turnip: Force sysmem for tessellation
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 static void
112 tu_tiling_config_update_tile_layout(struct tu_tiling_config *tiling,
113 const struct tu_device *dev,
114 const struct tu_render_pass *pass)
115 {
116 const uint32_t tile_align_w = pass->tile_align_w;
117 const uint32_t max_tile_width = 1024;
118
119 /* note: don't offset the tiling config by render_area.offset,
120 * because binning pass can't deal with it
121 * this means we might end up with more tiles than necessary,
122 * but load/store/etc are still scissored to the render_area
123 */
124 tiling->tile0.offset = (VkOffset2D) {};
125
126 const uint32_t ra_width =
127 tiling->render_area.extent.width +
128 (tiling->render_area.offset.x - tiling->tile0.offset.x);
129 const uint32_t ra_height =
130 tiling->render_area.extent.height +
131 (tiling->render_area.offset.y - tiling->tile0.offset.y);
132
133 /* start from 1 tile */
134 tiling->tile_count = (VkExtent2D) {
135 .width = 1,
136 .height = 1,
137 };
138 tiling->tile0.extent = (VkExtent2D) {
139 .width = util_align_npot(ra_width, tile_align_w),
140 .height = align(ra_height, TILE_ALIGN_H),
141 };
142
143 if (unlikely(dev->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN)) {
144 /* start with 2x2 tiles */
145 tiling->tile_count.width = 2;
146 tiling->tile_count.height = 2;
147 tiling->tile0.extent.width = util_align_npot(DIV_ROUND_UP(ra_width, 2), tile_align_w);
148 tiling->tile0.extent.height = align(DIV_ROUND_UP(ra_height, 2), TILE_ALIGN_H);
149 }
150
151 /* do not exceed max tile width */
152 while (tiling->tile0.extent.width > max_tile_width) {
153 tiling->tile_count.width++;
154 tiling->tile0.extent.width =
155 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
156 }
157
158 /* will force to sysmem, don't bother trying to have a valid tile config
159 * TODO: just skip all GMEM stuff when sysmem is forced?
160 */
161 if (!pass->gmem_pixels)
162 return;
163
164 /* do not exceed gmem size */
165 while (tiling->tile0.extent.width * tiling->tile0.extent.height > pass->gmem_pixels) {
166 if (tiling->tile0.extent.width > MAX2(tile_align_w, tiling->tile0.extent.height)) {
167 tiling->tile_count.width++;
168 tiling->tile0.extent.width =
169 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
170 } else {
171 /* if this assert fails then layout is impossible.. */
172 assert(tiling->tile0.extent.height > TILE_ALIGN_H);
173 tiling->tile_count.height++;
174 tiling->tile0.extent.height =
175 align(DIV_ROUND_UP(ra_height, tiling->tile_count.height), TILE_ALIGN_H);
176 }
177 }
178 }
179
180 static void
181 tu_tiling_config_update_pipe_layout(struct tu_tiling_config *tiling,
182 const struct tu_device *dev)
183 {
184 const uint32_t max_pipe_count = 32; /* A6xx */
185
186 /* start from 1 tile per pipe */
187 tiling->pipe0 = (VkExtent2D) {
188 .width = 1,
189 .height = 1,
190 };
191 tiling->pipe_count = tiling->tile_count;
192
193 while (tiling->pipe_count.width * tiling->pipe_count.height > max_pipe_count) {
194 if (tiling->pipe0.width < tiling->pipe0.height) {
195 tiling->pipe0.width += 1;
196 tiling->pipe_count.width =
197 DIV_ROUND_UP(tiling->tile_count.width, tiling->pipe0.width);
198 } else {
199 tiling->pipe0.height += 1;
200 tiling->pipe_count.height =
201 DIV_ROUND_UP(tiling->tile_count.height, tiling->pipe0.height);
202 }
203 }
204 }
205
206 static void
207 tu_tiling_config_update_pipes(struct tu_tiling_config *tiling,
208 const struct tu_device *dev)
209 {
210 const uint32_t max_pipe_count = 32; /* A6xx */
211 const uint32_t used_pipe_count =
212 tiling->pipe_count.width * tiling->pipe_count.height;
213 const VkExtent2D last_pipe = {
214 .width = (tiling->tile_count.width - 1) % tiling->pipe0.width + 1,
215 .height = (tiling->tile_count.height - 1) % tiling->pipe0.height + 1,
216 };
217
218 assert(used_pipe_count <= max_pipe_count);
219 assert(max_pipe_count <= ARRAY_SIZE(tiling->pipe_config));
220
221 for (uint32_t y = 0; y < tiling->pipe_count.height; y++) {
222 for (uint32_t x = 0; x < tiling->pipe_count.width; x++) {
223 const uint32_t pipe_x = tiling->pipe0.width * x;
224 const uint32_t pipe_y = tiling->pipe0.height * y;
225 const uint32_t pipe_w = (x == tiling->pipe_count.width - 1)
226 ? last_pipe.width
227 : tiling->pipe0.width;
228 const uint32_t pipe_h = (y == tiling->pipe_count.height - 1)
229 ? last_pipe.height
230 : tiling->pipe0.height;
231 const uint32_t n = tiling->pipe_count.width * y + x;
232
233 tiling->pipe_config[n] = A6XX_VSC_PIPE_CONFIG_REG_X(pipe_x) |
234 A6XX_VSC_PIPE_CONFIG_REG_Y(pipe_y) |
235 A6XX_VSC_PIPE_CONFIG_REG_W(pipe_w) |
236 A6XX_VSC_PIPE_CONFIG_REG_H(pipe_h);
237 tiling->pipe_sizes[n] = CP_SET_BIN_DATA5_0_VSC_SIZE(pipe_w * pipe_h);
238 }
239 }
240
241 memset(tiling->pipe_config + used_pipe_count, 0,
242 sizeof(uint32_t) * (max_pipe_count - used_pipe_count));
243 }
244
245 static void
246 tu_tiling_config_get_tile(const struct tu_tiling_config *tiling,
247 const struct tu_device *dev,
248 uint32_t tx,
249 uint32_t ty,
250 struct tu_tile *tile)
251 {
252 /* find the pipe and the slot for tile (tx, ty) */
253 const uint32_t px = tx / tiling->pipe0.width;
254 const uint32_t py = ty / tiling->pipe0.height;
255 const uint32_t sx = tx - tiling->pipe0.width * px;
256 const uint32_t sy = ty - tiling->pipe0.height * py;
257 /* last pipe has different width */
258 const uint32_t pipe_width =
259 MIN2(tiling->pipe0.width,
260 tiling->tile_count.width - px * tiling->pipe0.width);
261
262 assert(tx < tiling->tile_count.width && ty < tiling->tile_count.height);
263 assert(px < tiling->pipe_count.width && py < tiling->pipe_count.height);
264 assert(sx < tiling->pipe0.width && sy < tiling->pipe0.height);
265
266 /* convert to 1D indices */
267 tile->pipe = tiling->pipe_count.width * py + px;
268 tile->slot = pipe_width * sy + sx;
269
270 /* get the blit area for the tile */
271 tile->begin = (VkOffset2D) {
272 .x = tiling->tile0.offset.x + tiling->tile0.extent.width * tx,
273 .y = tiling->tile0.offset.y + tiling->tile0.extent.height * ty,
274 };
275 tile->end.x =
276 (tx == tiling->tile_count.width - 1)
277 ? tiling->render_area.offset.x + tiling->render_area.extent.width
278 : tile->begin.x + tiling->tile0.extent.width;
279 tile->end.y =
280 (ty == tiling->tile_count.height - 1)
281 ? tiling->render_area.offset.y + tiling->render_area.extent.height
282 : tile->begin.y + tiling->tile0.extent.height;
283 }
284
285 void
286 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
287 struct tu_cs *cs,
288 enum vgt_event_type event)
289 {
290 bool need_seqno = false;
291 switch (event) {
292 case CACHE_FLUSH_TS:
293 case WT_DONE_TS:
294 case RB_DONE_TS:
295 case PC_CCU_FLUSH_DEPTH_TS:
296 case PC_CCU_FLUSH_COLOR_TS:
297 case PC_CCU_RESOLVE_TS:
298 need_seqno = true;
299 break;
300 default:
301 break;
302 }
303
304 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
305 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
306 if (need_seqno) {
307 tu_cs_emit_qw(cs, cmd->scratch_bo.iova);
308 tu_cs_emit(cs, 0);
309 }
310 }
311
312 static void
313 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
314 struct tu_cs *cs,
315 enum tu_cmd_flush_bits flushes)
316 {
317 /* Experiments show that invalidating CCU while it still has data in it
318 * doesn't work, so make sure to always flush before invalidating in case
319 * any data remains that hasn't yet been made available through a barrier.
320 * However it does seem to work for UCHE.
321 */
322 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
323 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
324 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
325 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
326 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
327 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
328 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
329 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
330 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
331 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
332 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
333 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
334 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
335 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
336 if (flushes & TU_CMD_FLAG_WFI)
337 tu_cs_emit_wfi(cs);
338 }
339
340 /* "Normal" cache flushes, that don't require any special handling */
341
342 static void
343 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
344 struct tu_cs *cs)
345 {
346 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
347 cmd_buffer->state.cache.flush_bits = 0;
348 }
349
350 /* Renderpass cache flushes */
351
352 void
353 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
354 struct tu_cs *cs)
355 {
356 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
357 cmd_buffer->state.renderpass_cache.flush_bits = 0;
358 }
359
360 /* Cache flushes for things that use the color/depth read/write path (i.e.
361 * blits and draws). This deals with changing CCU state as well as the usual
362 * cache flushing.
363 */
364
365 void
366 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
367 struct tu_cs *cs,
368 enum tu_cmd_ccu_state ccu_state)
369 {
370 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
371
372 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
373
374 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
375 * the CCU may also contain data that we haven't flushed out yet, so we
376 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
377 * emit a WFI as it isn't pipelined.
378 */
379 if (ccu_state != cmd_buffer->state.ccu_state) {
380 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
381 flushes |=
382 TU_CMD_FLAG_CCU_FLUSH_COLOR |
383 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
384 cmd_buffer->state.cache.pending_flush_bits &= ~(
385 TU_CMD_FLAG_CCU_FLUSH_COLOR |
386 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
387 }
388 flushes |=
389 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
390 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
391 TU_CMD_FLAG_WFI;
392 cmd_buffer->state.cache.pending_flush_bits &= ~(
393 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
394 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
395 }
396
397 tu6_emit_flushes(cmd_buffer, cs, flushes);
398 cmd_buffer->state.cache.flush_bits = 0;
399
400 if (ccu_state != cmd_buffer->state.ccu_state) {
401 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
402 tu_cs_emit_regs(cs,
403 A6XX_RB_CCU_CNTL(.offset =
404 ccu_state == TU_CMD_CCU_GMEM ?
405 phys_dev->ccu_offset_gmem :
406 phys_dev->ccu_offset_bypass,
407 .gmem = ccu_state == TU_CMD_CCU_GMEM));
408 cmd_buffer->state.ccu_state = ccu_state;
409 }
410 }
411
412 static void
413 tu6_emit_zs(struct tu_cmd_buffer *cmd,
414 const struct tu_subpass *subpass,
415 struct tu_cs *cs)
416 {
417 const struct tu_framebuffer *fb = cmd->state.framebuffer;
418
419 const uint32_t a = subpass->depth_stencil_attachment.attachment;
420 if (a == VK_ATTACHMENT_UNUSED) {
421 tu_cs_emit_regs(cs,
422 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
423 A6XX_RB_DEPTH_BUFFER_PITCH(0),
424 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
425 A6XX_RB_DEPTH_BUFFER_BASE(0),
426 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
427
428 tu_cs_emit_regs(cs,
429 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
430
431 tu_cs_emit_regs(cs,
432 A6XX_GRAS_LRZ_BUFFER_BASE(0),
433 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
434 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
435
436 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
437
438 return;
439 }
440
441 const struct tu_image_view *iview = fb->attachments[a].attachment;
442 const struct tu_render_pass_attachment *attachment =
443 &cmd->state.pass->attachments[a];
444 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
445
446 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
447 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
448 tu_cs_image_ref(cs, iview, 0);
449 tu_cs_emit(cs, attachment->gmem_offset);
450
451 tu_cs_emit_regs(cs,
452 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
453
454 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
455 tu_cs_image_flag_ref(cs, iview, 0);
456
457 tu_cs_emit_regs(cs,
458 A6XX_GRAS_LRZ_BUFFER_BASE(0),
459 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
460 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
461
462 if (attachment->format == VK_FORMAT_S8_UINT) {
463 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
464 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
465 tu_cs_image_ref(cs, iview, 0);
466 tu_cs_emit(cs, attachment->gmem_offset);
467 } else {
468 tu_cs_emit_regs(cs,
469 A6XX_RB_STENCIL_INFO(0));
470 }
471 }
472
473 static void
474 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
475 const struct tu_subpass *subpass,
476 struct tu_cs *cs)
477 {
478 const struct tu_framebuffer *fb = cmd->state.framebuffer;
479
480 for (uint32_t i = 0; i < subpass->color_count; ++i) {
481 uint32_t a = subpass->color_attachments[i].attachment;
482 if (a == VK_ATTACHMENT_UNUSED)
483 continue;
484
485 const struct tu_image_view *iview = fb->attachments[a].attachment;
486
487 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
488 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
489 tu_cs_image_ref(cs, iview, 0);
490 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
491
492 tu_cs_emit_regs(cs,
493 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
494
495 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
496 tu_cs_image_flag_ref(cs, iview, 0);
497 }
498
499 tu_cs_emit_regs(cs,
500 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
501 tu_cs_emit_regs(cs,
502 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
503
504 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
505 }
506
507 void
508 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
509 {
510 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
511 bool msaa_disable = samples == MSAA_ONE;
512
513 tu_cs_emit_regs(cs,
514 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
515 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
516 .msaa_disable = msaa_disable));
517
518 tu_cs_emit_regs(cs,
519 A6XX_GRAS_RAS_MSAA_CNTL(samples),
520 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
521 .msaa_disable = msaa_disable));
522
523 tu_cs_emit_regs(cs,
524 A6XX_RB_RAS_MSAA_CNTL(samples),
525 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
526 .msaa_disable = msaa_disable));
527
528 tu_cs_emit_regs(cs,
529 A6XX_RB_MSAA_CNTL(samples));
530 }
531
532 static void
533 tu6_emit_bin_size(struct tu_cs *cs,
534 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
535 {
536 tu_cs_emit_regs(cs,
537 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
538 .binh = bin_h,
539 .dword = flags));
540
541 tu_cs_emit_regs(cs,
542 A6XX_RB_BIN_CONTROL(.binw = bin_w,
543 .binh = bin_h,
544 .dword = flags));
545
546 /* no flag for RB_BIN_CONTROL2... */
547 tu_cs_emit_regs(cs,
548 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
549 .binh = bin_h));
550 }
551
552 static void
553 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
554 const struct tu_subpass *subpass,
555 struct tu_cs *cs,
556 bool binning)
557 {
558 const struct tu_framebuffer *fb = cmd->state.framebuffer;
559 uint32_t cntl = 0;
560 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
561 if (binning) {
562 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
563 } else {
564 uint32_t mrts_ubwc_enable = 0;
565 for (uint32_t i = 0; i < subpass->color_count; ++i) {
566 uint32_t a = subpass->color_attachments[i].attachment;
567 if (a == VK_ATTACHMENT_UNUSED)
568 continue;
569
570 const struct tu_image_view *iview = fb->attachments[a].attachment;
571 if (iview->ubwc_enabled)
572 mrts_ubwc_enable |= 1 << i;
573 }
574
575 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
576
577 const uint32_t a = subpass->depth_stencil_attachment.attachment;
578 if (a != VK_ATTACHMENT_UNUSED) {
579 const struct tu_image_view *iview = fb->attachments[a].attachment;
580 if (iview->ubwc_enabled)
581 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
582 }
583
584 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
585 * in order to set it correctly for the different subpasses. However,
586 * that means the packets we're emitting also happen during binning. So
587 * we need to guard the write on !BINNING at CP execution time.
