turnip: implement VK_KHR_shader_draw_parameters
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 static void
112 tu_tiling_config_update_tile_layout(struct tu_tiling_config *tiling,
113 const struct tu_device *dev,
114 const struct tu_render_pass *pass)
115 {
116 const uint32_t tile_align_w = pass->tile_align_w;
117 const uint32_t max_tile_width = 1024;
118
119 /* note: don't offset the tiling config by render_area.offset,
120 * because binning pass can't deal with it
121 * this means we might end up with more tiles than necessary,
122 * but load/store/etc are still scissored to the render_area
123 */
124 tiling->tile0.offset = (VkOffset2D) {};
125
126 const uint32_t ra_width =
127 tiling->render_area.extent.width +
128 (tiling->render_area.offset.x - tiling->tile0.offset.x);
129 const uint32_t ra_height =
130 tiling->render_area.extent.height +
131 (tiling->render_area.offset.y - tiling->tile0.offset.y);
132
133 /* start from 1 tile */
134 tiling->tile_count = (VkExtent2D) {
135 .width = 1,
136 .height = 1,
137 };
138 tiling->tile0.extent = (VkExtent2D) {
139 .width = util_align_npot(ra_width, tile_align_w),
140 .height = align(ra_height, TILE_ALIGN_H),
141 };
142
143 if (unlikely(dev->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN)) {
144 /* start with 2x2 tiles */
145 tiling->tile_count.width = 2;
146 tiling->tile_count.height = 2;
147 tiling->tile0.extent.width = util_align_npot(DIV_ROUND_UP(ra_width, 2), tile_align_w);
148 tiling->tile0.extent.height = align(DIV_ROUND_UP(ra_height, 2), TILE_ALIGN_H);
149 }
150
151 /* do not exceed max tile width */
152 while (tiling->tile0.extent.width > max_tile_width) {
153 tiling->tile_count.width++;
154 tiling->tile0.extent.width =
155 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
156 }
157
158 /* will force to sysmem, don't bother trying to have a valid tile config
159 * TODO: just skip all GMEM stuff when sysmem is forced?
160 */
161 if (!pass->gmem_pixels)
162 return;
163
164 /* do not exceed gmem size */
165 while (tiling->tile0.extent.width * tiling->tile0.extent.height > pass->gmem_pixels) {
166 if (tiling->tile0.extent.width > MAX2(tile_align_w, tiling->tile0.extent.height)) {
167 tiling->tile_count.width++;
168 tiling->tile0.extent.width =
169 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
170 } else {
171 /* if this assert fails then layout is impossible.. */
172 assert(tiling->tile0.extent.height > TILE_ALIGN_H);
173 tiling->tile_count.height++;
174 tiling->tile0.extent.height =
175 align(DIV_ROUND_UP(ra_height, tiling->tile_count.height), TILE_ALIGN_H);
176 }
177 }
178 }
179
180 static void
181 tu_tiling_config_update_pipe_layout(struct tu_tiling_config *tiling,
182 const struct tu_device *dev)
183 {
184 const uint32_t max_pipe_count = 32; /* A6xx */
185
186 /* start from 1 tile per pipe */
187 tiling->pipe0 = (VkExtent2D) {
188 .width = 1,
189 .height = 1,
190 };
191 tiling->pipe_count = tiling->tile_count;
192
193 while (tiling->pipe_count.width * tiling->pipe_count.height > max_pipe_count) {
194 if (tiling->pipe0.width < tiling->pipe0.height) {
195 tiling->pipe0.width += 1;
196 tiling->pipe_count.width =
197 DIV_ROUND_UP(tiling->tile_count.width, tiling->pipe0.width);
198 } else {
199 tiling->pipe0.height += 1;
200 tiling->pipe_count.height =
201 DIV_ROUND_UP(tiling->tile_count.height, tiling->pipe0.height);
202 }
203 }
204 }
205
206 static void
207 tu_tiling_config_update_pipes(struct tu_tiling_config *tiling,
208 const struct tu_device *dev)
209 {
210 const uint32_t max_pipe_count = 32; /* A6xx */
211 const uint32_t used_pipe_count =
212 tiling->pipe_count.width * tiling->pipe_count.height;
213 const VkExtent2D last_pipe = {
214 .width = (tiling->tile_count.width - 1) % tiling->pipe0.width + 1,
215 .height = (tiling->tile_count.height - 1) % tiling->pipe0.height + 1,
216 };
217
218 assert(used_pipe_count <= max_pipe_count);
219 assert(max_pipe_count <= ARRAY_SIZE(tiling->pipe_config));
220
221 for (uint32_t y = 0; y < tiling->pipe_count.height; y++) {
222 for (uint32_t x = 0; x < tiling->pipe_count.width; x++) {
223 const uint32_t pipe_x = tiling->pipe0.width * x;
224 const uint32_t pipe_y = tiling->pipe0.height * y;
225 const uint32_t pipe_w = (x == tiling->pipe_count.width - 1)
226 ? last_pipe.width
227 : tiling->pipe0.width;
228 const uint32_t pipe_h = (y == tiling->pipe_count.height - 1)
229 ? last_pipe.height
230 : tiling->pipe0.height;
231 const uint32_t n = tiling->pipe_count.width * y + x;
232
233 tiling->pipe_config[n] = A6XX_VSC_PIPE_CONFIG_REG_X(pipe_x) |
234 A6XX_VSC_PIPE_CONFIG_REG_Y(pipe_y) |
235 A6XX_VSC_PIPE_CONFIG_REG_W(pipe_w) |
236 A6XX_VSC_PIPE_CONFIG_REG_H(pipe_h);
237 tiling->pipe_sizes[n] = CP_SET_BIN_DATA5_0_VSC_SIZE(pipe_w * pipe_h);
238 }
239 }
240
241 memset(tiling->pipe_config + used_pipe_count, 0,
242 sizeof(uint32_t) * (max_pipe_count - used_pipe_count));
243 }
244
245 static void
246 tu_tiling_config_get_tile(const struct tu_tiling_config *tiling,
247 const struct tu_device *dev,
248 uint32_t tx,
249 uint32_t ty,
250 struct tu_tile *tile)
251 {
252 /* find the pipe and the slot for tile (tx, ty) */
253 const uint32_t px = tx / tiling->pipe0.width;
254 const uint32_t py = ty / tiling->pipe0.height;
255 const uint32_t sx = tx - tiling->pipe0.width * px;
256 const uint32_t sy = ty - tiling->pipe0.height * py;
257 /* last pipe has different width */
258 const uint32_t pipe_width =
259 MIN2(tiling->pipe0.width,
260 tiling->tile_count.width - px * tiling->pipe0.width);
261
262 assert(tx < tiling->tile_count.width && ty < tiling->tile_count.height);
263 assert(px < tiling->pipe_count.width && py < tiling->pipe_count.height);
264 assert(sx < tiling->pipe0.width && sy < tiling->pipe0.height);
265
266 /* convert to 1D indices */
267 tile->pipe = tiling->pipe_count.width * py + px;
268 tile->slot = pipe_width * sy + sx;
269
270 /* get the blit area for the tile */
271 tile->begin = (VkOffset2D) {
272 .x = tiling->tile0.offset.x + tiling->tile0.extent.width * tx,
273 .y = tiling->tile0.offset.y + tiling->tile0.extent.height * ty,
274 };
275 tile->end.x =
276 (tx == tiling->tile_count.width - 1)
277 ? tiling->render_area.offset.x + tiling->render_area.extent.width
278 : tile->begin.x + tiling->tile0.extent.width;
279 tile->end.y =
280 (ty == tiling->tile_count.height - 1)
281 ? tiling->render_area.offset.y + tiling->render_area.extent.height
282 : tile->begin.y + tiling->tile0.extent.height;
283 }
284
285 void
286 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
287 struct tu_cs *cs,
288 enum vgt_event_type event)
289 {
290 bool need_seqno = false;
291 switch (event) {
292 case CACHE_FLUSH_TS:
293 case WT_DONE_TS:
294 case RB_DONE_TS:
295 case PC_CCU_FLUSH_DEPTH_TS:
296 case PC_CCU_FLUSH_COLOR_TS:
297 case PC_CCU_RESOLVE_TS:
298 need_seqno = true;
299 break;
300 default:
301 break;
302 }
303
304 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
305 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
306 if (need_seqno) {
307 tu_cs_emit_qw(cs, cmd->scratch_bo.iova);
308 tu_cs_emit(cs, 0);
309 }
310 }
311
312 static void
313 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
314 struct tu_cs *cs,
315 enum tu_cmd_flush_bits flushes)
316 {
317 /* Experiments show that invalidating CCU while it still has data in it
318 * doesn't work, so make sure to always flush before invalidating in case
319 * any data remains that hasn't yet been made available through a barrier.
320 * However it does seem to work for UCHE.
321 */
322 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
323 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
324 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
325 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
326 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
327 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
328 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
329 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
330 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
331 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
332 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
333 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
334 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
335 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
336 if (flushes & TU_CMD_FLAG_WFI)
337 tu_cs_emit_wfi(cs);
338 }
339
340 /* "Normal" cache flushes, that don't require any special handling */
341
342 static void
343 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
344 struct tu_cs *cs)
345 {
346 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
347 cmd_buffer->state.cache.flush_bits = 0;
348 }
349
350 /* Renderpass cache flushes */
351
352 void
353 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
354 struct tu_cs *cs)
355 {
356 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
357 cmd_buffer->state.renderpass_cache.flush_bits = 0;
358 }
359
360 /* Cache flushes for things that use the color/depth read/write path (i.e.
361 * blits and draws). This deals with changing CCU state as well as the usual
362 * cache flushing.
363 */
364
365 void
366 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
367 struct tu_cs *cs,
368 enum tu_cmd_ccu_state ccu_state)
369 {
370 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
371
372 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
373
374 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
375 * the CCU may also contain data that we haven't flushed out yet, so we
376 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
377 * emit a WFI as it isn't pipelined.
378 */
379 if (ccu_state != cmd_buffer->state.ccu_state) {
380 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
381 flushes |=
382 TU_CMD_FLAG_CCU_FLUSH_COLOR |
383 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
384 cmd_buffer->state.cache.pending_flush_bits &= ~(
385 TU_CMD_FLAG_CCU_FLUSH_COLOR |
386 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
387 }
388 flushes |=
389 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
390 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
391 TU_CMD_FLAG_WFI;
392 cmd_buffer->state.cache.pending_flush_bits &= ~(
393 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
394 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
395 }
396
397 tu6_emit_flushes(cmd_buffer, cs, flushes);
398 cmd_buffer->state.cache.flush_bits = 0;
399
400 if (ccu_state != cmd_buffer->state.ccu_state) {
401 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
402 tu_cs_emit_regs(cs,
403 A6XX_RB_CCU_CNTL(.offset =
404 ccu_state == TU_CMD_CCU_GMEM ?
