turnip: refactor CmdDraw* functions (and a few fixes)
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 static void
112 tu_tiling_config_update_tile_layout(struct tu_tiling_config *tiling,
113 const struct tu_device *dev,
114 const struct tu_render_pass *pass)
115 {
116 const uint32_t tile_align_w = pass->tile_align_w;
117 const uint32_t max_tile_width = 1024;
118
119 /* note: don't offset the tiling config by render_area.offset,
120 * because binning pass can't deal with it
121 * this means we might end up with more tiles than necessary,
122 * but load/store/etc are still scissored to the render_area
123 */
124 tiling->tile0.offset = (VkOffset2D) {};
125
126 const uint32_t ra_width =
127 tiling->render_area.extent.width +
128 (tiling->render_area.offset.x - tiling->tile0.offset.x);
129 const uint32_t ra_height =
130 tiling->render_area.extent.height +
131 (tiling->render_area.offset.y - tiling->tile0.offset.y);
132
133 /* start from 1 tile */
134 tiling->tile_count = (VkExtent2D) {
135 .width = 1,
136 .height = 1,
137 };
138 tiling->tile0.extent = (VkExtent2D) {
139 .width = util_align_npot(ra_width, tile_align_w),
140 .height = align(ra_height, TILE_ALIGN_H),
141 };
142
143 if (unlikely(dev->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN)) {
144 /* start with 2x2 tiles */
145 tiling->tile_count.width = 2;
146 tiling->tile_count.height = 2;
147 tiling->tile0.extent.width = util_align_npot(DIV_ROUND_UP(ra_width, 2), tile_align_w);
148 tiling->tile0.extent.height = align(DIV_ROUND_UP(ra_height, 2), TILE_ALIGN_H);
149 }
150
151 /* do not exceed max tile width */
152 while (tiling->tile0.extent.width > max_tile_width) {
153 tiling->tile_count.width++;
154 tiling->tile0.extent.width =
155 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
156 }
157
158 /* will force to sysmem, don't bother trying to have a valid tile config
159 * TODO: just skip all GMEM stuff when sysmem is forced?
160 */
161 if (!pass->gmem_pixels)
162 return;
163
164 /* do not exceed gmem size */
165 while (tiling->tile0.extent.width * tiling->tile0.extent.height > pass->gmem_pixels) {
166 if (tiling->tile0.extent.width > MAX2(tile_align_w, tiling->tile0.extent.height)) {
167 tiling->tile_count.width++;
168 tiling->tile0.extent.width =
169 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
170 } else {
171 /* if this assert fails then layout is impossible.. */
172 assert(tiling->tile0.extent.height > TILE_ALIGN_H);
173 tiling->tile_count.height++;
174 tiling->tile0.extent.height =
175 align(DIV_ROUND_UP(ra_height, tiling->tile_count.height), TILE_ALIGN_H);
176 }
177 }
178 }
179
180 static void
181 tu_tiling_config_update_pipe_layout(struct tu_tiling_config *tiling,
182 const struct tu_device *dev)
183 {
184 const uint32_t max_pipe_count = 32; /* A6xx */
185
186 /* start from 1 tile per pipe */
187 tiling->pipe0 = (VkExtent2D) {
188 .width = 1,
189 .height = 1,
190 };
191 tiling->pipe_count = tiling->tile_count;
192
193 while (tiling->pipe_count.width * tiling->pipe_count.height > max_pipe_count) {
194 if (tiling->pipe0.width < tiling->pipe0.height) {
195 tiling->pipe0.width += 1;
196 tiling->pipe_count.width =
197 DIV_ROUND_UP(tiling->tile_count.width, tiling->pipe0.width);
198 } else {
199 tiling->pipe0.height += 1;
200 tiling->pipe_count.height =
201 DIV_ROUND_UP(tiling->tile_count.height, tiling->pipe0.height);
202 }
203 }
204 }
205
206 static void
207 tu_tiling_config_update_pipes(struct tu_tiling_config *tiling,
208 const struct tu_device *dev)
209 {
210 const uint32_t max_pipe_count = 32; /* A6xx */
211 const uint32_t used_pipe_count =
212 tiling->pipe_count.width * tiling->pipe_count.height;
213 const VkExtent2D last_pipe = {
214 .width = (tiling->tile_count.width - 1) % tiling->pipe0.width + 1,
215 .height = (tiling->tile_count.height - 1) % tiling->pipe0.height + 1,
216 };
217
218 assert(used_pipe_count <= max_pipe_count);
219 assert(max_pipe_count <= ARRAY_SIZE(tiling->pipe_config));
220
221 for (uint32_t y = 0; y < tiling->pipe_count.height; y++) {
222 for (uint32_t x = 0; x < tiling->pipe_count.width; x++) {
223 const uint32_t pipe_x = tiling->pipe0.width * x;
224 const uint32_t pipe_y = tiling->pipe0.height * y;
225 const uint32_t pipe_w = (x == tiling->pipe_count.width - 1)
226 ? last_pipe.width
227 : tiling->pipe0.width;
228 const uint32_t pipe_h = (y == tiling->pipe_count.height - 1)
229 ? last_pipe.height
230 : tiling->pipe0.height;
231 const uint32_t n = tiling->pipe_count.width * y + x;
232
233 tiling->pipe_config[n] = A6XX_VSC_PIPE_CONFIG_REG_X(pipe_x) |
234 A6XX_VSC_PIPE_CONFIG_REG_Y(pipe_y) |
235 A6XX_VSC_PIPE_CONFIG_REG_W(pipe_w) |
236 A6XX_VSC_PIPE_CONFIG_REG_H(pipe_h);
237 tiling->pipe_sizes[n] = CP_SET_BIN_DATA5_0_VSC_SIZE(pipe_w * pipe_h);
238 }
239 }
240
241 memset(tiling->pipe_config + used_pipe_count, 0,
242 sizeof(uint32_t) * (max_pipe_count - used_pipe_count));
243 }
244
245 static void
246 tu_tiling_config_get_tile(const struct tu_tiling_config *tiling,
247 const struct tu_device *dev,
248 uint32_t tx,
249 uint32_t ty,
250 struct tu_tile *tile)
251 {
252 /* find the pipe and the slot for tile (tx, ty) */
253 const uint32_t px = tx / tiling->pipe0.width;
254 const uint32_t py = ty / tiling->pipe0.height;
255 const uint32_t sx = tx - tiling->pipe0.width * px;
256 const uint32_t sy = ty - tiling->pipe0.height * py;
257 /* last pipe has different width */
258 const uint32_t pipe_width =
259 MIN2(tiling->pipe0.width,
260 tiling->tile_count.width - px * tiling->pipe0.width);
261
262 assert(tx < tiling->tile_count.width && ty < tiling->tile_count.height);
263 assert(px < tiling->pipe_count.width && py < tiling->pipe_count.height);
264 assert(sx < tiling->pipe0.width && sy < tiling->pipe0.height);
265
266 /* convert to 1D indices */
267 tile->pipe = tiling->pipe_count.width * py + px;
268 tile->slot = pipe_width * sy + sx;
269
270 /* get the blit area for the tile */
271 tile->begin = (VkOffset2D) {
272 .x = tiling->tile0.offset.x + tiling->tile0.extent.width * tx,
273 .y = tiling->tile0.offset.y + tiling->tile0.extent.height * ty,
274 };
275 tile->end.x =
276 (tx == tiling->tile_count.width - 1)
277 ? tiling->render_area.offset.x + tiling->render_area.extent.width
278 : tile->begin.x + tiling->tile0.extent.width;
279 tile->end.y =
280 (ty == tiling->tile_count.height - 1)
281 ? tiling->render_area.offset.y + tiling->render_area.extent.height
282 : tile->begin.y + tiling->tile0.extent.height;
283 }
284
285 void
286 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
287 struct tu_cs *cs,
288 enum vgt_event_type event)
289 {
290 bool need_seqno = false;
291 switch (event) {
292 case CACHE_FLUSH_TS:
293 case WT_DONE_TS:
294 case RB_DONE_TS:
295 case PC_CCU_FLUSH_DEPTH_TS:
296 case PC_CCU_FLUSH_COLOR_TS:
297 case PC_CCU_RESOLVE_TS:
298 need_seqno = true;
299 break;
300 default:
301 break;
302 }
303
304 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
305 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
306 if (need_seqno) {
307 tu_cs_emit_qw(cs, cmd->scratch_bo.iova);
308 tu_cs_emit(cs, 0);
309 }
310 }
311
312 static void
313 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
314 struct tu_cs *cs,
315 enum tu_cmd_flush_bits flushes)
316 {
317 /* Experiments show that invalidating CCU while it still has data in it
318 * doesn't work, so make sure to always flush before invalidating in case
319 * any data remains that hasn't yet been made available through a barrier.
320 * However it does seem to work for UCHE.
321 */
322 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
323 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
324 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
325 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
326 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
327 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
328 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
329 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
330 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
331 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
332 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
333 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
334 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
335 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
336 if (flushes & TU_CMD_FLAG_WFI)
337 tu_cs_emit_wfi(cs);
338 }
339
340 /* "Normal" cache flushes, that don't require any special handling */
341
342 static void
343 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
344 struct tu_cs *cs)
345 {
346 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
347 cmd_buffer->state.cache.flush_bits = 0;
348 }
349
350 /* Renderpass cache flushes */
351
352 void
353 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
354 struct tu_cs *cs)
355 {
356 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
357 cmd_buffer->state.renderpass_cache.flush_bits = 0;
358 }
359
360 /* Cache flushes for things that use the color/depth read/write path (i.e.
361 * blits and draws). This deals with changing CCU state as well as the usual
362 * cache flushing.
363 */
364
365 void
366 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
367 struct tu_cs *cs,
368 enum tu_cmd_ccu_state ccu_state)
369 {
370 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
371
372 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
373
374 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
375 * the CCU may also contain data that we haven't flushed out yet, so we
376 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
377 * emit a WFI as it isn't pipelined.
378 */
379 if (ccu_state != cmd_buffer->state.ccu_state) {
380 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
381 flushes |=
382 TU_CMD_FLAG_CCU_FLUSH_COLOR |
383 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
384 cmd_buffer->state.cache.pending_flush_bits &= ~(
385 TU_CMD_FLAG_CCU_FLUSH_COLOR |
386 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
387 }
388 flushes |=
389 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
390 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
391 TU_CMD_FLAG_WFI;
392 cmd_buffer->state.cache.pending_flush_bits &= ~(
393 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
394 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
395 }
396
397 tu6_emit_flushes(cmd_buffer, cs, flushes);
398 cmd_buffer->state.cache.flush_bits = 0;
399
400 if (ccu_state != cmd_buffer->state.ccu_state) {
401 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
402 tu_cs_emit_regs(cs,
403 A6XX_RB_CCU_CNTL(.offset =
404 ccu_state == TU_CMD_CCU_GMEM ?