588 */
589 tu_cs_reserve(cs, 3 + 4);
590 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
591 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
592 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
593 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
594 }
595
596 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
597 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
598 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
599 tu_cs_emit(cs, cntl);
600 }
601
602 static void
603 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
604 {
605 const VkRect2D *render_area = &cmd->state.tiling_config.render_area;
606 uint32_t x1 = render_area->offset.x;
607 uint32_t y1 = render_area->offset.y;
608 uint32_t x2 = x1 + render_area->extent.width - 1;
609 uint32_t y2 = y1 + render_area->extent.height - 1;
610
611 if (align) {
612 x1 = x1 & ~(GMEM_ALIGN_W - 1);
613 y1 = y1 & ~(GMEM_ALIGN_H - 1);
614 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
615 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
616 }
617
618 tu_cs_emit_regs(cs,
619 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
620 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
621 }
622
623 void
624 tu6_emit_window_scissor(struct tu_cs *cs,
625 uint32_t x1,
626 uint32_t y1,
627 uint32_t x2,
628 uint32_t y2)
629 {
630 tu_cs_emit_regs(cs,
631 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
632 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
633
634 tu_cs_emit_regs(cs,
635 A6XX_GRAS_RESOLVE_CNTL_1(.x = x1, .y = y1),
636 A6XX_GRAS_RESOLVE_CNTL_2(.x = x2, .y = y2));
637 }
638
639 void
640 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
641 {
642 tu_cs_emit_regs(cs,
643 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
644
645 tu_cs_emit_regs(cs,
646 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
647
648 tu_cs_emit_regs(cs,
649 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
650
651 tu_cs_emit_regs(cs,
652 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
653 }
654
655 static void
656 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
657 {
658 uint32_t enable_mask;
659 switch (id) {
660 case TU_DRAW_STATE_PROGRAM:
661 case TU_DRAW_STATE_VI:
662 case TU_DRAW_STATE_FS_CONST:
663 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
664 * when resources would actually be used in the binning shader.
665 * Presumably the overhead of prefetching the resources isn't
666 * worth it.
667 */
668 case TU_DRAW_STATE_DESC_SETS_LOAD:
669 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
670 CP_SET_DRAW_STATE__0_SYSMEM;
671 break;
672 case TU_DRAW_STATE_PROGRAM_BINNING:
673 case TU_DRAW_STATE_VI_BINNING:
674 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
675 break;
676 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
677 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
678 break;
679 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
680 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
681 break;
682 default:
683 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
684 CP_SET_DRAW_STATE__0_SYSMEM |
685 CP_SET_DRAW_STATE__0_BINNING;
686 break;
687 }
688
689 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
690 enable_mask |
691 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
692 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
693 tu_cs_emit_qw(cs, state.iova);
694 }
695
696 /* note: get rid of this eventually */
697 static void
698 tu_cs_emit_sds_ib(struct tu_cs *cs, uint32_t id, struct tu_cs_entry entry)
699 {
700 tu_cs_emit_draw_state(cs, id, (struct tu_draw_state) {
701 .iova = entry.size ? entry.bo->iova + entry.offset : 0,
702 .size = entry.size / 4,
703 });
704 }
705
706 static bool
707 use_hw_binning(struct tu_cmd_buffer *cmd)
708 {
709 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
710
711 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
712 return false;
713
714 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
715 return true;
716
717 return (tiling->tile_count.width * tiling->tile_count.height) > 2;
718 }
719
720 static bool
721 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
722 {
723 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
724 return true;
725
726 /* can't fit attachments into gmem */
727 if (!cmd->state.pass->gmem_pixels)
728 return true;
729
730 if (cmd->state.framebuffer->layers > 1)
731 return true;
732
733 if (cmd->has_tess)
734 return true;
735
736 return cmd->state.tiling_config.force_sysmem;
737 }
738
739 static void
740 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
741 struct tu_cs *cs,
742 const struct tu_tile *tile)
743 {
744 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
745 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
746
747 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
748 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
749
750 const uint32_t x1 = tile->begin.x;
751 const uint32_t y1 = tile->begin.y;
752 const uint32_t x2 = tile->end.x - 1;
753 const uint32_t y2 = tile->end.y - 1;
754 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
755 tu6_emit_window_offset(cs, x1, y1);
756
757 tu_cs_emit_regs(cs,
758 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
759
760 if (use_hw_binning(cmd)) {
761 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
762
763 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
764 tu_cs_emit(cs, 0x0);
765
766 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5, 7);
767 tu_cs_emit(cs, cmd->state.tiling_config.pipe_sizes[tile->pipe] |
768 CP_SET_BIN_DATA5_0_VSC_N(tile->slot));
769 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + tile->pipe * cmd->vsc_draw_strm_pitch);
770 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + (tile->pipe * 4) + (32 * cmd->vsc_draw_strm_pitch));
771 tu_cs_emit_qw(cs, cmd->vsc_prim_strm.iova + (tile->pipe * cmd->vsc_prim_strm_pitch));
772
773 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
774 tu_cs_emit(cs, 0x0);
775
776 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
777 tu_cs_emit(cs, 0x0);
778 } else {
779 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
780 tu_cs_emit(cs, 0x1);
781
782 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
783 tu_cs_emit(cs, 0x0);
784 }
785 }
786
787 static void
788 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
789 struct tu_cs *cs,
790 uint32_t a,
791 uint32_t gmem_a)
792 {
793 const struct tu_framebuffer *fb = cmd->state.framebuffer;
794 struct tu_image_view *dst = fb->attachments[a].attachment;
795 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
796
797 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.tiling_config.render_area);
798 }
799
800 static void
801 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
802 struct tu_cs *cs,
803 const struct tu_subpass *subpass)
804 {
805 if (subpass->resolve_attachments) {
806 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
807 * Commands":
808 *
809 * End-of-subpass multisample resolves are treated as color
810 * attachment writes for the purposes of synchronization. That is,
811 * they are considered to execute in the
812 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
813 * their writes are synchronized with
814 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
815 * rendering within a subpass and any resolve operations at the end
816 * of the subpass occurs automatically, without need for explicit
817 * dependencies or pipeline barriers. However, if the resolve
818 * attachment is also used in a different subpass, an explicit
819 * dependency is needed.
820 *
821 * We use the CP_BLIT path for sysmem resolves, which is really a
822 * transfer command, so we have to manually flush similar to the gmem
823 * resolve case. However, a flush afterwards isn't needed because of the
824 * last sentence and the fact that we're in sysmem mode.
825 */
826 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
827 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
828
829 /* Wait for the flushes to land before using the 2D engine */
830 tu_cs_emit_wfi(cs);
831
832 for (unsigned i = 0; i < subpass->color_count; i++) {
833 uint32_t a = subpass->resolve_attachments[i].attachment;
834 if (a == VK_ATTACHMENT_UNUSED)
835 continue;
836
837 tu6_emit_sysmem_resolve(cmd, cs, a,
838 subpass->color_attachments[i].attachment);
839 }
840 }
841 }
842
843 static void
844 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
845 {
846 const struct tu_render_pass *pass = cmd->state.pass;
847 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
848
849 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
850 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
851 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
852 CP_SET_DRAW_STATE__0_GROUP_ID(0));
853 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
854 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
855
856 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
857 tu_cs_emit(cs, 0x0);
858
859 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
860 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
861
862 tu6_emit_blit_scissor(cmd, cs, true);
863
864 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
865 if (pass->attachments[a].gmem_offset >= 0)
866 tu_store_gmem_attachment(cmd, cs, a, a);
867 }
868
869 if (subpass->resolve_attachments) {
870 for (unsigned i = 0; i < subpass->color_count; i++) {
871 uint32_t a = subpass->resolve_attachments[i].attachment;
872 if (a != VK_ATTACHMENT_UNUSED)
873 tu_store_gmem_attachment(cmd, cs, a,
874 subpass->color_attachments[i].attachment);
875 }
876 }
877 }
878
879 static void
880 tu6_emit_restart_index(struct tu_cs *cs, uint32_t restart_index)
881 {
882 tu_cs_emit_regs(cs,
883 A6XX_PC_RESTART_INDEX(restart_index));
884 }
885
886 static void
887 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
888 {
889 const struct tu_physical_device *phys_dev = cmd->device->physical_device;
890
891 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
892
893 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 0xfffff);
894
895 tu_cs_emit_regs(cs,
896 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
897 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
898 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
899 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
900 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
901 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
902 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
903 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
904 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
905 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
906
907 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
908 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
909 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
910 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
911 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
912 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
913 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BB11, 0);
914 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
915 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
916 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
917 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
918 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
919 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
920 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_GS_SIV_CNTL, 0x0000ffff);
921
922 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
923 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
924 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
925
926 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
927
928 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
929
930 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
931 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
932 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
933 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
934 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
935 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
936 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
937 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
938 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
939 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
940 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
941
942 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9101, 0xffff00);
943 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
944
945 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9236,
946 A6XX_VPC_UNKNOWN_9236_POINT_COORD_INVERT(0));
947 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
948
949 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_SO_OVERRIDE,
950 A6XX_VPC_SO_OVERRIDE_SO_DISABLE);
951
952 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
953 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
954 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9990, 0);
955
956 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
957 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
958
959 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
960
961 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
962
963 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
964 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_809B, 0);
965 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
966 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
967 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
968 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
969 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
970 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9981, 0x3);
971 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
972 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9108, 0x3);
973 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
974 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8878, 0);
975 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8879, 0);
976 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
977
978 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
979
980 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
981
982 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
983
984 /* we don't use this yet.. probably best to disable.. */
985 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
986 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
987 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
988 CP_SET_DRAW_STATE__0_GROUP_ID(0));
989 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
990 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
991
992 /* Set not to use streamout by default, */
993 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 4);
994 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
995 tu_cs_emit(cs, 0);
996 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
997 tu_cs_emit(cs, 0);
998
999 tu_cs_emit_regs(cs,
1000 A6XX_SP_HS_CTRL_REG0(0));
1001
1002 tu_cs_emit_regs(cs,
1003 A6XX_SP_GS_CTRL_REG0(0));
1004
1005 tu_cs_emit_regs(cs,
1006 A6XX_GRAS_LRZ_CNTL(0));
1007
1008 tu_cs_emit_regs(cs,
1009 A6XX_RB_LRZ_CNTL(0));
1010
1011 tu_cs_emit_regs(cs,
1012 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1013 tu_cs_emit_regs(cs,
1014 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1015
1016 tu_cs_sanity_check(cs);
1017 }
1018
1019 static void
1020 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1021 {
1022 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1023
1024 tu_cs_emit_regs(cs,
1025 A6XX_VSC_BIN_SIZE(.width = tiling->tile0.extent.width,
1026 .height = tiling->tile0.extent.height),
1027 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = &cmd->vsc_draw_strm,
1028 .bo_offset = 32 * cmd->vsc_draw_strm_pitch));
1029
1030 tu_cs_emit_regs(cs,
1031 A6XX_VSC_BIN_COUNT(.nx = tiling->tile_count.width,
1032 .ny = tiling->tile_count.height));
1033
1034 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
1035 for (unsigned i = 0; i < 32; i++)
1036 tu_cs_emit(cs, tiling->pipe_config[i]);
1037
1038 tu_cs_emit_regs(cs,
1039 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = &cmd->vsc_prim_strm),
1040 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
1041 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - 64));
1042
1043 tu_cs_emit_regs(cs,
1044 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = &cmd->vsc_draw_strm),
1045 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
1046 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - 64));
1047 }
1048
1049 static void
1050 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1051 {
1052 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1053 const uint32_t used_pipe_count =
1054 tiling->pipe_count.width * tiling->pipe_count.height;
1055
1056 /* Clear vsc_scratch: */
1057 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
1058 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1059 tu_cs_emit(cs, 0x0);
1060
1061 /* Check for overflow, write vsc_scratch if detected: */
1062 for (int i = 0; i < used_pipe_count; i++) {
1063 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1064 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1065 CP_COND_WRITE5_0_WRITE_MEMORY);
1066 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
1067 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1068 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - 64));
1069 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1070 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1071 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(1 + cmd->vsc_draw_strm_pitch));
1072
1073 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1074 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1075 CP_COND_WRITE5_0_WRITE_MEMORY);
1076 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
1077 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1078 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - 64));
1079 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1080 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1081 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(3 + cmd->vsc_prim_strm_pitch));
1082 }
1083
1084 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1085 }
1086
1087 static void
1088 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1089 {
1090 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1091 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1092
1093 uint32_t x1 = tiling->tile0.offset.x;
1094 uint32_t y1 = tiling->tile0.offset.y;
1095 uint32_t x2 = tiling->render_area.offset.x + tiling->render_area.extent.width - 1;
1096 uint32_t y2 = tiling->render_area.offset.y + tiling->render_area.extent.height - 1;
1097
1098 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
1099
1100 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1101 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
1102
1103 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1104 tu_cs_emit(cs, 0x1);
1105
1106 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1107 tu_cs_emit(cs, 0x1);
1108
1109 tu_cs_emit_wfi(cs);
1110
1111 tu_cs_emit_regs(cs,
1112 A6XX_VFD_MODE_CNTL(.binning_pass = true));
1113
1114 update_vsc_pipe(cmd, cs);
1115
1116 tu_cs_emit_regs(cs,
1117 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1118
1119 tu_cs_emit_regs(cs,
1120 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1121
1122 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1123 tu_cs_emit(cs, UNK_2C);
1124
1125 tu_cs_emit_regs(cs,
1126 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1127
1128 tu_cs_emit_regs(cs,
1129 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1130
1131 /* emit IB to binning drawcmds: */
1132 tu_cs_emit_call(cs, &cmd->draw_cs);
1133
1134 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1135 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1136 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1137 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1138 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1139 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1140
1141 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1142 tu_cs_emit(cs, UNK_2D);
1143
1144 /* This flush is probably required because the VSC, which produces the
1145 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1146 * visibility stream (without caching) to do draw skipping. The
1147 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1148 * submitted are finished before reading the VSC regs (in
1149 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1150 * part of draws).