405 phys_dev->ccu_offset_gmem :
406 phys_dev->ccu_offset_bypass,
407 .gmem = ccu_state == TU_CMD_CCU_GMEM));
408 cmd_buffer->state.ccu_state = ccu_state;
409 }
410 }
411
412 static void
413 tu6_emit_zs(struct tu_cmd_buffer *cmd,
414 const struct tu_subpass *subpass,
415 struct tu_cs *cs)
416 {
417 const struct tu_framebuffer *fb = cmd->state.framebuffer;
418
419 const uint32_t a = subpass->depth_stencil_attachment.attachment;
420 if (a == VK_ATTACHMENT_UNUSED) {
421 tu_cs_emit_regs(cs,
422 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
423 A6XX_RB_DEPTH_BUFFER_PITCH(0),
424 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
425 A6XX_RB_DEPTH_BUFFER_BASE(0),
426 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
427
428 tu_cs_emit_regs(cs,
429 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
430
431 tu_cs_emit_regs(cs,
432 A6XX_GRAS_LRZ_BUFFER_BASE(0),
433 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
434 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
435
436 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
437
438 return;
439 }
440
441 const struct tu_image_view *iview = fb->attachments[a].attachment;
442 const struct tu_render_pass_attachment *attachment =
443 &cmd->state.pass->attachments[a];
444 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
445
446 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
447 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
448 tu_cs_image_ref(cs, iview, 0);
449 tu_cs_emit(cs, attachment->gmem_offset);
450
451 tu_cs_emit_regs(cs,
452 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
453
454 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
455 tu_cs_image_flag_ref(cs, iview, 0);
456
457 tu_cs_emit_regs(cs,
458 A6XX_GRAS_LRZ_BUFFER_BASE(0),
459 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
460 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
461
462 if (attachment->format == VK_FORMAT_S8_UINT) {
463 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
464 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
465 tu_cs_image_ref(cs, iview, 0);
466 tu_cs_emit(cs, attachment->gmem_offset);
467 } else {
468 tu_cs_emit_regs(cs,
469 A6XX_RB_STENCIL_INFO(0));
470 }
471 }
472
473 static void
474 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
475 const struct tu_subpass *subpass,
476 struct tu_cs *cs)
477 {
478 const struct tu_framebuffer *fb = cmd->state.framebuffer;
479
480 for (uint32_t i = 0; i < subpass->color_count; ++i) {
481 uint32_t a = subpass->color_attachments[i].attachment;
482 if (a == VK_ATTACHMENT_UNUSED)
483 continue;
484
485 const struct tu_image_view *iview = fb->attachments[a].attachment;
486
487 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
488 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
489 tu_cs_image_ref(cs, iview, 0);
490 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
491
492 tu_cs_emit_regs(cs,
493 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
494
495 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
496 tu_cs_image_flag_ref(cs, iview, 0);
497 }
498
499 tu_cs_emit_regs(cs,
500 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
501 tu_cs_emit_regs(cs,
502 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
503
504 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
505 }
506
507 void
508 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
509 {
510 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
511 bool msaa_disable = samples == MSAA_ONE;
512
513 tu_cs_emit_regs(cs,
514 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
515 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
516 .msaa_disable = msaa_disable));
517
518 tu_cs_emit_regs(cs,
519 A6XX_GRAS_RAS_MSAA_CNTL(samples),
520 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
521 .msaa_disable = msaa_disable));
522
523 tu_cs_emit_regs(cs,
524 A6XX_RB_RAS_MSAA_CNTL(samples),
525 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
526 .msaa_disable = msaa_disable));
527
528 tu_cs_emit_regs(cs,
529 A6XX_RB_MSAA_CNTL(samples));
530 }
531
532 static void
533 tu6_emit_bin_size(struct tu_cs *cs,
534 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
535 {
536 tu_cs_emit_regs(cs,
537 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
538 .binh = bin_h,
539 .dword = flags));
540
541 tu_cs_emit_regs(cs,
542 A6XX_RB_BIN_CONTROL(.binw = bin_w,
543 .binh = bin_h,
544 .dword = flags));
545
546 /* no flag for RB_BIN_CONTROL2... */
547 tu_cs_emit_regs(cs,
548 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
549 .binh = bin_h));
550 }
551
552 static void
553 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
554 const struct tu_subpass *subpass,
555 struct tu_cs *cs,
556 bool binning)
557 {
558 const struct tu_framebuffer *fb = cmd->state.framebuffer;
559 uint32_t cntl = 0;
560 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
561 if (binning) {
562 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
563 } else {
564 uint32_t mrts_ubwc_enable = 0;
565 for (uint32_t i = 0; i < subpass->color_count; ++i) {
566 uint32_t a = subpass->color_attachments[i].attachment;
567 if (a == VK_ATTACHMENT_UNUSED)
568 continue;
569
570 const struct tu_image_view *iview = fb->attachments[a].attachment;
571 if (iview->ubwc_enabled)
572 mrts_ubwc_enable |= 1 << i;
573 }
574
575 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
576
577 const uint32_t a = subpass->depth_stencil_attachment.attachment;
578 if (a != VK_ATTACHMENT_UNUSED) {
579 const struct tu_image_view *iview = fb->attachments[a].attachment;
580 if (iview->ubwc_enabled)
581 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
582 }
583
584 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
585 * in order to set it correctly for the different subpasses. However,
586 * that means the packets we're emitting also happen during binning. So
587 * we need to guard the write on !BINNING at CP execution time.
588 */
589 tu_cs_reserve(cs, 3 + 4);
590 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
591 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
592 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
593 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
594 }
595
596 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
597 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
598 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
599 tu_cs_emit(cs, cntl);
600 }
601
602 static void
603 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
604 {
605 const VkRect2D *render_area = &cmd->state.tiling_config.render_area;
606 uint32_t x1 = render_area->offset.x;
607 uint32_t y1 = render_area->offset.y;
608 uint32_t x2 = x1 + render_area->extent.width - 1;
609 uint32_t y2 = y1 + render_area->extent.height - 1;
610
611 if (align) {
612 x1 = x1 & ~(GMEM_ALIGN_W - 1);
613 y1 = y1 & ~(GMEM_ALIGN_H - 1);
614 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
615 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
616 }
617
618 tu_cs_emit_regs(cs,
619 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
620 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
621 }
622
623 void
624 tu6_emit_window_scissor(struct tu_cs *cs,
625 uint32_t x1,
626 uint32_t y1,
627 uint32_t x2,
628 uint32_t y2)
629 {
630 tu_cs_emit_regs(cs,
631 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
632 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
633
634 tu_cs_emit_regs(cs,
635 A6XX_GRAS_RESOLVE_CNTL_1(.x = x1, .y = y1),
636 A6XX_GRAS_RESOLVE_CNTL_2(.x = x2, .y = y2));
637 }
638
639 void
640 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
641 {
642 tu_cs_emit_regs(cs,
643 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
644
645 tu_cs_emit_regs(cs,
646 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
647
648 tu_cs_emit_regs(cs,
649 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
650
651 tu_cs_emit_regs(cs,
652 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
653 }
654
655 static void
656 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
657 {
658 uint32_t enable_mask;
659 switch (id) {
660 case TU_DRAW_STATE_PROGRAM:
661 case TU_DRAW_STATE_VI:
662 case TU_DRAW_STATE_FS_CONST:
663 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
664 * when resources would actually be used in the binning shader.
665 * Presumably the overhead of prefetching the resources isn't
666 * worth it.
667 */
668 case TU_DRAW_STATE_DESC_SETS_LOAD:
669 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
670 CP_SET_DRAW_STATE__0_SYSMEM;
671 break;
672 case TU_DRAW_STATE_PROGRAM_BINNING:
673 case TU_DRAW_STATE_VI_BINNING:
674 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
675 break;
676 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
677 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
678 break;
679 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
680 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
681 break;
682 default:
683 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
684 CP_SET_DRAW_STATE__0_SYSMEM |
685 CP_SET_DRAW_STATE__0_BINNING;
686 break;
687 }
688
689 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
690 enable_mask |
691 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
692 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
693 tu_cs_emit_qw(cs, state.iova);
694 }
695
696 /* note: get rid of this eventually */
697 static void
698 tu_cs_emit_sds_ib(struct tu_cs *cs, uint32_t id, struct tu_cs_entry entry)
699 {
700 tu_cs_emit_draw_state(cs, id, (struct tu_draw_state) {
701 .iova = entry.size ? entry.bo->iova + entry.offset : 0,
702 .size = entry.size / 4,
703 });
704 }
705
706 static bool
707 use_hw_binning(struct tu_cmd_buffer *cmd)
708 {
709 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
710
711 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
712 * with non-hw binning GMEM rendering. this is required because some of the
713 * XFB commands need to only be executed once
714 */
715 if (cmd->state.xfb_used)
716 return true;
717
718 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
719 return false;
720
721 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
722 return true;
723
724 return (tiling->tile_count.width * tiling->tile_count.height) > 2;
725 }
726
727 static bool
728 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
729 {
730 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
731 return true;
732
733 /* can't fit attachments into gmem */
734 if (!cmd->state.pass->gmem_pixels)
735 return true;
736
737 if (cmd->state.framebuffer->layers > 1)
738 return true;
739
740 if (cmd->has_tess)
741 return true;
742
743 return cmd->state.tiling_config.force_sysmem;
744 }
745
746 static void
747 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
748 struct tu_cs *cs,
749 const struct tu_tile *tile)
750 {
751 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
752 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
753
754 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
755 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
756
757 const uint32_t x1 = tile->begin.x;
758 const uint32_t y1 = tile->begin.y;
759 const uint32_t x2 = tile->end.x - 1;
760 const uint32_t y2 = tile->end.y - 1;
761 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
762 tu6_emit_window_offset(cs, x1, y1);
763
764 tu_cs_emit_regs(cs,
765 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
766
767 if (use_hw_binning(cmd)) {
768 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
769
770 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
771 tu_cs_emit(cs, 0x0);
772
773 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5, 7);
774 tu_cs_emit(cs, cmd->state.tiling_config.pipe_sizes[tile->pipe] |
775 CP_SET_BIN_DATA5_0_VSC_N(tile->slot));
776 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + tile->pipe * cmd->vsc_draw_strm_pitch);
777 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + (tile->pipe * 4) + (32 * cmd->vsc_draw_strm_pitch));
778 tu_cs_emit_qw(cs, cmd->vsc_prim_strm.iova + (tile->pipe * cmd->vsc_prim_strm_pitch));
779
780 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
781 tu_cs_emit(cs, 0x0);
782
783 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
784 tu_cs_emit(cs, 0x0);
785 } else {
786 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
787 tu_cs_emit(cs, 0x1);
788
789 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
790 tu_cs_emit(cs, 0x0);
791 }
792 }
793
794 static void
795 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
796 struct tu_cs *cs,
797 uint32_t a,
798 uint32_t gmem_a)
799 {
800 const struct tu_framebuffer *fb = cmd->state.framebuffer;
801 struct tu_image_view *dst = fb->attachments[a].attachment;
802 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
803
804 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.tiling_config.render_area);
805 }
806
807 static void
808 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
809 struct tu_cs *cs,
810 const struct tu_subpass *subpass)
811 {
812 if (subpass->resolve_attachments) {
813 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
814 * Commands":
815 *
816 * End-of-subpass multisample resolves are treated as color
817 * attachment writes for the purposes of synchronization. That is,
818 * they are considered to execute in the
819 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
820 * their writes are synchronized with
821 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
822 * rendering within a subpass and any resolve operations at the end
823 * of the subpass occurs automatically, without need for explicit
824 * dependencies or pipeline barriers. However, if the resolve
825 * attachment is also used in a different subpass, an explicit
826 * dependency is needed.
827 *
828 * We use the CP_BLIT path for sysmem resolves, which is really a
829 * transfer command, so we have to manually flush similar to the gmem
830 * resolve case. However, a flush afterwards isn't needed because of the
831 * last sentence and the fact that we're in sysmem mode.
