin_sub_stream(&cmd->sub_cs, 24, &cs);
1730
1731 tu_cs_emit_pkt4(&cs, sp_bindless_base_reg, 10);
1732 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1733 tu_cs_emit_pkt4(&cs, hlsq_bindless_base_reg, 10);
1734 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1735 tu_cs_emit_regs(&cs, A6XX_HLSQ_UPDATE_CNTL(.dword = hlsq_update_value));
1736
1737 struct tu_cs_entry ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1738 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1739 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1740 tu_cs_emit_sds_ib(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, ib);
1741 cmd->state.desc_sets_ib = ib;
1742 } else {
1743 /* note: for compute we could emit directly, instead of a CP_INDIRECT
1744 * however, the blob uses draw states for compute
1745 */
1746 tu_cs_emit_ib(&cmd->cs, &ib);
1747 }
1748 }
1749
1750 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1751 uint32_t firstBinding,
1752 uint32_t bindingCount,
1753 const VkBuffer *pBuffers,
1754 const VkDeviceSize *pOffsets,
1755 const VkDeviceSize *pSizes)
1756 {
1757 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1758 struct tu_cs *cs = &cmd->draw_cs;
1759
1760 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1761 * presumably there isn't any benefit using a draw state when the
1762 * condition is (SYSMEM | BINNING)
1763 */
1764 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1765 CP_COND_REG_EXEC_0_SYSMEM |
1766 CP_COND_REG_EXEC_0_BINNING);
1767
1768 for (uint32_t i = 0; i < bindingCount; i++) {
1769 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1770 uint64_t iova = buf->bo->iova + pOffsets[i];
1771 uint32_t size = buf->bo->size - pOffsets[i];
1772 uint32_t idx = i + firstBinding;
1773
1774 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1775 size = pSizes[i];
1776
1777 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1778 uint32_t offset = iova & 0x1f;
1779 iova &= ~(uint64_t) 0x1f;
1780
1781 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1782 tu_cs_emit_qw(cs, iova);
1783 tu_cs_emit(cs, size + offset);
1784
1785 cmd->state.streamout_offset[idx] = offset;
1786
1787 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1788 }
1789
1790 tu_cond_exec_end(cs);
1791 }
1792
1793 void
1794 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1795 uint32_t firstCounterBuffer,
1796 uint32_t counterBufferCount,
1797 const VkBuffer *pCounterBuffers,
1798 const VkDeviceSize *pCounterBufferOffsets)
1799 {
1800 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1801 struct tu_cs *cs = &cmd->draw_cs;
1802
1803 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1804 CP_COND_REG_EXEC_0_SYSMEM |
1805 CP_COND_REG_EXEC_0_BINNING);
1806
1807 /* TODO: only update offset for active buffers */
1808 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1809 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1810
1811 for (uint32_t i = 0; i < counterBufferCount; i++) {
1812 uint32_t idx = firstCounterBuffer + i;
1813 uint32_t offset = cmd->state.streamout_offset[idx];
1814
1815 if (!pCounterBuffers[i])
1816 continue;
1817
1818 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1819
1820 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1821
1822 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1823 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1824 CP_MEM_TO_REG_0_UNK31 |
1825 CP_MEM_TO_REG_0_CNT(1));
1826 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1827
1828 if (offset) {
1829 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1830 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1831 CP_REG_RMW_0_SRC1_ADD);
1832 tu_cs_emit_qw(cs, 0xffffffff);
1833 tu_cs_emit_qw(cs, offset);
1834 }
1835 }
1836
1837 tu_cond_exec_end(cs);
1838 }
1839
1840 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1841 uint32_t firstCounterBuffer,
1842 uint32_t counterBufferCount,
1843 const VkBuffer *pCounterBuffers,
1844 const VkDeviceSize *pCounterBufferOffsets)
1845 {
1846 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1847 struct tu_cs *cs = &cmd->draw_cs;
1848
1849 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1850 CP_COND_REG_EXEC_0_SYSMEM |
1851 CP_COND_REG_EXEC_0_BINNING);
1852
1853 /* TODO: only flush buffers that need to be flushed */
1854 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
1855 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
1856 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
1857 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[i]));
1858 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
1859 }
1860
1861 for (uint32_t i = 0; i < counterBufferCount; i++) {
1862 uint32_t idx = firstCounterBuffer + i;
1863 uint32_t offset = cmd->state.streamout_offset[idx];
1864
1865 if (!pCounterBuffers[i])
1866 continue;
1867
1868 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1869
1870 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1871
1872 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
1873 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1874 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1875 CP_MEM_TO_REG_0_SHIFT_BY_2 |
1876 0x40000 | /* ??? */
1877 CP_MEM_TO_REG_0_UNK31 |
1878 CP_MEM_TO_REG_0_CNT(1));
1879 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[idx]));
1880
1881 if (offset) {
1882 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1883 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1884 CP_REG_RMW_0_SRC1_ADD);
1885 tu_cs_emit_qw(cs, 0xffffffff);
1886 tu_cs_emit_qw(cs, -offset);
1887 }
1888
1889 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
1890 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1891 CP_REG_TO_MEM_0_CNT(1));
1892 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1893 }
1894
1895 tu_cond_exec_end(cs);
1896
1897 cmd->state.xfb_used = true;
1898 }
1899
1900 void
1901 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
1902 VkPipelineLayout layout,
1903 VkShaderStageFlags stageFlags,
1904 uint32_t offset,
1905 uint32_t size,
1906 const void *pValues)
1907 {
1908 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1909 memcpy((void*) cmd->push_constants + offset, pValues, size);
1910 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
1911 }
1912
1913 /* Flush everything which has been made available but we haven't actually
1914 * flushed yet.
1915 */
1916 static void
1917 tu_flush_all_pending(struct tu_cache_state *cache)
1918 {
1919 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
1920 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
1921 }
1922
1923 VkResult
1924 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
1925 {
1926 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1927
1928 /* We currently flush CCU at the end of the command buffer, like
1929 * what the blob does. There's implicit synchronization around every
1930 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
1931 * know yet if this command buffer will be the last in the submit so we
1932 * have to defensively flush everything else.
1933 *
1934 * TODO: We could definitely do better than this, since these flushes
1935 * aren't required by Vulkan, but we'd need kernel support to do that.
1936 * Ideally, we'd like the kernel to flush everything afterwards, so that we
1937 * wouldn't have to do any flushes here, and when submitting multiple
1938 * command buffers there wouldn't be any unnecessary flushes in between.