1151 */
1152 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1153
1154 tu_cs_emit_wfi(cs);
1155
1156 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1157
1158 emit_vsc_overflow_test(cmd, cs);
1159
1160 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1161 tu_cs_emit(cs, 0x0);
1162
1163 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1164 tu_cs_emit(cs, 0x0);
1165 }
1166
1167 static void
1168 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1169 const struct tu_subpass *subpass,
1170 struct tu_cs_entry *ib,
1171 bool gmem)
1172 {
1173 /* note: we can probably emit input attachments just once for the whole
1174 * renderpass, this would avoid emitting both sysmem/gmem versions
1175 *
1176 * emit two texture descriptors for each input, as a workaround for
1177 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1178 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1179 * in the pair
1180 * TODO: a smarter workaround
1181 */
1182
1183 if (!subpass->input_count)
1184 return;
1185
1186 struct ts_cs_memory texture;
1187 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1188 A6XX_TEX_CONST_DWORDS, &texture);
1189 assert(result == VK_SUCCESS);
1190
1191 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1192 uint32_t a = subpass->input_attachments[i / 2].attachment;
1193 if (a == VK_ATTACHMENT_UNUSED)
1194 continue;
1195
1196 struct tu_image_view *iview =
1197 cmd->state.framebuffer->attachments[a].attachment;
1198 const struct tu_render_pass_attachment *att =
1199 &cmd->state.pass->attachments[a];
1200 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1201
1202 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1203
1204 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1205 /* note this works because spec says fb and input attachments
1206 * must use identity swizzle
1207 */
1208 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1209 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1210 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1211 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1212 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1213 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1214 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1215 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1216 }
1217
1218 if (!gmem)
1219 continue;
1220
1221 /* patched for gmem */
1222 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1223 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1224 dst[2] =
1225 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1226 A6XX_TEX_CONST_2_PITCH(cmd->state.tiling_config.tile0.extent.width * att->cpp);
1227 dst[3] = 0;
1228 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1229 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1230 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1231 dst[i] = 0;
1232 }
1233
1234 struct tu_cs cs;
1235 tu_cs_begin_sub_stream(&cmd->sub_cs, 9, &cs);
1236
1237 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1238 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1239 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1240 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1241 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1242 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1243 tu_cs_emit_qw(&cs, texture.iova);
1244
1245 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1246 tu_cs_emit_qw(&cs, texture.iova);
1247
1248 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1249
1250 *ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1251 }
1252
1253 static void
1254 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1255 {
1256 struct tu_cs *cs = &cmd->draw_cs;
1257
1258 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_gmem_ib, true);
1259 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_sysmem_ib, false);
1260
1261 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1262 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM, cmd->state.ia_gmem_ib);
1263 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM, cmd->state.ia_sysmem_ib);
1264 }
1265
1266 static void
1267 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1268 const VkRenderPassBeginInfo *info)
1269 {
1270 struct tu_cs *cs = &cmd->draw_cs;
1271
1272 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1273
1274 tu6_emit_blit_scissor(cmd, cs, true);
1275
1276 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1277 tu_load_gmem_attachment(cmd, cs, i, false);
1278
1279 tu6_emit_blit_scissor(cmd, cs, false);
1280
1281 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1282 tu_clear_gmem_attachment(cmd, cs, i, info);
1283
1284 tu_cond_exec_end(cs);
1285
1286 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1287
1288 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1289 tu_clear_sysmem_attachment(cmd, cs, i, info);
1290
1291 tu_cond_exec_end(cs);
1292 }
1293
1294 static void
1295 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1296 const struct VkRect2D *renderArea)
1297 {
1298 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1299
1300 assert(fb->width > 0 && fb->height > 0);
1301 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1302 tu6_emit_window_offset(cs, 0, 0);
1303
1304 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1305
1306 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1307
1308 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1309 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1310
1311 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1312 tu_cs_emit(cs, 0x0);
1313
1314 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1315
1316 /* enable stream-out, with sysmem there is only one pass: */
1317 tu_cs_emit_regs(cs,
1318 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
1319
1320 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1321 tu_cs_emit(cs, 0x1);
1322
1323 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1324 tu_cs_emit(cs, 0x0);
1325
1326 tu_cs_sanity_check(cs);
1327 }
1328
1329 static void
1330 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1331 {
1332 /* Do any resolves of the last subpass. These are handled in the
1333 * tile_store_ib in the gmem path.
1334 */
1335 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1336
1337 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1338
1339 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1340 tu_cs_emit(cs, 0x0);
1341
1342 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1343
1344 tu_cs_sanity_check(cs);
1345 }
1346
1347 static void
1348 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1349 {
1350 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1351
1352 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1353
1354 /* lrz clear? */
1355
1356 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1357 tu_cs_emit(cs, 0x0);
1358
1359 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1360
1361 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1362 if (use_hw_binning(cmd)) {
1363 /* enable stream-out during binning pass: */
1364 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1365
1366 tu6_emit_bin_size(cs,
1367 tiling->tile0.extent.width,
1368 tiling->tile0.extent.height,
1369 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1370
1371 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1372
1373 tu6_emit_binning_pass(cmd, cs);
1374
1375 /* and disable stream-out for draw pass: */
1376 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=true));
1377
1378 tu6_emit_bin_size(cs,
1379 tiling->tile0.extent.width,
1380 tiling->tile0.extent.height,
1381 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1382
1383 tu_cs_emit_regs(cs,
1384 A6XX_VFD_MODE_CNTL(0));
1385
1386 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1387
1388 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1389
1390 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1391 tu_cs_emit(cs, 0x1);
1392 } else {
1393 /* no binning pass, so enable stream-out for draw pass:: */
1394 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1395
1396 tu6_emit_bin_size(cs,
1397 tiling->tile0.extent.width,
1398 tiling->tile0.extent.height,
1399 0x6000000);
1400 }
1401
1402 tu_cs_sanity_check(cs);
1403 }
1404
1405 static void
1406 tu6_render_tile(struct tu_cmd_buffer *cmd,
1407 struct tu_cs *cs,
1408 const struct tu_tile *tile)
1409 {
1410 tu6_emit_tile_select(cmd, cs, tile);
1411
1412 tu_cs_emit_call(cs, &cmd->draw_cs);
1413
1414 if (use_hw_binning(cmd)) {
1415 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1416 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1417 }
1418
1419 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1420
1421 tu_cs_sanity_check(cs);
1422 }
1423
1424 static void
1425 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1426 {
1427 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1428
1429 tu_cs_emit_regs(cs,
1430 A6XX_GRAS_LRZ_CNTL(0));
1431
1432 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1433
1434 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1435
1436 tu_cs_sanity_check(cs);
1437 }
1438
1439 static void
1440 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1441 {
1442 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1443
1444 tu6_tile_render_begin(cmd, &cmd->cs);
1445
1446 for (uint32_t y = 0; y < tiling->tile_count.height; y++) {
1447 for (uint32_t x = 0; x < tiling->tile_count.width; x++) {
1448 struct tu_tile tile;
1449 tu_tiling_config_get_tile(tiling, cmd->device, x, y, &tile);
1450 tu6_render_tile(cmd, &cmd->cs, &tile);
1451 }
1452 }
1453
1454 tu6_tile_render_end(cmd, &cmd->cs);
1455 }
1456
1457 static void
1458 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1459 {
1460 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1461
1462 tu6_sysmem_render_begin(cmd, &cmd->cs, &tiling->render_area);
1463
1464 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1465
1466 tu6_sysmem_render_end(cmd, &cmd->cs);
1467 }
1468
1469 static void
1470 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1471 {
1472 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1473 struct tu_cs sub_cs;
1474
1475 VkResult result =
1476 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1477 if (result != VK_SUCCESS) {
1478 cmd->record_result = result;
1479 return;
1480 }
1481
1482 /* emit to tile-store sub_cs */
1483 tu6_emit_tile_store(cmd, &sub_cs);
1484
1485 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1486 }
1487
1488 static void
1489 tu_cmd_update_tiling_config(struct tu_cmd_buffer *cmd,
1490 const VkRect2D *render_area)
1491 {
1492 const struct tu_device *dev = cmd->device;
1493 struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1494
1495 tiling->render_area = *render_area;
1496 tiling->force_sysmem = false;
1497
1498 tu_tiling_config_update_tile_layout(tiling, dev, cmd->state.pass);
1499 tu_tiling_config_update_pipe_layout(tiling, dev);
1500 tu_tiling_config_update_pipes(tiling, dev);
1501 }
1502
1503 static VkResult
1504 tu_create_cmd_buffer(struct tu_device *device,
1505 struct tu_cmd_pool *pool,
1506 VkCommandBufferLevel level,
1507 VkCommandBuffer *pCommandBuffer)
1508 {
1509 struct tu_cmd_buffer *cmd_buffer;
1510 cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8,
1511 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1512 if (cmd_buffer == NULL)
1513 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1514
1515 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1516 cmd_buffer->device = device;
1517 cmd_buffer->pool = pool;
1518 cmd_buffer->level = level;
1519
1520 if (pool) {
1521 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1522 cmd_buffer->queue_family_index = pool->queue_family_index;
1523
1524 } else {
1525 /* Init the pool_link so we can safely call list_del when we destroy
1526 * the command buffer
1527 */
1528 list_inithead(&cmd_buffer->pool_link);
1529 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1530 }
1531
1532 tu_bo_list_init(&cmd_buffer->bo_list);
1533 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1534 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1535 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1536 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1537
1538 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1539
1540 list_inithead(&cmd_buffer->upload.list);
1541
1542 VkResult result = tu_bo_init_new(device, &cmd_buffer->scratch_bo, 0x1000);
1543 if (result != VK_SUCCESS)
1544 goto fail_scratch_bo;
1545
1546 /* TODO: resize on overflow */
1547 cmd_buffer->vsc_draw_strm_pitch = device->vsc_draw_strm_pitch;
1548 cmd_buffer->vsc_prim_strm_pitch = device->vsc_prim_strm_pitch;
1549 cmd_buffer->vsc_draw_strm = device->vsc_draw_strm;
1550 cmd_buffer->vsc_prim_strm = device->vsc_prim_strm;
1551
1552 return VK_SUCCESS;
1553
1554 fail_scratch_bo:
1555 list_del(&cmd_buffer->pool_link);
1556 return result;
1557 }
1558
1559 static void
1560 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1561 {
1562 tu_bo_finish(cmd_buffer->device, &cmd_buffer->scratch_bo);
1563
1564 list_del(&cmd_buffer->pool_link);
1565
1566 tu_cs_finish(&cmd_buffer->cs);
1567 tu_cs_finish(&cmd_buffer->draw_cs);
1568 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1569 tu_cs_finish(&cmd_buffer->sub_cs);
1570
1571 tu_bo_list_destroy(&cmd_buffer->bo_list);
1572 vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
1573 }
1574
1575 static VkResult
1576 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1577 {
1578 cmd_buffer->record_result = VK_SUCCESS;
1579
1580 tu_bo_list_reset(&cmd_buffer->bo_list);
1581 tu_cs_reset(&cmd_buffer->cs);
1582 tu_cs_reset(&cmd_buffer->draw_cs);
1583 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1584 tu_cs_reset(&cmd_buffer->sub_cs);
1585
1586 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1587 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1588
1589 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1590
1591 return cmd_buffer->record_result;
1592 }
1593
1594 VkResult
1595 tu_AllocateCommandBuffers(VkDevice _device,
1596 const VkCommandBufferAllocateInfo *pAllocateInfo,
1597 VkCommandBuffer *pCommandBuffers)
1598 {
1599 TU_FROM_HANDLE(tu_device, device, _device);
1600 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1601
1602 VkResult result = VK_SUCCESS;
1603 uint32_t i;
1604
1605 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1606
1607 if (!list_is_empty(&pool->free_cmd_buffers)) {
1608 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1609 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1610
1611 list_del(&cmd_buffer->pool_link);
1612 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1613
1614 result = tu_reset_cmd_buffer(cmd_buffer);
1615 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1616 cmd_buffer->level = pAllocateInfo->level;
1617
1618 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1619 } else {
1620 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1621 &pCommandBuffers[i]);
1622 }
1623 if (result != VK_SUCCESS)
1624 break;
1625 }
1626
1627 if (result != VK_SUCCESS) {
1628 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1629 pCommandBuffers);
1630
1631 /* From the Vulkan 1.0.66 spec:
1632 *
1633 * "vkAllocateCommandBuffers can be used to create multiple
1634 * command buffers. If the creation of any of those command
1635 * buffers fails, the implementation must destroy all
1636 * successfully created command buffer objects from this
1637 * command, set all entries of the pCommandBuffers array to
1638 * NULL and return the error."