832 */
833 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
834 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
835
836 /* Wait for the flushes to land before using the 2D engine */
837 tu_cs_emit_wfi(cs);
838
839 for (unsigned i = 0; i < subpass->color_count; i++) {
840 uint32_t a = subpass->resolve_attachments[i].attachment;
841 if (a == VK_ATTACHMENT_UNUSED)
842 continue;
843
844 tu6_emit_sysmem_resolve(cmd, cs, a,
845 subpass->color_attachments[i].attachment);
846 }
847 }
848 }
849
850 static void
851 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
852 {
853 const struct tu_render_pass *pass = cmd->state.pass;
854 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
855
856 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
857 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
858 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
859 CP_SET_DRAW_STATE__0_GROUP_ID(0));
860 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
861 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
862
863 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
864 tu_cs_emit(cs, 0x0);
865
866 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
867 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
868
869 tu6_emit_blit_scissor(cmd, cs, true);
870
871 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
872 if (pass->attachments[a].gmem_offset >= 0)
873 tu_store_gmem_attachment(cmd, cs, a, a);
874 }
875
876 if (subpass->resolve_attachments) {
877 for (unsigned i = 0; i < subpass->color_count; i++) {
878 uint32_t a = subpass->resolve_attachments[i].attachment;
879 if (a != VK_ATTACHMENT_UNUSED)
880 tu_store_gmem_attachment(cmd, cs, a,
881 subpass->color_attachments[i].attachment);
882 }
883 }
884 }
885
886 static void
887 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
888 {
889 const struct tu_physical_device *phys_dev = cmd->device->physical_device;
890
891 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
892
893 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 0xfffff);
894
895 tu_cs_emit_regs(cs,
896 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
897 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
898 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
899 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
900 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
901 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
902 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
903 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
904 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
905 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
906
907 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
908 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
909 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
910 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
911 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
912 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
913 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BB11, 0);
914 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
915 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
916 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
917 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
918 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
919 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
920 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_GS_SIV_CNTL, 0x0000ffff);
921
922 /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
923 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
924 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
925 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
926
927 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
928
929 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
930
931 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
932 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
933 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
934 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
935 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
936 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
937 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
938 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
939 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
940 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
941 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
942
943 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9101, 0xffff00);
944 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
945
946 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9236,
947 A6XX_VPC_UNKNOWN_9236_POINT_COORD_INVERT(0));
948 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
949
950 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_SO_OVERRIDE,
951 A6XX_VPC_SO_OVERRIDE_SO_DISABLE);
952
953 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
954 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
955 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9990, 0);
956
957 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
958 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
959
960 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
961
962 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
963
964 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
965 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_809B, 0);
966 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
967 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
968 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
969 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
970 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
971 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9981, 0x3);
972 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
973 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9108, 0x3);
974 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
975 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
976
977 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
978
979 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
980
981 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
982
983 /* we don't use this yet.. probably best to disable.. */
984 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
985 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
986 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
987 CP_SET_DRAW_STATE__0_GROUP_ID(0));
988 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
989 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
990
991 tu_cs_emit_regs(cs,
992 A6XX_SP_HS_CTRL_REG0(0));
993
994 tu_cs_emit_regs(cs,
995 A6XX_SP_GS_CTRL_REG0(0));
996
997 tu_cs_emit_regs(cs,
998 A6XX_GRAS_LRZ_CNTL(0));
999
1000 tu_cs_emit_regs(cs,
1001 A6XX_RB_LRZ_CNTL(0));
1002
1003 tu_cs_emit_regs(cs,
1004 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1005 tu_cs_emit_regs(cs,
1006 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1007
1008 tu_cs_sanity_check(cs);
1009 }
1010
1011 static void
1012 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1013 {
1014 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1015
1016 tu_cs_emit_regs(cs,
1017 A6XX_VSC_BIN_SIZE(.width = tiling->tile0.extent.width,
1018 .height = tiling->tile0.extent.height),
1019 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = &cmd->vsc_draw_strm,
1020 .bo_offset = 32 * cmd->vsc_draw_strm_pitch));
1021
1022 tu_cs_emit_regs(cs,
1023 A6XX_VSC_BIN_COUNT(.nx = tiling->tile_count.width,
1024 .ny = tiling->tile_count.height));
1025
1026 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
1027 for (unsigned i = 0; i < 32; i++)
1028 tu_cs_emit(cs, tiling->pipe_config[i]);
1029
1030 tu_cs_emit_regs(cs,
1031 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = &cmd->vsc_prim_strm),
1032 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
1033 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - 64));
1034
1035 tu_cs_emit_regs(cs,
1036 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = &cmd->vsc_draw_strm),
1037 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
1038 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - 64));
1039 }
1040
1041 static void
1042 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1043 {
1044 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1045 const uint32_t used_pipe_count =
1046 tiling->pipe_count.width * tiling->pipe_count.height;
1047
1048 /* Clear vsc_scratch: */
1049 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
1050 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1051 tu_cs_emit(cs, 0x0);
1052
1053 /* Check for overflow, write vsc_scratch if detected: */
1054 for (int i = 0; i < used_pipe_count; i++) {
1055 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1056 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1057 CP_COND_WRITE5_0_WRITE_MEMORY);
1058 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
1059 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1060 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - 64));
1061 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1062 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1063 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(1 + cmd->vsc_draw_strm_pitch));
1064
1065 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1066 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1067 CP_COND_WRITE5_0_WRITE_MEMORY);
1068 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
1069 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1070 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - 64));
1071 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1072 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1073 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(3 + cmd->vsc_prim_strm_pitch));
1074 }
1075
1076 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1077 }
1078
1079 static void
1080 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1081 {
1082 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1083 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1084
1085 uint32_t x1 = tiling->tile0.offset.x;
1086 uint32_t y1 = tiling->tile0.offset.y;
1087 uint32_t x2 = tiling->render_area.offset.x + tiling->render_area.extent.width - 1;
1088 uint32_t y2 = tiling->render_area.offset.y + tiling->render_area.extent.height - 1;
1089
1090 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
1091
1092 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1093 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
1094
1095 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1096 tu_cs_emit(cs, 0x1);
1097
1098 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1099 tu_cs_emit(cs, 0x1);
1100
1101 tu_cs_emit_wfi(cs);
1102
1103 tu_cs_emit_regs(cs,
1104 A6XX_VFD_MODE_CNTL(.binning_pass = true));
1105
1106 update_vsc_pipe(cmd, cs);
1107
1108 tu_cs_emit_regs(cs,
1109 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1110
1111 tu_cs_emit_regs(cs,
1112 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1113
1114 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1115 tu_cs_emit(cs, UNK_2C);
1116
1117 tu_cs_emit_regs(cs,
1118 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1119
1120 tu_cs_emit_regs(cs,
1121 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1122
1123 /* emit IB to binning drawcmds: */
1124 tu_cs_emit_call(cs, &cmd->draw_cs);
1125
1126 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1127 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1128 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1129 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1130 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1131 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1132
1133 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1134 tu_cs_emit(cs, UNK_2D);
1135
1136 /* This flush is probably required because the VSC, which produces the
1137 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1138 * visibility stream (without caching) to do draw skipping. The
1139 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1140 * submitted are finished before reading the VSC regs (in
1141 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1142 * part of draws).
1143 */
1144 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1145
1146 tu_cs_emit_wfi(cs);
1147
1148 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1149
1150 emit_vsc_overflow_test(cmd, cs);
1151
1152 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1153 tu_cs_emit(cs, 0x0);
1154
1155 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1156 tu_cs_emit(cs, 0x0);
1157 }
1158
1159 static void
1160 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1161 const struct tu_subpass *subpass,
1162 struct tu_cs_entry *ib,
1163 bool gmem)
1164 {
1165 /* note: we can probably emit input attachments just once for the whole
1166 * renderpass, this would avoid emitting both sysmem/gmem versions
1167 *
1168 * emit two texture descriptors for each input, as a workaround for
1169 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1170 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1171 * in the pair
1172 * TODO: a smarter workaround
1173 */
1174
1175 if (!subpass->input_count)
1176 return;
1177
1178 struct tu_cs_memory texture;
1179 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1180 A6XX_TEX_CONST_DWORDS, &texture);
1181 assert(result == VK_SUCCESS);
1182
1183 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1184 uint32_t a = subpass->input_attachments[i / 2].attachment;
1185 if (a == VK_ATTACHMENT_UNUSED)
1186 continue;
1187
1188 struct tu_image_view *iview =
1189 cmd->state.framebuffer->attachments[a].attachment;
1190 const struct tu_render_pass_attachment *att =
1191 &cmd->state.pass->attachments[a];
1192 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1193
1194 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1195
1196 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1197 /* note this works because spec says fb and input attachments
1198 * must use identity swizzle
1199 */
1200 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1201 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1202 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1203 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1204 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1205 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1206 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1207 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1208 }
1209
1210 if (!gmem)
1211 continue;
1212
1213 /* patched for gmem */
1214 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1215 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1216 dst[2] =
1217 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1218 A6XX_TEX_CONST_2_PITCH(cmd->state.tiling_config.tile0.extent.width * att->cpp);
1219 dst[3] = 0;
1220 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1221 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1222 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1223 dst[i] = 0;
1224 }
1225
1226 struct tu_cs cs;
1227 tu_cs_begin_sub_stream(&cmd->sub_cs, 9, &cs);
1228
1229 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1230 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1231 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1232 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1233 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1234 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1235 tu_cs_emit_qw(&cs, texture.iova);
1236
1237 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1238 tu_cs_emit_qw(&cs, texture.iova);
1239
1240 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1241
1242 *ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1243 }
1244
1245 static void
1246 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1247 {
1248 struct tu_cs *cs = &cmd->draw_cs;
1249
1250 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_gmem_ib, true);
1251 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_sysmem_ib, false);
1252
1253 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1254 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM, cmd->state.ia_gmem_ib);
1255 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM, cmd->state.ia_sysmem_ib);
1256 }
1257
1258 static void
1259 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1260 const VkRenderPassBeginInfo *info)
1261 {
1262 struct tu_cs *cs = &cmd->draw_cs;
1263
1264 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1265
1266 tu6_emit_blit_scissor(cmd, cs, true);
1267
1268 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1269 tu_load_gmem_attachment(cmd, cs, i, false);
1270
1271 tu6_emit_blit_scissor(cmd, cs, false);
1272
1273 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1274 tu_clear_gmem_attachment(cmd, cs, i, info);
1275
1276 tu_cond_exec_end(cs);
1277
1278 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1279
1280 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1281 tu_clear_sysmem_attachment(cmd, cs, i, info);
1282
1283 tu_cond_exec_end(cs);
1284 }
1285
1286 static void
1287 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1288 const struct VkRect2D *renderArea)
1289 {
1290 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1291
1292 assert(fb->width > 0 && fb->height > 0);
1293 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1294 tu6_emit_window_offset(cs, 0, 0);
1295
1296 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1297
1298 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1299
1300 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1301 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1302
1303 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1304 tu_cs_emit(cs, 0x0);
1305
1306 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1307
1308 /* enable stream-out, with sysmem there is only one pass: */
1309 tu_cs_emit_regs(cs,
1310 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
1311
1312 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1313 tu_cs_emit(cs, 0x1);
1314
1315 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1316 tu_cs_emit(cs, 0x0);
1317
1318 tu_cs_sanity_check(cs);
1319 }
1320
1321 static void
1322 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1323 {
1324 /* Do any resolves of the last subpass. These are handled in the
1325 * tile_store_ib in the gmem path.
1326 */
1327 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1328
1329 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1330
1331 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1332 tu_cs_emit(cs, 0x0);
1333
1334 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1335
1336 tu_cs_sanity_check(cs);
1337 }
1338
1339 static void
1340 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1341 {
1342 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1343
1344 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1345
1346 /* lrz clear? */
1347
1348 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1349 tu_cs_emit(cs, 0x0);
1350
1351 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1352
1353 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1354 if (use_hw_binning(cmd)) {
1355 /* enable stream-out during binning pass: */
1356 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1357
1358 tu6_emit_bin_size(cs,
1359 tiling->tile0.extent.width,
1360 tiling->tile0.extent.height,
1361 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1362
1363 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1364
1365 tu6_emit_binning_pass(cmd, cs);
1366
1367 /* and disable stream-out for draw pass: */
1368 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=true));
1369
1370 tu6_emit_bin_size(cs,
1371 tiling->tile0.extent.width,
1372 tiling->tile0.extent.height,
1373 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1374
1375 tu_cs_emit_regs(cs,
1376 A6XX_VFD_MODE_CNTL(0));
1377
1378 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1379
1380 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1381
1382 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1383 tu_cs_emit(cs, 0x1);
1384 } else {
1385 /* no binning pass, so enable stream-out for draw pass:: */
1386 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1387
1388 tu6_emit_bin_size(cs,
1389 tiling->tile0.extent.width,
1390 tiling->tile0.extent.height,
1391 0x6000000);
1392 }
1393
1394 tu_cs_sanity_check(cs);
1395 }
1396
1397 static void
1398 tu6_render_tile(struct tu_cmd_buffer *cmd,
1399 struct tu_cs *cs,
1400 const struct tu_tile *tile)
1401 {
1402 tu6_emit_tile_select(cmd, cs, tile);
1403
1404 tu_cs_emit_call(cs, &cmd->draw_cs);
1405
1406 if (use_hw_binning(cmd)) {
1407 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1408 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1409 }
1410
1411 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1412
1413 tu_cs_sanity_check(cs);
1414 }
1415
1416 static void
1417 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1418 {
1419 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1420
1421 tu_cs_emit_regs(cs,
1422 A6XX_GRAS_LRZ_CNTL(0));
1423
1424 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1425
1426 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1427
1428 tu_cs_sanity_check(cs);
1429 }
1430
1431 static void
1432 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1433 {
1434 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1435
1436 if (use_hw_binning(cmd))
1437 cmd->use_vsc_data = true;
1438
1439 tu6_tile_render_begin(cmd, &cmd->cs);
1440
1441 for (uint32_t y = 0; y < tiling->tile_count.height; y++) {
1442 for (uint32_t x = 0; x < tiling->tile_count.width; x++) {
1443 struct tu_tile tile;
1444 tu_tiling_config_get_tile(tiling, cmd->device, x, y, &tile);
1445 tu6_render_tile(cmd, &cmd->cs, &tile);
1446 }
1447 }
1448
1449 tu6_tile_render_end(cmd, &cmd->cs);
1450 }
1451
1452 static void
1453 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1454 {
1455 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1456
1457 tu6_sysmem_render_begin(cmd, &cmd->cs, &tiling->render_area);
1458
1459 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1460
1461 tu6_sysmem_render_end(cmd, &cmd->cs);
1462 }
1463
1464 static void
1465 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1466 {
1467 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1468 struct tu_cs sub_cs;
1469
1470 VkResult result =
1471 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1472 if (result != VK_SUCCESS) {
1473 cmd->record_result = result;
1474 return;
1475 }
1476
1477 /* emit to tile-store sub_cs */
1478 tu6_emit_tile_store(cmd, &sub_cs);
1479
1480 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1481 }
1482
1483 static void
1484 tu_cmd_update_tiling_config(struct tu_cmd_buffer *cmd,
1485 const VkRect2D *render_area)
1486 {
1487 const struct tu_device *dev = cmd->device;
1488 struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1489
1490 tiling->render_area = *render_area;
1491 tiling->force_sysmem = false;
1492
1493 tu_tiling_config_update_tile_layout(tiling, dev, cmd->state.pass);
1494 tu_tiling_config_update_pipe_layout(tiling, dev);
1495 tu_tiling_config_update_pipes(tiling, dev);
1496 }
1497
1498 static VkResult
1499 tu_create_cmd_buffer(struct tu_device *device,
1500 struct tu_cmd_pool *pool,
1501 VkCommandBufferLevel level,
1502 VkCommandBuffer *pCommandBuffer)
1503 {
1504 struct tu_cmd_buffer *cmd_buffer;
1505 cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8,
1506 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1507 if (cmd_buffer == NULL)
1508 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1509
1510 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1511 cmd_buffer->device = device;
1512 cmd_buffer->pool = pool;
1513 cmd_buffer->level = level;
1514
1515 if (pool) {
1516 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1517 cmd_buffer->queue_family_index = pool->queue_family_index;
1518
1519 } else {
1520 /* Init the pool_link so we can safely call list_del when we destroy
1521 * the command buffer
1522 */
1523 list_inithead(&cmd_buffer->pool_link);
1524 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1525 }
1526
1527 tu_bo_list_init(&cmd_buffer->bo_list);
1528 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1529 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1530 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1531 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1532
1533 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1534
1535 list_inithead(&cmd_buffer->upload.list);
1536
1537 VkResult result = tu_bo_init_new(device, &cmd_buffer->scratch_bo, 0x1000);
1538 if (result != VK_SUCCESS)
1539 goto fail_scratch_bo;
1540
1541 /* TODO: resize on overflow */
1542 cmd_buffer->vsc_draw_strm_pitch = device->vsc_draw_strm_pitch;
1543 cmd_buffer->vsc_prim_strm_pitch = device->vsc_prim_strm_pitch;
1544 cmd_buffer->vsc_draw_strm = device->vsc_draw_strm;
1545 cmd_buffer->vsc_prim_strm = device->vsc_prim_strm;
1546
1547 return VK_SUCCESS;
1548
1549 fail_scratch_bo:
1550 list_del(&cmd_buffer->pool_link);
1551 return result;
1552 }
1553
1554 static void
1555 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1556 {
1557 tu_bo_finish(cmd_buffer->device, &cmd_buffer->scratch_bo);
1558
1559 list_del(&cmd_buffer->pool_link);
1560
1561 tu_cs_finish(&cmd_buffer->cs);
1562 tu_cs_finish(&cmd_buffer->draw_cs);
1563 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1564 tu_cs_finish(&cmd_buffer->sub_cs);
1565
1566 tu_bo_list_destroy(&cmd_buffer->bo_list);
1567 vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
1568 }
1569
1570 static VkResult
1571 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1572 {
1573 cmd_buffer->record_result = VK_SUCCESS;
1574
1575 tu_bo_list_reset(&cmd_buffer->bo_list);
1576 tu_cs_reset(&cmd_buffer->cs);
1577 tu_cs_reset(&cmd_buffer->draw_cs);
1578 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1579 tu_cs_reset(&cmd_buffer->sub_cs);
1580
1581 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1582 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1583
1584 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1585
1586 return cmd_buffer->record_result;
1587 }
1588
1589 VkResult
1590 tu_AllocateCommandBuffers(VkDevice _device,
1591 const VkCommandBufferAllocateInfo *pAllocateInfo,
1592 VkCommandBuffer *pCommandBuffers)
1593 {
1594 TU_FROM_HANDLE(tu_device, device, _device);
1595 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1596
1597 VkResult result = VK_SUCCESS;
1598 uint32_t i;
1599
1600 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1601
1602 if (!list_is_empty(&pool->free_cmd_buffers)) {
1603 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1604 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1605
1606 list_del(&cmd_buffer->pool_link);
1607 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1608
1609 result = tu_reset_cmd_buffer(cmd_buffer);
1610 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1611 cmd_buffer->level = pAllocateInfo->level;
1612
1613 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1614 } else {
1615 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1616 &pCommandBuffers[i]);
1617 }
1618 if (result != VK_SUCCESS)
1619 break;
1620 }
1621
1622 if (result != VK_SUCCESS) {
1623 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1624 pCommandBuffers);
1625
1626 /* From the Vulkan 1.0.66 spec:
1627 *
1628 * "vkAllocateCommandBuffers can be used to create multiple
1629 * command buffers. If the creation of any of those command
1630 * buffers fails, the implementation must destroy all
1631 * successfully created command buffer objects from this
1632 * command, set all entries of the pCommandBuffers array to
1633 * NULL and return the error."