405 phys_dev->ccu_offset_gmem :
406 phys_dev->ccu_offset_bypass,
407 .gmem = ccu_state == TU_CMD_CCU_GMEM));
408 cmd_buffer->state.ccu_state = ccu_state;
409 }
410 }
411
412 static void
413 tu6_emit_zs(struct tu_cmd_buffer *cmd,
414 const struct tu_subpass *subpass,
415 struct tu_cs *cs)
416 {
417 const struct tu_framebuffer *fb = cmd->state.framebuffer;
418
419 const uint32_t a = subpass->depth_stencil_attachment.attachment;
420 if (a == VK_ATTACHMENT_UNUSED) {
421 tu_cs_emit_regs(cs,
422 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
423 A6XX_RB_DEPTH_BUFFER_PITCH(0),
424 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
425 A6XX_RB_DEPTH_BUFFER_BASE(0),
426 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
427
428 tu_cs_emit_regs(cs,
429 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
430
431 tu_cs_emit_regs(cs,
432 A6XX_GRAS_LRZ_BUFFER_BASE(0),
433 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
434 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
435
436 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
437
438 return;
439 }
440
441 const struct tu_image_view *iview = fb->attachments[a].attachment;
442 const struct tu_render_pass_attachment *attachment =
443 &cmd->state.pass->attachments[a];
444 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
445
446 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
447 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
448 tu_cs_image_ref(cs, iview, 0);
449 tu_cs_emit(cs, attachment->gmem_offset);
450
451 tu_cs_emit_regs(cs,
452 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
453
454 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
455 tu_cs_image_flag_ref(cs, iview, 0);
456
457 tu_cs_emit_regs(cs,
458 A6XX_GRAS_LRZ_BUFFER_BASE(0),
459 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
460 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
461
462 if (attachment->format == VK_FORMAT_S8_UINT) {
463 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
464 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
465 tu_cs_image_ref(cs, iview, 0);
466 tu_cs_emit(cs, attachment->gmem_offset);
467 } else {
468 tu_cs_emit_regs(cs,
469 A6XX_RB_STENCIL_INFO(0));
470 }
471 }
472
473 static void
474 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
475 const struct tu_subpass *subpass,
476 struct tu_cs *cs)
477 {
478 const struct tu_framebuffer *fb = cmd->state.framebuffer;
479
480 for (uint32_t i = 0; i < subpass->color_count; ++i) {
481 uint32_t a = subpass->color_attachments[i].attachment;
482 if (a == VK_ATTACHMENT_UNUSED)
483 continue;
484
485 const struct tu_image_view *iview = fb->attachments[a].attachment;
486
487 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
488 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
489 tu_cs_image_ref(cs, iview, 0);
490 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
491
492 tu_cs_emit_regs(cs,
493 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
494
495 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
496 tu_cs_image_flag_ref(cs, iview, 0);
497 }
498
499 tu_cs_emit_regs(cs,
500 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
501 tu_cs_emit_regs(cs,
502 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
503
504 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
505 }
506
507 void
508 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
509 {
510 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
511 bool msaa_disable = samples == MSAA_ONE;
512
513 tu_cs_emit_regs(cs,
514 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
515 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
516 .msaa_disable = msaa_disable));
517
518 tu_cs_emit_regs(cs,
519 A6XX_GRAS_RAS_MSAA_CNTL(samples),
520 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
521 .msaa_disable = msaa_disable));
522
523 tu_cs_emit_regs(cs,
524 A6XX_RB_RAS_MSAA_CNTL(samples),
525 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
526 .msaa_disable = msaa_disable));
527
528 tu_cs_emit_regs(cs,
529 A6XX_RB_MSAA_CNTL(samples));
530 }
531
532 static void
533 tu6_emit_bin_size(struct tu_cs *cs,
534 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
535 {
536 tu_cs_emit_regs(cs,
537 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
538 .binh = bin_h,
539 .dword = flags));
540
541 tu_cs_emit_regs(cs,
542 A6XX_RB_BIN_CONTROL(.binw = bin_w,
543 .binh = bin_h,
544 .dword = flags));
545
546 /* no flag for RB_BIN_CONTROL2... */
547 tu_cs_emit_regs(cs,
548 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
549 .binh = bin_h));
550 }
551
552 static void
553 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
554 const struct tu_subpass *subpass,
555 struct tu_cs *cs,
556 bool binning)
557 {
558 const struct tu_framebuffer *fb = cmd->state.framebuffer;
559 uint32_t cntl = 0;
560 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
561 if (binning) {
562 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
563 } else {
564 uint32_t mrts_ubwc_enable = 0;
565 for (uint32_t i = 0; i < subpass->color_count; ++i) {
566 uint32_t a = subpass->color_attachments[i].attachment;
567 if (a == VK_ATTACHMENT_UNUSED)
568 continue;
569
570 const struct tu_image_view *iview = fb->attachments[a].attachment;
571 if (iview->ubwc_enabled)
572 mrts_ubwc_enable |= 1 << i;
573 }
574
575 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
576
577 const uint32_t a = subpass->depth_stencil_attachment.attachment;
578 if (a != VK_ATTACHMENT_UNUSED) {
579 const struct tu_image_view *iview = fb->attachments[a].attachment;
580 if (iview->ubwc_enabled)
581 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
582 }
583
584 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
585 * in order to set it correctly for the different subpasses. However,
586 * that means the packets we're emitting also happen during binning. So
587 * we need to guard the write on !BINNING at CP execution time.
588 */
589 tu_cs_reserve(cs, 3 + 4);
590 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
591 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
592 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
593 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
594 }
595
596 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
597 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
598 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
599 tu_cs_emit(cs, cntl);
600 }
601
602 static void
603 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
604 {
605 const VkRect2D *render_area = &cmd->state.tiling_config.render_area;
606 uint32_t x1 = render_area->offset.x;
607 uint32_t y1 = render_area->offset.y;
608 uint32_t x2 = x1 + render_area->extent.width - 1;
609 uint32_t y2 = y1 + render_area->extent.height - 1;
610
611 if (align) {
612 x1 = x1 & ~(GMEM_ALIGN_W - 1);
613 y1 = y1 & ~(GMEM_ALIGN_H - 1);
614 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
615 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
616 }
617
618 tu_cs_emit_regs(cs,
619 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
620 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
621 }
622
623 void
624 tu6_emit_window_scissor(struct tu_cs *cs,
625 uint32_t x1,
626 uint32_t y1,
627 uint32_t x2,
628 uint32_t y2)
629 {
630 tu_cs_emit_regs(cs,
631 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
632 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
633
634 tu_cs_emit_regs(cs,
635 A6XX_GRAS_RESOLVE_CNTL_1(.x = x1, .y = y1),
636 A6XX_GRAS_RESOLVE_CNTL_2(.x = x2, .y = y2));
637 }
638
639 void
640 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
641 {
642 tu_cs_emit_regs(cs,
643 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
644
645 tu_cs_emit_regs(cs,
646 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
647
648 tu_cs_emit_regs(cs,
649 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
650
651 tu_cs_emit_regs(cs,
652 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
653 }
654
655 static void
656 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
657 {
658 uint32_t enable_mask;
659 switch (id) {
660 case TU_DRAW_STATE_PROGRAM:
661 case TU_DRAW_STATE_VI:
662 case TU_DRAW_STATE_FS_CONST:
663 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
664 * when resources would actually be used in the binning shader.
665 * Presumably the overhead of prefetching the resources isn't
666 * worth it.
667 */
668 case TU_DRAW_STATE_DESC_SETS_LOAD:
669 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
670 CP_SET_DRAW_STATE__0_SYSMEM;
671 break;
672 case TU_DRAW_STATE_PROGRAM_BINNING:
673 case TU_DRAW_STATE_VI_BINNING:
674 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
675 break;
676 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
677 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
678 break;
679 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
680 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
681 break;
682 default:
683 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
684 CP_SET_DRAW_STATE__0_SYSMEM |
685 CP_SET_DRAW_STATE__0_BINNING;
686 break;
687 }
688
689 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
690 enable_mask |
691 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
692 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
693 tu_cs_emit_qw(cs, state.iova);
694 }
695
696 /* note: get rid of this eventually */
697 static void
698 tu_cs_emit_sds_ib(struct tu_cs *cs, uint32_t id, struct tu_cs_entry entry)
699 {
700 tu_cs_emit_draw_state(cs, id, (struct tu_draw_state) {
701 .iova = entry.size ? entry.bo->iova + entry.offset : 0,
702 .size = entry.size / 4,
703 });
704 }
705
706 static bool
707 use_hw_binning(struct tu_cmd_buffer *cmd)
708 {
709 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
710
711 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
712 * with non-hw binning GMEM rendering. this is required because some of the
713 * XFB commands need to only be executed once
714 */
715 if (cmd->state.xfb_used)
716 return true;
717
718 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
719 return false;
720
721 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
722 return true;
723
724 return (tiling->tile_count.width * tiling->tile_count.height) > 2;
725 }
726
727 static bool
728 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
729 {
730 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
731 return true;
732
733 /* can't fit attachments into gmem */
734 if (!cmd->state.pass->gmem_pixels)
735 return true;
736
737 if (cmd->state.framebuffer->layers > 1)
738 return true;
739
740 if (cmd->has_tess)
741 return true;
742
743 return cmd->state.tiling_config.force_sysmem;
744 }
745
746 static void
747 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
748 struct tu_cs *cs,
749 const struct tu_tile *tile)
750 {
751 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
752 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
753
754 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
755 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
756
757 const uint32_t x1 = tile->begin.x;
758 const uint32_t y1 = tile->begin.y;
759 const uint32_t x2 = tile->end.x - 1;
760 const uint32_t y2 = tile->end.y - 1;
761 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
762 tu6_emit_window_offset(cs, x1, y1);
763
764 tu_cs_emit_regs(cs,
765 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
766
767 if (use_hw_binning(cmd)) {
768 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
769
770 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
771 tu_cs_emit(cs, 0x0);
772
773 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5, 7);
774 tu_cs_emit(cs, cmd->state.tiling_config.pipe_sizes[tile->pipe] |
775 CP_SET_BIN_DATA5_0_VSC_N(tile->slot));
776 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + tile->pipe * cmd->vsc_draw_strm_pitch);
777 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + (tile->pipe * 4) + (32 * cmd->vsc_draw_strm_pitch));
778 tu_cs_emit_qw(cs, cmd->vsc_prim_strm.iova + (tile->pipe * cmd->vsc_prim_strm_pitch));
779
780 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
781 tu_cs_emit(cs, 0x0);
782
783 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
784 tu_cs_emit(cs, 0x0);
785 } else {
786 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
787 tu_cs_emit(cs, 0x1);
788
789 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
790 tu_cs_emit(cs, 0x0);
791 }
792 }
793
794 static void
795 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
796 struct tu_cs *cs,
797 uint32_t a,
798 uint32_t gmem_a)
799 {
800 const struct tu_framebuffer *fb = cmd->state.framebuffer;
801 struct tu_image_view *dst = fb->attachments[a].attachment;
802 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
803
804 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.tiling_config.render_area);
805 }
806
807 static void
808 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
809 struct tu_cs *cs,
810 const struct tu_subpass *subpass)
811 {
812 if (subpass->resolve_attachments) {
813 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
814 * Commands":
815 *
816 * End-of-subpass multisample resolves are treated as color
817 * attachment writes for the purposes of synchronization. That is,
818 * they are considered to execute in the
819 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
820 * their writes are synchronized with
821 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
822 * rendering within a subpass and any resolve operations at the end
823 * of the subpass occurs automatically, without need for explicit
824 * dependencies or pipeline barriers. However, if the resolve
825 * attachment is also used in a different subpass, an explicit
826 * dependency is needed.
827 *
828 * We use the CP_BLIT path for sysmem resolves, which is really a
829 * transfer command, so we have to manually flush similar to the gmem
830 * resolve case. However, a flush afterwards isn't needed because of the
831 * last sentence and the fact that we're in sysmem mode.