1639 */
1640 memset(pCommandBuffers, 0,
1641 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1642 }
1643
1644 return result;
1645 }
1646
1647 void
1648 tu_FreeCommandBuffers(VkDevice device,
1649 VkCommandPool commandPool,
1650 uint32_t commandBufferCount,
1651 const VkCommandBuffer *pCommandBuffers)
1652 {
1653 for (uint32_t i = 0; i < commandBufferCount; i++) {
1654 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1655
1656 if (cmd_buffer) {
1657 if (cmd_buffer->pool) {
1658 list_del(&cmd_buffer->pool_link);
1659 list_addtail(&cmd_buffer->pool_link,
1660 &cmd_buffer->pool->free_cmd_buffers);
1661 } else
1662 tu_cmd_buffer_destroy(cmd_buffer);
1663 }
1664 }
1665 }
1666
1667 VkResult
1668 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1669 VkCommandBufferResetFlags flags)
1670 {
1671 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1672 return tu_reset_cmd_buffer(cmd_buffer);
1673 }
1674
1675 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1676 * invalidations.
1677 */
1678 static void
1679 tu_cache_init(struct tu_cache_state *cache)
1680 {
1681 cache->flush_bits = 0;
1682 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1683 }
1684
1685 VkResult
1686 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1687 const VkCommandBufferBeginInfo *pBeginInfo)
1688 {
1689 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1690 VkResult result = VK_SUCCESS;
1691
1692 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1693 /* If the command buffer has already been resetted with
1694 * vkResetCommandBuffer, no need to do it again.
1695 */
1696 result = tu_reset_cmd_buffer(cmd_buffer);
1697 if (result != VK_SUCCESS)
1698 return result;
1699 }
1700
1701 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1702 tu_cache_init(&cmd_buffer->state.cache);
1703 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1704 cmd_buffer->usage_flags = pBeginInfo->flags;
1705
1706 tu_cs_begin(&cmd_buffer->cs);
1707 tu_cs_begin(&cmd_buffer->draw_cs);
1708 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1709
1710 /* setup initial configuration into command buffer */
1711 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1712 switch (cmd_buffer->queue_family_index) {
1713 case TU_QUEUE_GENERAL:
1714 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1715 break;
1716 default:
1717 break;
1718 }
1719 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1720 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1721 assert(pBeginInfo->pInheritanceInfo);
1722 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1723 cmd_buffer->state.subpass =
1724 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1725 } else {
1726 /* When executing in the middle of another command buffer, the CCU
1727 * state is unknown.
1728 */
1729 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1730 }
1731 }
1732
1733 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1734
1735 return VK_SUCCESS;
1736 }
1737
1738 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1739 * rendering can skip over unused state), so we need to collect all the
1740 * bindings together into a single state emit at draw time.
1741 */
1742 void
1743 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1744 uint32_t firstBinding,
1745 uint32_t bindingCount,
1746 const VkBuffer *pBuffers,
1747 const VkDeviceSize *pOffsets)
1748 {
1749 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1750
1751 assert(firstBinding + bindingCount <= MAX_VBS);
1752
1753 for (uint32_t i = 0; i < bindingCount; i++) {
1754 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1755
1756 cmd->state.vb.buffers[firstBinding + i] = buf;
1757 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1758
1759 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1760 }
1761
1762 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1763 }
1764
1765 void
1766 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1767 VkBuffer buffer,
1768 VkDeviceSize offset,
1769 VkIndexType indexType)
1770 {
1771 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1772 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1773
1774 /* initialize/update the restart index */
1775 if (!cmd->state.index_buffer || cmd->state.index_type != indexType) {
1776 struct tu_cs *draw_cs = &cmd->draw_cs;
1777
1778 tu6_emit_restart_index(
1779 draw_cs, indexType == VK_INDEX_TYPE_UINT32 ? 0xffffffff : 0xffff);
1780
1781 tu_cs_sanity_check(draw_cs);
1782 }
1783
1784 /* track the BO */
1785 if (cmd->state.index_buffer != buf)
1786 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1787
1788 cmd->state.index_buffer = buf;
1789 cmd->state.index_offset = offset;
1790 cmd->state.index_type = indexType;
1791 }
1792
1793 void
1794 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1795 VkPipelineBindPoint pipelineBindPoint,
1796 VkPipelineLayout _layout,
1797 uint32_t firstSet,
1798 uint32_t descriptorSetCount,
1799 const VkDescriptorSet *pDescriptorSets,
1800 uint32_t dynamicOffsetCount,
1801 const uint32_t *pDynamicOffsets)
1802 {
1803 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1804 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1805 unsigned dyn_idx = 0;
1806
1807 struct tu_descriptor_state *descriptors_state =
1808 tu_get_descriptors_state(cmd, pipelineBindPoint);
1809
1810 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1811 unsigned idx = i + firstSet;
1812 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1813
1814 descriptors_state->sets[idx] = set;
1815
1816 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1817 /* update the contents of the dynamic descriptor set */
1818 unsigned src_idx = j;
1819 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1820 assert(dyn_idx < dynamicOffsetCount);
1821
1822 uint32_t *dst =
1823 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1824 uint32_t *src =
1825 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1826 uint32_t offset = pDynamicOffsets[dyn_idx];
1827
1828 /* Patch the storage/uniform descriptors right away. */
1829 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1830 /* Note: we can assume here that the addition won't roll over and
1831 * change the SIZE field.
1832 */
1833 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1834 va += offset;
1835 dst[0] = va;
1836 dst[1] = va >> 32;
1837 } else {
1838 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1839 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1840 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1841 va += offset;
1842 dst[4] = va;
1843 dst[5] = va >> 32;
1844 }
1845 }
1846
1847 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1848 if (set->buffers[j]) {
1849 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1850 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1851 }
1852 }
1853
1854 if (set->size > 0) {
1855 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1856 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1857 }
1858 }
1859 assert(dyn_idx == dynamicOffsetCount);
1860
1861 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_update_value;
1862 uint64_t addr[MAX_SETS + 1] = {};
1863 struct tu_cs cs;
1864
1865 for (uint32_t i = 0; i < MAX_SETS; i++) {
1866 struct tu_descriptor_set *set = descriptors_state->sets[i];
1867 if (set)
1868 addr[i] = set->va | 3;
1869 }
1870
1871 if (layout->dynamic_offset_count) {
1872 /* allocate and fill out dynamic descriptor set */
1873 struct ts_cs_memory dynamic_desc_set;
1874 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1875 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1876 assert(result == VK_SUCCESS);
1877
1878 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1879 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1880 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1881 }
1882
1883 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1884 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1885 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1886 hlsq_update_value = 0x7c000;
1887
1888 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS | TU_CMD_DIRTY_SHADER_CONSTS;
1889 } else {
1890 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1891
1892 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1893 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1894 hlsq_update_value = 0x3e00;
1895
1896 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS;
1897 }
1898
1899 tu_cs_begin_sub_stream(&cmd->sub_cs, 24, &cs);
1900
1901 tu_cs_emit_pkt4(&cs, sp_bindless_base_reg, 10);
1902 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1903 tu_cs_emit_pkt4(&cs, hlsq_bindless_base_reg, 10);
1904 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1905 tu_cs_emit_regs(&cs, A6XX_HLSQ_UPDATE_CNTL(.dword = hlsq_update_value));
1906
1907 struct tu_cs_entry ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1908 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1909 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1910 tu_cs_emit_sds_ib(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, ib);
1911 cmd->state.desc_sets_ib = ib;
1912 } else {
1913 /* note: for compute we could emit directly, instead of a CP_INDIRECT
1914 * however, the blob uses draw states for compute
1915 */
1916 tu_cs_emit_ib(&cmd->cs, &ib);
1917 }
1918 }
1919
1920 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1921 uint32_t firstBinding,
1922 uint32_t bindingCount,
1923 const VkBuffer *pBuffers,
1924 const VkDeviceSize *pOffsets,
1925 const VkDeviceSize *pSizes)
1926 {
1927 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1928 assert(firstBinding + bindingCount <= IR3_MAX_SO_BUFFERS);
1929
1930 for (uint32_t i = 0; i < bindingCount; i++) {
1931 uint32_t idx = firstBinding + i;
1932 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1933
1934 if (pOffsets[i] != 0)
1935 cmd->state.streamout_reset |= 1 << idx;
1936
1937 cmd->state.streamout_buf.buffers[idx] = buf;
1938 cmd->state.streamout_buf.offsets[idx] = pOffsets[i];
1939 cmd->state.streamout_buf.sizes[idx] = pSizes[i];
1940
1941 cmd->state.streamout_enabled |= 1 << idx;
1942 }
1943
1944 cmd->state.dirty |= TU_CMD_DIRTY_STREAMOUT_BUFFERS;
1945 }
1946
1947 void tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1948 uint32_t firstCounterBuffer,
1949 uint32_t counterBufferCount,
1950 const VkBuffer *pCounterBuffers,
1951 const VkDeviceSize *pCounterBufferOffsets)
1952 {
1953 assert(firstCounterBuffer + counterBufferCount <= IR3_MAX_SO_BUFFERS);
1954 /* TODO do something with counter buffer? */
1955 }
1956
1957 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1958 uint32_t firstCounterBuffer,
1959 uint32_t counterBufferCount,
1960 const VkBuffer *pCounterBuffers,
1961 const VkDeviceSize *pCounterBufferOffsets)
1962 {
1963 assert(firstCounterBuffer + counterBufferCount <= IR3_MAX_SO_BUFFERS);
1964 /* TODO do something with counter buffer? */
1965
1966 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1967 cmd->state.streamout_enabled = 0;
1968 }
1969
1970 void
1971 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
1972 VkPipelineLayout layout,
1973 VkShaderStageFlags stageFlags,
1974 uint32_t offset,
1975 uint32_t size,
1976 const void *pValues)
1977 {
1978 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1979 memcpy((void*) cmd->push_constants + offset, pValues, size);
1980 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
1981 }
1982
1983 /* Flush everything which has been made available but we haven't actually
1984 * flushed yet.
1985 */
1986 static void
1987 tu_flush_all_pending(struct tu_cache_state *cache)
1988 {
1989 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
1990 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
1991 }
1992
1993 VkResult
1994 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
1995 {
1996 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1997
1998 /* We currently flush CCU at the end of the command buffer, like
1999 * what the blob does. There's implicit synchronization around every
2000 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
2001 * know yet if this command buffer will be the last in the submit so we
2002 * have to defensively flush everything else.
2003 *
2004 * TODO: We could definitely do better than this, since these flushes
2005 * aren't required by Vulkan, but we'd need kernel support to do that.
2006 * Ideally, we'd like the kernel to flush everything afterwards, so that we
2007 * wouldn't have to do any flushes here, and when submitting multiple
2008 * command buffers there wouldn't be any unnecessary flushes in between.