1634 */
1635 memset(pCommandBuffers, 0,
1636 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1637 }
1638
1639 return result;
1640 }
1641
1642 void
1643 tu_FreeCommandBuffers(VkDevice device,
1644 VkCommandPool commandPool,
1645 uint32_t commandBufferCount,
1646 const VkCommandBuffer *pCommandBuffers)
1647 {
1648 for (uint32_t i = 0; i < commandBufferCount; i++) {
1649 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1650
1651 if (cmd_buffer) {
1652 if (cmd_buffer->pool) {
1653 list_del(&cmd_buffer->pool_link);
1654 list_addtail(&cmd_buffer->pool_link,
1655 &cmd_buffer->pool->free_cmd_buffers);
1656 } else
1657 tu_cmd_buffer_destroy(cmd_buffer);
1658 }
1659 }
1660 }
1661
1662 VkResult
1663 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1664 VkCommandBufferResetFlags flags)
1665 {
1666 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1667 return tu_reset_cmd_buffer(cmd_buffer);
1668 }
1669
1670 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1671 * invalidations.
1672 */
1673 static void
1674 tu_cache_init(struct tu_cache_state *cache)
1675 {
1676 cache->flush_bits = 0;
1677 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1678 }
1679
1680 VkResult
1681 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1682 const VkCommandBufferBeginInfo *pBeginInfo)
1683 {
1684 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1685 VkResult result = VK_SUCCESS;
1686
1687 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1688 /* If the command buffer has already been resetted with
1689 * vkResetCommandBuffer, no need to do it again.
1690 */
1691 result = tu_reset_cmd_buffer(cmd_buffer);
1692 if (result != VK_SUCCESS)
1693 return result;
1694 }
1695
1696 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1697 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1698
1699 tu_cache_init(&cmd_buffer->state.cache);
1700 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1701 cmd_buffer->usage_flags = pBeginInfo->flags;
1702
1703 tu_cs_begin(&cmd_buffer->cs);
1704 tu_cs_begin(&cmd_buffer->draw_cs);
1705 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1706
1707 /* setup initial configuration into command buffer */
1708 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1709 switch (cmd_buffer->queue_family_index) {
1710 case TU_QUEUE_GENERAL:
1711 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1712 break;
1713 default:
1714 break;
1715 }
1716 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1717 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1718 assert(pBeginInfo->pInheritanceInfo);
1719 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1720 cmd_buffer->state.subpass =
1721 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1722 } else {
1723 /* When executing in the middle of another command buffer, the CCU
1724 * state is unknown.
1725 */
1726 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1727 }
1728 }
1729
1730 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1731
1732 return VK_SUCCESS;
1733 }
1734
1735 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1736 * rendering can skip over unused state), so we need to collect all the
1737 * bindings together into a single state emit at draw time.
1738 */
1739 void
1740 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1741 uint32_t firstBinding,
1742 uint32_t bindingCount,
1743 const VkBuffer *pBuffers,
1744 const VkDeviceSize *pOffsets)
1745 {
1746 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1747
1748 assert(firstBinding + bindingCount <= MAX_VBS);
1749
1750 for (uint32_t i = 0; i < bindingCount; i++) {
1751 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1752
1753 cmd->state.vb.buffers[firstBinding + i] = buf;
1754 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1755
1756 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1757 }
1758
1759 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1760 }
1761
1762 void
1763 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1764 VkBuffer buffer,
1765 VkDeviceSize offset,
1766 VkIndexType indexType)
1767 {
1768 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1769 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1770
1771
1772
1773 uint32_t index_size, index_shift, restart_index;
1774
1775 switch (indexType) {
1776 case VK_INDEX_TYPE_UINT16:
1777 index_size = INDEX4_SIZE_16_BIT;
1778 index_shift = 1;
1779 restart_index = 0xffff;
1780 break;
1781 case VK_INDEX_TYPE_UINT32:
1782 index_size = INDEX4_SIZE_32_BIT;
1783 index_shift = 2;
1784 restart_index = 0xffffffff;
1785 break;
1786 case VK_INDEX_TYPE_UINT8_EXT:
1787 index_size = INDEX4_SIZE_8_BIT;
1788 index_shift = 0;
1789 restart_index = 0xff;
1790 break;
1791 default:
1792 unreachable("invalid VkIndexType");
1793 }
1794
1795 /* initialize/update the restart index */
1796 if (cmd->state.index_size != index_size)
1797 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1798
1799 assert(buf->size >= offset);
1800
1801 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1802 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1803 cmd->state.index_size = index_size;
1804 cmd->state.index_shift = index_shift;
1805
1806 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1807 }
1808
1809 void
1810 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1811 VkPipelineBindPoint pipelineBindPoint,
1812 VkPipelineLayout _layout,
1813 uint32_t firstSet,
1814 uint32_t descriptorSetCount,
1815 const VkDescriptorSet *pDescriptorSets,
1816 uint32_t dynamicOffsetCount,
1817 const uint32_t *pDynamicOffsets)
1818 {
1819 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1820 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1821 unsigned dyn_idx = 0;
1822
1823 struct tu_descriptor_state *descriptors_state =
1824 tu_get_descriptors_state(cmd, pipelineBindPoint);
1825
1826 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1827 unsigned idx = i + firstSet;
1828 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1829
1830 descriptors_state->sets[idx] = set;
1831
1832 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1833 /* update the contents of the dynamic descriptor set */
1834 unsigned src_idx = j;
1835 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1836 assert(dyn_idx < dynamicOffsetCount);
1837
1838 uint32_t *dst =
1839 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1840 uint32_t *src =
1841 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1842 uint32_t offset = pDynamicOffsets[dyn_idx];
1843
1844 /* Patch the storage/uniform descriptors right away. */
1845 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1846 /* Note: we can assume here that the addition won't roll over and
1847 * change the SIZE field.