832 */
833 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
834 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
835
836 /* Wait for the flushes to land before using the 2D engine */
837 tu_cs_emit_wfi(cs);
838
839 for (unsigned i = 0; i < subpass->color_count; i++) {
840 uint32_t a = subpass->resolve_attachments[i].attachment;
841 if (a == VK_ATTACHMENT_UNUSED)
842 continue;
843
844 tu6_emit_sysmem_resolve(cmd, cs, a,
845 subpass->color_attachments[i].attachment);
846 }
847 }
848 }
849
850 static void
851 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
852 {
853 const struct tu_render_pass *pass = cmd->state.pass;
854 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
855
856 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
857 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
858 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
859 CP_SET_DRAW_STATE__0_GROUP_ID(0));
860 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
861 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
862
863 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
864 tu_cs_emit(cs, 0x0);
865
866 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
867 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
868
869 tu6_emit_blit_scissor(cmd, cs, true);
870
871 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
872 if (pass->attachments[a].gmem_offset >= 0)
873 tu_store_gmem_attachment(cmd, cs, a, a);
874 }
875
876 if (subpass->resolve_attachments) {
877 for (unsigned i = 0; i < subpass->color_count; i++) {
878 uint32_t a = subpass->resolve_attachments[i].attachment;
879 if (a != VK_ATTACHMENT_UNUSED)
880 tu_store_gmem_attachment(cmd, cs, a,
881 subpass->color_attachments[i].attachment);
882 }
883 }
884 }
885
886 static void
887 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
888 {
889 const struct tu_physical_device *phys_dev = cmd->device->physical_device;
890
891 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
892
893 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 0xfffff);
894
895 tu_cs_emit_regs(cs,
896 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
897 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
898 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
899 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
900 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
901 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
902 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
903 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
904 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
905 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
906
907 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
908 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
909 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
910 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
911 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
912 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
913 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BB11, 0);
914 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
915 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
916 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
917 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
918 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
919 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
920 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_GS_SIV_CNTL, 0x0000ffff);
921
922 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
923 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
924 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
925
926 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
927
928 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
929
930 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
931 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
932 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
933 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
934 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
935 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
936 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
937 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
938 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
939 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
940 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
941
942 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9101, 0xffff00);
943 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
944
945 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9236,
946 A6XX_VPC_UNKNOWN_9236_POINT_COORD_INVERT(0));
947 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
948
949 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_SO_OVERRIDE,
950 A6XX_VPC_SO_OVERRIDE_SO_DISABLE);
951
952 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
953 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
954 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9990, 0);
955
956 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
957 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
958
959 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
960
961 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
962
963 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
964 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_809B, 0);
965 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
966 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
967 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
968 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
969 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
970 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9981, 0x3);
971 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
972 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9108, 0x3);
973 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
974 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8878, 0);
975 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8879, 0);
976 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
977
978 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
979
980 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
981
982 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
983
984 /* we don't use this yet.. probably best to disable.. */
985 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
986 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
987 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
988 CP_SET_DRAW_STATE__0_GROUP_ID(0));
989 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
990 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
991
992 tu_cs_emit_regs(cs,
993 A6XX_SP_HS_CTRL_REG0(0));
994
995 tu_cs_emit_regs(cs,
996 A6XX_SP_GS_CTRL_REG0(0));
997
998 tu_cs_emit_regs(cs,
999 A6XX_GRAS_LRZ_CNTL(0));
1000
1001 tu_cs_emit_regs(cs,
1002 A6XX_RB_LRZ_CNTL(0));
1003
1004 tu_cs_emit_regs(cs,
1005 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1006 tu_cs_emit_regs(cs,
1007 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1008
1009 tu_cs_sanity_check(cs);
1010 }
1011
1012 static void
1013 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1014 {
1015 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1016
1017 tu_cs_emit_regs(cs,
1018 A6XX_VSC_BIN_SIZE(.width = tiling->tile0.extent.width,
1019 .height = tiling->tile0.extent.height),
1020 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = &cmd->vsc_draw_strm,
1021 .bo_offset = 32 * cmd->vsc_draw_strm_pitch));
1022
1023 tu_cs_emit_regs(cs,
1024 A6XX_VSC_BIN_COUNT(.nx = tiling->tile_count.width,
1025 .ny = tiling->tile_count.height));
1026
1027 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
1028 for (unsigned i = 0; i < 32; i++)
1029 tu_cs_emit(cs, tiling->pipe_config[i]);
1030
1031 tu_cs_emit_regs(cs,
1032 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = &cmd->vsc_prim_strm),
1033 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
1034 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - 64));
1035
1036 tu_cs_emit_regs(cs,
1037 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = &cmd->vsc_draw_strm),
1038 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
1039 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - 64));
1040 }
1041
1042 static void
1043 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1044 {
1045 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1046 const uint32_t used_pipe_count =
1047 tiling->pipe_count.width * tiling->pipe_count.height;
1048
1049 /* Clear vsc_scratch: */
1050 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
1051 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1052 tu_cs_emit(cs, 0x0);
1053
1054 /* Check for overflow, write vsc_scratch if detected: */
1055 for (int i = 0; i < used_pipe_count; i++) {
1056 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1057 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1058 CP_COND_WRITE5_0_WRITE_MEMORY);
1059 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
1060 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1061 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - 64));
1062 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1063 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1064 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(1 + cmd->vsc_draw_strm_pitch));
1065
1066 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1067 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1068 CP_COND_WRITE5_0_WRITE_MEMORY);
1069 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
1070 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1071 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - 64));
1072 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1073 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1074 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(3 + cmd->vsc_prim_strm_pitch));
1075 }
1076
1077 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1078 }
1079
1080 static void
1081 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1082 {
1083 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1084 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1085
1086 uint32_t x1 = tiling->tile0.offset.x;
1087 uint32_t y1 = tiling->tile0.offset.y;
1088 uint32_t x2 = tiling->render_area.offset.x + tiling->render_area.extent.width - 1;
1089 uint32_t y2 = tiling->render_area.offset.y + tiling->render_area.extent.height - 1;
1090
1091 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
1092
1093 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1094 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
1095
1096 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1097 tu_cs_emit(cs, 0x1);
1098
1099 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1100 tu_cs_emit(cs, 0x1);
1101
1102 tu_cs_emit_wfi(cs);
1103
1104 tu_cs_emit_regs(cs,
1105 A6XX_VFD_MODE_CNTL(.binning_pass = true));
1106
1107 update_vsc_pipe(cmd, cs);
1108
1109 tu_cs_emit_regs(cs,
1110 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1111
1112 tu_cs_emit_regs(cs,
1113 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1114
1115 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1116 tu_cs_emit(cs, UNK_2C);
1117
1118 tu_cs_emit_regs(cs,
1119 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1120
1121 tu_cs_emit_regs(cs,
1122 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1123
1124 /* emit IB to binning drawcmds: */
1125 tu_cs_emit_call(cs, &cmd->draw_cs);
1126
1127 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1128 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1129 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1130 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1131 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1132 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1133
1134 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1135 tu_cs_emit(cs, UNK_2D);
1136
1137 /* This flush is probably required because the VSC, which produces the
1138 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1139 * visibility stream (without caching) to do draw skipping. The
1140 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1141 * submitted are finished before reading the VSC regs (in
1142 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1143 * part of draws).
1144 */
1145 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1146
1147 tu_cs_emit_wfi(cs);
1148
1149 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1150
1151 emit_vsc_overflow_test(cmd, cs);
1152
1153 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1154 tu_cs_emit(cs, 0x0);
1155
1156 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1157 tu_cs_emit(cs, 0x0);
1158 }
1159
1160 static void
1161 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1162 const struct tu_subpass *subpass,
1163 struct tu_cs_entry *ib,
1164 bool gmem)
1165 {
1166 /* note: we can probably emit input attachments just once for the whole
1167 * renderpass, this would avoid emitting both sysmem/gmem versions
1168 *
1169 * emit two texture descriptors for each input, as a workaround for
1170 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1171 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1172 * in the pair
1173 * TODO: a smarter workaround
1174 */
1175
1176 if (!subpass->input_count)
1177 return;
1178
1179 struct ts_cs_memory texture;
1180 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1181 A6XX_TEX_CONST_DWORDS, &texture);
1182 assert(result == VK_SUCCESS);
1183
1184 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1185 uint32_t a = subpass->input_attachments[i / 2].attachment;
1186 if (a == VK_ATTACHMENT_UNUSED)
1187 continue;
1188
1189 struct tu_image_view *iview =
1190 cmd->state.framebuffer->attachments[a].attachment;
1191 const struct tu_render_pass_attachment *att =
1192 &cmd->state.pass->attachments[a];
1193 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1194
1195 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1196
1197 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1198 /* note this works because spec says fb and input attachments
1199 * must use identity swizzle
1200 */
1201 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1202 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1203 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1204 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1205 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1206 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1207 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1208 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1209 }
1210
1211 if (!gmem)
1212 continue;
1213
1214 /* patched for gmem */
1215 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1216 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1217 dst[2] =
1218 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1219 A6XX_TEX_CONST_2_PITCH(cmd->state.tiling_config.tile0.extent.width * att->cpp);
1220 dst[3] = 0;
1221 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1222 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1223 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1224 dst[i] = 0;
1225 }
1226
1227 struct tu_cs cs;
1228 tu_cs_begin_sub_stream(&cmd->sub_cs, 9, &cs);
1229
1230 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1231 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1232 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1233 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1234 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1235 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1236 tu_cs_emit_qw(&cs, texture.iova);
1237
1238 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1239 tu_cs_emit_qw(&cs, texture.iova);
1240
1241 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1242
1243 *ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1244 }
1245
1246 static void
1247 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1248 {
1249 struct tu_cs *cs = &cmd->draw_cs;
1250
1251 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_gmem_ib, true);
1252 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_sysmem_ib, false);
1253
1254 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1255 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM, cmd->state.ia_gmem_ib);
1256 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM, cmd->state.ia_sysmem_ib);
1257 }
1258
1259 static void
1260 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1261 const VkRenderPassBeginInfo *info)
1262 {
1263 struct tu_cs *cs = &cmd->draw_cs;
1264
1265 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1266
1267 tu6_emit_blit_scissor(cmd, cs, true);
1268
1269 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1270 tu_load_gmem_attachment(cmd, cs, i, false);
1271
1272 tu6_emit_blit_scissor(cmd, cs, false);
1273
1274 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1275 tu_clear_gmem_attachment(cmd, cs, i, info);
1276
1277 tu_cond_exec_end(cs);
1278
1279 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1280
1281 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1282 tu_clear_sysmem_attachment(cmd, cs, i, info);
1283
1284 tu_cond_exec_end(cs);
1285 }
1286
1287 static void