2009 */
2010 if (cmd_buffer->state.pass) {
2011 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
2012 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
2013 } else {
2014 tu_flush_all_pending(&cmd_buffer->state.cache);
2015 cmd_buffer->state.cache.flush_bits |=
2016 TU_CMD_FLAG_CCU_FLUSH_COLOR |
2017 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
2018 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
2019 }
2020
2021 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->scratch_bo,
2022 MSM_SUBMIT_BO_WRITE);
2023
2024 if (cmd_buffer->use_vsc_data) {
2025 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_draw_strm,
2026 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2027 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_prim_strm,
2028 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2029 }
2030
2031 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->border_color,
2032 MSM_SUBMIT_BO_READ);
2033
2034 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
2035 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
2036 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2037 }
2038
2039 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
2040 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
2041 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2042 }
2043
2044 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
2045 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
2046 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2047 }
2048
2049 tu_cs_end(&cmd_buffer->cs);
2050 tu_cs_end(&cmd_buffer->draw_cs);
2051 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
2052
2053 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
2054
2055 return cmd_buffer->record_result;
2056 }
2057
2058 static struct tu_cs
2059 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2060 {
2061 struct ts_cs_memory memory;
2062 struct tu_cs cs;
2063
2064 /* TODO: share this logic with tu_pipeline_static_state */
2065 tu_cs_alloc(&cmd->sub_cs, size, 1, &memory);
2066 tu_cs_init_external(&cs, memory.map, memory.map + size);
2067 tu_cs_begin(&cs);
2068 tu_cs_reserve_space(&cs, size);
2069
2070 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2071 cmd->state.dynamic_state[id].iova = memory.iova;
2072 cmd->state.dynamic_state[id].size = size;
2073
2074 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2075 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2076
2077 return cs;
2078 }
2079
2080 void
2081 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2082 VkPipelineBindPoint pipelineBindPoint,
2083 VkPipeline _pipeline)
2084 {
2085 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2086 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2087
2088 tu_bo_list_add(&cmd->bo_list, &pipeline->program.binary_bo,
2089 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2090 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2091 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2092 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2093 }
2094
2095 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2096 cmd->state.compute_pipeline = pipeline;
2097 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_PIPELINE;
2098 return;
2099 }
2100
2101 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2102
2103 cmd->state.pipeline = pipeline;
2104 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2105
2106 struct tu_cs *cs = &cmd->draw_cs;
2107 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2108 uint32_t i;
2109
2110 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2111 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
2112 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
2113 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
2114 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
2115 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
2116 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
2117 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
2118
2119 for_each_bit(i, mask)
2120 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2121
2122 /* If the new pipeline requires more VBs than we had previously set up, we
2123 * need to re-emit them in SDS. If it requires the same set or fewer, we
2124 * can just re-use the old SDS.
2125 */
2126 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2127 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2128
2129 /* If the pipeline needs a dynamic descriptor, re-emit descriptor sets */
2130 if (pipeline->layout->dynamic_offset_count)
2131 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS;
2132
2133 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2134 * so the dynamic state ib must be updated when pipeline changes
2135 */
2136 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2137 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2138
2139 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2140 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2141
2142 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2143 }
2144 }
2145
2146 void
2147 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2148 uint32_t firstViewport,
2149 uint32_t viewportCount,
2150 const VkViewport *pViewports)
2151 {
2152 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2153 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2154
2155 assert(firstViewport == 0 && viewportCount == 1);
2156
2157 tu6_emit_viewport(&cs, pViewports);
2158 }
2159
2160 void
2161 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2162 uint32_t firstScissor,
2163 uint32_t scissorCount,
2164 const VkRect2D *pScissors)
2165 {
2166 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2167 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2168
2169 assert(firstScissor == 0 && scissorCount == 1);
2170
2171 tu6_emit_scissor(&cs, pScissors);
2172 }
2173
2174 void
2175 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2176 {
2177 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2178 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2179
2180 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2181 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2182
2183 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2184 }
2185
2186 void
2187 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2188 float depthBiasConstantFactor,
2189 float depthBiasClamp,
2190 float depthBiasSlopeFactor)
2191 {
2192 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2193 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2194
2195 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2196 }
2197
2198 void
2199 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2200 const float blendConstants[4])
2201 {
2202 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2203 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2204
2205 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2206 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2207 }
2208
2209 void
2210 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2211 float minDepthBounds,
2212 float maxDepthBounds)
2213 {
2214 }
2215
2216 static void
2217 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2218 {
2219 if (face & VK_STENCIL_FACE_FRONT_BIT)
2220 *value |= A6XX_RB_STENCILMASK_MASK(mask);
2221 if (face & VK_STENCIL_FACE_BACK_BIT)
2222 *value |= A6XX_RB_STENCILMASK_BFMASK(mask);
2223 }
2224
2225 void
2226 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2227 VkStencilFaceFlags faceMask,
2228 uint32_t compareMask)
2229 {
2230 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2231 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2232
2233 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2234
2235 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2236 }
2237
2238 void
2239 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2240 VkStencilFaceFlags faceMask,
2241 uint32_t writeMask)
2242 {
2243 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2244 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2245
2246 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2247
2248 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2249 }
2250
2251 void
2252 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2253 VkStencilFaceFlags faceMask,
2254 uint32_t reference)
2255 {
2256 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2257 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2258
2259 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2260
2261 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2262 }
2263
2264 void
2265 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2266 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2267 {
2268 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2269 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2270
2271 assert(pSampleLocationsInfo);
2272
2273 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2274 }
2275
2276 static void
2277 tu_flush_for_access(struct tu_cache_state *cache,
2278 enum tu_cmd_access_mask src_mask,
2279 enum tu_cmd_access_mask dst_mask)
2280 {
2281 enum tu_cmd_flush_bits flush_bits = 0;
2282
2283 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2284 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2285 }
2286
2287 #define SRC_FLUSH(domain, flush, invalidate) \
2288 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2289 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2290 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2291 }
2292
2293 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2294 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2295 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2296
2297 #undef SRC_FLUSH
2298
2299 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2300 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2301 flush_bits |= TU_CMD_FLAG_##flush; \
2302 cache->pending_flush_bits |= \
2303 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2304 }
2305
2306 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2307 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2308
2309 #undef SRC_INCOHERENT_FLUSH
2310
2311 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
2312 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2313 }
2314
2315 #define DST_FLUSH(domain, flush, invalidate) \
2316 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2317 TU_ACCESS_##domain##_WRITE)) { \
2318 flush_bits |= cache->pending_flush_bits & \
2319 (TU_CMD_FLAG_##invalidate | \
2320 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2321 }
2322
2323 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2324 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2325 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2326
2327 #undef DST_FLUSH
2328
2329 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2330 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2331 TU_ACCESS_##domain##_WRITE)) { \
2332 flush_bits |= TU_CMD_FLAG_##invalidate | \
2333 (cache->pending_flush_bits & \
2334 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2335 }
2336
2337 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2338 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2339
2340 #undef DST_INCOHERENT_FLUSH
2341
2342 if (dst_mask & TU_ACCESS_WFI_READ) {
2343 flush_bits |= TU_CMD_FLAG_WFI;
2344 }
2345
2346 cache->flush_bits |= flush_bits;
2347 cache->pending_flush_bits &= ~flush_bits;
2348 }
2349
2350 static enum tu_cmd_access_mask
2351 vk2tu_access(VkAccessFlags flags, bool gmem)
2352 {
2353 enum tu_cmd_access_mask mask = 0;
2354
2355 /* If the GPU writes a buffer that is then read by an indirect draw
2356 * command, we theoretically need a WFI + WAIT_FOR_ME combination to
2357 * wait for the writes to complete. The WAIT_FOR_ME is performed as part
2358 * of the draw by the firmware, so we just need to execute a WFI.
2359 */
2360 if (flags &
2361 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2362 VK_ACCESS_MEMORY_READ_BIT)) {
2363 mask |= TU_ACCESS_WFI_READ;
2364 }
2365
2366 if (flags &
2367 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2368 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
2369 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2370 VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
2371 VK_ACCESS_MEMORY_READ_BIT)) {
2372 mask |= TU_ACCESS_SYSMEM_READ;
2373 }
2374
2375 if (flags &
2376 (VK_ACCESS_HOST_WRITE_BIT |
2377 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
2378 VK_ACCESS_MEMORY_WRITE_BIT)) {
2379 mask |= TU_ACCESS_SYSMEM_WRITE;
2380 }
2381
2382 if (flags &
2383 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2384 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2385 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2386 /* TODO: Is there a no-cache bit for textures so that we can ignore
2387 * these?
2388 */
2389 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2390 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2391 VK_ACCESS_MEMORY_READ_BIT)) {
2392 mask |= TU_ACCESS_UCHE_READ;
2393 }
2394
2395 if (flags &
2396 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2397 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2398 VK_ACCESS_MEMORY_WRITE_BIT)) {
2399 mask |= TU_ACCESS_UCHE_WRITE;
2400 }
2401
2402 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2403 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2404 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2405 * can ignore CCU and pretend that color attachments and transfers use
2406 * sysmem directly.
2407 */
2408
2409 if (flags &
2410 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2411 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2412 VK_ACCESS_MEMORY_READ_BIT)) {
2413 if (gmem)
2414 mask |= TU_ACCESS_SYSMEM_READ;
2415 else
2416 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2417 }
2418
2419 if (flags &
2420 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2421 VK_ACCESS_MEMORY_READ_BIT)) {
2422 if (gmem)
2423 mask |= TU_ACCESS_SYSMEM_READ;
2424 else
2425 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2426 }
2427
2428 if (flags &
2429 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2430 VK_ACCESS_MEMORY_WRITE_BIT)) {
2431 if (gmem) {
2432 mask |= TU_ACCESS_SYSMEM_WRITE;
2433 } else {
2434 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2435 }
2436 }
2437
2438 if (flags &
2439 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2440 VK_ACCESS_MEMORY_WRITE_BIT)) {
2441 if (gmem) {
2442 mask |= TU_ACCESS_SYSMEM_WRITE;
2443 } else {
2444 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2445 }
2446 }
2447
2448 /* When the dst access is a transfer read/write, it seems we sometimes need
2449 * to insert a WFI after any flushes, to guarantee that the flushes finish
2450 * before the 2D engine starts. However the opposite (i.e. a WFI after
2451 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2452 * the blob doesn't emit such a WFI.
2453 */
2454
2455 if (flags &
2456 (VK_ACCESS_TRANSFER_WRITE_BIT |
2457 VK_ACCESS_MEMORY_WRITE_BIT)) {
2458 if (gmem) {
2459 mask |= TU_ACCESS_SYSMEM_WRITE;
2460 } else {
2461 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2462 }
2463 mask |= TU_ACCESS_WFI_READ;
2464 }
2465
2466 if (flags &
2467 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2468 VK_ACCESS_MEMORY_READ_BIT)) {
2469 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2470 }
2471
2472 return mask;
2473 }
2474
2475
2476 void
2477 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2478 uint32_t commandBufferCount,
2479 const VkCommandBuffer *pCmdBuffers)
2480 {
2481 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2482 VkResult result;
2483
2484 assert(commandBufferCount > 0);
2485
2486 /* Emit any pending flushes. */
2487 if (cmd->state.pass) {
2488 tu_flush_all_pending(&cmd->state.renderpass_cache);
2489 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2490 } else {
2491 tu_flush_all_pending(&cmd->state.cache);
2492 tu_emit_cache_flush(cmd, &cmd->cs);
2493 }
2494
2495 for (uint32_t i = 0; i < commandBufferCount; i++) {
2496 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2497
2498 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2499 if (result != VK_SUCCESS) {
2500 cmd->record_result = result;
2501 break;
2502 }
2503
2504 if (secondary->usage_flags &
2505 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2506 assert(tu_cs_is_empty(&secondary->cs));
2507
2508 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2509 if (result != VK_SUCCESS) {
2510 cmd->record_result = result;
2511 break;
2512 }
2513
2514 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2515 &secondary->draw_epilogue_cs);
2516 if (result != VK_SUCCESS) {
2517 cmd->record_result = result;
2518 break;
2519 }
2520
2521 if (secondary->has_tess)
2522 cmd->has_tess = true;
2523 } else {
2524 assert(tu_cs_is_empty(&secondary->draw_cs));
2525 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2526
2527 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2528 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2529 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2530 }
2531
2532 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2533 }
2534 }
2535 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2536
2537 /* After executing secondary command buffers, there may have been arbitrary
2538 * flushes executed, so when we encounter a pipeline barrier with a
2539 * srcMask, we have to assume that we need to invalidate. Therefore we need
2540 * to re-initialize the cache with all pending invalidate bits set.
2541 */
2542 if (cmd->state.pass) {
2543 tu_cache_init(&cmd->state.renderpass_cache);
2544 } else {
2545 tu_cache_init(&cmd->state.cache);
2546 }
2547 }
2548
2549 VkResult
2550 tu_CreateCommandPool(VkDevice _device,
2551 const VkCommandPoolCreateInfo *pCreateInfo,
2552 const VkAllocationCallbacks *pAllocator,
2553 VkCommandPool *pCmdPool)
2554 {
2555 TU_FROM_HANDLE(tu_device, device, _device);
2556 struct tu_cmd_pool *pool;
2557
2558 pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
2559 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2560 if (pool == NULL)
2561 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2562
2563 if (pAllocator)
2564 pool->alloc = *pAllocator;
2565 else
2566 pool->alloc = device->alloc;
2567
2568 list_inithead(&pool->cmd_buffers);
2569 list_inithead(&pool->free_cmd_buffers);
2570
2571 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2572
2573 *pCmdPool = tu_cmd_pool_to_handle(pool);
2574
2575 return VK_SUCCESS;
2576 }
2577
2578 void
2579 tu_DestroyCommandPool(VkDevice _device,
2580 VkCommandPool commandPool,
2581 const VkAllocationCallbacks *pAllocator)
2582 {
2583 TU_FROM_HANDLE(tu_device, device, _device);
2584 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2585
2586 if (!pool)
2587 return;
2588
2589 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2590 &pool->cmd_buffers, pool_link)
2591 {
2592 tu_cmd_buffer_destroy(cmd_buffer);
2593 }
2594
2595 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2596 &pool->free_cmd_buffers, pool_link)
2597 {
2598 tu_cmd_buffer_destroy(cmd_buffer);
2599 }
2600
2601 vk_free2(&device->alloc, pAllocator, pool);
2602 }
2603
2604 VkResult
2605 tu_ResetCommandPool(VkDevice device,
2606 VkCommandPool commandPool,
2607 VkCommandPoolResetFlags flags)
2608 {
2609 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2610 VkResult result;
2611
2612 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2613 pool_link)
2614 {
2615 result = tu_reset_cmd_buffer(cmd_buffer);
2616 if (result != VK_SUCCESS)
2617 return result;
2618 }
2619
2620 return VK_SUCCESS;
2621 }
2622
2623 void
2624 tu_TrimCommandPool(VkDevice device,
2625 VkCommandPool commandPool,
2626 VkCommandPoolTrimFlags flags)
2627 {
2628 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2629
2630 if (!pool)
2631 return;
2632
2633 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2634 &pool->free_cmd_buffers, pool_link)
2635 {
2636 tu_cmd_buffer_destroy(cmd_buffer);
2637 }
2638 }
2639
2640 static void
2641 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2642 const struct tu_subpass_barrier *barrier,
2643 bool external)
2644 {
2645 /* Note: we don't know until the end of the subpass whether we'll use
2646 * sysmem, so assume sysmem here to be safe.