1848 */
1849 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1850 va += offset;
1851 dst[0] = va;
1852 dst[1] = va >> 32;
1853 } else {
1854 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1855 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1856 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1857 va += offset;
1858 dst[4] = va;
1859 dst[5] = va >> 32;
1860 }
1861 }
1862
1863 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1864 if (set->buffers[j]) {
1865 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1866 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1867 }
1868 }
1869
1870 if (set->size > 0) {
1871 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1872 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1873 }
1874 }
1875 assert(dyn_idx == dynamicOffsetCount);
1876
1877 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_update_value;
1878 uint64_t addr[MAX_SETS + 1] = {};
1879 struct tu_cs cs;
1880
1881 for (uint32_t i = 0; i < MAX_SETS; i++) {
1882 struct tu_descriptor_set *set = descriptors_state->sets[i];
1883 if (set)
1884 addr[i] = set->va | 3;
1885 }
1886
1887 if (layout->dynamic_offset_count) {
1888 /* allocate and fill out dynamic descriptor set */
1889 struct tu_cs_memory dynamic_desc_set;
1890 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1891 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1892 assert(result == VK_SUCCESS);
1893
1894 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1895 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1896 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1897 }
1898
1899 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1900 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1901 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1902 hlsq_update_value = 0x7c000;
1903
1904 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS | TU_CMD_DIRTY_SHADER_CONSTS;
1905 } else {
1906 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1907
1908 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1909 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1910 hlsq_update_value = 0x3e00;
1911
1912 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS;
1913 }
1914
1915 tu_cs_begin_sub_stream(&cmd->sub_cs, 24, &cs);
1916
1917 tu_cs_emit_pkt4(&cs, sp_bindless_base_reg, 10);
1918 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1919 tu_cs_emit_pkt4(&cs, hlsq_bindless_base_reg, 10);
1920 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1921 tu_cs_emit_regs(&cs, A6XX_HLSQ_UPDATE_CNTL(.dword = hlsq_update_value));
1922
1923 struct tu_cs_entry ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1924 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1925 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1926 tu_cs_emit_sds_ib(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, ib);
1927 cmd->state.desc_sets_ib = ib;
1928 } else {
1929 /* note: for compute we could emit directly, instead of a CP_INDIRECT
1930 * however, the blob uses draw states for compute
1931 */
1932 tu_cs_emit_ib(&cmd->cs, &ib);
1933 }
1934 }
1935
1936 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1937 uint32_t firstBinding,
1938 uint32_t bindingCount,
1939 const VkBuffer *pBuffers,
1940 const VkDeviceSize *pOffsets,
1941 const VkDeviceSize *pSizes)
1942 {
1943 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1944 struct tu_cs *cs = &cmd->draw_cs;
1945
1946 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1947 * presumably there isn't any benefit using a draw state when the
1948 * condition is (SYSMEM | BINNING)
1949 */
1950 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1951 CP_COND_REG_EXEC_0_SYSMEM |
1952 CP_COND_REG_EXEC_0_BINNING);
1953
1954 for (uint32_t i = 0; i < bindingCount; i++) {
1955 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1956 uint64_t iova = buf->bo->iova + pOffsets[i];
1957 uint32_t size = buf->bo->size - pOffsets[i];
1958 uint32_t idx = i + firstBinding;
1959
1960 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1961 size = pSizes[i];
1962
1963 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1964 uint32_t offset = iova & 0x1f;
1965 iova &= ~(uint64_t) 0x1f;
1966
1967 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1968 tu_cs_emit_qw(cs, iova);
1969 tu_cs_emit(cs, size + offset);
1970
1971 cmd->state.streamout_offset[idx] = offset;
1972
1973 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1974 }
1975
1976 tu_cond_exec_end(cs);
1977 }
1978
1979 void
1980 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1981 uint32_t firstCounterBuffer,
1982 uint32_t counterBufferCount,
1983 const VkBuffer *pCounterBuffers,
1984 const VkDeviceSize *pCounterBufferOffsets)
1985 {
1986 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1987 struct tu_cs *cs = &cmd->draw_cs;
1988
1989 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1990 CP_COND_REG_EXEC_0_SYSMEM |
1991 CP_COND_REG_EXEC_0_BINNING);
1992
1993 /* TODO: only update offset for active buffers */
1994 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1995 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1996
1997 for (uint32_t i = 0; i < counterBufferCount; i++) {
1998 uint32_t idx = firstCounterBuffer + i;
1999 uint32_t offset = cmd->state.streamout_offset[idx];
2000
2001 if (!pCounterBuffers[i])
2002 continue;
2003
2004 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
2005
2006 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
2007
2008 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
2009 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
2010 CP_MEM_TO_REG_0_UNK31 |
2011 CP_MEM_TO_REG_0_CNT(1));
2012 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
2013
2014 if (offset) {
2015 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
2016 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
2017 CP_REG_RMW_0_SRC1_ADD);
2018 tu_cs_emit_qw(cs, 0xffffffff);
2019 tu_cs_emit_qw(cs, offset);
2020 }
2021 }
2022
2023 tu_cond_exec_end(cs);
2024 }
2025
2026 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
2027 uint32_t firstCounterBuffer,
2028 uint32_t counterBufferCount,
2029 const VkBuffer *pCounterBuffers,
2030 const VkDeviceSize *pCounterBufferOffsets)
2031 {
2032 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2033 struct tu_cs *cs = &cmd->draw_cs;
2034
2035 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
2036 CP_COND_REG_EXEC_0_SYSMEM |
2037 CP_COND_REG_EXEC_0_BINNING);
2038
2039 /* TODO: only flush buffers that need to be flushed */
2040 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
2041 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
2042 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
2043 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(flush_base[i]));
2044 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
2045 }
2046
2047 for (uint32_t i = 0; i < counterBufferCount; i++) {
2048 uint32_t idx = firstCounterBuffer + i;
2049 uint32_t offset = cmd->state.streamout_offset[idx];
2050
2051 if (!pCounterBuffers[i])
2052 continue;
2053
2054 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
2055
2056 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
2057
2058 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
2059 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
2060 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2061 CP_MEM_TO_REG_0_SHIFT_BY_2 |
2062 0x40000 | /* ??? */
2063 CP_MEM_TO_REG_0_UNK31 |
2064 CP_MEM_TO_REG_0_CNT(1));
2065 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(flush_base[idx]));
2066
2067 if (offset) {
2068 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
2069 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2070 CP_REG_RMW_0_SRC1_ADD);
2071 tu_cs_emit_qw(cs, 0xffffffff);
2072 tu_cs_emit_qw(cs, -offset);
2073 }
2074
2075 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
2076 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2077 CP_REG_TO_MEM_0_CNT(1));
2078 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
2079 }
2080
2081 tu_cond_exec_end(cs);
2082
2083 cmd->state.xfb_used = true;
2084 }
2085
2086 void
2087 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
2088 VkPipelineLayout layout,
2089 VkShaderStageFlags stageFlags,
2090 uint32_t offset,
2091 uint32_t size,
2092 const void *pValues)
2093 {
2094 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2095 memcpy((void*) cmd->push_constants + offset, pValues, size);
2096 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2097 }
2098
2099 /* Flush everything which has been made available but we haven't actually
2100 * flushed yet.
2101 */
2102 static void
2103 tu_flush_all_pending(struct tu_cache_state *cache)
2104 {
2105 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2106 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
2107 }
2108
2109 VkResult
2110 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
2111 {
2112 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
2113
2114 /* We currently flush CCU at the end of the command buffer, like
2115 * what the blob does. There's implicit synchronization around every
2116 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
2117 * know yet if this command buffer will be the last in the submit so we
2118 * have to defensively flush everything else.
2119 *
2120 * TODO: We could definitely do better than this, since these flushes
2121 * aren't required by Vulkan, but we'd need kernel support to do that.
2122 * Ideally, we'd like the kernel to flush everything afterwards, so that we
2123 * wouldn't have to do any flushes here, and when submitting multiple
2124 * command buffers there wouldn't be any unnecessary flushes in between.
2125 */
2126 if (cmd_buffer->state.pass) {
2127 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
2128 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
2129 } else {
2130 tu_flush_all_pending(&cmd_buffer->state.cache);
2131 cmd_buffer->state.cache.flush_bits |=
2132 TU_CMD_FLAG_CCU_FLUSH_COLOR |
2133 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
2134 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
2135 }
2136
2137 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->scratch_bo,
2138 MSM_SUBMIT_BO_WRITE);
2139
2140 if (cmd_buffer->use_vsc_data) {
2141 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_draw_strm,
2142 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2143 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_prim_strm,
2144 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2145 }
2146
2147 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->border_color,
2148 MSM_SUBMIT_BO_READ);
2149
2150 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
2151 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
2152 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2153 }
2154
2155 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
2156 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
2157 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2158 }
2159
2160 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
2161 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
2162 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2163 }
2164
2165 tu_cs_end(&cmd_buffer->cs);
2166 tu_cs_end(&cmd_buffer->draw_cs);
2167 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
2168
2169 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
2170
2171 return cmd_buffer->record_result;
2172 }
2173
2174 static struct tu_cs
2175 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2176 {
2177 struct tu_cs_memory memory;
2178 struct tu_cs cs;
2179
2180 /* TODO: share this logic with tu_pipeline_static_state */
2181 tu_cs_alloc(&cmd->sub_cs, size, 1, &memory);
2182 tu_cs_init_external(&cs, memory.map, memory.map + size);
2183 tu_cs_begin(&cs);
2184 tu_cs_reserve_space(&cs, size);
2185
2186 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2187 cmd->state.dynamic_state[id].iova = memory.iova;
2188 cmd->state.dynamic_state[id].size = size;
2189
2190 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2191 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2192
2193 return cs;
2194 }
2195
2196 void
2197 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2198 VkPipelineBindPoint pipelineBindPoint,
2199 VkPipeline _pipeline)
2200 {
2201 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2202 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2203
2204 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2205 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2206 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2207 }
2208
2209 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2210 cmd->state.compute_pipeline = pipeline;
2211 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_PIPELINE;
2212 return;
2213 }
2214
2215 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2216
2217 cmd->state.pipeline = pipeline;
2218 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2219
2220 struct tu_cs *cs = &cmd->draw_cs;
2221 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2222 uint32_t i;
2223
2224 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2225 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
2226 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
2227 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
2228 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
2229 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
2230 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
2231 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
2232
2233 for_each_bit(i, mask)
2234 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2235
2236 /* If the new pipeline requires more VBs than we had previously set up, we
2237 * need to re-emit them in SDS. If it requires the same set or fewer, we
2238 * can just re-use the old SDS.
2239 */
2240 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2241 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2242
2243 /* If the pipeline needs a dynamic descriptor, re-emit descriptor sets */
2244 if (pipeline->layout->dynamic_offset_count)
2245 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS;
2246
2247 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2248 * so the dynamic state ib must be updated when pipeline changes
2249 */
2250 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2251 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2252
2253 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2254 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2255
2256 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2257 }
2258 }
2259
2260 void
2261 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2262 uint32_t firstViewport,
2263 uint32_t viewportCount,
2264 const VkViewport *pViewports)
2265 {
2266 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2267 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2268
2269 assert(firstViewport == 0 && viewportCount == 1);
2270
2271 tu6_emit_viewport(&cs, pViewports);
2272 }
2273
2274 void
2275 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2276 uint32_t firstScissor,
2277 uint32_t scissorCount,
2278 const VkRect2D *pScissors)
2279 {
2280 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2281 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2282
2283 assert(firstScissor == 0 && scissorCount == 1);
2284
2285 tu6_emit_scissor(&cs, pScissors);
2286 }
2287
2288 void
2289 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2290 {
2291 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2292 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2293
2294 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2295 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2296
2297 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2298 }
2299
2300 void
2301 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2302 float depthBiasConstantFactor,
2303 float depthBiasClamp,
2304 float depthBiasSlopeFactor)
2305 {
2306 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2307 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2308
2309 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2310 }
2311
2312 void
2313 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2314 const float blendConstants[4])
2315 {
2316 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2317 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2318
2319 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2320 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2321 }
2322
2323 void
2324 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2325 float minDepthBounds,
2326 float maxDepthBounds)
2327 {
2328 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2329 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
2330
2331 tu_cs_emit_regs(&cs,
2332 A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
2333 A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
2334 }
2335
2336 static void
2337 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2338 {
2339 if (face & VK_STENCIL_FACE_FRONT_BIT)
2340 *value = (*value & 0xff00) | (mask & 0xff);
2341 if (face & VK_STENCIL_FACE_BACK_BIT)
2342 *value = (*value & 0xff) | (mask & 0xff) << 8;
2343 }
2344
2345 void
2346 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2347 VkStencilFaceFlags faceMask,
2348 uint32_t compareMask)
2349 {
2350 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2351 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2352
2353 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2354
2355 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2356 }
2357
2358 void
2359 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2360 VkStencilFaceFlags faceMask,
2361 uint32_t writeMask)
2362 {
2363 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2364 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2365
2366 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2367
2368 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2369 }
2370
2371 void
2372 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2373 VkStencilFaceFlags faceMask,
2374 uint32_t reference)
2375 {
2376 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2377 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2378
2379 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2380
2381 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2382 }
2383
2384 void
2385 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2386 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2387 {
2388 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2389 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2390
2391 assert(pSampleLocationsInfo);
2392
2393 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2394 }
2395
2396 static void
2397 tu_flush_for_access(struct tu_cache_state *cache,
2398 enum tu_cmd_access_mask src_mask,
2399 enum tu_cmd_access_mask dst_mask)
2400 {
2401 enum tu_cmd_flush_bits flush_bits = 0;
2402
2403 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2404 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2405 }
2406
2407 #define SRC_FLUSH(domain, flush, invalidate) \
2408 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2409 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2410 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2411 }
2412
2413 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2414 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2415 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2416
2417 #undef SRC_FLUSH
2418
2419 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2420 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2421 flush_bits |= TU_CMD_FLAG_##flush; \
2422 cache->pending_flush_bits |= \
2423 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2424 }
2425
2426 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2427 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2428
2429 #undef SRC_INCOHERENT_FLUSH
2430
2431 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
2432 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2433 }
2434
2435 #define DST_FLUSH(domain, flush, invalidate) \
2436 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2437 TU_ACCESS_##domain##_WRITE)) { \
2438 flush_bits |= cache->pending_flush_bits & \
2439 (TU_CMD_FLAG_##invalidate | \
2440 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2441 }
2442
2443 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2444 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2445 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2446
2447 #undef DST_FLUSH
2448
2449 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2450 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2451 TU_ACCESS_##domain##_WRITE)) { \
2452 flush_bits |= TU_CMD_FLAG_##invalidate | \
2453 (cache->pending_flush_bits & \
2454 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2455 }
2456
2457 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2458 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2459
2460 #undef DST_INCOHERENT_FLUSH
2461
2462 if (dst_mask & TU_ACCESS_WFI_READ) {
2463 flush_bits |= TU_CMD_FLAG_WFI;
2464 }
2465
2466 cache->flush_bits |= flush_bits;
2467 cache->pending_flush_bits &= ~flush_bits;
2468 }
2469
2470 static enum tu_cmd_access_mask
2471 vk2tu_access(VkAccessFlags flags, bool gmem)
2472 {
2473 enum tu_cmd_access_mask mask = 0;
2474
2475 /* If the GPU writes a buffer that is then read by an indirect draw
2476 * command, we theoretically need a WFI + WAIT_FOR_ME combination to
2477 * wait for the writes to complete. The WAIT_FOR_ME is performed as part
2478 * of the draw by the firmware, so we just need to execute a WFI.
2479 */
2480 if (flags &
2481 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2482 VK_ACCESS_MEMORY_READ_BIT)) {
2483 mask |= TU_ACCESS_WFI_READ;
2484 }
2485
2486 if (flags &
2487 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2488 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
2489 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2490 VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
2491 VK_ACCESS_MEMORY_READ_BIT)) {
2492 mask |= TU_ACCESS_SYSMEM_READ;
2493 }
2494
2495 if (flags &
2496 (VK_ACCESS_HOST_WRITE_BIT |
2497 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
2498 VK_ACCESS_MEMORY_WRITE_BIT)) {
2499 mask |= TU_ACCESS_SYSMEM_WRITE;
2500 }
2501
2502 if (flags &
2503 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2504 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2505 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2506 /* TODO: Is there a no-cache bit for textures so that we can ignore
2507 * these?