1288 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1289 const struct VkRect2D *renderArea)
1290 {
1291 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1292
1293 assert(fb->width > 0 && fb->height > 0);
1294 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1295 tu6_emit_window_offset(cs, 0, 0);
1296
1297 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1298
1299 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1300
1301 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1302 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1303
1304 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1305 tu_cs_emit(cs, 0x0);
1306
1307 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1308
1309 /* enable stream-out, with sysmem there is only one pass: */
1310 tu_cs_emit_regs(cs,
1311 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
1312
1313 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1314 tu_cs_emit(cs, 0x1);
1315
1316 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1317 tu_cs_emit(cs, 0x0);
1318
1319 tu_cs_sanity_check(cs);
1320 }
1321
1322 static void
1323 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1324 {
1325 /* Do any resolves of the last subpass. These are handled in the
1326 * tile_store_ib in the gmem path.
1327 */
1328 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1329
1330 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1331
1332 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1333 tu_cs_emit(cs, 0x0);
1334
1335 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1336
1337 tu_cs_sanity_check(cs);
1338 }
1339
1340 static void
1341 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1342 {
1343 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1344
1345 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1346
1347 /* lrz clear? */
1348
1349 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1350 tu_cs_emit(cs, 0x0);
1351
1352 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1353
1354 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1355 if (use_hw_binning(cmd)) {
1356 /* enable stream-out during binning pass: */
1357 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1358
1359 tu6_emit_bin_size(cs,
1360 tiling->tile0.extent.width,
1361 tiling->tile0.extent.height,
1362 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1363
1364 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1365
1366 tu6_emit_binning_pass(cmd, cs);
1367
1368 /* and disable stream-out for draw pass: */
1369 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=true));
1370
1371 tu6_emit_bin_size(cs,
1372 tiling->tile0.extent.width,
1373 tiling->tile0.extent.height,
1374 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1375
1376 tu_cs_emit_regs(cs,
1377 A6XX_VFD_MODE_CNTL(0));
1378
1379 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1380
1381 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1382
1383 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1384 tu_cs_emit(cs, 0x1);
1385 } else {
1386 /* no binning pass, so enable stream-out for draw pass:: */
1387 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1388
1389 tu6_emit_bin_size(cs,
1390 tiling->tile0.extent.width,
1391 tiling->tile0.extent.height,
1392 0x6000000);
1393 }
1394
1395 tu_cs_sanity_check(cs);
1396 }
1397
1398 static void
1399 tu6_render_tile(struct tu_cmd_buffer *cmd,
1400 struct tu_cs *cs,
1401 const struct tu_tile *tile)
1402 {
1403 tu6_emit_tile_select(cmd, cs, tile);
1404
1405 tu_cs_emit_call(cs, &cmd->draw_cs);
1406
1407 if (use_hw_binning(cmd)) {
1408 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1409 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1410 }
1411
1412 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1413
1414 tu_cs_sanity_check(cs);
1415 }
1416
1417 static void
1418 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1419 {
1420 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1421
1422 tu_cs_emit_regs(cs,
1423 A6XX_GRAS_LRZ_CNTL(0));
1424
1425 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1426
1427 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1428
1429 tu_cs_sanity_check(cs);
1430 }
1431
1432 static void
1433 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1434 {
1435 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1436
1437 if (use_hw_binning(cmd))
1438 cmd->use_vsc_data = true;
1439
1440 tu6_tile_render_begin(cmd, &cmd->cs);
1441
1442 for (uint32_t y = 0; y < tiling->tile_count.height; y++) {
1443 for (uint32_t x = 0; x < tiling->tile_count.width; x++) {
1444 struct tu_tile tile;
1445 tu_tiling_config_get_tile(tiling, cmd->device, x, y, &tile);
1446 tu6_render_tile(cmd, &cmd->cs, &tile);
1447 }
1448 }
1449
1450 tu6_tile_render_end(cmd, &cmd->cs);
1451 }
1452
1453 static void
1454 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1455 {
1456 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1457
1458 tu6_sysmem_render_begin(cmd, &cmd->cs, &tiling->render_area);
1459
1460 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1461
1462 tu6_sysmem_render_end(cmd, &cmd->cs);
1463 }
1464
1465 static void
1466 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1467 {
1468 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1469 struct tu_cs sub_cs;
1470
1471 VkResult result =
1472 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1473 if (result != VK_SUCCESS) {
1474 cmd->record_result = result;
1475 return;
1476 }
1477
1478 /* emit to tile-store sub_cs */
1479 tu6_emit_tile_store(cmd, &sub_cs);
1480
1481 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1482 }
1483
1484 static void
1485 tu_cmd_update_tiling_config(struct tu_cmd_buffer *cmd,
1486 const VkRect2D *render_area)
1487 {
1488 const struct tu_device *dev = cmd->device;
1489 struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1490
1491 tiling->render_area = *render_area;
1492 tiling->force_sysmem = false;
1493
1494 tu_tiling_config_update_tile_layout(tiling, dev, cmd->state.pass);
1495 tu_tiling_config_update_pipe_layout(tiling, dev);
1496 tu_tiling_config_update_pipes(tiling, dev);
1497 }
1498
1499 static VkResult
1500 tu_create_cmd_buffer(struct tu_device *device,
1501 struct tu_cmd_pool *pool,
1502 VkCommandBufferLevel level,
1503 VkCommandBuffer *pCommandBuffer)
1504 {
1505 struct tu_cmd_buffer *cmd_buffer;
1506 cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8,
1507 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1508 if (cmd_buffer == NULL)
1509 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1510
1511 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1512 cmd_buffer->device = device;
1513 cmd_buffer->pool = pool;
1514 cmd_buffer->level = level;
1515
1516 if (pool) {
1517 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1518 cmd_buffer->queue_family_index = pool->queue_family_index;
1519
1520 } else {
1521 /* Init the pool_link so we can safely call list_del when we destroy
1522 * the command buffer
1523 */
1524 list_inithead(&cmd_buffer->pool_link);
1525 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1526 }
1527
1528 tu_bo_list_init(&cmd_buffer->bo_list);
1529 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1530 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1531 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1532 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1533
1534 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1535
1536 list_inithead(&cmd_buffer->upload.list);
1537
1538 VkResult result = tu_bo_init_new(device, &cmd_buffer->scratch_bo, 0x1000);
1539 if (result != VK_SUCCESS)
1540 goto fail_scratch_bo;
1541
1542 /* TODO: resize on overflow */
1543 cmd_buffer->vsc_draw_strm_pitch = device->vsc_draw_strm_pitch;
1544 cmd_buffer->vsc_prim_strm_pitch = device->vsc_prim_strm_pitch;
1545 cmd_buffer->vsc_draw_strm = device->vsc_draw_strm;
1546 cmd_buffer->vsc_prim_strm = device->vsc_prim_strm;
1547
1548 return VK_SUCCESS;
1549
1550 fail_scratch_bo:
1551 list_del(&cmd_buffer->pool_link);
1552 return result;
1553 }
1554
1555 static void
1556 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1557 {
1558 tu_bo_finish(cmd_buffer->device, &cmd_buffer->scratch_bo);
1559
1560 list_del(&cmd_buffer->pool_link);
1561
1562 tu_cs_finish(&cmd_buffer->cs);
1563 tu_cs_finish(&cmd_buffer->draw_cs);
1564 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1565 tu_cs_finish(&cmd_buffer->sub_cs);
1566
1567 tu_bo_list_destroy(&cmd_buffer->bo_list);
1568 vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
1569 }
1570
1571 static VkResult
1572 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1573 {
1574 cmd_buffer->record_result = VK_SUCCESS;
1575
1576 tu_bo_list_reset(&cmd_buffer->bo_list);
1577 tu_cs_reset(&cmd_buffer->cs);
1578 tu_cs_reset(&cmd_buffer->draw_cs);
1579 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1580 tu_cs_reset(&cmd_buffer->sub_cs);
1581
1582 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1583 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1584
1585 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1586
1587 return cmd_buffer->record_result;
1588 }
1589
1590 VkResult
1591 tu_AllocateCommandBuffers(VkDevice _device,
1592 const VkCommandBufferAllocateInfo *pAllocateInfo,
1593 VkCommandBuffer *pCommandBuffers)
1594 {
1595 TU_FROM_HANDLE(tu_device, device, _device);
1596 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1597
1598 VkResult result = VK_SUCCESS;
1599 uint32_t i;
1600
1601 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1602
1603 if (!list_is_empty(&pool->free_cmd_buffers)) {
1604 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1605 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1606
1607 list_del(&cmd_buffer->pool_link);
1608 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1609
1610 result = tu_reset_cmd_buffer(cmd_buffer);
1611 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1612 cmd_buffer->level = pAllocateInfo->level;
1613
1614 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1615 } else {
1616 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1617 &pCommandBuffers[i]);
1618 }
1619 if (result != VK_SUCCESS)
1620 break;
1621 }
1622
1623 if (result != VK_SUCCESS) {
1624 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1625 pCommandBuffers);
1626
1627 /* From the Vulkan 1.0.66 spec:
1628 *
1629 * "vkAllocateCommandBuffers can be used to create multiple
1630 * command buffers. If the creation of any of those command
1631 * buffers fails, the implementation must destroy all
1632 * successfully created command buffer objects from this
1633 * command, set all entries of the pCommandBuffers array to
1634 * NULL and return the error."
1635 */
1636 memset(pCommandBuffers, 0,
1637 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1638 }
1639
1640 return result;
1641 }
1642
1643 void
1644 tu_FreeCommandBuffers(VkDevice device,
1645 VkCommandPool commandPool,
1646 uint32_t commandBufferCount,
1647 const VkCommandBuffer *pCommandBuffers)
1648 {
1649 for (uint32_t i = 0; i < commandBufferCount; i++) {
1650 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1651
1652 if (cmd_buffer) {
1653 if (cmd_buffer->pool) {
1654 list_del(&cmd_buffer->pool_link);
1655 list_addtail(&cmd_buffer->pool_link,
1656 &cmd_buffer->pool->free_cmd_buffers);
1657 } else
1658 tu_cmd_buffer_destroy(cmd_buffer);
1659 }
1660 }
1661 }
1662
1663 VkResult
1664 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1665 VkCommandBufferResetFlags flags)
1666 {
1667 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1668 return tu_reset_cmd_buffer(cmd_buffer);
1669 }
1670
1671 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1672 * invalidations.
1673 */
1674 static void
1675 tu_cache_init(struct tu_cache_state *cache)
1676 {
1677 cache->flush_bits = 0;
1678 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1679 }
1680
1681 VkResult
1682 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1683 const VkCommandBufferBeginInfo *pBeginInfo)
1684 {
1685 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1686 VkResult result = VK_SUCCESS;
1687
1688 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1689 /* If the command buffer has already been resetted with
1690 * vkResetCommandBuffer, no need to do it again.
1691 */
1692 result = tu_reset_cmd_buffer(cmd_buffer);
1693 if (result != VK_SUCCESS)
1694 return result;
1695 }
1696
1697 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1698 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1699
1700 tu_cache_init(&cmd_buffer->state.cache);
1701 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1702 cmd_buffer->usage_flags = pBeginInfo->flags;
1703
1704 tu_cs_begin(&cmd_buffer->cs);
1705 tu_cs_begin(&cmd_buffer->draw_cs);
1706 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1707
1708 /* setup initial configuration into command buffer */
1709 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1710 switch (cmd_buffer->queue_family_index) {
1711 case TU_QUEUE_GENERAL:
1712 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1713 break;
1714 default:
1715 break;
1716 }
1717 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1718 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1719 assert(pBeginInfo->pInheritanceInfo);
1720 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1721 cmd_buffer->state.subpass =
1722 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1723 } else {
1724 /* When executing in the middle of another command buffer, the CCU
1725 * state is unknown.
1726 */
1727 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1728 }
1729 }
1730
1731 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1732
1733 return VK_SUCCESS;
1734 }
1735
1736 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1737 * rendering can skip over unused state), so we need to collect all the
1738 * bindings together into a single state emit at draw time.
1739 */
1740 void
1741 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1742 uint32_t firstBinding,
1743 uint32_t bindingCount,
1744 const VkBuffer *pBuffers,
1745 const VkDeviceSize *pOffsets)
1746 {
1747 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1748
1749 assert(firstBinding + bindingCount <= MAX_VBS);
1750
1751 for (uint32_t i = 0; i < bindingCount; i++) {
1752 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1753
1754 cmd->state.vb.buffers[firstBinding + i] = buf;
1755 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1756
1757 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1758 }
1759
1760 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1761 }
1762
1763 void
1764 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1765 VkBuffer buffer,
1766 VkDeviceSize offset,
1767 VkIndexType indexType)
1768 {
1769 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1770 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1771
1772
1773
1774 uint32_t index_size, index_shift, restart_index;
1775
1776 switch (indexType) {
1777 case VK_INDEX_TYPE_UINT16:
1778 index_size = INDEX4_SIZE_16_BIT;
1779 index_shift = 1;
1780 restart_index = 0xffff;
1781 break;
1782 case VK_INDEX_TYPE_UINT32:
1783 index_size = INDEX4_SIZE_32_BIT;
1784 index_shift = 2;
1785 restart_index = 0xffffffff;
1786 break;
1787 case VK_INDEX_TYPE_UINT8_EXT:
1788 index_size = INDEX4_SIZE_8_BIT;
1789 index_shift = 0;
1790 restart_index = 0xff;
1791 break;
1792 default:
1793 unreachable("invalid VkIndexType");
1794 }
1795
1796 /* initialize/update the restart index */
1797 if (cmd->state.index_size != index_size)
1798 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1799
1800 assert(buf->size >= offset);
1801
1802 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1803 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1804 cmd->state.index_size = index_size;
1805 cmd->state.index_shift = index_shift;
1806
1807 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1808 }
1809
1810 void
1811 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1812 VkPipelineBindPoint pipelineBindPoint,
1813 VkPipelineLayout _layout,
1814 uint32_t firstSet,
1815 uint32_t descriptorSetCount,
1816 const VkDescriptorSet *pDescriptorSets,
1817 uint32_t dynamicOffsetCount,
1818 const uint32_t *pDynamicOffsets)
1819 {
1820 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1821 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1822 unsigned dyn_idx = 0;
1823
1824 struct tu_descriptor_state *descriptors_state =
1825 tu_get_descriptors_state(cmd, pipelineBindPoint);
1826
1827 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1828 unsigned idx = i + firstSet;
1829 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1830
1831 descriptors_state->sets[idx] = set;
1832
1833 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1834 /* update the contents of the dynamic descriptor set */
1835 unsigned src_idx = j;
1836 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1837 assert(dyn_idx < dynamicOffsetCount);
1838
1839 uint32_t *dst =
1840 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1841 uint32_t *src =
1842 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1843 uint32_t offset = pDynamicOffsets[dyn_idx];
1844
1845 /* Patch the storage/uniform descriptors right away. */
1846 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1847 /* Note: we can assume here that the addition won't roll over and
1848 * change the SIZE field.