2647 */
2648 struct tu_cache_state *cache =
2649 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2650 enum tu_cmd_access_mask src_flags =
2651 vk2tu_access(barrier->src_access_mask, false);
2652 enum tu_cmd_access_mask dst_flags =
2653 vk2tu_access(barrier->dst_access_mask, false);
2654
2655 if (barrier->incoherent_ccu_color)
2656 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2657 if (barrier->incoherent_ccu_depth)
2658 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2659
2660 tu_flush_for_access(cache, src_flags, dst_flags);
2661 }
2662
2663 void
2664 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2665 const VkRenderPassBeginInfo *pRenderPassBegin,
2666 VkSubpassContents contents)
2667 {
2668 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2669 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2670 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2671
2672 cmd->state.pass = pass;
2673 cmd->state.subpass = pass->subpasses;
2674 cmd->state.framebuffer = fb;
2675
2676 tu_cmd_update_tiling_config(cmd, &pRenderPassBegin->renderArea);
2677 tu_cmd_prepare_tile_store_ib(cmd);
2678
2679 /* Note: because this is external, any flushes will happen before draw_cs
2680 * gets called. However deferred flushes could have to happen later as part
2681 * of the subpass.
2682 */
2683 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2684 cmd->state.renderpass_cache.pending_flush_bits =
2685 cmd->state.cache.pending_flush_bits;
2686 cmd->state.renderpass_cache.flush_bits = 0;
2687
2688 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2689
2690 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2691 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2692 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2693 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2694
2695 tu_set_input_attachments(cmd, cmd->state.subpass);
2696
2697 /* note: use_hw_binning only checks tiling config */
2698 if (use_hw_binning(cmd))
2699 cmd->use_vsc_data = true;
2700
2701 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2702 const struct tu_image_view *iview = fb->attachments[i].attachment;
2703 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2704 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2705 }
2706
2707 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2708 }
2709
2710 void
2711 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2712 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2713 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2714 {
2715 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2716 pSubpassBeginInfo->contents);
2717 }
2718
2719 void
2720 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2721 {
2722 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2723 const struct tu_render_pass *pass = cmd->state.pass;
2724 struct tu_cs *cs = &cmd->draw_cs;
2725
2726 const struct tu_subpass *subpass = cmd->state.subpass++;
2727
2728 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2729
2730 if (subpass->resolve_attachments) {
2731 tu6_emit_blit_scissor(cmd, cs, true);
2732
2733 for (unsigned i = 0; i < subpass->color_count; i++) {
2734 uint32_t a = subpass->resolve_attachments[i].attachment;
2735 if (a == VK_ATTACHMENT_UNUSED)
2736 continue;
2737
2738 tu_store_gmem_attachment(cmd, cs, a,
2739 subpass->color_attachments[i].attachment);
2740
2741 if (pass->attachments[a].gmem_offset < 0)
2742 continue;
2743
2744 /* TODO:
2745 * check if the resolved attachment is needed by later subpasses,
2746 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2747 */
2748 tu_finishme("missing GMEM->GMEM resolve path\n");
2749 tu_load_gmem_attachment(cmd, cs, a, true);
2750 }
2751 }
2752
2753 tu_cond_exec_end(cs);
2754
2755 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2756
2757 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2758
2759 tu_cond_exec_end(cs);
2760
2761 /* Handle dependencies for the next subpass */
2762 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2763
2764 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2765 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2766 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2767 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2768 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2769
2770 tu_set_input_attachments(cmd, cmd->state.subpass);
2771 }
2772
2773 void
2774 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2775 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2776 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2777 {
2778 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2779 }
2780
2781 struct tu_draw_info
2782 {
2783 /**
2784 * Number of vertices.
2785 */
2786 uint32_t count;
2787
2788 /**
2789 * Index of the first vertex.
2790 */
2791 int32_t vertex_offset;
2792
2793 /**
2794 * First instance id.
2795 */
2796 uint32_t first_instance;
2797
2798 /**
2799 * Number of instances.
2800 */
2801 uint32_t instance_count;
2802
2803 /**
2804 * First index (indexed draws only).
2805 */
2806 uint32_t first_index;
2807
2808 /**
2809 * Whether it's an indexed draw.
2810 */
2811 bool indexed;
2812
2813 /**
2814 * Indirect draw parameters resource.
2815 */
2816 struct tu_buffer *indirect;
2817 uint64_t indirect_offset;
2818 uint32_t stride;
2819
2820 /**
2821 * Draw count parameters resource.
2822 */
2823 struct tu_buffer *count_buffer;
2824 uint64_t count_buffer_offset;
2825
2826 /**
2827 * Stream output parameters resource.
2828 */
2829 struct tu_buffer *streamout_buffer;
2830 uint64_t streamout_buffer_offset;
2831 };
2832
2833 static void
2834 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2835 struct tu_descriptor_state *descriptors_state,
2836 gl_shader_stage type,
2837 uint32_t *push_constants)
2838 {
2839 const struct tu_program_descriptor_linkage *link =
2840 &pipeline->program.link[type];
2841 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2842
2843 if (link->push_consts.count > 0) {
2844 unsigned num_units = link->push_consts.count;
2845 unsigned offset = link->push_consts.lo;
2846 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2847 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2848 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2849 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2850 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2851 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2852 tu_cs_emit(cs, 0);
2853 tu_cs_emit(cs, 0);
2854 for (unsigned i = 0; i < num_units * 4; i++)
2855 tu_cs_emit(cs, push_constants[i + offset * 4]);
2856 }
2857
2858 for (uint32_t i = 0; i < state->num_enabled; i++) {
2859 uint32_t size = state->range[i].end - state->range[i].start;
2860 uint32_t offset = state->range[i].start;
2861
2862 /* and even if the start of the const buffer is before
2863 * first_immediate, the end may not be:
2864 */
2865 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2866
2867 if (size == 0)
2868 continue;
2869
2870 /* things should be aligned to vec4: */
2871 debug_assert((state->range[i].offset % 16) == 0);
2872 debug_assert((size % 16) == 0);
2873 debug_assert((offset % 16) == 0);
2874
2875 /* Dig out the descriptor from the descriptor state and read the VA from
2876 * it.
2877 */
2878 assert(state->range[i].ubo.bindless);
2879 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2880 descriptors_state->dynamic_descriptors :
2881 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2882 unsigned block = state->range[i].ubo.block;
2883 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2884 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2885 assert(va);
2886
2887 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2888 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2889 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2890 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2891 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2892 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2893 tu_cs_emit_qw(cs, va + offset);
2894 }
2895 }
2896
2897 static struct tu_cs_entry
2898 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2899 const struct tu_pipeline *pipeline,
2900 struct tu_descriptor_state *descriptors_state,
2901 gl_shader_stage type)
2902 {
2903 struct tu_cs cs;
2904 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2905
2906 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2907
2908 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2909 }
2910
2911 static VkResult
2912 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
2913 const struct tu_draw_info *draw,
2914 struct tu_cs_entry *entry)
2915 {
2916 /* TODO: fill out more than just base instance */
2917 const struct tu_program_descriptor_linkage *link =
2918 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
2919 const struct ir3_const_state *const_state = &link->const_state;
2920 struct tu_cs cs;
2921
2922 if (const_state->offsets.driver_param >= link->constlen) {
2923 *entry = (struct tu_cs_entry) {};
2924 return VK_SUCCESS;
2925 }
2926
2927 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 8, &cs);
2928 if (result != VK_SUCCESS)
2929 return result;
2930
2931 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2932 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(const_state->offsets.driver_param) |
2933 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2934 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2935 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
2936 CP_LOAD_STATE6_0_NUM_UNIT(1));
2937 tu_cs_emit(&cs, 0);
2938 tu_cs_emit(&cs, 0);
2939
2940 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
2941
2942 tu_cs_emit(&cs, 0);
2943 tu_cs_emit(&cs, 0);
2944 tu_cs_emit(&cs, draw->first_instance);
2945 tu_cs_emit(&cs, 0);
2946
2947 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2948 return VK_SUCCESS;
2949 }
2950
2951 static struct tu_cs_entry
2952 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
2953 const struct tu_pipeline *pipeline)
2954 {
2955 struct tu_cs cs;
2956 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
2957
2958 int binding;
2959 for_each_bit(binding, pipeline->vi.bindings_used) {
2960 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
2961 const VkDeviceSize offset = buf->bo_offset +
2962 cmd->state.vb.offsets[binding];
2963
2964 tu_cs_emit_regs(&cs,
2965 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
2966 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
2967
2968 }
2969
2970 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
2971
2972 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2973 }
2974
2975 static void
2976 tu6_emit_streamout(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
2977 {
2978 struct tu_streamout_state *tf = &cmd->state.pipeline->streamout;
2979
2980 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
2981 struct tu_buffer *buf = cmd->state.streamout_buf.buffers[i];
2982 if (!buf)
2983 continue;
2984
2985 uint32_t offset;
2986 offset = cmd->state.streamout_buf.offsets[i];
2987
2988 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_BASE(i, .bo = buf->bo,
2989 .bo_offset = buf->bo_offset));
2990 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_SIZE(i, buf->size));
2991
2992 if (cmd->state.streamout_reset & (1 << i)) {
2993 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, offset));
2994 cmd->state.streamout_reset &= ~(1 << i);
2995 } else {
2996 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
2997 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(i)) |
2998 CP_MEM_TO_REG_0_SHIFT_BY_2 | CP_MEM_TO_REG_0_UNK31 |
2999 CP_MEM_TO_REG_0_CNT(0));
3000 tu_cs_emit_qw(cs, cmd->scratch_bo.iova +
3001 ctrl_offset(flush_base[i].offset));
3002 }
3003
3004 tu_cs_emit_regs(cs, A6XX_VPC_SO_FLUSH_BASE(i, .bo = &cmd->scratch_bo,
3005 .bo_offset =
3006 ctrl_offset(flush_base[i])));
3007 }
3008
3009 if (cmd->state.streamout_enabled) {
3010 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 12 + (2 * tf->prog_count));
3011 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
3012 tu_cs_emit(cs, tf->vpc_so_buf_cntl);
3013 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(0));
3014 tu_cs_emit(cs, tf->ncomp[0]);
3015 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(1));
3016 tu_cs_emit(cs, tf->ncomp[1]);
3017 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(2));
3018 tu_cs_emit(cs, tf->ncomp[2]);
3019 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(3));
3020 tu_cs_emit(cs, tf->ncomp[3]);
3021 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
3022 tu_cs_emit(cs, A6XX_VPC_SO_CNTL_ENABLE);
3023 for (unsigned i = 0; i < tf->prog_count; i++) {
3024 tu_cs_emit(cs, REG_A6XX_VPC_SO_PROG);
3025 tu_cs_emit(cs, tf->prog[i]);
3026 }
3027 } else {
3028 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 4);
3029 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
3030 tu_cs_emit(cs, 0);
3031 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
3032 tu_cs_emit(cs, 0);
3033 }
3034 }
3035
3036 static uint64_t
3037 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
3038 const struct tu_draw_info *draw_info)
3039 {
3040 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
3041 * Still not sure what to do here, so just allocate a reasonably large
3042 * BO and hope for the best for now.
3043 * (maxTessellationControlPerVertexOutputComponents * 2048 vertices +
3044 * maxTessellationControlPerPatchOutputComponents * 512 patches) */
3045 if (draw_info->indirect) {
3046 return ((128 * 2048) + (128 * 512)) * 4;
3047 }
3048
3049 /* For each patch, adreno lays out the tess param BO in memory as:
3050 * (v_input[0][0])...(v_input[i][j])(p_input[0])...(p_input[k]).
3051 * where i = # vertices per patch, j = # per-vertex outputs, and
3052 * k = # per-patch outputs.*/
3053 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
3054 uint32_t num_patches = draw_info->count / verts_per_patch;
3055 return draw_info->count * pipeline->tess.per_vertex_output_size +
3056 pipeline->tess.per_patch_output_size * num_patches;
3057 }
3058
3059 static uint64_t
3060 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
3061 const struct tu_draw_info *draw_info)
3062 {
3063 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
3064 * Still not sure what to do here, so just allocate a reasonably large
3065 * BO and hope for the best for now.