2508 */
2509 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2510 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2511 VK_ACCESS_MEMORY_READ_BIT)) {
2512 mask |= TU_ACCESS_UCHE_READ;
2513 }
2514
2515 if (flags &
2516 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2517 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2518 VK_ACCESS_MEMORY_WRITE_BIT)) {
2519 mask |= TU_ACCESS_UCHE_WRITE;
2520 }
2521
2522 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2523 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2524 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2525 * can ignore CCU and pretend that color attachments and transfers use
2526 * sysmem directly.
2527 */
2528
2529 if (flags &
2530 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2531 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2532 VK_ACCESS_MEMORY_READ_BIT)) {
2533 if (gmem)
2534 mask |= TU_ACCESS_SYSMEM_READ;
2535 else
2536 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2537 }
2538
2539 if (flags &
2540 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2541 VK_ACCESS_MEMORY_READ_BIT)) {
2542 if (gmem)
2543 mask |= TU_ACCESS_SYSMEM_READ;
2544 else
2545 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2546 }
2547
2548 if (flags &
2549 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2550 VK_ACCESS_MEMORY_WRITE_BIT)) {
2551 if (gmem) {
2552 mask |= TU_ACCESS_SYSMEM_WRITE;
2553 } else {
2554 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2555 }
2556 }
2557
2558 if (flags &
2559 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2560 VK_ACCESS_MEMORY_WRITE_BIT)) {
2561 if (gmem) {
2562 mask |= TU_ACCESS_SYSMEM_WRITE;
2563 } else {
2564 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2565 }
2566 }
2567
2568 /* When the dst access is a transfer read/write, it seems we sometimes need
2569 * to insert a WFI after any flushes, to guarantee that the flushes finish
2570 * before the 2D engine starts. However the opposite (i.e. a WFI after
2571 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2572 * the blob doesn't emit such a WFI.
2573 */
2574
2575 if (flags &
2576 (VK_ACCESS_TRANSFER_WRITE_BIT |
2577 VK_ACCESS_MEMORY_WRITE_BIT)) {
2578 if (gmem) {
2579 mask |= TU_ACCESS_SYSMEM_WRITE;
2580 } else {
2581 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2582 }
2583 mask |= TU_ACCESS_WFI_READ;
2584 }
2585
2586 if (flags &
2587 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2588 VK_ACCESS_MEMORY_READ_BIT)) {
2589 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2590 }
2591
2592 return mask;
2593 }
2594
2595
2596 void
2597 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2598 uint32_t commandBufferCount,
2599 const VkCommandBuffer *pCmdBuffers)
2600 {
2601 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2602 VkResult result;
2603
2604 assert(commandBufferCount > 0);
2605
2606 /* Emit any pending flushes. */
2607 if (cmd->state.pass) {
2608 tu_flush_all_pending(&cmd->state.renderpass_cache);
2609 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2610 } else {
2611 tu_flush_all_pending(&cmd->state.cache);
2612 tu_emit_cache_flush(cmd, &cmd->cs);
2613 }
2614
2615 for (uint32_t i = 0; i < commandBufferCount; i++) {
2616 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2617
2618 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2619 if (result != VK_SUCCESS) {
2620 cmd->record_result = result;
2621 break;
2622 }
2623
2624 if (secondary->usage_flags &
2625 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2626 assert(tu_cs_is_empty(&secondary->cs));
2627
2628 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2629 if (result != VK_SUCCESS) {
2630 cmd->record_result = result;
2631 break;
2632 }
2633
2634 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2635 &secondary->draw_epilogue_cs);
2636 if (result != VK_SUCCESS) {
2637 cmd->record_result = result;
2638 break;
2639 }
2640
2641 if (secondary->has_tess)
2642 cmd->has_tess = true;
2643 } else {
2644 assert(tu_cs_is_empty(&secondary->draw_cs));
2645 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2646
2647 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2648 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2649 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2650 }
2651
2652 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2653 }
2654
2655 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2656 }
2657 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2658
2659 /* After executing secondary command buffers, there may have been arbitrary
2660 * flushes executed, so when we encounter a pipeline barrier with a
2661 * srcMask, we have to assume that we need to invalidate. Therefore we need
2662 * to re-initialize the cache with all pending invalidate bits set.
2663 */
2664 if (cmd->state.pass) {
2665 tu_cache_init(&cmd->state.renderpass_cache);
2666 } else {
2667 tu_cache_init(&cmd->state.cache);
2668 }
2669 }
2670
2671 VkResult
2672 tu_CreateCommandPool(VkDevice _device,
2673 const VkCommandPoolCreateInfo *pCreateInfo,
2674 const VkAllocationCallbacks *pAllocator,
2675 VkCommandPool *pCmdPool)
2676 {
2677 TU_FROM_HANDLE(tu_device, device, _device);
2678 struct tu_cmd_pool *pool;
2679
2680 pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
2681 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2682 if (pool == NULL)
2683 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2684
2685 if (pAllocator)
2686 pool->alloc = *pAllocator;
2687 else
2688 pool->alloc = device->alloc;
2689
2690 list_inithead(&pool->cmd_buffers);
2691 list_inithead(&pool->free_cmd_buffers);
2692
2693 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2694
2695 *pCmdPool = tu_cmd_pool_to_handle(pool);
2696
2697 return VK_SUCCESS;
2698 }
2699
2700 void
2701 tu_DestroyCommandPool(VkDevice _device,
2702 VkCommandPool commandPool,
2703 const VkAllocationCallbacks *pAllocator)
2704 {
2705 TU_FROM_HANDLE(tu_device, device, _device);
2706 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2707
2708 if (!pool)
2709 return;
2710
2711 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2712 &pool->cmd_buffers, pool_link)
2713 {
2714 tu_cmd_buffer_destroy(cmd_buffer);
2715 }
2716
2717 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2718 &pool->free_cmd_buffers, pool_link)
2719 {
2720 tu_cmd_buffer_destroy(cmd_buffer);
2721 }
2722
2723 vk_free2(&device->alloc, pAllocator, pool);
2724 }
2725
2726 VkResult
2727 tu_ResetCommandPool(VkDevice device,
2728 VkCommandPool commandPool,
2729 VkCommandPoolResetFlags flags)
2730 {
2731 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2732 VkResult result;
2733
2734 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2735 pool_link)
2736 {
2737 result = tu_reset_cmd_buffer(cmd_buffer);
2738 if (result != VK_SUCCESS)
2739 return result;
2740 }
2741
2742 return VK_SUCCESS;
2743 }
2744
2745 void
2746 tu_TrimCommandPool(VkDevice device,
2747 VkCommandPool commandPool,
2748 VkCommandPoolTrimFlags flags)
2749 {
2750 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2751
2752 if (!pool)
2753 return;
2754
2755 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2756 &pool->free_cmd_buffers, pool_link)
2757 {
2758 tu_cmd_buffer_destroy(cmd_buffer);
2759 }
2760 }
2761
2762 static void
2763 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2764 const struct tu_subpass_barrier *barrier,
2765 bool external)
2766 {
2767 /* Note: we don't know until the end of the subpass whether we'll use
2768 * sysmem, so assume sysmem here to be safe.
2769 */
2770 struct tu_cache_state *cache =
2771 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2772 enum tu_cmd_access_mask src_flags =
2773 vk2tu_access(barrier->src_access_mask, false);
2774 enum tu_cmd_access_mask dst_flags =
2775 vk2tu_access(barrier->dst_access_mask, false);
2776
2777 if (barrier->incoherent_ccu_color)
2778 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2779 if (barrier->incoherent_ccu_depth)
2780 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2781
2782 tu_flush_for_access(cache, src_flags, dst_flags);
2783 }
2784
2785 void
2786 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2787 const VkRenderPassBeginInfo *pRenderPassBegin,
2788 VkSubpassContents contents)
2789 {
2790 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2791 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2792 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2793
2794 cmd->state.pass = pass;
2795 cmd->state.subpass = pass->subpasses;
2796 cmd->state.framebuffer = fb;
2797
2798 tu_cmd_update_tiling_config(cmd, &pRenderPassBegin->renderArea);
2799 tu_cmd_prepare_tile_store_ib(cmd);
2800
2801 /* Note: because this is external, any flushes will happen before draw_cs
2802 * gets called. However deferred flushes could have to happen later as part
2803 * of the subpass.
2804 */
2805 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2806 cmd->state.renderpass_cache.pending_flush_bits =
2807 cmd->state.cache.pending_flush_bits;
2808 cmd->state.renderpass_cache.flush_bits = 0;
2809
2810 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2811
2812 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2813 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2814 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2815 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2816
2817 tu_set_input_attachments(cmd, cmd->state.subpass);
2818
2819 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2820 const struct tu_image_view *iview = fb->attachments[i].attachment;
2821 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2822 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2823 }
2824
2825 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2826 }
2827
2828 void
2829 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2830 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2831 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2832 {
2833 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2834 pSubpassBeginInfo->contents);
2835 }
2836
2837 void
2838 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2839 {
2840 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2841 const struct tu_render_pass *pass = cmd->state.pass;
2842 struct tu_cs *cs = &cmd->draw_cs;
2843
2844 const struct tu_subpass *subpass = cmd->state.subpass++;
2845
2846 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2847
2848 if (subpass->resolve_attachments) {
2849 tu6_emit_blit_scissor(cmd, cs, true);
2850
2851 for (unsigned i = 0; i < subpass->color_count; i++) {
2852 uint32_t a = subpass->resolve_attachments[i].attachment;
2853 if (a == VK_ATTACHMENT_UNUSED)
2854 continue;
2855
2856 tu_store_gmem_attachment(cmd, cs, a,
2857 subpass->color_attachments[i].attachment);
2858
2859 if (pass->attachments[a].gmem_offset < 0)
2860 continue;
2861
2862 /* TODO:
2863 * check if the resolved attachment is needed by later subpasses,
2864 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2865 */
2866 tu_finishme("missing GMEM->GMEM resolve path\n");
2867 tu_load_gmem_attachment(cmd, cs, a, true);
2868 }
2869 }
2870
2871 tu_cond_exec_end(cs);
2872
2873 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2874
2875 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2876
2877 tu_cond_exec_end(cs);
2878
2879 /* Handle dependencies for the next subpass */
2880 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2881
2882 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2883 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2884 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2885 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2886 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2887
2888 tu_set_input_attachments(cmd, cmd->state.subpass);
2889 }
2890
2891 void
2892 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2893 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2894 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2895 {
2896 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2897 }
2898
2899 static void
2900 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2901 struct tu_descriptor_state *descriptors_state,
2902 gl_shader_stage type,
2903 uint32_t *push_constants)
2904 {
2905 const struct tu_program_descriptor_linkage *link =
2906 &pipeline->program.link[type];
2907 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2908
2909 if (link->push_consts.count > 0) {
2910 unsigned num_units = link->push_consts.count;
2911 unsigned offset = link->push_consts.lo;
2912 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2913 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2914 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2915 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2916 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2917 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2918 tu_cs_emit(cs, 0);
2919 tu_cs_emit(cs, 0);
2920 for (unsigned i = 0; i < num_units * 4; i++)
2921 tu_cs_emit(cs, push_constants[i + offset * 4]);
2922 }
2923
2924 for (uint32_t i = 0; i < state->num_enabled; i++) {
2925 uint32_t size = state->range[i].end - state->range[i].start;
2926 uint32_t offset = state->range[i].start;
2927
2928 /* and even if the start of the const buffer is before
2929 * first_immediate, the end may not be:
2930 */
2931 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2932
2933 if (size == 0)
2934 continue;
2935
2936 /* things should be aligned to vec4: */
2937 debug_assert((state->range[i].offset % 16) == 0);
2938 debug_assert((size % 16) == 0);
2939 debug_assert((offset % 16) == 0);
2940
2941 /* Dig out the descriptor from the descriptor state and read the VA from
2942 * it.
2943 */
2944 assert(state->range[i].ubo.bindless);
2945 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2946 descriptors_state->dynamic_descriptors :
2947 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2948 unsigned block = state->range[i].ubo.block;
2949 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2950 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2951 assert(va);
2952
2953 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2954 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2955 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2956 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2957 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2958 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2959 tu_cs_emit_qw(cs, va + offset);
2960 }
2961 }
2962
2963 static struct tu_cs_entry
2964 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2965 const struct tu_pipeline *pipeline,
2966 struct tu_descriptor_state *descriptors_state,
2967 gl_shader_stage type)
2968 {
2969 struct tu_cs cs;
2970 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2971
2972 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2973
2974 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2975 }
2976
2977 static struct tu_cs_entry
2978 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
2979 const struct tu_pipeline *pipeline)
2980 {
2981 struct tu_cs cs;
2982 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
2983
2984 int binding;
2985 for_each_bit(binding, pipeline->vi.bindings_used) {
2986 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
2987 const VkDeviceSize offset = buf->bo_offset +
2988 cmd->state.vb.offsets[binding];
2989
2990 tu_cs_emit_regs(&cs,
2991 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
2992 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
2993
2994 }
2995
2996 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
2997
2998 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2999 }
3000
3001 static uint64_t
3002 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
3003 uint32_t draw_count)
3004 {
3005 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
3006 * Still not sure what to do here, so just allocate a reasonably large
3007 * BO and hope for the best for now.