1849 */
1850 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1851 va += offset;
1852 dst[0] = va;
1853 dst[1] = va >> 32;
1854 } else {
1855 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1856 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1857 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1858 va += offset;
1859 dst[4] = va;
1860 dst[5] = va >> 32;
1861 }
1862 }
1863
1864 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1865 if (set->buffers[j]) {
1866 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1867 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1868 }
1869 }
1870
1871 if (set->size > 0) {
1872 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1873 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1874 }
1875 }
1876 assert(dyn_idx == dynamicOffsetCount);
1877
1878 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_update_value;
1879 uint64_t addr[MAX_SETS + 1] = {};
1880 struct tu_cs cs;
1881
1882 for (uint32_t i = 0; i < MAX_SETS; i++) {
1883 struct tu_descriptor_set *set = descriptors_state->sets[i];
1884 if (set)
1885 addr[i] = set->va | 3;
1886 }
1887
1888 if (layout->dynamic_offset_count) {
1889 /* allocate and fill out dynamic descriptor set */
1890 struct ts_cs_memory dynamic_desc_set;
1891 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1892 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1893 assert(result == VK_SUCCESS);
1894
1895 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1896 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1897 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1898 }
1899
1900 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1901 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1902 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1903 hlsq_update_value = 0x7c000;
1904
1905 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS | TU_CMD_DIRTY_SHADER_CONSTS;
1906 } else {
1907 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1908
1909 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1910 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1911 hlsq_update_value = 0x3e00;
1912
1913 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS;
1914 }
1915
1916 tu_cs_begin_sub_stream(&cmd->sub_cs, 24, &cs);
1917
1918 tu_cs_emit_pkt4(&cs, sp_bindless_base_reg, 10);
1919 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1920 tu_cs_emit_pkt4(&cs, hlsq_bindless_base_reg, 10);
1921 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1922 tu_cs_emit_regs(&cs, A6XX_HLSQ_UPDATE_CNTL(.dword = hlsq_update_value));
1923
1924 struct tu_cs_entry ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1925 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1926 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1927 tu_cs_emit_sds_ib(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, ib);
1928 cmd->state.desc_sets_ib = ib;
1929 } else {
1930 /* note: for compute we could emit directly, instead of a CP_INDIRECT
1931 * however, the blob uses draw states for compute
1932 */
1933 tu_cs_emit_ib(&cmd->cs, &ib);
1934 }
1935 }
1936
1937 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1938 uint32_t firstBinding,
1939 uint32_t bindingCount,
1940 const VkBuffer *pBuffers,
1941 const VkDeviceSize *pOffsets,
1942 const VkDeviceSize *pSizes)
1943 {
1944 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1945 struct tu_cs *cs = &cmd->draw_cs;
1946
1947 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1948 * presumably there isn't any benefit using a draw state when the
1949 * condition is (SYSMEM | BINNING)
1950 */
1951 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1952 CP_COND_REG_EXEC_0_SYSMEM |
1953 CP_COND_REG_EXEC_0_BINNING);
1954
1955 for (uint32_t i = 0; i < bindingCount; i++) {
1956 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1957 uint64_t iova = buf->bo->iova + pOffsets[i];
1958 uint32_t size = buf->bo->size - pOffsets[i];
1959 uint32_t idx = i + firstBinding;
1960
1961 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1962 size = pSizes[i];
1963
1964 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1965 uint32_t offset = iova & 0x1f;
1966 iova &= ~(uint64_t) 0x1f;
1967
1968 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1969 tu_cs_emit_qw(cs, iova);
1970 tu_cs_emit(cs, size + offset);
1971
1972 cmd->state.streamout_offset[idx] = offset;
1973
1974 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1975 }
1976
1977 tu_cond_exec_end(cs);
1978 }
1979
1980 void
1981 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1982 uint32_t firstCounterBuffer,
1983 uint32_t counterBufferCount,
1984 const VkBuffer *pCounterBuffers,
1985 const VkDeviceSize *pCounterBufferOffsets)
1986 {
1987 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1988 struct tu_cs *cs = &cmd->draw_cs;
1989
1990 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1991 CP_COND_REG_EXEC_0_SYSMEM |
1992 CP_COND_REG_EXEC_0_BINNING);
1993
1994 /* TODO: only update offset for active buffers */
1995 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1996 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1997
1998 for (uint32_t i = 0; i < counterBufferCount; i++) {
1999 uint32_t idx = firstCounterBuffer + i;
2000 uint32_t offset = cmd->state.streamout_offset[idx];
2001
2002 if (!pCounterBuffers[i])
2003 continue;
2004
2005 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
2006
2007 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
2008
2009 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
2010 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
2011 CP_MEM_TO_REG_0_UNK31 |
2012 CP_MEM_TO_REG_0_CNT(1));
2013 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
2014
2015 if (offset) {
2016 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
2017 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
2018 CP_REG_RMW_0_SRC1_ADD);
2019 tu_cs_emit_qw(cs, 0xffffffff);
2020 tu_cs_emit_qw(cs, offset);
2021 }
2022 }
2023
2024 tu_cond_exec_end(cs);
2025 }
2026
2027 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
2028 uint32_t firstCounterBuffer,
2029 uint32_t counterBufferCount,
2030 const VkBuffer *pCounterBuffers,
2031 const VkDeviceSize *pCounterBufferOffsets)
2032 {
2033 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2034 struct tu_cs *cs = &cmd->draw_cs;
2035
2036 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
2037 CP_COND_REG_EXEC_0_SYSMEM |
2038 CP_COND_REG_EXEC_0_BINNING);
2039
2040 /* TODO: only flush buffers that need to be flushed */
2041 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
2042 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
2043 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
2044 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(flush_base[i]));
2045 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
2046 }
2047
2048 for (uint32_t i = 0; i < counterBufferCount; i++) {
2049 uint32_t idx = firstCounterBuffer + i;
2050 uint32_t offset = cmd->state.streamout_offset[idx];
2051
2052 if (!pCounterBuffers[i])
2053 continue;
2054
2055 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
2056
2057 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
2058
2059 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
2060 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
2061 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2062 CP_MEM_TO_REG_0_SHIFT_BY_2 |
2063 0x40000 | /* ??? */
2064 CP_MEM_TO_REG_0_UNK31 |
2065 CP_MEM_TO_REG_0_CNT(1));
2066 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(flush_base[idx]));
2067
2068 if (offset) {
2069 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
2070 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2071 CP_REG_RMW_0_SRC1_ADD);
2072 tu_cs_emit_qw(cs, 0xffffffff);
2073 tu_cs_emit_qw(cs, -offset);
2074 }
2075
2076 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
2077 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2078 CP_REG_TO_MEM_0_CNT(1));
2079 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
2080 }
2081
2082 tu_cond_exec_end(cs);
2083
2084 cmd->state.xfb_used = true;
2085 }
2086
2087 void
2088 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
2089 VkPipelineLayout layout,
2090 VkShaderStageFlags stageFlags,
2091 uint32_t offset,
2092 uint32_t size,
2093 const void *pValues)
2094 {
2095 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2096 memcpy((void*) cmd->push_constants + offset, pValues, size);
2097 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2098 }
2099
2100 /* Flush everything which has been made available but we haven't actually
2101 * flushed yet.
2102 */
2103 static void
2104 tu_flush_all_pending(struct tu_cache_state *cache)
2105 {
2106 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2107 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
2108 }
2109
2110 VkResult
2111 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
2112 {
2113 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
2114
2115 /* We currently flush CCU at the end of the command buffer, like
2116 * what the blob does. There's implicit synchronization around every
2117 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
2118 * know yet if this command buffer will be the last in the submit so we
2119 * have to defensively flush everything else.
2120 *
2121 * TODO: We could definitely do better than this, since these flushes
2122 * aren't required by Vulkan, but we'd need kernel support to do that.
2123 * Ideally, we'd like the kernel to flush everything afterwards, so that we
2124 * wouldn't have to do any flushes here, and when submitting multiple
2125 * command buffers there wouldn't be any unnecessary flushes in between.
2126 */
2127 if (cmd_buffer->state.pass) {
2128 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
2129 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
2130 } else {
2131 tu_flush_all_pending(&cmd_buffer->state.cache);
2132 cmd_buffer->state.cache.flush_bits |=
2133 TU_CMD_FLAG_CCU_FLUSH_COLOR |
2134 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
2135 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
2136 }
2137
2138 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->scratch_bo,
2139 MSM_SUBMIT_BO_WRITE);
2140
2141 if (cmd_buffer->use_vsc_data) {
2142 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_draw_strm,
2143 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2144 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_prim_strm,
2145 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2146 }
2147
2148 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->border_color,
2149 MSM_SUBMIT_BO_READ);
2150
2151 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
2152 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
2153 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2154 }
2155
2156 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
2157 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
2158 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2159 }
2160
2161 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
2162 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
2163 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2164 }
2165
2166 tu_cs_end(&cmd_buffer->cs);
2167 tu_cs_end(&cmd_buffer->draw_cs);
2168 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
2169
2170 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
2171
2172 return cmd_buffer->record_result;
2173 }
2174
2175 static struct tu_cs
2176 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2177 {
2178 struct ts_cs_memory memory;
2179 struct tu_cs cs;
2180
2181 /* TODO: share this logic with tu_pipeline_static_state */
2182 tu_cs_alloc(&cmd->sub_cs, size, 1, &memory);
2183 tu_cs_init_external(&cs, memory.map, memory.map + size);
2184 tu_cs_begin(&cs);
2185 tu_cs_reserve_space(&cs, size);
2186
2187 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2188 cmd->state.dynamic_state[id].iova = memory.iova;
2189 cmd->state.dynamic_state[id].size = size;
2190
2191 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2192 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2193
2194 return cs;
2195 }
2196
2197 void
2198 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2199 VkPipelineBindPoint pipelineBindPoint,
2200 VkPipeline _pipeline)
2201 {
2202 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2203 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2204
2205 tu_bo_list_add(&cmd->bo_list, &pipeline->program.binary_bo,
2206 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2207 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2208 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2209 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2210 }
2211
2212 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2213 cmd->state.compute_pipeline = pipeline;
2214 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_PIPELINE;
2215 return;
2216 }
2217
2218 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2219
2220 cmd->state.pipeline = pipeline;
2221 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2222
2223 struct tu_cs *cs = &cmd->draw_cs;
2224 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2225 uint32_t i;
2226
2227 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2228 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
2229 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
2230 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
2231 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
2232 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
2233 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
2234 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
2235
2236 for_each_bit(i, mask)
2237 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2238
2239 /* If the new pipeline requires more VBs than we had previously set up, we
2240 * need to re-emit them in SDS. If it requires the same set or fewer, we
2241 * can just re-use the old SDS.
2242 */
2243 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2244 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2245
2246 /* If the pipeline needs a dynamic descriptor, re-emit descriptor sets */
2247 if (pipeline->layout->dynamic_offset_count)
2248 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS;
2249
2250 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2251 * so the dynamic state ib must be updated when pipeline changes
2252 */
2253 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2254 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2255
2256 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2257 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2258
2259 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2260 }
2261 }
2262
2263 void
2264 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2265 uint32_t firstViewport,
2266 uint32_t viewportCount,
2267 const VkViewport *pViewports)
2268 {
2269 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2270 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2271
2272 assert(firstViewport == 0 && viewportCount == 1);
2273
2274 tu6_emit_viewport(&cs, pViewports);
2275 }
2276
2277 void
2278 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2279 uint32_t firstScissor,
2280 uint32_t scissorCount,
2281 const VkRect2D *pScissors)
2282 {
2283 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2284 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2285
2286 assert(firstScissor == 0 && scissorCount == 1);
2287
2288 tu6_emit_scissor(&cs, pScissors);
2289 }
2290
2291 void
2292 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2293 {
2294 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2295 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2296
2297 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2298 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2299
2300 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2301 }
2302
2303 void
2304 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2305 float depthBiasConstantFactor,
2306 float depthBiasClamp,
2307 float depthBiasSlopeFactor)
2308 {
2309 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2310 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2311
2312 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2313 }
2314
2315 void
2316 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2317 const float blendConstants[4])
2318 {
2319 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2320 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2321
2322 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2323 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2324 }
2325
2326 void
2327 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2328 float minDepthBounds,
2329 float maxDepthBounds)
2330 {
2331 }
2332
2333 static void
2334 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2335 {
2336 if (face & VK_STENCIL_FACE_FRONT_BIT)
2337 *value |= A6XX_RB_STENCILMASK_MASK(mask);
2338 if (face & VK_STENCIL_FACE_BACK_BIT)
2339 *value |= A6XX_RB_STENCILMASK_BFMASK(mask);
2340 }
2341
2342 void
2343 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2344 VkStencilFaceFlags faceMask,
2345 uint32_t compareMask)
2346 {
2347 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2348 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2349
2350 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2351
2352 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2353 }
2354
2355 void
2356 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2357 VkStencilFaceFlags faceMask,
2358 uint32_t writeMask)
2359 {
2360 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2361 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2362
2363 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2364
2365 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2366 }
2367
2368 void
2369 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2370 VkStencilFaceFlags faceMask,
2371 uint32_t reference)
2372 {
2373 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2374 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2375
2376 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2377
2378 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2379 }
2380
2381 void
2382 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2383 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2384 {
2385 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2386 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2387
2388 assert(pSampleLocationsInfo);
2389
2390 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2391 }
2392
2393 static void
2394 tu_flush_for_access(struct tu_cache_state *cache,
2395 enum tu_cmd_access_mask src_mask,
2396 enum tu_cmd_access_mask dst_mask)
2397 {
2398 enum tu_cmd_flush_bits flush_bits = 0;
2399
2400 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2401 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2402 }
2403
2404 #define SRC_FLUSH(domain, flush, invalidate) \
2405 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2406 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2407 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2408 }
2409
2410 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2411 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2412 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2413
2414 #undef SRC_FLUSH
2415
2416 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2417 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2418 flush_bits |= TU_CMD_FLAG_##flush; \
2419 cache->pending_flush_bits |= \
2420 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2421 }
2422
2423 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2424 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2425
2426 #undef SRC_INCOHERENT_FLUSH
2427
2428 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
2429 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2430 }
2431
2432 #define DST_FLUSH(domain, flush, invalidate) \
2433 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2434 TU_ACCESS_##domain##_WRITE)) { \
2435 flush_bits |= cache->pending_flush_bits & \
2436 (TU_CMD_FLAG_##invalidate | \
2437 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2438 }
2439
2440 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2441 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2442 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2443
2444 #undef DST_FLUSH
2445
2446 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2447 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2448 TU_ACCESS_##domain##_WRITE)) { \
2449 flush_bits |= TU_CMD_FLAG_##invalidate | \
2450 (cache->pending_flush_bits & \
2451 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2452 }
2453
2454 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2455 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2456
2457 #undef DST_INCOHERENT_FLUSH
2458
2459 if (dst_mask & TU_ACCESS_WFI_READ) {
2460 flush_bits |= TU_CMD_FLAG_WFI;
2461 }
2462
2463 cache->flush_bits |= flush_bits;
2464 cache->pending_flush_bits &= ~flush_bits;
2465 }
2466
2467 static enum tu_cmd_access_mask
2468 vk2tu_access(VkAccessFlags flags, bool gmem)
2469 {
2470 enum tu_cmd_access_mask mask = 0;
2471
2472 /* If the GPU writes a buffer that is then read by an indirect draw
2473 * command, we theoretically need a WFI + WAIT_FOR_ME combination to
2474 * wait for the writes to complete. The WAIT_FOR_ME is performed as part
2475 * of the draw by the firmware, so we just need to execute a WFI.