1939 */
1940 if (cmd_buffer->state.pass) {
1941 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
1942 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
1943 } else {
1944 tu_flush_all_pending(&cmd_buffer->state.cache);
1945 cmd_buffer->state.cache.flush_bits |=
1946 TU_CMD_FLAG_CCU_FLUSH_COLOR |
1947 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
1948 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
1949 }
1950
1951 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->global_bo,
1952 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1953
1954 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
1955 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
1956 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1957 }
1958
1959 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
1960 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
1961 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1962 }
1963
1964 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
1965 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
1966 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1967 }
1968
1969 tu_cs_end(&cmd_buffer->cs);
1970 tu_cs_end(&cmd_buffer->draw_cs);
1971 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
1972
1973 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
1974
1975 return cmd_buffer->record_result;
1976 }
1977
1978 static struct tu_cs
1979 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
1980 {
1981 struct tu_cs_memory memory;
1982 struct tu_cs cs;
1983
1984 /* TODO: share this logic with tu_pipeline_static_state */
1985 tu_cs_alloc(&cmd->sub_cs, size, 1, &memory);
1986 tu_cs_init_external(&cs, memory.map, memory.map + size);
1987 tu_cs_begin(&cs);
1988 tu_cs_reserve_space(&cs, size);
1989
1990 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
1991 cmd->state.dynamic_state[id].iova = memory.iova;
1992 cmd->state.dynamic_state[id].size = size;
1993
1994 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1995 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
1996
1997 return cs;
1998 }
1999
2000 void
2001 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2002 VkPipelineBindPoint pipelineBindPoint,
2003 VkPipeline _pipeline)
2004 {
2005 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2006 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2007
2008 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2009 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2010 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2011 }
2012
2013 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2014 cmd->state.compute_pipeline = pipeline;
2015 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_PIPELINE;
2016 return;
2017 }
2018
2019 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2020
2021 cmd->state.pipeline = pipeline;
2022 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2023
2024 struct tu_cs *cs = &cmd->draw_cs;
2025 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2026 uint32_t i;
2027
2028 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2029 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
2030 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
2031 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
2032 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
2033 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
2034 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
2035 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
2036
2037 for_each_bit(i, mask)
2038 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2039
2040 /* If the new pipeline requires more VBs than we had previously set up, we
2041 * need to re-emit them in SDS. If it requires the same set or fewer, we
2042 * can just re-use the old SDS.
2043 */
2044 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2045 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2046
2047 /* If the pipeline needs a dynamic descriptor, re-emit descriptor sets */
2048 if (pipeline->layout->dynamic_offset_count)
2049 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS;
2050
2051 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2052 * so the dynamic state ib must be updated when pipeline changes
2053 */
2054 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2055 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2056
2057 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2058 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2059
2060 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2061 }
2062 }
2063
2064 void
2065 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2066 uint32_t firstViewport,
2067 uint32_t viewportCount,
2068 const VkViewport *pViewports)
2069 {
2070 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2071 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2072
2073 assert(firstViewport == 0 && viewportCount == 1);
2074
2075 tu6_emit_viewport(&cs, pViewports);
2076 }
2077
2078 void
2079 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2080 uint32_t firstScissor,
2081 uint32_t scissorCount,
2082 const VkRect2D *pScissors)
2083 {
2084 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2085 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2086
2087 assert(firstScissor == 0 && scissorCount == 1);
2088
2089 tu6_emit_scissor(&cs, pScissors);
2090 }
2091
2092 void
2093 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2094 {
2095 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2096 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2097
2098 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2099 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2100
2101 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2102 }
2103
2104 void
2105 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2106 float depthBiasConstantFactor,
2107 float depthBiasClamp,
2108 float depthBiasSlopeFactor)
2109 {
2110 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2111 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2112
2113 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2114 }
2115
2116 void
2117 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2118 const float blendConstants[4])
2119 {
2120 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2121 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2122
2123 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2124 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2125 }
2126
2127 void
2128 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2129 float minDepthBounds,
2130 float maxDepthBounds)
2131 {
2132 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2133 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
2134
2135 tu_cs_emit_regs(&cs,
2136 A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
2137 A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
2138 }
2139
2140 static void
2141 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2142 {
2143 if (face & VK_STENCIL_FACE_FRONT_BIT)
2144 *value = (*value & 0xff00) | (mask & 0xff);
2145 if (face & VK_STENCIL_FACE_BACK_BIT)
2146 *value = (*value & 0xff) | (mask & 0xff) << 8;
2147 }
2148
2149 void
2150 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2151 VkStencilFaceFlags faceMask,
2152 uint32_t compareMask)
2153 {
2154 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2155 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2156
2157 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2158
2159 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2160 }
2161
2162 void
2163 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2164 VkStencilFaceFlags faceMask,
2165 uint32_t writeMask)
2166 {
2167 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2168 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2169
2170 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2171
2172 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2173 }
2174
2175 void
2176 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2177 VkStencilFaceFlags faceMask,
2178 uint32_t reference)
2179 {
2180 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2181 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2182
2183 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2184
2185 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2186 }
2187
2188 void
2189 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2190 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2191 {
2192 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2193 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2194
2195 assert(pSampleLocationsInfo);
2196
2197 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2198 }
2199
2200 static void
2201 tu_flush_for_access(struct tu_cache_state *cache,
2202 enum tu_cmd_access_mask src_mask,
2203 enum tu_cmd_access_mask dst_mask)
2204 {
2205 enum tu_cmd_flush_bits flush_bits = 0;
2206
2207 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2208 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2209 }
2210
2211 #define SRC_FLUSH(domain, flush, invalidate) \
2212 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2213 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2214 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2215 }
2216
2217 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2218 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2219 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2220
2221 #undef SRC_FLUSH
2222
2223 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2224 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2225 flush_bits |= TU_CMD_FLAG_##flush; \
2226 cache->pending_flush_bits |= \
2227 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2228 }
2229
2230 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2231 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2232
2233 #undef SRC_INCOHERENT_FLUSH
2234
2235 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
2236 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2237 }
2238
2239 #define DST_FLUSH(domain, flush, invalidate) \
2240 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2241 TU_ACCESS_##domain##_WRITE)) { \
2242 flush_bits |= cache->pending_flush_bits & \
2243 (TU_CMD_FLAG_##invalidate | \
2244 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2245 }
2246
2247 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2248 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2249 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2250
2251 #undef DST_FLUSH
2252
2253 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2254 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2255 TU_ACCESS_##domain##_WRITE)) { \
2256 flush_bits |= TU_CMD_FLAG_##invalidate | \
2257 (cache->pending_flush_bits & \
2258 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2259 }
2260
2261 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2262 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2263
2264 #undef DST_INCOHERENT_FLUSH
2265
2266 if (dst_mask & TU_ACCESS_WFI_READ) {
2267 flush_bits |= TU_CMD_FLAG_WFI;
2268 }
2269
2270 cache->flush_bits |= flush_bits;
2271 cache->pending_flush_bits &= ~flush_bits;
2272 }
2273
2274 static enum tu_cmd_access_mask
2275 vk2tu_access(VkAccessFlags flags, bool gmem)
2276 {
2277 enum tu_cmd_access_mask mask = 0;
2278
2279 /* If the GPU writes a buffer that is then read by an indirect draw
2280 * command, we theoretically need a WFI + WAIT_FOR_ME combination to
2281 * wait for the writes to complete. The WAIT_FOR_ME is performed as part
2282 * of the draw by the firmware, so we just need to execute a WFI.