3066 * (quad factor stride * 512 patches) */
3067 if (draw_info->indirect) {
3068 return (28 * 512) * 4;
3069 }
3070
3071 /* Each distinct patch gets its own tess factor output. */
3072 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
3073 uint32_t num_patches = draw_info->count / verts_per_patch;
3074 uint32_t factor_stride;
3075 switch (pipeline->tess.patch_type) {
3076 case IR3_TESS_ISOLINES:
3077 factor_stride = 12;
3078 break;
3079 case IR3_TESS_TRIANGLES:
3080 factor_stride = 20;
3081 break;
3082 case IR3_TESS_QUADS:
3083 factor_stride = 28;
3084 break;
3085 default:
3086 unreachable("bad tessmode");
3087 }
3088 return factor_stride * num_patches;
3089 }
3090
3091 static VkResult
3092 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
3093 const struct tu_draw_info *draw,
3094 const struct tu_pipeline *pipeline,
3095 struct tu_cs_entry *entry)
3096 {
3097 struct tu_cs cs;
3098 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 20, &cs);
3099 if (result != VK_SUCCESS)
3100 return result;
3101
3102 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw);
3103 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw);
3104 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
3105 if (tess_bo_size > 0) {
3106 struct tu_bo *tess_bo;
3107 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
3108 if (result != VK_SUCCESS)
3109 return result;
3110
3111 tu_bo_list_add(&cmd->bo_list, tess_bo,
3112 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3113 uint64_t tess_factor_iova = tess_bo->iova;
3114 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
3115
3116 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3117 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
3118 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3119 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3120 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
3121 CP_LOAD_STATE6_0_NUM_UNIT(1));
3122 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
3123 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
3124 tu_cs_emit_qw(&cs, tess_param_iova);
3125 tu_cs_emit_qw(&cs, tess_factor_iova);
3126
3127 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3128 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
3129 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3130 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3131 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
3132 CP_LOAD_STATE6_0_NUM_UNIT(1));
3133 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
3134 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
3135 tu_cs_emit_qw(&cs, tess_param_iova);
3136 tu_cs_emit_qw(&cs, tess_factor_iova);
3137
3138 tu_cs_emit_pkt4(&cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
3139 tu_cs_emit_qw(&cs, tess_factor_iova);
3140
3141 /* TODO: Without this WFI here, the hardware seems unable to read these
3142 * addresses we just emitted. Freedreno emits these consts as part of
3143 * IB1 instead of in a draw state which might make this WFI unnecessary,
3144 * but it requires a bit more indirection (SS6_INDIRECT for consts). */
3145 tu_cs_emit_wfi(&cs);
3146 }
3147 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3148 return VK_SUCCESS;
3149 }
3150
3151 static VkResult
3152 tu6_bind_draw_states(struct tu_cmd_buffer *cmd,
3153 struct tu_cs *cs,
3154 const struct tu_draw_info *draw)
3155 {
3156 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3157 VkResult result;
3158
3159 struct tu_descriptor_state *descriptors_state =
3160 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
3161
3162 /* TODO lrz */
3163
3164 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
3165 .primitive_restart =
3166 pipeline->ia.primitive_restart && draw->indexed,
3167 .tess_upper_left_domain_origin =
3168 pipeline->tess.upper_left_domain_origin));
3169
3170 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3171 cmd->state.shader_const_ib[MESA_SHADER_VERTEX] =
3172 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
3173 cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL] =
3174 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
3175 cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL] =
3176 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
3177 cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY] =
3178 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
3179 cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT] =
3180 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
3181 }
3182
3183 if (cmd->state.dirty & TU_CMD_DIRTY_STREAMOUT_BUFFERS)
3184 tu6_emit_streamout(cmd, cs);
3185
3186 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) {
3187 /* We need to reload the descriptors every time the descriptor sets
3188 * change. However, the commands we send only depend on the pipeline
3189 * because the whole point is to cache descriptors which are used by the
3190 * pipeline. There's a problem here, in that the firmware has an
3191 * "optimization" which skips executing groups that are set to the same
3192 * value as the last draw. This means that if the descriptor sets change
3193 * but not the pipeline, we'd try to re-execute the same buffer which
3194 * the firmware would ignore and we wouldn't pre-load the new
3195 * descriptors. The blob seems to re-emit the LOAD_STATE group whenever
3196 * the descriptor sets change, which we emulate here by copying the
3197 * pre-prepared buffer.
3198 */
3199 const struct tu_cs_entry *load_entry = &pipeline->load_state.state_ib;
3200 if (load_entry->size > 0) {
3201 struct tu_cs load_cs;
3202 result = tu_cs_begin_sub_stream(&cmd->sub_cs, load_entry->size, &load_cs);
3203 if (result != VK_SUCCESS)
3204 return result;
3205 tu_cs_emit_array(&load_cs,
3206 (uint32_t *)((char *)load_entry->bo->map + load_entry->offset),
3207 load_entry->size / 4);
3208 cmd->state.desc_sets_load_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &load_cs);
3209 } else {
3210 cmd->state.desc_sets_load_ib.size = 0;
3211 }
3212 }
3213
3214 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3215 cmd->state.vertex_buffers_ib = tu6_emit_vertex_buffers(cmd, pipeline);
3216
3217 struct tu_cs_entry vs_params;
3218 result = tu6_emit_vs_params(cmd, draw, &vs_params);
3219 if (result != VK_SUCCESS)
3220 return result;
3221
3222 bool has_tess =
3223 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3224 struct tu_cs_entry tess_consts = {};
3225 if (has_tess) {
3226 cmd->has_tess = true;
3227 result = tu6_emit_tess_consts(cmd, draw, pipeline, &tess_consts);
3228 if (result != VK_SUCCESS)
3229 return result;
3230 }
3231
3232 /* for the first draw in a renderpass, re-emit all the draw states
3233 *
3234 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3235 * used, then draw states must be re-emitted. note however this only happens
3236 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3237 *
3238 * the two input attachment states are excluded because secondary command
3239 * buffer doesn't have a state ib to restore it, and not re-emitting them
3240 * is OK since CmdClearAttachments won't disable/overwrite them
3241 */
3242 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3243 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3244
3245 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
3246 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
3247 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3248 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
3249 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
3250 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
3251 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
3252 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
3253 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3254 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3255 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3256 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3257 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3258 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets_ib);
3259 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3260 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3261 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_PARAMS, vs_params);
3262
3263 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3264 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3265 ((pipeline->dynamic_state_mask & BIT(i)) ?
3266 cmd->state.dynamic_state[i] :
3267 pipeline->dynamic_state[i]));
3268 }
3269 } else {
3270
3271 /* emit draw states that were just updated
3272 * note we eventually don't want to have to emit anything here
3273 */
3274 uint32_t draw_state_count =
3275 has_tess +
3276 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
3277 ((cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) ? 1 : 0) +
3278 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3279 1; /* vs_params */
3280
3281 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3282
3283 /* We may need to re-emit tess consts if the current draw call is
3284 * sufficiently larger than the last draw call. */
3285 if (has_tess)
3286 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3287 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3288 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3289 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3290 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3291 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3292 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3293 }
3294 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS)
3295 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3296 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3297 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3298 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_PARAMS, vs_params);
3299 }
3300
3301 tu_cs_sanity_check(cs);
3302
3303 /* track BOs */
3304 if (cmd->state.dirty & TU_CMD_DIRTY_STREAMOUT_BUFFERS) {
3305 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
3306 const struct tu_buffer *buf = cmd->state.streamout_buf.buffers[i];
3307 if (buf) {
3308 tu_bo_list_add(&cmd->bo_list, buf->bo,
3309 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3310 }
3311 }
3312 }
3313
3314 /* There are too many graphics dirty bits to list here, so just list the
3315 * bits to preserve instead. The only things not emitted here are
3316 * compute-related state.
3317 */
3318 cmd->state.dirty &= (TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3319 return VK_SUCCESS;
3320 }
3321
3322 static uint32_t
3323 compute_tess_draw0(struct tu_pipeline *pipeline)
3324 {
3325 uint32_t patch_type = pipeline->tess.patch_type;
3326 uint32_t tess_draw0 = 0;
3327 switch (patch_type) {
3328 case IR3_TESS_TRIANGLES:
3329 tess_draw0 = CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES);
3330 break;
3331 case IR3_TESS_ISOLINES:
3332 tess_draw0 = CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES);
3333 break;
3334 case IR3_TESS_NONE:
3335 case IR3_TESS_QUADS:
3336 tess_draw0 = CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3337 break;
3338 default:
3339 unreachable("invalid tess patch type");
3340 }
3341 if (patch_type != IR3_TESS_NONE)
3342 tess_draw0 |= CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3343 return tess_draw0;
3344 }
3345
3346 static void
3347 tu6_emit_draw_indirect(struct tu_cmd_buffer *cmd,
3348 struct tu_cs *cs,
3349 const struct tu_draw_info *draw)
3350 {
3351 const enum pc_di_primtype primtype = cmd->state.pipeline->ia.primtype;
3352 bool has_gs = cmd->state.pipeline->active_stages &
3353 VK_SHADER_STAGE_GEOMETRY_BIT;
3354
3355 tu_cs_emit_regs(cs,
3356 A6XX_VFD_INDEX_OFFSET(draw->vertex_offset),
3357 A6XX_VFD_INSTANCE_START_OFFSET(draw->first_instance));
3358
3359 uint32_t tess_draw0 = compute_tess_draw0(cmd->state.pipeline);
3360 if (draw->indexed) {
3361 const enum a4xx_index_size index_size =
3362 tu6_index_size(cmd->state.index_type);
3363 const uint32_t index_bytes =
3364 (cmd->state.index_type == VK_INDEX_TYPE_UINT32) ? 4 : 2;
3365 const struct tu_buffer *index_buf = cmd->state.index_buffer;
3366 unsigned max_indicies =
3367 (index_buf->size - cmd->state.index_offset) / index_bytes;
3368
3369 const uint32_t cp_draw_indx =
3370 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3371 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_DMA) |
3372 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(index_size) |
3373 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3374 tess_draw0 |
3375 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE);
3376
3377 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_INDIRECT, 6);
3378 tu_cs_emit(cs, cp_draw_indx);
3379 tu_cs_emit_qw(cs, index_buf->bo->iova + cmd->state.index_offset);
3380 tu_cs_emit(cs, A5XX_CP_DRAW_INDX_INDIRECT_3_MAX_INDICES(max_indicies));
3381 tu_cs_emit_qw(cs, draw->indirect->bo->iova + draw->indirect_offset);
3382 } else {
3383 const uint32_t cp_draw_indx =
3384 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3385 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_AUTO_INDEX) |
3386 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3387 tess_draw0 |
3388 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE);
3389
3390 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT, 3);
3391 tu_cs_emit(cs, cp_draw_indx);
3392 tu_cs_emit_qw(cs, draw->indirect->bo->iova + draw->indirect_offset);
3393 }
3394
3395 tu_bo_list_add(&cmd->bo_list, draw->indirect->bo, MSM_SUBMIT_BO_READ);
3396 }
3397
3398 static void
3399 tu6_emit_draw_direct(struct tu_cmd_buffer *cmd,
3400 struct tu_cs *cs,
3401 const struct tu_draw_info *draw)
3402 {
3403
3404 const enum pc_di_primtype primtype = cmd->state.pipeline->ia.primtype;
3405 bool has_gs = cmd->state.pipeline->active_stages &
3406 VK_SHADER_STAGE_GEOMETRY_BIT;
3407
3408 tu_cs_emit_regs(cs,
3409 A6XX_VFD_INDEX_OFFSET(draw->vertex_offset),
3410 A6XX_VFD_INSTANCE_START_OFFSET(draw->first_instance));
3411
3412 uint32_t tess_draw0 = compute_tess_draw0(cmd->state.pipeline);
3413 /* TODO hw binning */
3414 if (draw->indexed) {
3415 const enum a4xx_index_size index_size =
3416 tu6_index_size(cmd->state.index_type);
3417 const uint32_t index_bytes =
3418 (cmd->state.index_type == VK_INDEX_TYPE_UINT32) ? 4 : 2;
3419 const struct tu_buffer *buf = cmd->state.index_buffer;
3420 const VkDeviceSize offset = buf->bo_offset + cmd->state.index_offset +
3421 index_bytes * draw->first_index;
3422 const uint32_t size = index_bytes * draw->count;
3423
3424 const uint32_t cp_draw_indx =
3425 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3426 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_DMA) |
3427 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(index_size) |
3428 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3429 tess_draw0 |
3430 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE);
3431
3432 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3433 tu_cs_emit(cs, cp_draw_indx);
3434 tu_cs_emit(cs, draw->instance_count);
3435 tu_cs_emit(cs, draw->count);
3436 tu_cs_emit(cs, 0x0); /* XXX */
3437 tu_cs_emit_qw(cs, buf->bo->iova + offset);
3438 tu_cs_emit(cs, size);
3439 } else {
3440 const uint32_t cp_draw_indx =
3441 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3442 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_AUTO_INDEX) |
3443 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3444 tess_draw0 |
3445 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE);
3446
3447 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3448 tu_cs_emit(cs, cp_draw_indx);
3449 tu_cs_emit(cs, draw->instance_count);
3450 tu_cs_emit(cs, draw->count);
3451 }
3452 }
3453
3454 static void
3455 tu_draw(struct tu_cmd_buffer *cmd, const struct tu_draw_info *draw)
3456 {
3457 struct tu_cs *cs = &cmd->draw_cs;
3458 VkResult result;
3459
3460 tu_emit_cache_flush_renderpass(cmd, cs);
3461
3462 result = tu6_bind_draw_states(cmd, cs, draw);
3463 if (result != VK_SUCCESS) {
3464 cmd->record_result = result;
3465 return;
3466 }
3467
3468 if (draw->indirect)
3469 tu6_emit_draw_indirect(cmd, cs, draw);
3470 else
3471 tu6_emit_draw_direct(cmd, cs, draw);
3472
3473 if (cmd->state.streamout_enabled) {
3474 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
3475 if (cmd->state.streamout_enabled & (1 << i))
3476 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
3477 }
3478 }
3479
3480 tu_cs_sanity_check(cs);
3481 }
3482
3483 void
3484 tu_CmdDraw(VkCommandBuffer commandBuffer,
3485 uint32_t vertexCount,
3486 uint32_t instanceCount,
3487 uint32_t firstVertex,
3488 uint32_t firstInstance)
3489 {
3490 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3491 struct tu_draw_info info = {};
3492
3493 info.count = vertexCount;
3494 info.instance_count = instanceCount;
3495 info.first_instance = firstInstance;
3496 info.vertex_offset = firstVertex;
3497
3498 tu_draw(cmd_buffer, &info);
3499 }
3500
3501 void
3502 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3503 uint32_t indexCount,
3504 uint32_t instanceCount,
3505 uint32_t firstIndex,
3506 int32_t vertexOffset,
3507 uint32_t firstInstance)
3508 {
3509 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3510 struct tu_draw_info info = {};
3511
3512 info.indexed = true;
3513 info.count = indexCount;
3514 info.instance_count = instanceCount;
3515 info.first_index = firstIndex;
3516 info.vertex_offset = vertexOffset;
3517 info.first_instance = firstInstance;
3518
3519 tu_draw(cmd_buffer, &info);
3520 }
3521
3522 void
3523 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3524 VkBuffer _buffer,
3525 VkDeviceSize offset,
3526 uint32_t drawCount,
3527 uint32_t stride)
3528 {
3529 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3530 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3531 struct tu_draw_info info = {};
3532
3533 info.count = drawCount;
3534 info.indirect = buffer;
3535 info.indirect_offset = offset;
3536 info.stride = stride;
3537
3538 tu_draw(cmd_buffer, &info);
3539 }
3540
3541 void
3542 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3543 VkBuffer _buffer,
3544 VkDeviceSize offset,
3545 uint32_t drawCount,
3546 uint32_t stride)
3547 {
3548 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3549 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3550 struct tu_draw_info info = {};
3551
3552 info.indexed = true;
3553 info.count = drawCount;
3554 info.indirect = buffer;
3555 info.indirect_offset = offset;
3556 info.stride = stride;
3557
3558 tu_draw(cmd_buffer, &info);
3559 }
3560
3561 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3562 uint32_t instanceCount,
3563 uint32_t firstInstance,
3564 VkBuffer _counterBuffer,
3565 VkDeviceSize counterBufferOffset,
3566 uint32_t counterOffset,
3567 uint32_t vertexStride)
3568 {
3569 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3570 TU_FROM_HANDLE(tu_buffer, buffer, _counterBuffer);
3571
3572 struct tu_draw_info info = {};
3573
3574 info.instance_count = instanceCount;
3575 info.first_instance = firstInstance;
3576 info.streamout_buffer = buffer;
3577 info.streamout_buffer_offset = counterBufferOffset;
3578 info.stride = vertexStride;
3579
3580 tu_draw(cmd_buffer, &info);
3581 }
3582
3583 struct tu_dispatch_info
3584 {
3585 /**
3586 * Determine the layout of the grid (in block units) to be used.