2476 */
2477 if (flags &
2478 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2479 VK_ACCESS_MEMORY_READ_BIT)) {
2480 mask |= TU_ACCESS_WFI_READ;
2481 }
2482
2483 if (flags &
2484 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2485 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
2486 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2487 VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
2488 VK_ACCESS_MEMORY_READ_BIT)) {
2489 mask |= TU_ACCESS_SYSMEM_READ;
2490 }
2491
2492 if (flags &
2493 (VK_ACCESS_HOST_WRITE_BIT |
2494 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
2495 VK_ACCESS_MEMORY_WRITE_BIT)) {
2496 mask |= TU_ACCESS_SYSMEM_WRITE;
2497 }
2498
2499 if (flags &
2500 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2501 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2502 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2503 /* TODO: Is there a no-cache bit for textures so that we can ignore
2504 * these?
2505 */
2506 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2507 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2508 VK_ACCESS_MEMORY_READ_BIT)) {
2509 mask |= TU_ACCESS_UCHE_READ;
2510 }
2511
2512 if (flags &
2513 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2514 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2515 VK_ACCESS_MEMORY_WRITE_BIT)) {
2516 mask |= TU_ACCESS_UCHE_WRITE;
2517 }
2518
2519 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2520 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2521 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2522 * can ignore CCU and pretend that color attachments and transfers use
2523 * sysmem directly.
2524 */
2525
2526 if (flags &
2527 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2528 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2529 VK_ACCESS_MEMORY_READ_BIT)) {
2530 if (gmem)
2531 mask |= TU_ACCESS_SYSMEM_READ;
2532 else
2533 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2534 }
2535
2536 if (flags &
2537 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2538 VK_ACCESS_MEMORY_READ_BIT)) {
2539 if (gmem)
2540 mask |= TU_ACCESS_SYSMEM_READ;
2541 else
2542 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2543 }
2544
2545 if (flags &
2546 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2547 VK_ACCESS_MEMORY_WRITE_BIT)) {
2548 if (gmem) {
2549 mask |= TU_ACCESS_SYSMEM_WRITE;
2550 } else {
2551 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2552 }
2553 }
2554
2555 if (flags &
2556 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2557 VK_ACCESS_MEMORY_WRITE_BIT)) {
2558 if (gmem) {
2559 mask |= TU_ACCESS_SYSMEM_WRITE;
2560 } else {
2561 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2562 }
2563 }
2564
2565 /* When the dst access is a transfer read/write, it seems we sometimes need
2566 * to insert a WFI after any flushes, to guarantee that the flushes finish
2567 * before the 2D engine starts. However the opposite (i.e. a WFI after
2568 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2569 * the blob doesn't emit such a WFI.
2570 */
2571
2572 if (flags &
2573 (VK_ACCESS_TRANSFER_WRITE_BIT |
2574 VK_ACCESS_MEMORY_WRITE_BIT)) {
2575 if (gmem) {
2576 mask |= TU_ACCESS_SYSMEM_WRITE;
2577 } else {
2578 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2579 }
2580 mask |= TU_ACCESS_WFI_READ;
2581 }
2582
2583 if (flags &
2584 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2585 VK_ACCESS_MEMORY_READ_BIT)) {
2586 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2587 }
2588
2589 return mask;
2590 }
2591
2592
2593 void
2594 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2595 uint32_t commandBufferCount,
2596 const VkCommandBuffer *pCmdBuffers)
2597 {
2598 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2599 VkResult result;
2600
2601 assert(commandBufferCount > 0);
2602
2603 /* Emit any pending flushes. */
2604 if (cmd->state.pass) {
2605 tu_flush_all_pending(&cmd->state.renderpass_cache);
2606 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2607 } else {
2608 tu_flush_all_pending(&cmd->state.cache);
2609 tu_emit_cache_flush(cmd, &cmd->cs);
2610 }
2611
2612 for (uint32_t i = 0; i < commandBufferCount; i++) {
2613 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2614
2615 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2616 if (result != VK_SUCCESS) {
2617 cmd->record_result = result;
2618 break;
2619 }
2620
2621 if (secondary->usage_flags &
2622 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2623 assert(tu_cs_is_empty(&secondary->cs));
2624
2625 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2626 if (result != VK_SUCCESS) {
2627 cmd->record_result = result;
2628 break;
2629 }
2630
2631 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2632 &secondary->draw_epilogue_cs);
2633 if (result != VK_SUCCESS) {
2634 cmd->record_result = result;
2635 break;
2636 }
2637
2638 if (secondary->has_tess)
2639 cmd->has_tess = true;
2640 } else {
2641 assert(tu_cs_is_empty(&secondary->draw_cs));
2642 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2643
2644 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2645 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2646 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2647 }
2648
2649 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2650 }
2651
2652 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2653 }
2654 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2655
2656 /* After executing secondary command buffers, there may have been arbitrary
2657 * flushes executed, so when we encounter a pipeline barrier with a
2658 * srcMask, we have to assume that we need to invalidate. Therefore we need
2659 * to re-initialize the cache with all pending invalidate bits set.
2660 */
2661 if (cmd->state.pass) {
2662 tu_cache_init(&cmd->state.renderpass_cache);
2663 } else {
2664 tu_cache_init(&cmd->state.cache);
2665 }
2666 }
2667
2668 VkResult
2669 tu_CreateCommandPool(VkDevice _device,
2670 const VkCommandPoolCreateInfo *pCreateInfo,
2671 const VkAllocationCallbacks *pAllocator,
2672 VkCommandPool *pCmdPool)
2673 {
2674 TU_FROM_HANDLE(tu_device, device, _device);
2675 struct tu_cmd_pool *pool;
2676
2677 pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
2678 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2679 if (pool == NULL)
2680 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2681
2682 if (pAllocator)
2683 pool->alloc = *pAllocator;
2684 else
2685 pool->alloc = device->alloc;
2686
2687 list_inithead(&pool->cmd_buffers);
2688 list_inithead(&pool->free_cmd_buffers);
2689
2690 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2691
2692 *pCmdPool = tu_cmd_pool_to_handle(pool);
2693
2694 return VK_SUCCESS;
2695 }
2696
2697 void
2698 tu_DestroyCommandPool(VkDevice _device,
2699 VkCommandPool commandPool,
2700 const VkAllocationCallbacks *pAllocator)
2701 {
2702 TU_FROM_HANDLE(tu_device, device, _device);
2703 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2704
2705 if (!pool)
2706 return;
2707
2708 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2709 &pool->cmd_buffers, pool_link)
2710 {
2711 tu_cmd_buffer_destroy(cmd_buffer);
2712 }
2713
2714 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2715 &pool->free_cmd_buffers, pool_link)
2716 {
2717 tu_cmd_buffer_destroy(cmd_buffer);
2718 }
2719
2720 vk_free2(&device->alloc, pAllocator, pool);
2721 }
2722
2723 VkResult
2724 tu_ResetCommandPool(VkDevice device,
2725 VkCommandPool commandPool,
2726 VkCommandPoolResetFlags flags)
2727 {
2728 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2729 VkResult result;
2730
2731 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2732 pool_link)
2733 {
2734 result = tu_reset_cmd_buffer(cmd_buffer);
2735 if (result != VK_SUCCESS)
2736 return result;
2737 }
2738
2739 return VK_SUCCESS;
2740 }
2741
2742 void
2743 tu_TrimCommandPool(VkDevice device,
2744 VkCommandPool commandPool,
2745 VkCommandPoolTrimFlags flags)
2746 {
2747 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2748
2749 if (!pool)
2750 return;
2751
2752 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2753 &pool->free_cmd_buffers, pool_link)
2754 {
2755 tu_cmd_buffer_destroy(cmd_buffer);
2756 }
2757 }
2758
2759 static void
2760 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2761 const struct tu_subpass_barrier *barrier,
2762 bool external)
2763 {
2764 /* Note: we don't know until the end of the subpass whether we'll use
2765 * sysmem, so assume sysmem here to be safe.
2766 */
2767 struct tu_cache_state *cache =
2768 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2769 enum tu_cmd_access_mask src_flags =
2770 vk2tu_access(barrier->src_access_mask, false);
2771 enum tu_cmd_access_mask dst_flags =
2772 vk2tu_access(barrier->dst_access_mask, false);
2773
2774 if (barrier->incoherent_ccu_color)
2775 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2776 if (barrier->incoherent_ccu_depth)
2777 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2778
2779 tu_flush_for_access(cache, src_flags, dst_flags);
2780 }
2781
2782 void
2783 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2784 const VkRenderPassBeginInfo *pRenderPassBegin,
2785 VkSubpassContents contents)
2786 {
2787 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2788 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2789 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2790
2791 cmd->state.pass = pass;
2792 cmd->state.subpass = pass->subpasses;
2793 cmd->state.framebuffer = fb;
2794
2795 tu_cmd_update_tiling_config(cmd, &pRenderPassBegin->renderArea);
2796 tu_cmd_prepare_tile_store_ib(cmd);
2797
2798 /* Note: because this is external, any flushes will happen before draw_cs
2799 * gets called. However deferred flushes could have to happen later as part
2800 * of the subpass.
2801 */
2802 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2803 cmd->state.renderpass_cache.pending_flush_bits =
2804 cmd->state.cache.pending_flush_bits;
2805 cmd->state.renderpass_cache.flush_bits = 0;
2806
2807 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2808
2809 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2810 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2811 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2812 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2813
2814 tu_set_input_attachments(cmd, cmd->state.subpass);
2815
2816 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2817 const struct tu_image_view *iview = fb->attachments[i].attachment;
2818 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2819 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2820 }
2821
2822 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2823 }
2824
2825 void
2826 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2827 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2828 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2829 {
2830 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2831 pSubpassBeginInfo->contents);
2832 }
2833
2834 void
2835 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2836 {
2837 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2838 const struct tu_render_pass *pass = cmd->state.pass;
2839 struct tu_cs *cs = &cmd->draw_cs;
2840
2841 const struct tu_subpass *subpass = cmd->state.subpass++;
2842
2843 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2844
2845 if (subpass->resolve_attachments) {
2846 tu6_emit_blit_scissor(cmd, cs, true);
2847
2848 for (unsigned i = 0; i < subpass->color_count; i++) {
2849 uint32_t a = subpass->resolve_attachments[i].attachment;
2850 if (a == VK_ATTACHMENT_UNUSED)
2851 continue;
2852
2853 tu_store_gmem_attachment(cmd, cs, a,
2854 subpass->color_attachments[i].attachment);
2855
2856 if (pass->attachments[a].gmem_offset < 0)
2857 continue;
2858
2859 /* TODO:
2860 * check if the resolved attachment is needed by later subpasses,
2861 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2862 */
2863 tu_finishme("missing GMEM->GMEM resolve path\n");
2864 tu_load_gmem_attachment(cmd, cs, a, true);
2865 }
2866 }
2867
2868 tu_cond_exec_end(cs);
2869
2870 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2871
2872 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2873
2874 tu_cond_exec_end(cs);
2875
2876 /* Handle dependencies for the next subpass */
2877 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2878
2879 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2880 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2881 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2882 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2883 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2884
2885 tu_set_input_attachments(cmd, cmd->state.subpass);
2886 }
2887
2888 void
2889 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2890 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2891 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2892 {
2893 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2894 }
2895
2896 static void
2897 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2898 struct tu_descriptor_state *descriptors_state,
2899 gl_shader_stage type,
2900 uint32_t *push_constants)
2901 {
2902 const struct tu_program_descriptor_linkage *link =
2903 &pipeline->program.link[type];
2904 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2905
2906 if (link->push_consts.count > 0) {
2907 unsigned num_units = link->push_consts.count;
2908 unsigned offset = link->push_consts.lo;
2909 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2910 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2911 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2912 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2913 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2914 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2915 tu_cs_emit(cs, 0);
2916 tu_cs_emit(cs, 0);
2917 for (unsigned i = 0; i < num_units * 4; i++)
2918 tu_cs_emit(cs, push_constants[i + offset * 4]);
2919 }
2920
2921 for (uint32_t i = 0; i < state->num_enabled; i++) {
2922 uint32_t size = state->range[i].end - state->range[i].start;
2923 uint32_t offset = state->range[i].start;
2924
2925 /* and even if the start of the const buffer is before
2926 * first_immediate, the end may not be:
2927 */
2928 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2929
2930 if (size == 0)
2931 continue;
2932
2933 /* things should be aligned to vec4: */
2934 debug_assert((state->range[i].offset % 16) == 0);
2935 debug_assert((size % 16) == 0);
2936 debug_assert((offset % 16) == 0);
2937
2938 /* Dig out the descriptor from the descriptor state and read the VA from
2939 * it.