2283 */
2284 if (flags &
2285 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2286 VK_ACCESS_MEMORY_READ_BIT)) {
2287 mask |= TU_ACCESS_WFI_READ;
2288 }
2289
2290 if (flags &
2291 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2292 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
2293 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2294 VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
2295 VK_ACCESS_MEMORY_READ_BIT)) {
2296 mask |= TU_ACCESS_SYSMEM_READ;
2297 }
2298
2299 if (flags &
2300 (VK_ACCESS_HOST_WRITE_BIT |
2301 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
2302 VK_ACCESS_MEMORY_WRITE_BIT)) {
2303 mask |= TU_ACCESS_SYSMEM_WRITE;
2304 }
2305
2306 if (flags &
2307 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2308 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2309 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2310 /* TODO: Is there a no-cache bit for textures so that we can ignore
2311 * these?
2312 */
2313 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2314 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2315 VK_ACCESS_MEMORY_READ_BIT)) {
2316 mask |= TU_ACCESS_UCHE_READ;
2317 }
2318
2319 if (flags &
2320 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2321 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2322 VK_ACCESS_MEMORY_WRITE_BIT)) {
2323 mask |= TU_ACCESS_UCHE_WRITE;
2324 }
2325
2326 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2327 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2328 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2329 * can ignore CCU and pretend that color attachments and transfers use
2330 * sysmem directly.
2331 */
2332
2333 if (flags &
2334 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2335 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2336 VK_ACCESS_MEMORY_READ_BIT)) {
2337 if (gmem)
2338 mask |= TU_ACCESS_SYSMEM_READ;
2339 else
2340 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2341 }
2342
2343 if (flags &
2344 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2345 VK_ACCESS_MEMORY_READ_BIT)) {
2346 if (gmem)
2347 mask |= TU_ACCESS_SYSMEM_READ;
2348 else
2349 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2350 }
2351
2352 if (flags &
2353 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2354 VK_ACCESS_MEMORY_WRITE_BIT)) {
2355 if (gmem) {
2356 mask |= TU_ACCESS_SYSMEM_WRITE;
2357 } else {
2358 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2359 }
2360 }
2361
2362 if (flags &
2363 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2364 VK_ACCESS_MEMORY_WRITE_BIT)) {
2365 if (gmem) {
2366 mask |= TU_ACCESS_SYSMEM_WRITE;
2367 } else {
2368 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2369 }
2370 }
2371
2372 /* When the dst access is a transfer read/write, it seems we sometimes need
2373 * to insert a WFI after any flushes, to guarantee that the flushes finish
2374 * before the 2D engine starts. However the opposite (i.e. a WFI after
2375 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2376 * the blob doesn't emit such a WFI.
2377 */
2378
2379 if (flags &
2380 (VK_ACCESS_TRANSFER_WRITE_BIT |
2381 VK_ACCESS_MEMORY_WRITE_BIT)) {
2382 if (gmem) {
2383 mask |= TU_ACCESS_SYSMEM_WRITE;
2384 } else {
2385 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2386 }
2387 mask |= TU_ACCESS_WFI_READ;
2388 }
2389
2390 if (flags &
2391 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2392 VK_ACCESS_MEMORY_READ_BIT)) {
2393 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2394 }
2395
2396 return mask;
2397 }
2398
2399
2400 void
2401 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2402 uint32_t commandBufferCount,
2403 const VkCommandBuffer *pCmdBuffers)
2404 {
2405 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2406 VkResult result;
2407
2408 assert(commandBufferCount > 0);
2409
2410 /* Emit any pending flushes. */
2411 if (cmd->state.pass) {
2412 tu_flush_all_pending(&cmd->state.renderpass_cache);
2413 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2414 } else {
2415 tu_flush_all_pending(&cmd->state.cache);
2416 tu_emit_cache_flush(cmd, &cmd->cs);
2417 }
2418
2419 for (uint32_t i = 0; i < commandBufferCount; i++) {
2420 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2421
2422 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2423 if (result != VK_SUCCESS) {
2424 cmd->record_result = result;
2425 break;
2426 }
2427
2428 if (secondary->usage_flags &
2429 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2430 assert(tu_cs_is_empty(&secondary->cs));
2431
2432 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2433 if (result != VK_SUCCESS) {
2434 cmd->record_result = result;
2435 break;
2436 }
2437
2438 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2439 &secondary->draw_epilogue_cs);
2440 if (result != VK_SUCCESS) {
2441 cmd->record_result = result;
2442 break;
2443 }
2444
2445 if (secondary->has_tess)
2446 cmd->has_tess = true;
2447 } else {
2448 assert(tu_cs_is_empty(&secondary->draw_cs));
2449 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2450
2451 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2452 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2453 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2454 }
2455
2456 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2457 }
2458
2459 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2460 }
2461 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2462
2463 /* After executing secondary command buffers, there may have been arbitrary
2464 * flushes executed, so when we encounter a pipeline barrier with a
2465 * srcMask, we have to assume that we need to invalidate. Therefore we need
2466 * to re-initialize the cache with all pending invalidate bits set.