3008 * (maxTessellationControlPerVertexOutputComponents * 2048 vertices +
3009 * maxTessellationControlPerPatchOutputComponents * 512 patches) */
3010 if (!draw_count) {
3011 return ((128 * 2048) + (128 * 512)) * 4;
3012 }
3013
3014 /* For each patch, adreno lays out the tess param BO in memory as:
3015 * (v_input[0][0])...(v_input[i][j])(p_input[0])...(p_input[k]).
3016 * where i = # vertices per patch, j = # per-vertex outputs, and
3017 * k = # per-patch outputs.*/
3018 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
3019 uint32_t num_patches = draw_count / verts_per_patch;
3020 return draw_count * pipeline->tess.per_vertex_output_size +
3021 pipeline->tess.per_patch_output_size * num_patches;
3022 }
3023
3024 static uint64_t
3025 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
3026 uint32_t draw_count)
3027 {
3028 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
3029 * Still not sure what to do here, so just allocate a reasonably large
3030 * BO and hope for the best for now.
3031 * (quad factor stride * 512 patches) */
3032 if (!draw_count) {
3033 return (28 * 512) * 4;
3034 }
3035
3036 /* Each distinct patch gets its own tess factor output. */
3037 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
3038 uint32_t num_patches = draw_count / verts_per_patch;
3039 uint32_t factor_stride;
3040 switch (pipeline->tess.patch_type) {
3041 case IR3_TESS_ISOLINES:
3042 factor_stride = 12;
3043 break;
3044 case IR3_TESS_TRIANGLES:
3045 factor_stride = 20;
3046 break;
3047 case IR3_TESS_QUADS:
3048 factor_stride = 28;
3049 break;
3050 default:
3051 unreachable("bad tessmode");
3052 }
3053 return factor_stride * num_patches;
3054 }
3055
3056 static VkResult
3057 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
3058 uint32_t draw_count,
3059 const struct tu_pipeline *pipeline,
3060 struct tu_cs_entry *entry)
3061 {
3062 struct tu_cs cs;
3063 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 20, &cs);
3064 if (result != VK_SUCCESS)
3065 return result;
3066
3067 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
3068 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
3069 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
3070 if (tess_bo_size > 0) {
3071 struct tu_bo *tess_bo;
3072 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
3073 if (result != VK_SUCCESS)
3074 return result;
3075
3076 tu_bo_list_add(&cmd->bo_list, tess_bo,
3077 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3078 uint64_t tess_factor_iova = tess_bo->iova;
3079 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
3080
3081 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3082 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
3083 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3084 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3085 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
3086 CP_LOAD_STATE6_0_NUM_UNIT(1));
3087 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
3088 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
3089 tu_cs_emit_qw(&cs, tess_param_iova);
3090 tu_cs_emit_qw(&cs, tess_factor_iova);
3091
3092 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3093 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
3094 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3095 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3096 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
3097 CP_LOAD_STATE6_0_NUM_UNIT(1));
3098 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
3099 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
3100 tu_cs_emit_qw(&cs, tess_param_iova);
3101 tu_cs_emit_qw(&cs, tess_factor_iova);
3102
3103 tu_cs_emit_pkt4(&cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
3104 tu_cs_emit_qw(&cs, tess_factor_iova);
3105
3106 /* TODO: Without this WFI here, the hardware seems unable to read these
3107 * addresses we just emitted. Freedreno emits these consts as part of
3108 * IB1 instead of in a draw state which might make this WFI unnecessary,
3109 * but it requires a bit more indirection (SS6_INDIRECT for consts). */
3110 tu_cs_emit_wfi(&cs);
3111 }
3112 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3113 return VK_SUCCESS;
3114 }
3115
3116 static VkResult
3117 tu6_draw_common(struct tu_cmd_buffer *cmd,
3118 struct tu_cs *cs,
3119 bool indexed,
3120 /* note: draw_count is 0 for indirect */
3121 uint32_t draw_count)
3122 {
3123 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3124 VkResult result;
3125
3126 struct tu_descriptor_state *descriptors_state =
3127 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
3128
3129 tu_emit_cache_flush_renderpass(cmd, cs);
3130
3131 /* TODO lrz */
3132
3133 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
3134 .primitive_restart =
3135 pipeline->ia.primitive_restart && indexed,
3136 .tess_upper_left_domain_origin =
3137 pipeline->tess.upper_left_domain_origin));
3138
3139 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3140 cmd->state.shader_const_ib[MESA_SHADER_VERTEX] =
3141 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
3142 cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL] =
3143 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
3144 cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL] =
3145 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
3146 cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY] =
3147 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
3148 cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT] =
3149 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
3150 }
3151
3152 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) {
3153 /* We need to reload the descriptors every time the descriptor sets
3154 * change. However, the commands we send only depend on the pipeline
3155 * because the whole point is to cache descriptors which are used by the
3156 * pipeline. There's a problem here, in that the firmware has an
3157 * "optimization" which skips executing groups that are set to the same
3158 * value as the last draw. This means that if the descriptor sets change
3159 * but not the pipeline, we'd try to re-execute the same buffer which
3160 * the firmware would ignore and we wouldn't pre-load the new
3161 * descriptors. The blob seems to re-emit the LOAD_STATE group whenever
3162 * the descriptor sets change, which we emulate here by copying the
3163 * pre-prepared buffer.
3164 */
3165 const struct tu_cs_entry *load_entry = &pipeline->load_state.state_ib;
3166 if (load_entry->size > 0) {
3167 struct tu_cs load_cs;
3168 result = tu_cs_begin_sub_stream(&cmd->sub_cs, load_entry->size, &load_cs);
3169 if (result != VK_SUCCESS)
3170 return result;
3171 tu_cs_emit_array(&load_cs,
3172 (uint32_t *)((char *)load_entry->bo->map + load_entry->offset),
3173 load_entry->size / 4);
3174 cmd->state.desc_sets_load_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &load_cs);
3175 } else {
3176 cmd->state.desc_sets_load_ib.size = 0;
3177 }
3178 }
3179
3180 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3181 cmd->state.vertex_buffers_ib = tu6_emit_vertex_buffers(cmd, pipeline);
3182
3183 bool has_tess =
3184 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3185 struct tu_cs_entry tess_consts = {};
3186 if (has_tess) {
3187 cmd->has_tess = true;
3188 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts);
3189 if (result != VK_SUCCESS)
3190 return result;
3191 }
3192
3193 /* for the first draw in a renderpass, re-emit all the draw states
3194 *
3195 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3196 * used, then draw states must be re-emitted. note however this only happens
3197 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3198 *
3199 * the two input attachment states are excluded because secondary command
3200 * buffer doesn't have a state ib to restore it, and not re-emitting them
3201 * is OK since CmdClearAttachments won't disable/overwrite them
3202 */
3203 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3204 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3205
3206 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
3207 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
3208 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3209 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
3210 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
3211 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
3212 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
3213 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
3214 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3215 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3216 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3217 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3218 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3219 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets_ib);
3220 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3221 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3222 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3223
3224 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3225 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3226 ((pipeline->dynamic_state_mask & BIT(i)) ?
3227 cmd->state.dynamic_state[i] :
3228 pipeline->dynamic_state[i]));
3229 }
3230 } else {
3231
3232 /* emit draw states that were just updated
3233 * note we eventually don't want to have to emit anything here
3234 */
3235 uint32_t draw_state_count =
3236 has_tess +
3237 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
3238 ((cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) ? 1 : 0) +
3239 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3240 1; /* vs_params */
3241
3242 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3243
3244 /* We may need to re-emit tess consts if the current draw call is
3245 * sufficiently larger than the last draw call. */
3246 if (has_tess)
3247 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3248 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3249 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3250 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3251 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3252 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3253 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3254 }
3255 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS)
3256 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3257 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3258 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3259 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3260 }
3261
3262 tu_cs_sanity_check(cs);
3263
3264 /* There are too many graphics dirty bits to list here, so just list the
3265 * bits to preserve instead. The only things not emitted here are
3266 * compute-related state.
3267 */
3268 cmd->state.dirty &= (TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3269 return VK_SUCCESS;
3270 }
3271
3272 static uint32_t
3273 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
3274 {
3275 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3276 uint32_t initiator =
3277 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3278 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
3279 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3280 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3281
3282 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3283 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3284
3285 switch (pipeline->tess.patch_type) {
3286 case IR3_TESS_TRIANGLES:
3287 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3288 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3289 break;
3290 case IR3_TESS_ISOLINES:
3291 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3292 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3293 break;
3294 case IR3_TESS_NONE:
3295 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3296 break;
3297 case IR3_TESS_QUADS:
3298 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3299 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3300 break;
3301 }
3302 return initiator;
3303 }
3304
3305
3306 static uint32_t
3307 vs_params_offset(struct tu_cmd_buffer *cmd)
3308 {
3309 const struct tu_program_descriptor_linkage *link =
3310 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
3311 const struct ir3_const_state *const_state = &link->const_state;
3312
3313 if (const_state->offsets.driver_param >= link->constlen)
3314 return 0;
3315
3316 /* this layout is required by CP_DRAW_INDIRECT_MULTI */
3317 STATIC_ASSERT(IR3_DP_DRAWID == 0);
3318 STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
3319 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3320
3321 /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
3322 assert(const_state->offsets.driver_param != 0);
3323
3324 return const_state->offsets.driver_param;
3325 }
3326
3327 static struct tu_draw_state
3328 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
3329 uint32_t vertex_offset,
3330 uint32_t first_instance)
3331 {
3332 uint32_t offset = vs_params_offset(cmd);
3333
3334 struct tu_cs cs;
3335 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 8 : 0), &cs);
3336 if (result != VK_SUCCESS) {
3337 cmd->record_result = result;
3338 return (struct tu_draw_state) {};
3339 }
3340
3341 /* TODO: don't make a new draw state when it doesn't change */
3342
3343 tu_cs_emit_regs(&cs,
3344 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3345 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3346
3347 if (offset) {
3348 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3349 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3350 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3351 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3352 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3353 CP_LOAD_STATE6_0_NUM_UNIT(1));
3354 tu_cs_emit(&cs, 0);
3355 tu_cs_emit(&cs, 0);
3356
3357 tu_cs_emit(&cs, 0);
3358 tu_cs_emit(&cs, vertex_offset);
3359 tu_cs_emit(&cs, first_instance);
3360 tu_cs_emit(&cs, 0);
3361 }
3362
3363 struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3364 return (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
3365 }
3366
3367 void
3368 tu_CmdDraw(VkCommandBuffer commandBuffer,
3369 uint32_t vertexCount,
3370 uint32_t instanceCount,
3371 uint32_t firstVertex,
3372 uint32_t firstInstance)
3373 {
3374 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3375 struct tu_cs *cs = &cmd->draw_cs;
3376
3377 cmd->state.vs_params = tu6_emit_vs_params(cmd, firstVertex, firstInstance);
3378
3379 tu6_draw_common(cmd, cs, false, vertexCount);
3380
3381 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3382 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3383 tu_cs_emit(cs, instanceCount);
3384 tu_cs_emit(cs, vertexCount);
3385 }
3386
3387 void
3388 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3389 uint32_t indexCount,
3390 uint32_t instanceCount,
3391 uint32_t firstIndex,
3392 int32_t vertexOffset,
3393 uint32_t firstInstance)
3394 {
3395 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3396 struct tu_cs *cs = &cmd->draw_cs;
3397
3398 cmd->state.vs_params = tu6_emit_vs_params(cmd, vertexOffset, firstInstance);
3399
3400 tu6_draw_common(cmd, cs, true, indexCount);
3401
3402 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3403 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3404 tu_cs_emit(cs, instanceCount);
3405 tu_cs_emit(cs, indexCount);
3406 tu_cs_emit(cs, 0x0); /* XXX */
3407 tu_cs_emit_qw(cs, cmd->state.index_va + (firstIndex << cmd->state.index_shift));
3408 tu_cs_emit(cs, indexCount << cmd->state.index_shift);
3409 }
3410
3411 void
3412 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3413 VkBuffer _buffer,
3414 VkDeviceSize offset,
3415 uint32_t drawCount,
3416 uint32_t stride)
3417 {
3418 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3419 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3420 struct tu_cs *cs = &cmd->draw_cs;
3421
3422 cmd->state.vs_params = (struct tu_draw_state) {};
3423
3424 tu6_draw_common(cmd, cs, false, 0);
3425
3426 /* workaround for a firmware bug with CP_DRAW_INDIRECT_MULTI, where it
3427 * doesn't wait for WFIs to be completed and leads to GPU fault/hang
3428 * TODO: this could be worked around in a more performant way,
3429 * or there may exist newer firmware that has been fixed
3430 */
3431 if (cmd->device->physical_device->gpu_id != 650)
3432 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
3433
3434 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
3435 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3436 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
3437 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3438 tu_cs_emit(cs, drawCount);
3439 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3440 tu_cs_emit(cs, stride);
3441
3442 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3443 }
3444
3445 void
3446 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3447 VkBuffer _buffer,
3448 VkDeviceSize offset,
3449 uint32_t drawCount,
3450 uint32_t stride)
3451 {
3452 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3453 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3454 struct tu_cs *cs = &cmd->draw_cs;
3455
3456 cmd->state.vs_params = (struct tu_draw_state) {};
3457
3458 tu6_draw_common(cmd, cs, true, 0);
3459
3460 /* workaround for a firmware bug with CP_DRAW_INDIRECT_MULTI, where it
3461 * doesn't wait for WFIs to be completed and leads to GPU fault/hang
3462 * TODO: this could be worked around in a more performant way,
3463 * or there may exist newer firmware that has been fixed
3464 */
3465 if (cmd->device->physical_device->gpu_id != 650)
3466 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
3467
3468 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
3469 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3470 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
3471 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3472 tu_cs_emit(cs, drawCount);
3473 tu_cs_emit_qw(cs, cmd->state.index_va);
3474 tu_cs_emit(cs, cmd->state.max_index_count);
3475 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3476 tu_cs_emit(cs, stride);
3477
3478 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3479 }
3480
3481 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3482 uint32_t instanceCount,
3483 uint32_t firstInstance,
3484 VkBuffer _counterBuffer,
3485 VkDeviceSize counterBufferOffset,
3486 uint32_t counterOffset,
3487 uint32_t vertexStride)
3488 {
3489 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3490 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
3491 struct tu_cs *cs = &cmd->draw_cs;
3492
3493 cmd->state.vs_params = tu6_emit_vs_params(cmd, 0, firstInstance);
3494
3495 tu6_draw_common(cmd, cs, false, 0);
3496
3497 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
3498 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
3499 tu_cs_emit(cs, instanceCount);
3500 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
3501 tu_cs_emit(cs, counterOffset);
3502 tu_cs_emit(cs, vertexStride);
3503
3504 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3505 }
3506
3507 struct tu_dispatch_info
3508 {
3509 /**
3510 * Determine the layout of the grid (in block units) to be used.