2940 */
2941 assert(state->range[i].ubo.bindless);
2942 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2943 descriptors_state->dynamic_descriptors :
2944 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2945 unsigned block = state->range[i].ubo.block;
2946 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2947 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2948 assert(va);
2949
2950 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2951 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2952 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2953 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2954 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2955 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2956 tu_cs_emit_qw(cs, va + offset);
2957 }
2958 }
2959
2960 static struct tu_cs_entry
2961 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2962 const struct tu_pipeline *pipeline,
2963 struct tu_descriptor_state *descriptors_state,
2964 gl_shader_stage type)
2965 {
2966 struct tu_cs cs;
2967 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2968
2969 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2970
2971 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2972 }
2973
2974 static VkResult
2975 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
2976 uint32_t first_instance,
2977 struct tu_cs_entry *entry)
2978 {
2979 /* TODO: fill out more than just base instance */
2980 const struct tu_program_descriptor_linkage *link =
2981 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
2982 const struct ir3_const_state *const_state = &link->const_state;
2983 struct tu_cs cs;
2984
2985 if (const_state->offsets.driver_param >= link->constlen) {
2986 *entry = (struct tu_cs_entry) {};
2987 return VK_SUCCESS;
2988 }
2989
2990 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 8, &cs);
2991 if (result != VK_SUCCESS)
2992 return result;
2993
2994 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2995 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(const_state->offsets.driver_param) |
2996 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2997 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2998 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
2999 CP_LOAD_STATE6_0_NUM_UNIT(1));
3000 tu_cs_emit(&cs, 0);
3001 tu_cs_emit(&cs, 0);
3002
3003 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3004
3005 tu_cs_emit(&cs, 0);
3006 tu_cs_emit(&cs, 0);
3007 tu_cs_emit(&cs, first_instance);
3008 tu_cs_emit(&cs, 0);
3009
3010 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3011 return VK_SUCCESS;
3012 }
3013
3014 static struct tu_cs_entry
3015 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
3016 const struct tu_pipeline *pipeline)
3017 {
3018 struct tu_cs cs;
3019 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
3020
3021 int binding;
3022 for_each_bit(binding, pipeline->vi.bindings_used) {
3023 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
3024 const VkDeviceSize offset = buf->bo_offset +
3025 cmd->state.vb.offsets[binding];
3026
3027 tu_cs_emit_regs(&cs,
3028 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
3029 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
3030
3031 }
3032
3033 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
3034
3035 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3036 }
3037
3038 static uint64_t
3039 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
3040 uint32_t draw_count)
3041 {
3042 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
3043 * Still not sure what to do here, so just allocate a reasonably large
3044 * BO and hope for the best for now.
3045 * (maxTessellationControlPerVertexOutputComponents * 2048 vertices +
3046 * maxTessellationControlPerPatchOutputComponents * 512 patches) */
3047 if (!draw_count) {
3048 return ((128 * 2048) + (128 * 512)) * 4;
3049 }
3050
3051 /* For each patch, adreno lays out the tess param BO in memory as:
3052 * (v_input[0][0])...(v_input[i][j])(p_input[0])...(p_input[k]).
3053 * where i = # vertices per patch, j = # per-vertex outputs, and
3054 * k = # per-patch outputs.*/
3055 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
3056 uint32_t num_patches = draw_count / verts_per_patch;
3057 return draw_count * pipeline->tess.per_vertex_output_size +
3058 pipeline->tess.per_patch_output_size * num_patches;
3059 }
3060
3061 static uint64_t
3062 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
3063 uint32_t draw_count)
3064 {
3065 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
3066 * Still not sure what to do here, so just allocate a reasonably large
3067 * BO and hope for the best for now.
3068 * (quad factor stride * 512 patches) */
3069 if (!draw_count) {
3070 return (28 * 512) * 4;
3071 }
3072
3073 /* Each distinct patch gets its own tess factor output. */
3074 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
3075 uint32_t num_patches = draw_count / verts_per_patch;
3076 uint32_t factor_stride;
3077 switch (pipeline->tess.patch_type) {
3078 case IR3_TESS_ISOLINES:
3079 factor_stride = 12;
3080 break;
3081 case IR3_TESS_TRIANGLES:
3082 factor_stride = 20;
3083 break;
3084 case IR3_TESS_QUADS:
3085 factor_stride = 28;
3086 break;
3087 default:
3088 unreachable("bad tessmode");
3089 }
3090 return factor_stride * num_patches;
3091 }
3092
3093 static VkResult
3094 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
3095 uint32_t draw_count,
3096 const struct tu_pipeline *pipeline,
3097 struct tu_cs_entry *entry)
3098 {
3099 struct tu_cs cs;
3100 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 20, &cs);
3101 if (result != VK_SUCCESS)
3102 return result;
3103
3104 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
3105 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
3106 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
3107 if (tess_bo_size > 0) {
3108 struct tu_bo *tess_bo;
3109 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
3110 if (result != VK_SUCCESS)
3111 return result;
3112
3113 tu_bo_list_add(&cmd->bo_list, tess_bo,
3114 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3115 uint64_t tess_factor_iova = tess_bo->iova;
3116 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
3117
3118 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3119 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
3120 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3121 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3122 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
3123 CP_LOAD_STATE6_0_NUM_UNIT(1));
3124 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
3125 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
3126 tu_cs_emit_qw(&cs, tess_param_iova);
3127 tu_cs_emit_qw(&cs, tess_factor_iova);
3128
3129 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3130 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
3131 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3132 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3133 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
3134 CP_LOAD_STATE6_0_NUM_UNIT(1));
3135 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
3136 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
3137 tu_cs_emit_qw(&cs, tess_param_iova);
3138 tu_cs_emit_qw(&cs, tess_factor_iova);
3139
3140 tu_cs_emit_pkt4(&cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
3141 tu_cs_emit_qw(&cs, tess_factor_iova);
3142
3143 /* TODO: Without this WFI here, the hardware seems unable to read these
3144 * addresses we just emitted. Freedreno emits these consts as part of
3145 * IB1 instead of in a draw state which might make this WFI unnecessary,
3146 * but it requires a bit more indirection (SS6_INDIRECT for consts). */
3147 tu_cs_emit_wfi(&cs);
3148 }
3149 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3150 return VK_SUCCESS;
3151 }
3152
3153 static VkResult
3154 tu6_draw_common(struct tu_cmd_buffer *cmd,
3155 struct tu_cs *cs,
3156 bool indexed,
3157 uint32_t vertex_offset,
3158 uint32_t first_instance,
3159 /* note: draw_count count is 0 for indirect */
3160 uint32_t draw_count)
3161 {
3162 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3163 VkResult result;
3164
3165 struct tu_descriptor_state *descriptors_state =
3166 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
3167
3168 tu_emit_cache_flush_renderpass(cmd, cs);
3169
3170 /* TODO lrz */
3171
3172 tu_cs_emit_regs(cs,
3173 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3174 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3175
3176 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
3177 .primitive_restart =
3178 pipeline->ia.primitive_restart && indexed,
3179 .tess_upper_left_domain_origin =
3180 pipeline->tess.upper_left_domain_origin));
3181
3182 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3183 cmd->state.shader_const_ib[MESA_SHADER_VERTEX] =
3184 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
3185 cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL] =
3186 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
3187 cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL] =
3188 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
3189 cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY] =
3190 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
3191 cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT] =
3192 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
3193 }
3194
3195 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) {
3196 /* We need to reload the descriptors every time the descriptor sets
3197 * change. However, the commands we send only depend on the pipeline
3198 * because the whole point is to cache descriptors which are used by the
3199 * pipeline. There's a problem here, in that the firmware has an
3200 * "optimization" which skips executing groups that are set to the same
3201 * value as the last draw. This means that if the descriptor sets change
3202 * but not the pipeline, we'd try to re-execute the same buffer which
3203 * the firmware would ignore and we wouldn't pre-load the new
3204 * descriptors. The blob seems to re-emit the LOAD_STATE group whenever
3205 * the descriptor sets change, which we emulate here by copying the
3206 * pre-prepared buffer.
3207 */
3208 const struct tu_cs_entry *load_entry = &pipeline->load_state.state_ib;
3209 if (load_entry->size > 0) {
3210 struct tu_cs load_cs;
3211 result = tu_cs_begin_sub_stream(&cmd->sub_cs, load_entry->size, &load_cs);
3212 if (result != VK_SUCCESS)
3213 return result;
3214 tu_cs_emit_array(&load_cs,
3215 (uint32_t *)((char *)load_entry->bo->map + load_entry->offset),
3216 load_entry->size / 4);
3217 cmd->state.desc_sets_load_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &load_cs);
3218 } else {
3219 cmd->state.desc_sets_load_ib.size = 0;
3220 }
3221 }
3222
3223 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3224 cmd->state.vertex_buffers_ib = tu6_emit_vertex_buffers(cmd, pipeline);
3225
3226 struct tu_cs_entry vs_params;
3227 result = tu6_emit_vs_params(cmd, first_instance, &vs_params);
3228 if (result != VK_SUCCESS)
3229 return result;
3230
3231 bool has_tess =
3232 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3233 struct tu_cs_entry tess_consts = {};
3234 if (has_tess) {
3235 cmd->has_tess = true;
3236 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts);
3237 if (result != VK_SUCCESS)
3238 return result;
3239 }
3240
3241 /* for the first draw in a renderpass, re-emit all the draw states
3242 *
3243 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3244 * used, then draw states must be re-emitted. note however this only happens
3245 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3246 *
3247 * the two input attachment states are excluded because secondary command
3248 * buffer doesn't have a state ib to restore it, and not re-emitting them
3249 * is OK since CmdClearAttachments won't disable/overwrite them
3250 */
3251 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3252 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3253
3254 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
3255 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
3256 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3257 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
3258 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
3259 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
3260 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
3261 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
3262 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3263 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3264 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3265 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3266 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3267 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets_ib);
3268 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3269 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3270 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_PARAMS, vs_params);
3271
3272 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3273 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3274 ((pipeline->dynamic_state_mask & BIT(i)) ?
3275 cmd->state.dynamic_state[i] :
3276 pipeline->dynamic_state[i]));
3277 }
3278 } else {
3279
3280 /* emit draw states that were just updated
3281 * note we eventually don't want to have to emit anything here
3282 */
3283 uint32_t draw_state_count =
3284 has_tess +
3285 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
3286 ((cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) ? 1 : 0) +
3287 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3288 1; /* vs_params */
3289
3290 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3291
3292 /* We may need to re-emit tess consts if the current draw call is
3293 * sufficiently larger than the last draw call. */
3294 if (has_tess)
3295 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3296 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3297 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3298 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3299 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3300 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3301 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3302 }
3303 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS)
3304 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3305 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3306 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3307 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_PARAMS, vs_params);
3308 }
3309
3310 tu_cs_sanity_check(cs);
3311
3312 /* There are too many graphics dirty bits to list here, so just list the
3313 * bits to preserve instead. The only things not emitted here are
3314 * compute-related state.