2467 */
2468 if (cmd->state.pass) {
2469 tu_cache_init(&cmd->state.renderpass_cache);
2470 } else {
2471 tu_cache_init(&cmd->state.cache);
2472 }
2473 }
2474
2475 VkResult
2476 tu_CreateCommandPool(VkDevice _device,
2477 const VkCommandPoolCreateInfo *pCreateInfo,
2478 const VkAllocationCallbacks *pAllocator,
2479 VkCommandPool *pCmdPool)
2480 {
2481 TU_FROM_HANDLE(tu_device, device, _device);
2482 struct tu_cmd_pool *pool;
2483
2484 pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
2485 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2486 if (pool == NULL)
2487 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2488
2489 if (pAllocator)
2490 pool->alloc = *pAllocator;
2491 else
2492 pool->alloc = device->alloc;
2493
2494 list_inithead(&pool->cmd_buffers);
2495 list_inithead(&pool->free_cmd_buffers);
2496
2497 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2498
2499 *pCmdPool = tu_cmd_pool_to_handle(pool);
2500
2501 return VK_SUCCESS;
2502 }
2503
2504 void
2505 tu_DestroyCommandPool(VkDevice _device,
2506 VkCommandPool commandPool,
2507 const VkAllocationCallbacks *pAllocator)
2508 {
2509 TU_FROM_HANDLE(tu_device, device, _device);
2510 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2511
2512 if (!pool)
2513 return;
2514
2515 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2516 &pool->cmd_buffers, pool_link)
2517 {
2518 tu_cmd_buffer_destroy(cmd_buffer);
2519 }
2520
2521 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2522 &pool->free_cmd_buffers, pool_link)
2523 {
2524 tu_cmd_buffer_destroy(cmd_buffer);
2525 }
2526
2527 vk_free2(&device->alloc, pAllocator, pool);
2528 }
2529
2530 VkResult
2531 tu_ResetCommandPool(VkDevice device,
2532 VkCommandPool commandPool,
2533 VkCommandPoolResetFlags flags)
2534 {
2535 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2536 VkResult result;
2537
2538 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2539 pool_link)
2540 {
2541 result = tu_reset_cmd_buffer(cmd_buffer);
2542 if (result != VK_SUCCESS)
2543 return result;
2544 }
2545
2546 return VK_SUCCESS;
2547 }
2548
2549 void
2550 tu_TrimCommandPool(VkDevice device,
2551 VkCommandPool commandPool,
2552 VkCommandPoolTrimFlags flags)
2553 {
2554 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2555
2556 if (!pool)
2557 return;
2558
2559 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2560 &pool->free_cmd_buffers, pool_link)
2561 {
2562 tu_cmd_buffer_destroy(cmd_buffer);
2563 }
2564 }
2565
2566 static void
2567 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2568 const struct tu_subpass_barrier *barrier,
2569 bool external)
2570 {
2571 /* Note: we don't know until the end of the subpass whether we'll use
2572 * sysmem, so assume sysmem here to be safe.
2573 */
2574 struct tu_cache_state *cache =
2575 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2576 enum tu_cmd_access_mask src_flags =
2577 vk2tu_access(barrier->src_access_mask, false);
2578 enum tu_cmd_access_mask dst_flags =
2579 vk2tu_access(barrier->dst_access_mask, false);
2580
2581 if (barrier->incoherent_ccu_color)
2582 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2583 if (barrier->incoherent_ccu_depth)
2584 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2585
2586 tu_flush_for_access(cache, src_flags, dst_flags);
2587 }
2588
2589 void
2590 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2591 const VkRenderPassBeginInfo *pRenderPassBegin,
2592 VkSubpassContents contents)
2593 {
2594 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2595 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2596 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2597
2598 cmd->state.pass = pass;
2599 cmd->state.subpass = pass->subpasses;
2600 cmd->state.framebuffer = fb;
2601 cmd->state.render_area = pRenderPassBegin->renderArea;
2602
2603 tu_cmd_prepare_tile_store_ib(cmd);
2604
2605 /* Note: because this is external, any flushes will happen before draw_cs
2606 * gets called. However deferred flushes could have to happen later as part
2607 * of the subpass.
2608 */
2609 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2610 cmd->state.renderpass_cache.pending_flush_bits =
2611 cmd->state.cache.pending_flush_bits;
2612 cmd->state.renderpass_cache.flush_bits = 0;
2613
2614 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2615
2616 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2617 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2618 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2619 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2620
2621 tu_set_input_attachments(cmd, cmd->state.subpass);
2622
2623 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2624 const struct tu_image_view *iview = fb->attachments[i].attachment;
2625 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2626 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2627 }
2628
2629 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2630 }
2631
2632 void
2633 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2634 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2635 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2636 {
2637 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2638 pSubpassBeginInfo->contents);
2639 }
2640
2641 void
2642 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2643 {
2644 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2645 const struct tu_render_pass *pass = cmd->state.pass;
2646 struct tu_cs *cs = &cmd->draw_cs;
2647
2648 const struct tu_subpass *subpass = cmd->state.subpass++;
2649
2650 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2651
2652 if (subpass->resolve_attachments) {
2653 tu6_emit_blit_scissor(cmd, cs, true);
2654
2655 for (unsigned i = 0; i < subpass->color_count; i++) {
2656 uint32_t a = subpass->resolve_attachments[i].attachment;
2657 if (a == VK_ATTACHMENT_UNUSED)
2658 continue;
2659
2660 tu_store_gmem_attachment(cmd, cs, a,
2661 subpass->color_attachments[i].attachment);
2662
2663 if (pass->attachments[a].gmem_offset < 0)
2664 continue;
2665
2666 /* TODO:
2667 * check if the resolved attachment is needed by later subpasses,
2668 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2669 */
2670 tu_finishme("missing GMEM->GMEM resolve path\n");
2671 tu_load_gmem_attachment(cmd, cs, a, true);
2672 }
2673 }
2674
2675 tu_cond_exec_end(cs);
2676
2677 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2678
2679 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2680
2681 tu_cond_exec_end(cs);
2682
2683 /* Handle dependencies for the next subpass */
2684 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2685
2686 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2687 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2688 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2689 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2690 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2691
2692 tu_set_input_attachments(cmd, cmd->state.subpass);
2693 }
2694
2695 void
2696 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2697 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2698 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2699 {
2700 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2701 }
2702
2703 static void
2704 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2705 struct tu_descriptor_state *descriptors_state,
2706 gl_shader_stage type,
2707 uint32_t *push_constants)
2708 {
2709 const struct tu_program_descriptor_linkage *link =
2710 &pipeline->program.link[type];
2711 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2712
2713 if (link->push_consts.count > 0) {
2714 unsigned num_units = link->push_consts.count;
2715 unsigned offset = link->push_consts.lo;
2716 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2717 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2718 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2719 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2720 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2721 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2722 tu_cs_emit(cs, 0);
2723 tu_cs_emit(cs, 0);
2724 for (unsigned i = 0; i < num_units * 4; i++)
2725 tu_cs_emit(cs, push_constants[i + offset * 4]);
2726 }
2727
2728 for (uint32_t i = 0; i < state->num_enabled; i++) {
2729 uint32_t size = state->range[i].end - state->range[i].start;
2730 uint32_t offset = state->range[i].start;
2731
2732 /* and even if the start of the const buffer is before
2733 * first_immediate, the end may not be:
2734 */
2735 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2736
2737 if (size == 0)
2738 continue;
2739
2740 /* things should be aligned to vec4: */
2741 debug_assert((state->range[i].offset % 16) == 0);
2742 debug_assert((size % 16) == 0);
2743 debug_assert((offset % 16) == 0);
2744
2745 /* Dig out the descriptor from the descriptor state and read the VA from
2746 * it.