3511 */
3512 uint32_t blocks[3];
3513
3514 /**
3515 * A starting offset for the grid. If unaligned is set, the offset
3516 * must still be aligned.
3517 */
3518 uint32_t offsets[3];
3519 /**
3520 * Whether it's an unaligned compute dispatch.
3521 */
3522 bool unaligned;
3523
3524 /**
3525 * Indirect compute parameters resource.
3526 */
3527 struct tu_buffer *indirect;
3528 uint64_t indirect_offset;
3529 };
3530
3531 static void
3532 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3533 const struct tu_dispatch_info *info)
3534 {
3535 gl_shader_stage type = MESA_SHADER_COMPUTE;
3536 const struct tu_program_descriptor_linkage *link =
3537 &pipeline->program.link[type];
3538 const struct ir3_const_state *const_state = &link->const_state;
3539 uint32_t offset = const_state->offsets.driver_param;
3540
3541 if (link->constlen <= offset)
3542 return;
3543
3544 if (!info->indirect) {
3545 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3546 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3547 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3548 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3549 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3550 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3551 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3552 };
3553
3554 uint32_t num_consts = MIN2(const_state->num_driver_params,
3555 (link->constlen - offset) * 4);
3556 /* push constants */
3557 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3558 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3559 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3560 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3561 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3562 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3563 tu_cs_emit(cs, 0);
3564 tu_cs_emit(cs, 0);
3565 uint32_t i;
3566 for (i = 0; i < num_consts; i++)
3567 tu_cs_emit(cs, driver_params[i]);
3568 } else {
3569 tu_finishme("Indirect driver params");
3570 }
3571 }
3572
3573 static void
3574 tu_dispatch(struct tu_cmd_buffer *cmd,
3575 const struct tu_dispatch_info *info)
3576 {
3577 struct tu_cs *cs = &cmd->cs;
3578 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3579 struct tu_descriptor_state *descriptors_state =
3580 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3581
3582 /* TODO: We could probably flush less if we add a compute_flush_bits
3583 * bitfield.
3584 */
3585 tu_emit_cache_flush(cmd, cs);
3586
3587 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_PIPELINE)
3588 tu_cs_emit_ib(cs, &pipeline->program.state_ib);
3589
3590 struct tu_cs_entry ib;
3591
3592 ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE);
3593 if (ib.size)
3594 tu_cs_emit_ib(cs, &ib);
3595
3596 tu_emit_compute_driver_params(cs, pipeline, info);
3597
3598 if ((cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS) &&
3599 pipeline->load_state.state_ib.size > 0) {
3600 tu_cs_emit_ib(cs, &pipeline->load_state.state_ib);
3601 }
3602
3603 cmd->state.dirty &=
3604 ~(TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3605
3606 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3607 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3608
3609 const uint32_t *local_size = pipeline->compute.local_size;
3610 const uint32_t *num_groups = info->blocks;
3611 tu_cs_emit_regs(cs,
3612 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3613 .localsizex = local_size[0] - 1,
3614 .localsizey = local_size[1] - 1,
3615 .localsizez = local_size[2] - 1),
3616 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3617 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3618 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3619 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3620 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3621 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3622
3623 tu_cs_emit_regs(cs,
3624 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3625 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3626 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3627
3628 if (info->indirect) {
3629 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3630
3631 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3632 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3633
3634 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3635 tu_cs_emit(cs, 0x00000000);
3636 tu_cs_emit_qw(cs, iova);
3637 tu_cs_emit(cs,
3638 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3639 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3640 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3641 } else {
3642 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3643 tu_cs_emit(cs, 0x00000000);
3644 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3645 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3646 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3647 }
3648
3649 tu_cs_emit_wfi(cs);
3650 }
3651
3652 void
3653 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3654 uint32_t base_x,
3655 uint32_t base_y,
3656 uint32_t base_z,
3657 uint32_t x,
3658 uint32_t y,
3659 uint32_t z)
3660 {
3661 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3662 struct tu_dispatch_info info = {};
3663
3664 info.blocks[0] = x;
3665 info.blocks[1] = y;
3666 info.blocks[2] = z;
3667
3668 info.offsets[0] = base_x;
3669 info.offsets[1] = base_y;
3670 info.offsets[2] = base_z;
3671 tu_dispatch(cmd_buffer, &info);
3672 }
3673
3674 void
3675 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3676 uint32_t x,
3677 uint32_t y,
3678 uint32_t z)
3679 {
3680 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3681 }
3682
3683 void
3684 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3685 VkBuffer _buffer,
3686 VkDeviceSize offset)
3687 {
3688 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3689 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3690 struct tu_dispatch_info info = {};
3691
3692 info.indirect = buffer;
3693 info.indirect_offset = offset;
3694
3695 tu_dispatch(cmd_buffer, &info);
3696 }
3697
3698 void
3699 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3700 {
3701 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3702
3703 tu_cs_end(&cmd_buffer->draw_cs);
3704 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3705
3706 if (use_sysmem_rendering(cmd_buffer))
3707 tu_cmd_render_sysmem(cmd_buffer);
3708 else
3709 tu_cmd_render_tiles(cmd_buffer);
3710
3711 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3712 rendered */
3713 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3714 tu_cs_begin(&cmd_buffer->draw_cs);
3715 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3716 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3717
3718 cmd_buffer->state.cache.pending_flush_bits |=
3719 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3720 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3721
3722 cmd_buffer->state.pass = NULL;
3723 cmd_buffer->state.subpass = NULL;
3724 cmd_buffer->state.framebuffer = NULL;
3725 }
3726
3727 void
3728 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3729 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3730 {
3731 tu_CmdEndRenderPass(commandBuffer);
3732 }
3733
3734 struct tu_barrier_info
3735 {
3736 uint32_t eventCount;
3737 const VkEvent *pEvents;
3738 VkPipelineStageFlags srcStageMask;
3739 };
3740
3741 static void
3742 tu_barrier(struct tu_cmd_buffer *cmd,
3743 uint32_t memoryBarrierCount,
3744 const VkMemoryBarrier *pMemoryBarriers,
3745 uint32_t bufferMemoryBarrierCount,
3746 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3747 uint32_t imageMemoryBarrierCount,
3748 const VkImageMemoryBarrier *pImageMemoryBarriers,
3749 const struct tu_barrier_info *info)
3750 {
3751 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3752 VkAccessFlags srcAccessMask = 0;
3753 VkAccessFlags dstAccessMask = 0;
3754
3755 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3756 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3757 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3758 }
3759
3760 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3761 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3762 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3763 }
3764
3765 enum tu_cmd_access_mask src_flags = 0;
3766 enum tu_cmd_access_mask dst_flags = 0;
3767
3768 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3769 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3770 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3771 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3772 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3773 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3774 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3775 /* The underlying memory for this image may have been used earlier
3776 * within the same queue submission for a different image, which
3777 * means that there may be old, stale cache entries which are in the
3778 * "wrong" location, which could cause problems later after writing
3779 * to the image. We don't want these entries being flushed later and
3780 * overwriting the actual image, so we need to flush the CCU.
3781 */
3782 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3783 }
3784 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3785 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3786 }
3787
3788 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3789 * so we have to use the sysmem flushes.
3790 */
3791 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3792 !cmd->state.pass;
3793 src_flags |= vk2tu_access(srcAccessMask, gmem);
3794 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3795
3796 struct tu_cache_state *cache =
3797 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3798 tu_flush_for_access(cache, src_flags, dst_flags);
3799
3800 for (uint32_t i = 0; i < info->eventCount; i++) {
3801 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3802
3803 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3804
3805 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3806 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3807 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3808 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3809 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3810 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3811 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3812 }
3813 }
3814
3815 void
3816 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3817 VkPipelineStageFlags srcStageMask,
3818 VkPipelineStageFlags dstStageMask,
3819 VkDependencyFlags dependencyFlags,
3820 uint32_t memoryBarrierCount,
3821 const VkMemoryBarrier *pMemoryBarriers,
3822 uint32_t bufferMemoryBarrierCount,
3823 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3824 uint32_t imageMemoryBarrierCount,
3825 const VkImageMemoryBarrier *pImageMemoryBarriers)
3826 {
3827 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3828 struct tu_barrier_info info;
3829
3830 info.eventCount = 0;
3831 info.pEvents = NULL;
3832 info.srcStageMask = srcStageMask;
3833
3834 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3835 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3836 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3837 }
3838
3839 static void
3840 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3841 VkPipelineStageFlags stageMask, unsigned value)
3842 {
3843 struct tu_cs *cs = &cmd->cs;
3844
3845 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3846 assert(!cmd->state.pass);
3847
3848 tu_emit_cache_flush(cmd, cs);
3849
3850 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3851
3852 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3853 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3854 */
3855 VkPipelineStageFlags top_of_pipe_flags =
3856 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3857 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3858
3859 if (!(stageMask & ~top_of_pipe_flags)) {
3860 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3861 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3862 tu_cs_emit(cs, value);
3863 } else {
3864 /* Use a RB_DONE_TS event to wait for everything to complete. */
3865 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3866 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3867 tu_cs_emit_qw(cs, event->bo.iova);
3868 tu_cs_emit(cs, value);
3869 }
3870 }
3871
3872 void
3873 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3874 VkEvent _event,
3875 VkPipelineStageFlags stageMask)
3876 {
3877 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3878 TU_FROM_HANDLE(tu_event, event, _event);
3879
3880 write_event(cmd, event, stageMask, 1);
3881 }
3882
3883 void
3884 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3885 VkEvent _event,
3886 VkPipelineStageFlags stageMask)
3887 {
3888 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3889 TU_FROM_HANDLE(tu_event, event, _event);
3890
3891 write_event(cmd, event, stageMask, 0);
3892 }
3893
3894 void
3895 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3896 uint32_t eventCount,
3897 const VkEvent *pEvents,
3898 VkPipelineStageFlags srcStageMask,
3899 VkPipelineStageFlags dstStageMask,
3900 uint32_t memoryBarrierCount,
3901 const VkMemoryBarrier *pMemoryBarriers,
3902 uint32_t bufferMemoryBarrierCount,
3903 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3904 uint32_t imageMemoryBarrierCount,
3905 const VkImageMemoryBarrier *pImageMemoryBarriers)
3906 {
3907 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3908 struct tu_barrier_info info;
3909
3910 info.eventCount = eventCount;
3911 info.pEvents = pEvents;
3912 info.srcStageMask = 0;
3913
3914 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3915 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3916 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3917 }
3918
3919 void
3920 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3921 {
3922 /* No-op */
3923 }