3315 */
3316 cmd->state.dirty &= (TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3317 return VK_SUCCESS;
3318 }
3319
3320 static uint32_t
3321 tu_draw_initiator(struct tu_cmd_buffer *cmd, bool indexed)
3322 {
3323 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3324 uint32_t initiator =
3325 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3326 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(indexed ? DI_SRC_SEL_DMA : DI_SRC_SEL_AUTO_INDEX) |
3327 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3328 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3329
3330 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3331 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3332
3333 switch (pipeline->tess.patch_type) {
3334 case IR3_TESS_TRIANGLES:
3335 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3336 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3337 break;
3338 case IR3_TESS_ISOLINES:
3339 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3340 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3341 break;
3342 case IR3_TESS_NONE:
3343 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3344 break;
3345 case IR3_TESS_QUADS:
3346 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3347 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3348 break;
3349 }
3350 return initiator;
3351 }
3352
3353 void
3354 tu_CmdDraw(VkCommandBuffer commandBuffer,
3355 uint32_t vertexCount,
3356 uint32_t instanceCount,
3357 uint32_t firstVertex,
3358 uint32_t firstInstance)
3359 {
3360 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3361 struct tu_cs *cs = &cmd->draw_cs;
3362
3363 tu6_draw_common(cmd, cs, false, firstVertex, firstInstance, vertexCount);
3364
3365 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3366 tu_cs_emit(cs, tu_draw_initiator(cmd, false));
3367 tu_cs_emit(cs, instanceCount);
3368 tu_cs_emit(cs, vertexCount);
3369 }
3370
3371 void
3372 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3373 uint32_t indexCount,
3374 uint32_t instanceCount,
3375 uint32_t firstIndex,
3376 int32_t vertexOffset,
3377 uint32_t firstInstance)
3378 {
3379 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3380 struct tu_cs *cs = &cmd->draw_cs;
3381
3382 tu6_draw_common(cmd, cs, true, vertexOffset, firstInstance, indexCount);
3383
3384 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3385 tu_cs_emit(cs, tu_draw_initiator(cmd, true));
3386 tu_cs_emit(cs, instanceCount);
3387 tu_cs_emit(cs, indexCount);
3388 tu_cs_emit(cs, 0x0); /* XXX */
3389 tu_cs_emit_qw(cs, cmd->state.index_va + (firstIndex << cmd->state.index_shift));
3390 tu_cs_emit(cs, indexCount << cmd->state.index_shift);
3391 }
3392
3393 void
3394 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3395 VkBuffer _buffer,
3396 VkDeviceSize offset,
3397 uint32_t drawCount,
3398 uint32_t stride)
3399 {
3400 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3401 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3402 struct tu_cs *cs = &cmd->draw_cs;
3403
3404 tu6_draw_common(cmd, cs, false, 0, 0, 0);
3405
3406 for (uint32_t i = 0; i < drawCount; i++) {
3407 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT, 3);
3408 tu_cs_emit(cs, tu_draw_initiator(cmd, false));
3409 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset + stride * i);
3410 }
3411
3412 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3413 }
3414
3415 void
3416 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3417 VkBuffer _buffer,
3418 VkDeviceSize offset,
3419 uint32_t drawCount,
3420 uint32_t stride)
3421 {
3422 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3423 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3424 struct tu_cs *cs = &cmd->draw_cs;
3425
3426 tu6_draw_common(cmd, cs, true, 0, 0, 0);
3427
3428 for (uint32_t i = 0; i < drawCount; i++) {
3429 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_INDIRECT, 6);
3430 tu_cs_emit(cs, tu_draw_initiator(cmd, true));
3431 tu_cs_emit_qw(cs, cmd->state.index_va);
3432 tu_cs_emit(cs, A5XX_CP_DRAW_INDX_INDIRECT_3_MAX_INDICES(cmd->state.max_index_count));
3433 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset + stride * i);
3434 }
3435
3436 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3437 }
3438
3439 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3440 uint32_t instanceCount,
3441 uint32_t firstInstance,
3442 VkBuffer _counterBuffer,
3443 VkDeviceSize counterBufferOffset,
3444 uint32_t counterOffset,
3445 uint32_t vertexStride)
3446 {
3447 tu_finishme("CmdDrawIndirectByteCountEXT");
3448 }
3449
3450 struct tu_dispatch_info
3451 {
3452 /**
3453 * Determine the layout of the grid (in block units) to be used.
3454 */
3455 uint32_t blocks[3];
3456
3457 /**
3458 * A starting offset for the grid. If unaligned is set, the offset
3459 * must still be aligned.
3460 */
3461 uint32_t offsets[3];
3462 /**
3463 * Whether it's an unaligned compute dispatch.
3464 */
3465 bool unaligned;
3466
3467 /**
3468 * Indirect compute parameters resource.
3469 */
3470 struct tu_buffer *indirect;
3471 uint64_t indirect_offset;
3472 };
3473
3474 static void
3475 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3476 const struct tu_dispatch_info *info)
3477 {
3478 gl_shader_stage type = MESA_SHADER_COMPUTE;
3479 const struct tu_program_descriptor_linkage *link =
3480 &pipeline->program.link[type];
3481 const struct ir3_const_state *const_state = &link->const_state;
3482 uint32_t offset = const_state->offsets.driver_param;
3483
3484 if (link->constlen <= offset)
3485 return;
3486
3487 if (!info->indirect) {
3488 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3489 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3490 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3491 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3492 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3493 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3494 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3495 };
3496
3497 uint32_t num_consts = MIN2(const_state->num_driver_params,
3498 (link->constlen - offset) * 4);
3499 /* push constants */
3500 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3501 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3502 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3503 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3504 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3505 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3506 tu_cs_emit(cs, 0);
3507 tu_cs_emit(cs, 0);
3508 uint32_t i;
3509 for (i = 0; i < num_consts; i++)
3510 tu_cs_emit(cs, driver_params[i]);
3511 } else {
3512 tu_finishme("Indirect driver params");
3513 }
3514 }
3515
3516 static void
3517 tu_dispatch(struct tu_cmd_buffer *cmd,
3518 const struct tu_dispatch_info *info)
3519 {
3520 struct tu_cs *cs = &cmd->cs;
3521 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3522 struct tu_descriptor_state *descriptors_state =
3523 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3524
3525 /* TODO: We could probably flush less if we add a compute_flush_bits
3526 * bitfield.
3527 */
3528 tu_emit_cache_flush(cmd, cs);
3529
3530 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_PIPELINE)
3531 tu_cs_emit_ib(cs, &pipeline->program.state_ib);
3532
3533 struct tu_cs_entry ib;
3534
3535 ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE);
3536 if (ib.size)
3537 tu_cs_emit_ib(cs, &ib);
3538
3539 tu_emit_compute_driver_params(cs, pipeline, info);
3540
3541 if ((cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS) &&
3542 pipeline->load_state.state_ib.size > 0) {
3543 tu_cs_emit_ib(cs, &pipeline->load_state.state_ib);
3544 }
3545
3546 cmd->state.dirty &=
3547 ~(TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3548
3549 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3550 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3551
3552 const uint32_t *local_size = pipeline->compute.local_size;
3553 const uint32_t *num_groups = info->blocks;
3554 tu_cs_emit_regs(cs,
3555 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3556 .localsizex = local_size[0] - 1,
3557 .localsizey = local_size[1] - 1,
3558 .localsizez = local_size[2] - 1),
3559 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3560 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3561 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3562 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3563 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3564 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3565
3566 tu_cs_emit_regs(cs,
3567 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3568 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3569 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3570
3571 if (info->indirect) {
3572 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3573
3574 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3575 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3576
3577 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3578 tu_cs_emit(cs, 0x00000000);
3579 tu_cs_emit_qw(cs, iova);
3580 tu_cs_emit(cs,
3581 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3582 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3583 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3584 } else {
3585 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3586 tu_cs_emit(cs, 0x00000000);
3587 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3588 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3589 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3590 }
3591
3592 tu_cs_emit_wfi(cs);
3593 }
3594
3595 void
3596 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3597 uint32_t base_x,
3598 uint32_t base_y,
3599 uint32_t base_z,
3600 uint32_t x,
3601 uint32_t y,
3602 uint32_t z)
3603 {
3604 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3605 struct tu_dispatch_info info = {};
3606
3607 info.blocks[0] = x;
3608 info.blocks[1] = y;
3609 info.blocks[2] = z;
3610
3611 info.offsets[0] = base_x;
3612 info.offsets[1] = base_y;
3613 info.offsets[2] = base_z;
3614 tu_dispatch(cmd_buffer, &info);
3615 }
3616
3617 void
3618 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3619 uint32_t x,
3620 uint32_t y,
3621 uint32_t z)
3622 {
3623 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3624 }
3625
3626 void
3627 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3628 VkBuffer _buffer,
3629 VkDeviceSize offset)
3630 {
3631 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3632 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3633 struct tu_dispatch_info info = {};
3634
3635 info.indirect = buffer;
3636 info.indirect_offset = offset;
3637
3638 tu_dispatch(cmd_buffer, &info);
3639 }
3640
3641 void
3642 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3643 {
3644 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3645
3646 tu_cs_end(&cmd_buffer->draw_cs);
3647 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3648
3649 if (use_sysmem_rendering(cmd_buffer))
3650 tu_cmd_render_sysmem(cmd_buffer);
3651 else
3652 tu_cmd_render_tiles(cmd_buffer);
3653
3654 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3655 rendered */
3656 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3657 tu_cs_begin(&cmd_buffer->draw_cs);
3658 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3659 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3660
3661 cmd_buffer->state.cache.pending_flush_bits |=
3662 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3663 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3664
3665 cmd_buffer->state.pass = NULL;
3666 cmd_buffer->state.subpass = NULL;
3667 cmd_buffer->state.framebuffer = NULL;
3668 }
3669
3670 void
3671 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3672 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3673 {
3674 tu_CmdEndRenderPass(commandBuffer);
3675 }
3676
3677 struct tu_barrier_info
3678 {
3679 uint32_t eventCount;
3680 const VkEvent *pEvents;
3681 VkPipelineStageFlags srcStageMask;
3682 };
3683
3684 static void
3685 tu_barrier(struct tu_cmd_buffer *cmd,
3686 uint32_t memoryBarrierCount,
3687 const VkMemoryBarrier *pMemoryBarriers,
3688 uint32_t bufferMemoryBarrierCount,
3689 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3690 uint32_t imageMemoryBarrierCount,
3691 const VkImageMemoryBarrier *pImageMemoryBarriers,
3692 const struct tu_barrier_info *info)
3693 {
3694 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3695 VkAccessFlags srcAccessMask = 0;
3696 VkAccessFlags dstAccessMask = 0;
3697
3698 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3699 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3700 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3701 }
3702
3703 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3704 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3705 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3706 }
3707
3708 enum tu_cmd_access_mask src_flags = 0;
3709 enum tu_cmd_access_mask dst_flags = 0;
3710
3711 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3712 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3713 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3714 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3715 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3716 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3717 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3718 /* The underlying memory for this image may have been used earlier
3719 * within the same queue submission for a different image, which
3720 * means that there may be old, stale cache entries which are in the
3721 * "wrong" location, which could cause problems later after writing
3722 * to the image. We don't want these entries being flushed later and
3723 * overwriting the actual image, so we need to flush the CCU.
3724 */
3725 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3726 }
3727 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3728 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3729 }
3730
3731 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3732 * so we have to use the sysmem flushes.
3733 */
3734 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3735 !cmd->state.pass;
3736 src_flags |= vk2tu_access(srcAccessMask, gmem);
3737 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3738
3739 struct tu_cache_state *cache =
3740 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3741 tu_flush_for_access(cache, src_flags, dst_flags);
3742
3743 for (uint32_t i = 0; i < info->eventCount; i++) {
3744 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3745
3746 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3747
3748 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3749 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3750 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3751 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3752 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3753 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3754 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3755 }
3756 }
3757
3758 void
3759 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3760 VkPipelineStageFlags srcStageMask,
3761 VkPipelineStageFlags dstStageMask,
3762 VkDependencyFlags dependencyFlags,
3763 uint32_t memoryBarrierCount,
3764 const VkMemoryBarrier *pMemoryBarriers,
3765 uint32_t bufferMemoryBarrierCount,
3766 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3767 uint32_t imageMemoryBarrierCount,
3768 const VkImageMemoryBarrier *pImageMemoryBarriers)
3769 {
3770 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3771 struct tu_barrier_info info;
3772
3773 info.eventCount = 0;
3774 info.pEvents = NULL;
3775 info.srcStageMask = srcStageMask;
3776
3777 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3778 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3779 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3780 }
3781
3782 static void
3783 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3784 VkPipelineStageFlags stageMask, unsigned value)
3785 {
3786 struct tu_cs *cs = &cmd->cs;
3787
3788 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3789 assert(!cmd->state.pass);
3790
3791 tu_emit_cache_flush(cmd, cs);
3792
3793 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3794
3795 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3796 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3797 */
3798 VkPipelineStageFlags top_of_pipe_flags =
3799 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3800 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3801
3802 if (!(stageMask & ~top_of_pipe_flags)) {
3803 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3804 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3805 tu_cs_emit(cs, value);
3806 } else {
3807 /* Use a RB_DONE_TS event to wait for everything to complete. */
3808 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3809 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3810 tu_cs_emit_qw(cs, event->bo.iova);
3811 tu_cs_emit(cs, value);
3812 }
3813 }
3814
3815 void
3816 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3817 VkEvent _event,
3818 VkPipelineStageFlags stageMask)
3819 {
3820 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3821 TU_FROM_HANDLE(tu_event, event, _event);
3822
3823 write_event(cmd, event, stageMask, 1);
3824 }
3825
3826 void
3827 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3828 VkEvent _event,
3829 VkPipelineStageFlags stageMask)
3830 {
3831 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3832 TU_FROM_HANDLE(tu_event, event, _event);
3833
3834 write_event(cmd, event, stageMask, 0);
3835 }
3836
3837 void
3838 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3839 uint32_t eventCount,
3840 const VkEvent *pEvents,
3841 VkPipelineStageFlags srcStageMask,
3842 VkPipelineStageFlags dstStageMask,
3843 uint32_t memoryBarrierCount,
3844 const VkMemoryBarrier *pMemoryBarriers,
3845 uint32_t bufferMemoryBarrierCount,
3846 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3847 uint32_t imageMemoryBarrierCount,
3848 const VkImageMemoryBarrier *pImageMemoryBarriers)
3849 {
3850 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3851 struct tu_barrier_info info;
3852
3853 info.eventCount = eventCount;
3854 info.pEvents = pEvents;
3855 info.srcStageMask = 0;
3856
3857 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3858 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3859 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3860 }
3861
3862 void
3863 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3864 {
3865 /* No-op */
3866 }