2747 */
2748 assert(state->range[i].ubo.bindless);
2749 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2750 descriptors_state->dynamic_descriptors :
2751 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2752 unsigned block = state->range[i].ubo.block;
2753 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2754 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2755 assert(va);
2756
2757 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2758 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2759 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2760 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2761 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2762 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2763 tu_cs_emit_qw(cs, va + offset);
2764 }
2765 }
2766
2767 static struct tu_cs_entry
2768 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2769 const struct tu_pipeline *pipeline,
2770 struct tu_descriptor_state *descriptors_state,
2771 gl_shader_stage type)
2772 {
2773 struct tu_cs cs;
2774 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2775
2776 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2777
2778 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2779 }
2780
2781 static struct tu_cs_entry
2782 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
2783 const struct tu_pipeline *pipeline)
2784 {
2785 struct tu_cs cs;
2786 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
2787
2788 int binding;
2789 for_each_bit(binding, pipeline->vi.bindings_used) {
2790 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
2791 const VkDeviceSize offset = buf->bo_offset +
2792 cmd->state.vb.offsets[binding];
2793
2794 tu_cs_emit_regs(&cs,
2795 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
2796 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
2797
2798 }
2799
2800 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
2801
2802 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2803 }
2804
2805 static uint64_t
2806 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
2807 uint32_t draw_count)
2808 {
2809 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2810 * Still not sure what to do here, so just allocate a reasonably large
2811 * BO and hope for the best for now.
2812 * (maxTessellationControlPerVertexOutputComponents * 2048 vertices +
2813 * maxTessellationControlPerPatchOutputComponents * 512 patches) */
2814 if (!draw_count) {
2815 return ((128 * 2048) + (128 * 512)) * 4;
2816 }
2817
2818 /* For each patch, adreno lays out the tess param BO in memory as:
2819 * (v_input[0][0])...(v_input[i][j])(p_input[0])...(p_input[k]).
2820 * where i = # vertices per patch, j = # per-vertex outputs, and
2821 * k = # per-patch outputs.*/
2822 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2823 uint32_t num_patches = draw_count / verts_per_patch;
2824 return draw_count * pipeline->tess.per_vertex_output_size +
2825 pipeline->tess.per_patch_output_size * num_patches;
2826 }
2827
2828 static uint64_t
2829 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
2830 uint32_t draw_count)
2831 {
2832 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2833 * Still not sure what to do here, so just allocate a reasonably large
2834 * BO and hope for the best for now.
2835 * (quad factor stride * 512 patches) */
2836 if (!draw_count) {
2837 return (28 * 512) * 4;
2838 }
2839
2840 /* Each distinct patch gets its own tess factor output. */
2841 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2842 uint32_t num_patches = draw_count / verts_per_patch;
2843 uint32_t factor_stride;
2844 switch (pipeline->tess.patch_type) {
2845 case IR3_TESS_ISOLINES:
2846 factor_stride = 12;
2847 break;
2848 case IR3_TESS_TRIANGLES:
2849 factor_stride = 20;
2850 break;
2851 case IR3_TESS_QUADS:
2852 factor_stride = 28;
2853 break;
2854 default:
2855 unreachable("bad tessmode");
2856 }
2857 return factor_stride * num_patches;
2858 }
2859
2860 static VkResult
2861 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
2862 uint32_t draw_count,
2863 const struct tu_pipeline *pipeline,
2864 struct tu_cs_entry *entry)
2865 {
2866 struct tu_cs cs;
2867 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 20, &cs);
2868 if (result != VK_SUCCESS)
2869 return result;
2870
2871 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
2872 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
2873 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
2874 if (tess_bo_size > 0) {
2875 struct tu_bo *tess_bo;
2876 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
2877 if (result != VK_SUCCESS)
2878 return result;
2879
2880 tu_bo_list_add(&cmd->bo_list, tess_bo,
2881 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2882 uint64_t tess_factor_iova = tess_bo->iova;
2883 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
2884
2885 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2886 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
2887 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2888 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2889 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
2890 CP_LOAD_STATE6_0_NUM_UNIT(1));
2891 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2892 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2893 tu_cs_emit_qw(&cs, tess_param_iova);
2894 tu_cs_emit_qw(&cs, tess_factor_iova);
2895
2896 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2897 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
2898 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2899 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2900 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
2901 CP_LOAD_STATE6_0_NUM_UNIT(1));
2902 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2903 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2904 tu_cs_emit_qw(&cs, tess_param_iova);
2905 tu_cs_emit_qw(&cs, tess_factor_iova);
2906
2907 tu_cs_emit_pkt4(&cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
2908 tu_cs_emit_qw(&cs, tess_factor_iova);
2909
2910 /* TODO: Without this WFI here, the hardware seems unable to read these
2911 * addresses we just emitted. Freedreno emits these consts as part of
2912 * IB1 instead of in a draw state which might make this WFI unnecessary,
2913 * but it requires a bit more indirection (SS6_INDIRECT for consts). */
2914 tu_cs_emit_wfi(&cs);
2915 }
2916 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2917 return VK_SUCCESS;
2918 }
2919
2920 static VkResult
2921 tu6_draw_common(struct tu_cmd_buffer *cmd,
2922 struct tu_cs *cs,
2923 bool indexed,
2924 /* note: draw_count is 0 for indirect */
2925 uint32_t draw_count)
2926 {
2927 const struct tu_pipeline *pipeline = cmd->state.pipeline;
2928 VkResult result;
2929
2930 struct tu_descriptor_state *descriptors_state =
2931 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
2932
2933 tu_emit_cache_flush_renderpass(cmd, cs);
2934
2935 /* TODO lrz */
2936
2937 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
2938 .primitive_restart =
2939 pipeline->ia.primitive_restart && indexed,
2940 .tess_upper_left_domain_origin =
2941 pipeline->tess.upper_left_domain_origin));
2942
2943 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
2944 cmd->state.shader_const_ib[MESA_SHADER_VERTEX] =
2945 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
2946 cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL] =
2947 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
2948 cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL] =
2949 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
2950 cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY] =
2951 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
2952 cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT] =
2953 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
2954 }
2955
2956 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) {
2957 /* We need to reload the descriptors every time the descriptor sets
2958 * change. However, the commands we send only depend on the pipeline
2959 * because the whole point is to cache descriptors which are used by the
2960 * pipeline. There's a problem here, in that the firmware has an
2961 * "optimization" which skips executing groups that are set to the same
2962 * value as the last draw. This means that if the descriptor sets change
2963 * but not the pipeline, we'd try to re-execute the same buffer which
2964 * the firmware would ignore and we wouldn't pre-load the new
2965 * descriptors. The blob seems to re-emit the LOAD_STATE group whenever
2966 * the descriptor sets change, which we emulate here by copying the
2967 * pre-prepared buffer.