3587 */
3588 uint32_t blocks[3];
3589
3590 /**
3591 * A starting offset for the grid. If unaligned is set, the offset
3592 * must still be aligned.
3593 */
3594 uint32_t offsets[3];
3595 /**
3596 * Whether it's an unaligned compute dispatch.
3597 */
3598 bool unaligned;
3599
3600 /**
3601 * Indirect compute parameters resource.
3602 */
3603 struct tu_buffer *indirect;
3604 uint64_t indirect_offset;
3605 };
3606
3607 static void
3608 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3609 const struct tu_dispatch_info *info)
3610 {
3611 gl_shader_stage type = MESA_SHADER_COMPUTE;
3612 const struct tu_program_descriptor_linkage *link =
3613 &pipeline->program.link[type];
3614 const struct ir3_const_state *const_state = &link->const_state;
3615 uint32_t offset = const_state->offsets.driver_param;
3616
3617 if (link->constlen <= offset)
3618 return;
3619
3620 if (!info->indirect) {
3621 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3622 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3623 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3624 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3625 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3626 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3627 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3628 };
3629
3630 uint32_t num_consts = MIN2(const_state->num_driver_params,
3631 (link->constlen - offset) * 4);
3632 /* push constants */
3633 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3634 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3635 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3636 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3637 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3638 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3639 tu_cs_emit(cs, 0);
3640 tu_cs_emit(cs, 0);
3641 uint32_t i;
3642 for (i = 0; i < num_consts; i++)
3643 tu_cs_emit(cs, driver_params[i]);
3644 } else {
3645 tu_finishme("Indirect driver params");
3646 }
3647 }
3648
3649 static void
3650 tu_dispatch(struct tu_cmd_buffer *cmd,
3651 const struct tu_dispatch_info *info)
3652 {
3653 struct tu_cs *cs = &cmd->cs;
3654 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3655 struct tu_descriptor_state *descriptors_state =
3656 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3657
3658 /* TODO: We could probably flush less if we add a compute_flush_bits
3659 * bitfield.
3660 */
3661 tu_emit_cache_flush(cmd, cs);
3662
3663 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_PIPELINE)
3664 tu_cs_emit_ib(cs, &pipeline->program.state_ib);
3665
3666 struct tu_cs_entry ib;
3667
3668 ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE);
3669 if (ib.size)
3670 tu_cs_emit_ib(cs, &ib);
3671
3672 tu_emit_compute_driver_params(cs, pipeline, info);
3673
3674 if ((cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS) &&
3675 pipeline->load_state.state_ib.size > 0) {
3676 tu_cs_emit_ib(cs, &pipeline->load_state.state_ib);
3677 }
3678
3679 cmd->state.dirty &=
3680 ~(TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3681
3682 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3683 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3684
3685 const uint32_t *local_size = pipeline->compute.local_size;
3686 const uint32_t *num_groups = info->blocks;
3687 tu_cs_emit_regs(cs,
3688 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3689 .localsizex = local_size[0] - 1,
3690 .localsizey = local_size[1] - 1,
3691 .localsizez = local_size[2] - 1),
3692 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3693 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3694 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3695 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3696 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3697 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3698
3699 tu_cs_emit_regs(cs,
3700 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3701 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3702 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3703
3704 if (info->indirect) {
3705 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3706
3707 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3708 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3709
3710 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3711 tu_cs_emit(cs, 0x00000000);
3712 tu_cs_emit_qw(cs, iova);
3713 tu_cs_emit(cs,
3714 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3715 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3716 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3717 } else {
3718 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3719 tu_cs_emit(cs, 0x00000000);
3720 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3721 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3722 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3723 }
3724
3725 tu_cs_emit_wfi(cs);
3726 }
3727
3728 void
3729 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3730 uint32_t base_x,
3731 uint32_t base_y,
3732 uint32_t base_z,
3733 uint32_t x,
3734 uint32_t y,
3735 uint32_t z)
3736 {
3737 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3738 struct tu_dispatch_info info = {};
3739
3740 info.blocks[0] = x;
3741 info.blocks[1] = y;
3742 info.blocks[2] = z;
3743
3744 info.offsets[0] = base_x;
3745 info.offsets[1] = base_y;
3746 info.offsets[2] = base_z;
3747 tu_dispatch(cmd_buffer, &info);
3748 }
3749
3750 void
3751 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3752 uint32_t x,
3753 uint32_t y,
3754 uint32_t z)
3755 {
3756 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3757 }
3758
3759 void
3760 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3761 VkBuffer _buffer,
3762 VkDeviceSize offset)
3763 {
3764 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3765 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3766 struct tu_dispatch_info info = {};
3767
3768 info.indirect = buffer;
3769 info.indirect_offset = offset;
3770
3771 tu_dispatch(cmd_buffer, &info);
3772 }
3773
3774 void
3775 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3776 {
3777 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3778
3779 tu_cs_end(&cmd_buffer->draw_cs);
3780 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3781
3782 if (use_sysmem_rendering(cmd_buffer))
3783 tu_cmd_render_sysmem(cmd_buffer);
3784 else
3785 tu_cmd_render_tiles(cmd_buffer);
3786
3787 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3788 rendered */
3789 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3790 tu_cs_begin(&cmd_buffer->draw_cs);
3791 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3792 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3793
3794 cmd_buffer->state.cache.pending_flush_bits |=
3795 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3796 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3797
3798 cmd_buffer->state.pass = NULL;
3799 cmd_buffer->state.subpass = NULL;
3800 cmd_buffer->state.framebuffer = NULL;
3801 }
3802
3803 void
3804 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3805 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3806 {
3807 tu_CmdEndRenderPass(commandBuffer);
3808 }
3809
3810 struct tu_barrier_info
3811 {
3812 uint32_t eventCount;
3813 const VkEvent *pEvents;
3814 VkPipelineStageFlags srcStageMask;
3815 };
3816
3817 static void
3818 tu_barrier(struct tu_cmd_buffer *cmd,
3819 uint32_t memoryBarrierCount,
3820 const VkMemoryBarrier *pMemoryBarriers,
3821 uint32_t bufferMemoryBarrierCount,
3822 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3823 uint32_t imageMemoryBarrierCount,
3824 const VkImageMemoryBarrier *pImageMemoryBarriers,
3825 const struct tu_barrier_info *info)
3826 {
3827 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3828 VkAccessFlags srcAccessMask = 0;
3829 VkAccessFlags dstAccessMask = 0;
3830
3831 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3832 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3833 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3834 }
3835
3836 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3837 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3838 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3839 }
3840
3841 enum tu_cmd_access_mask src_flags = 0;
3842 enum tu_cmd_access_mask dst_flags = 0;
3843
3844 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3845 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3846 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3847 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3848 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3849 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3850 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3851 /* The underlying memory for this image may have been used earlier
3852 * within the same queue submission for a different image, which
3853 * means that there may be old, stale cache entries which are in the
3854 * "wrong" location, which could cause problems later after writing
3855 * to the image. We don't want these entries being flushed later and
3856 * overwriting the actual image, so we need to flush the CCU.
3857 */
3858 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3859 }
3860 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3861 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3862 }
3863
3864 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3865 * so we have to use the sysmem flushes.
3866 */
3867 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3868 !cmd->state.pass;
3869 src_flags |= vk2tu_access(srcAccessMask, gmem);
3870 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3871
3872 struct tu_cache_state *cache =
3873 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3874 tu_flush_for_access(cache, src_flags, dst_flags);
3875
3876 for (uint32_t i = 0; i < info->eventCount; i++) {
3877 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3878
3879 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3880
3881 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3882 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3883 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3884 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3885 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3886 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3887 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3888 }
3889 }
3890
3891 void
3892 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3893 VkPipelineStageFlags srcStageMask,
3894 VkPipelineStageFlags dstStageMask,
3895 VkDependencyFlags dependencyFlags,
3896 uint32_t memoryBarrierCount,
3897 const VkMemoryBarrier *pMemoryBarriers,
3898 uint32_t bufferMemoryBarrierCount,
3899 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3900 uint32_t imageMemoryBarrierCount,
3901 const VkImageMemoryBarrier *pImageMemoryBarriers)
3902 {
3903 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3904 struct tu_barrier_info info;
3905
3906 info.eventCount = 0;
3907 info.pEvents = NULL;
3908 info.srcStageMask = srcStageMask;
3909
3910 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3911 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3912 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3913 }
3914
3915 static void
3916 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3917 VkPipelineStageFlags stageMask, unsigned value)
3918 {
3919 struct tu_cs *cs = &cmd->cs;
3920
3921 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3922 assert(!cmd->state.pass);
3923
3924 tu_emit_cache_flush(cmd, cs);
3925
3926 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3927
3928 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3929 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3930 */
3931 VkPipelineStageFlags top_of_pipe_flags =
3932 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3933 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3934
3935 if (!(stageMask & ~top_of_pipe_flags)) {
3936 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3937 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3938 tu_cs_emit(cs, value);
3939 } else {
3940 /* Use a RB_DONE_TS event to wait for everything to complete. */
3941 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3942 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3943 tu_cs_emit_qw(cs, event->bo.iova);
3944 tu_cs_emit(cs, value);
3945 }
3946 }
3947
3948 void
3949 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3950 VkEvent _event,
3951 VkPipelineStageFlags stageMask)
3952 {
3953 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3954 TU_FROM_HANDLE(tu_event, event, _event);
3955
3956 write_event(cmd, event, stageMask, 1);
3957 }
3958
3959 void
3960 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3961 VkEvent _event,
3962 VkPipelineStageFlags stageMask)
3963 {
3964 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3965 TU_FROM_HANDLE(tu_event, event, _event);
3966
3967 write_event(cmd, event, stageMask, 0);
3968 }
3969
3970 void
3971 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3972 uint32_t eventCount,
3973 const VkEvent *pEvents,
3974 VkPipelineStageFlags srcStageMask,
3975 VkPipelineStageFlags dstStageMask,
3976 uint32_t memoryBarrierCount,
3977 const VkMemoryBarrier *pMemoryBarriers,
3978 uint32_t bufferMemoryBarrierCount,
3979 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3980 uint32_t imageMemoryBarrierCount,
3981 const VkImageMemoryBarrier *pImageMemoryBarriers)
3982 {
3983 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3984 struct tu_barrier_info info;
3985
3986 info.eventCount = eventCount;
3987 info.pEvents = pEvents;
3988 info.srcStageMask = 0;
3989
3990 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3991 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3992 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3993 }
3994
3995 void
3996 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3997 {
3998 /* No-op */
3999 }