2968 */
2969 const struct tu_cs_entry *load_entry = &pipeline->load_state.state_ib;
2970 if (load_entry->size > 0) {
2971 struct tu_cs load_cs;
2972 result = tu_cs_begin_sub_stream(&cmd->sub_cs, load_entry->size, &load_cs);
2973 if (result != VK_SUCCESS)
2974 return result;
2975 tu_cs_emit_array(&load_cs,
2976 (uint32_t *)((char *)load_entry->bo->map + load_entry->offset),
2977 load_entry->size / 4);
2978 cmd->state.desc_sets_load_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &load_cs);
2979 } else {
2980 cmd->state.desc_sets_load_ib.size = 0;
2981 }
2982 }
2983
2984 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
2985 cmd->state.vertex_buffers_ib = tu6_emit_vertex_buffers(cmd, pipeline);
2986
2987 bool has_tess =
2988 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
2989 struct tu_cs_entry tess_consts = {};
2990 if (has_tess) {
2991 cmd->has_tess = true;
2992 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts);
2993 if (result != VK_SUCCESS)
2994 return result;
2995 }
2996
2997 /* for the first draw in a renderpass, re-emit all the draw states
2998 *
2999 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3000 * used, then draw states must be re-emitted. note however this only happens
3001 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3002 *
3003 * the two input attachment states are excluded because secondary command
3004 * buffer doesn't have a state ib to restore it, and not re-emitting them
3005 * is OK since CmdClearAttachments won't disable/overwrite them
3006 */
3007 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3008 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3009
3010 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
3011 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
3012 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3013 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
3014 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
3015 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
3016 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
3017 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
3018 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3019 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3020 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3021 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3022 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3023 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets_ib);
3024 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3025 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3026 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3027
3028 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3029 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3030 ((pipeline->dynamic_state_mask & BIT(i)) ?
3031 cmd->state.dynamic_state[i] :
3032 pipeline->dynamic_state[i]));
3033 }
3034 } else {
3035
3036 /* emit draw states that were just updated
3037 * note we eventually don't want to have to emit anything here
3038 */
3039 uint32_t draw_state_count =
3040 has_tess +
3041 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
3042 ((cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) ? 1 : 0) +
3043 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3044 1; /* vs_params */
3045
3046 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3047
3048 /* We may need to re-emit tess consts if the current draw call is
3049 * sufficiently larger than the last draw call. */
3050 if (has_tess)
3051 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3052 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3053 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3054 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3055 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3056 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3057 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3058 }
3059 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS)
3060 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3061 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3062 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3063 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3064 }
3065
3066 tu_cs_sanity_check(cs);
3067
3068 /* There are too many graphics dirty bits to list here, so just list the
3069 * bits to preserve instead. The only things not emitted here are
3070 * compute-related state.
3071 */
3072 cmd->state.dirty &= (TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3073 return VK_SUCCESS;
3074 }
3075
3076 static uint32_t
3077 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
3078 {
3079 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3080 uint32_t initiator =
3081 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3082 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
3083 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3084 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3085
3086 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3087 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3088
3089 switch (pipeline->tess.patch_type) {
3090 case IR3_TESS_TRIANGLES:
3091 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3092 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3093 break;
3094 case IR3_TESS_ISOLINES:
3095 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3096 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3097 break;
3098 case IR3_TESS_NONE:
3099 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3100 break;
3101 case IR3_TESS_QUADS:
3102 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3103 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3104 break;
3105 }
3106 return initiator;
3107 }
3108
3109
3110 static uint32_t
3111 vs_params_offset(struct tu_cmd_buffer *cmd)
3112 {
3113 const struct tu_program_descriptor_linkage *link =
3114 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
3115 const struct ir3_const_state *const_state = &link->const_state;
3116
3117 if (const_state->offsets.driver_param >= link->constlen)
3118 return 0;
3119
3120 /* this layout is required by CP_DRAW_INDIRECT_MULTI */
3121 STATIC_ASSERT(IR3_DP_DRAWID == 0);
3122 STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
3123 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3124
3125 /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
3126 assert(const_state->offsets.driver_param != 0);
3127
3128 return const_state->offsets.driver_param;
3129 }
3130
3131 static struct tu_draw_state
3132 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
3133 uint32_t vertex_offset,
3134 uint32_t first_instance)
3135 {
3136 uint32_t offset = vs_params_offset(cmd);
3137
3138 struct tu_cs cs;
3139 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 8 : 0), &cs);
3140 if (result != VK_SUCCESS) {
3141 cmd->record_result = result;
3142 return (struct tu_draw_state) {};
3143 }
3144
3145 /* TODO: don't make a new draw state when it doesn't change */
3146
3147 tu_cs_emit_regs(&cs,
3148 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3149 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3150
3151 if (offset) {
3152 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3153 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3154 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3155 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3156 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3157 CP_LOAD_STATE6_0_NUM_UNIT(1));
3158 tu_cs_emit(&cs, 0);
3159 tu_cs_emit(&cs, 0);
3160
3161 tu_cs_emit(&cs, 0);
3162 tu_cs_emit(&cs, vertex_offset);
3163 tu_cs_emit(&cs, first_instance);
3164 tu_cs_emit(&cs, 0);
3165 }
3166
3167 struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3168 return (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
3169 }
3170
3171 void
3172 tu_CmdDraw(VkCommandBuffer commandBuffer,
3173 uint32_t vertexCount,
3174 uint32_t instanceCount,
3175 uint32_t firstVertex,
3176 uint32_t firstInstance)
3177 {
3178 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3179 struct tu_cs *cs = &cmd->draw_cs;
3180
3181 cmd->state.vs_params = tu6_emit_vs_params(cmd, firstVertex, firstInstance);
3182
3183 tu6_draw_common(cmd, cs, false, vertexCount);
3184
3185 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3186 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3187 tu_cs_emit(cs, instanceCount);
3188 tu_cs_emit(cs, vertexCount);
3189 }
3190
3191 void
3192 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3193 uint32_t indexCount,
3194 uint32_t instanceCount,
3195 uint32_t firstIndex,
3196 int32_t vertexOffset,
3197 uint32_t firstInstance)
3198 {
3199 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3200 struct tu_cs *cs = &cmd->draw_cs;
3201
3202 cmd->state.vs_params = tu6_emit_vs_params(cmd, vertexOffset, firstInstance);
3203
3204 tu6_draw_common(cmd, cs, true, indexCount);
3205
3206 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3207 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3208 tu_cs_emit(cs, instanceCount);
3209 tu_cs_emit(cs, indexCount);
3210 tu_cs_emit(cs, firstIndex);
3211 tu_cs_emit_qw(cs, cmd->state.index_va);
3212 tu_cs_emit(cs, cmd->state.max_index_count);
3213 }
3214
3215 void
3216 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3217 VkBuffer _buffer,
3218 VkDeviceSize offset,
3219 uint32_t drawCount,
3220 uint32_t stride)
3221 {
3222 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3223 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3224 struct tu_cs *cs = &cmd->draw_cs;
3225
3226 cmd->state.vs_params = (struct tu_draw_state) {};
3227
3228 tu6_draw_common(cmd, cs, false, 0);
3229
3230 /* workaround for a firmware bug with CP_DRAW_INDIRECT_MULTI, where it
3231 * doesn't wait for WFIs to be completed and leads to GPU fault/hang
3232 * TODO: this could be worked around in a more performant way,
3233 * or there may exist newer firmware that has been fixed
3234 */
3235 if (cmd->device->physical_device->gpu_id != 650)
3236 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
3237
3238 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
3239 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3240 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
3241 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3242 tu_cs_emit(cs, drawCount);
3243 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3244 tu_cs_emit(cs, stride);
3245
3246 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3247 }
3248
3249 void
3250 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3251 VkBuffer _buffer,
3252 VkDeviceSize offset,
3253 uint32_t drawCount,
3254 uint32_t stride)
3255 {
3256 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3257 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3258 struct tu_cs *cs = &cmd->draw_cs;
3259
3260 cmd->state.vs_params = (struct tu_draw_state) {};
3261
3262 tu6_draw_common(cmd, cs, true, 0);
3263
3264 /* workaround for a firmware bug with CP_DRAW_INDIRECT_MULTI, where it
3265 * doesn't wait for WFIs to be completed and leads to GPU fault/hang
3266 * TODO: this could be worked around in a more performant way,
3267 * or there may exist newer firmware that has been fixed
3268 */
3269 if (cmd->device->physical_device->gpu_id != 650)
3270 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
3271
3272 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
3273 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3274 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
3275 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3276 tu_cs_emit(cs, drawCount);
3277 tu_cs_emit_qw(cs, cmd->state.index_va);
3278 tu_cs_emit(cs, cmd->state.max_index_count);
3279 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3280 tu_cs_emit(cs, stride);
3281
3282 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3283 }
3284
3285 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3286 uint32_t instanceCount,
3287 uint32_t firstInstance,
3288 VkBuffer _counterBuffer,
3289 VkDeviceSize counterBufferOffset,
3290 uint32_t counterOffset,
3291 uint32_t vertexStride)
3292 {
3293 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3294 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
3295 struct tu_cs *cs = &cmd->draw_cs;
3296
3297 cmd->state.vs_params = tu6_emit_vs_params(cmd, 0, firstInstance);
3298
3299 tu6_draw_common(cmd, cs, false, 0);
3300
3301 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
3302 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
3303 tu_cs_emit(cs, instanceCount);
3304 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
3305 tu_cs_emit(cs, counterOffset);
3306 tu_cs_emit(cs, vertexStride);
3307
3308 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3309 }
3310
3311 struct tu_dispatch_info
3312 {
3313 /**
3314 * Determine the layout of the grid (in block units) to be used.
3315 */
3316 uint32_t blocks[3];
3317
3318 /**
3319 * A starting offset for the grid. If unaligned is set, the offset
3320 * must still be aligned.
3321 */
3322 uint32_t offsets[3];
3323 /**
3324 * Whether it's an unaligned compute dispatch.
3325 */
3326 bool unaligned;
3327
3328 /**
3329 * Indirect compute parameters resource.
3330 */
3331 struct tu_buffer *indirect;
3332 uint64_t indirect_offset;
3333 };
3334
3335 static void
3336 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3337 const struct tu_dispatch_info *info)
3338 {
3339 gl_shader_stage type = MESA_SHADER_COMPUTE;
3340 const struct tu_program_descriptor_linkage *link =
3341 &pipeline->program.link[type];
3342 const struct ir3_const_state *const_state = &link->const_state;
3343 uint32_t offset = const_state->offsets.driver_param;
3344
3345 if (link->constlen <= offset)
3346 return;
3347
3348 if (!info->indirect) {
3349 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3350 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3351 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3352 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3353 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3354 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3355 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3356 };
3357
3358 uint32_t num_consts = MIN2(const_state->num_driver_params,
3359 (link->constlen - offset) * 4);
3360 /* push constants */
3361 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3362 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3363 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3364 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3365 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3366 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3367 tu_cs_emit(cs, 0);
3368 tu_cs_emit(cs, 0);
3369 uint32_t i;
3370 for (i = 0; i < num_consts; i++)
3371 tu_cs_emit(cs, driver_params[i]);
3372 } else {
3373 tu_finishme("Indirect driver params");
3374 }
3375 }
3376
3377 static void
3378 tu_dispatch(struct tu_cmd_buffer *cmd,
3379 const struct tu_dispatch_info *info)
3380 {
3381 struct tu_cs *cs = &cmd->cs;
3382 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3383 struct tu_descriptor_state *descriptors_state =
3384 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3385
3386 /* TODO: We could probably flush less if we add a compute_flush_bits
3387 * bitfield.
3388 */
3389 tu_emit_cache_flush(cmd, cs);
3390
3391 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_PIPELINE)
3392 tu_cs_emit_ib(cs, &pipeline->program.state_ib);
3393
3394 struct tu_cs_entry ib;
3395
3396 ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE);
3397 if (ib.size)
3398 tu_cs_emit_ib(cs, &ib);
3399
3400 tu_emit_compute_driver_params(cs, pipeline, info);
3401
3402 if ((cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS) &&
3403 pipeline->load_state.state_ib.size > 0) {
3404 tu_cs_emit_ib(cs, &pipeline->load_state.state_ib);
3405 }
3406
3407 cmd->state.dirty &=
3408 ~(TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3409
3410 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3411 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3412
3413 const uint32_t *local_size = pipeline->compute.local_size;
3414 const uint32_t *num_groups = info->blocks;
3415 tu_cs_emit_regs(cs,
3416 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3417 .localsizex = local_size[0] - 1,
3418 .localsizey = local_size[1] - 1,
3419 .localsizez = local_size[2] - 1),
3420 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3421 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3422 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3423 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3424 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3425 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3426
3427 tu_cs_emit_regs(cs,
3428 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3429 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3430 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3431
3432 if (info->indirect) {
3433 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3434
3435 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3436 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3437
3438 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3439 tu_cs_emit(cs, 0x00000000);
3440 tu_cs_emit_qw(cs, iova);
3441 tu_cs_emit(cs,
3442 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3443 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3444 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3445 } else {
3446 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3447 tu_cs_emit(cs, 0x00000000);
3448 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3449 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3450 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3451 }
3452
3453 tu_cs_emit_wfi(cs);
3454 }
3455
3456 void
3457 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3458 uint32_t base_x,
3459 uint32_t base_y,
3460 uint32_t base_z,
3461 uint32_t x,
3462 uint32_t y,
3463 uint32_t z)
3464 {
3465 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3466 struct tu_dispatch_info info = {};
3467
3468 info.blocks[0] = x;
3469 info.blocks[1] = y;
3470 info.blocks[2] = z;
3471
3472 info.offsets[0] = base_x;
3473 info.offsets[1] = base_y;
3474 info.offsets[2] = base_z;
3475 tu_dispatch(cmd_buffer, &info);
3476 }
3477
3478 void
3479 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3480 uint32_t x,
3481 uint32_t y,
3482 uint32_t z)
3483 {
3484 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3485 }
3486
3487 void
3488 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3489 VkBuffer _buffer,
3490 VkDeviceSize offset)
3491 {
3492 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3493 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3494 struct tu_dispatch_info info = {};
3495
3496 info.indirect = buffer;
3497 info.indirect_offset = offset;
3498
3499 tu_dispatch(cmd_buffer, &info);
3500 }
3501
3502 void
3503 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3504 {
3505 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3506
3507 tu_cs_end(&cmd_buffer->draw_cs);
3508 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3509
3510 if (use_sysmem_rendering(cmd_buffer))
3511 tu_cmd_render_sysmem(cmd_buffer);
3512 else
3513 tu_cmd_render_tiles(cmd_buffer);
3514
3515 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3516 rendered */
3517 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3518 tu_cs_begin(&cmd_buffer->draw_cs);
3519 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3520 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3521
3522 cmd_buffer->state.cache.pending_flush_bits |=
3523 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3524 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3525
3526 cmd_buffer->state.pass = NULL;
3527 cmd_buffer->state.subpass = NULL;
3528 cmd_buffer->state.framebuffer = NULL;
3529 }
3530
3531 void
3532 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3533 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3534 {
3535 tu_CmdEndRenderPass(commandBuffer);
3536 }
3537
3538 struct tu_barrier_info
3539 {
3540 uint32_t eventCount;
3541 const VkEvent *pEvents;
3542 VkPipelineStageFlags srcStageMask;
3543 };
3544
3545 static void
3546 tu_barrier(struct tu_cmd_buffer *cmd,
3547 uint32_t memoryBarrierCount,
3548 const VkMemoryBarrier *pMemoryBarriers,
3549 uint32_t bufferMemoryBarrierCount,
3550 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3551 uint32_t imageMemoryBarrierCount,
3552 const VkImageMemoryBarrier *pImageMemoryBarriers,
3553 const struct tu_barrier_info *info)
3554 {
3555 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3556 VkAccessFlags srcAccessMask = 0;
3557 VkAccessFlags dstAccessMask = 0;
3558
3559 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3560 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3561 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3562 }
3563
3564 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3565 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3566 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3567 }
3568
3569 enum tu_cmd_access_mask src_flags = 0;
3570 enum tu_cmd_access_mask dst_flags = 0;
3571
3572 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3573 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3574 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3575 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3576 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3577 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3578 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3579 /* The underlying memory for this image may have been used earlier
3580 * within the same queue submission for a different image, which
3581 * means that there may be old, stale cache entries which are in the
3582 * "wrong" location, which could cause problems later after writing
3583 * to the image. We don't want these entries being flushed later and
3584 * overwriting the actual image, so we need to flush the CCU.
3585 */
3586 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3587 }
3588 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3589 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3590 }
3591
3592 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3593 * so we have to use the sysmem flushes.
3594 */
3595 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3596 !cmd->state.pass;
3597 src_flags |= vk2tu_access(srcAccessMask, gmem);
3598 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3599
3600 struct tu_cache_state *cache =
3601 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3602 tu_flush_for_access(cache, src_flags, dst_flags);
3603
3604 for (uint32_t i = 0; i < info->eventCount; i++) {
3605 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3606
3607 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3608
3609 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3610 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3611 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3612 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3613 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3614 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3615 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3616 }
3617 }
3618
3619 void
3620 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3621 VkPipelineStageFlags srcStageMask,
3622 VkPipelineStageFlags dstStageMask,
3623 VkDependencyFlags dependencyFlags,
3624 uint32_t memoryBarrierCount,
3625 const VkMemoryBarrier *pMemoryBarriers,
3626 uint32_t bufferMemoryBarrierCount,
3627 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3628 uint32_t imageMemoryBarrierCount,
3629 const VkImageMemoryBarrier *pImageMemoryBarriers)
3630 {
3631 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3632 struct tu_barrier_info info;
3633
3634 info.eventCount = 0;
3635 info.pEvents = NULL;
3636 info.srcStageMask = srcStageMask;
3637
3638 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3639 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3640 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3641 }
3642
3643 static void
3644 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3645 VkPipelineStageFlags stageMask, unsigned value)
3646 {
3647 struct tu_cs *cs = &cmd->cs;
3648
3649 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3650 assert(!cmd->state.pass);
3651
3652 tu_emit_cache_flush(cmd, cs);
3653
3654 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3655
3656 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3657 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3658 */
3659 VkPipelineStageFlags top_of_pipe_flags =
3660 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3661 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3662
3663 if (!(stageMask & ~top_of_pipe_flags)) {
3664 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3665 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3666 tu_cs_emit(cs, value);
3667 } else {
3668 /* Use a RB_DONE_TS event to wait for everything to complete. */
3669 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3670 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3671 tu_cs_emit_qw(cs, event->bo.iova);
3672 tu_cs_emit(cs, value);
3673 }
3674 }
3675
3676 void
3677 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3678 VkEvent _event,
3679 VkPipelineStageFlags stageMask)
3680 {
3681 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3682 TU_FROM_HANDLE(tu_event, event, _event);
3683
3684 write_event(cmd, event, stageMask, 1);
3685 }
3686
3687 void
3688 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3689 VkEvent _event,
3690 VkPipelineStageFlags stageMask)
3691 {
3692 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3693 TU_FROM_HANDLE(tu_event, event, _event);
3694
3695 write_event(cmd, event, stageMask, 0);
3696 }
3697
3698 void
3699 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3700 uint32_t eventCount,
3701 const VkEvent *pEvents,
3702 VkPipelineStageFlags srcStageMask,
3703 VkPipelineStageFlags dstStageMask,
3704 uint32_t memoryBarrierCount,
3705 const VkMemoryBarrier *pMemoryBarriers,
3706 uint32_t bufferMemoryBarrierCount,
3707 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3708 uint32_t imageMemoryBarrierCount,
3709 const VkImageMemoryBarrier *pImageMemoryBarriers)
3710 {
3711 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3712 struct tu_barrier_info info;
3713
3714 info.eventCount = eventCount;
3715 info.pEvents = pEvents;
3716 info.srcStageMask = 0;
3717
3718 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3719 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3720 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3721 }
3722
3723 void
3724 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3725 {
3726 /* No-op */
3727 }