tu: Integrate WFI/WAIT_FOR_ME/WAIT_MEM_WRITES with cache tracking
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 void
112 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
113 struct tu_cs *cs,
114 enum vgt_event_type event)
115 {
116 bool need_seqno = false;
117 switch (event) {
118 case CACHE_FLUSH_TS:
119 case WT_DONE_TS:
120 case RB_DONE_TS:
121 case PC_CCU_FLUSH_DEPTH_TS:
122 case PC_CCU_FLUSH_COLOR_TS:
123 case PC_CCU_RESOLVE_TS:
124 need_seqno = true;
125 break;
126 default:
127 break;
128 }
129
130 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
131 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
132 if (need_seqno) {
133 tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
134 tu_cs_emit(cs, 0);
135 }
136 }
137
138 static void
139 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
140 struct tu_cs *cs,
141 enum tu_cmd_flush_bits flushes)
142 {
143 /* Experiments show that invalidating CCU while it still has data in it
144 * doesn't work, so make sure to always flush before invalidating in case
145 * any data remains that hasn't yet been made available through a barrier.
146 * However it does seem to work for UCHE.
147 */
148 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
149 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
150 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
151 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
152 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
153 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
154 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
155 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
156 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
157 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
158 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
159 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
160 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
161 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
162 if (flushes & TU_CMD_FLAG_WAIT_MEM_WRITES)
163 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
164 if (flushes & TU_CMD_FLAG_WAIT_FOR_IDLE)
165 tu_cs_emit_wfi(cs);
166 if (flushes & TU_CMD_FLAG_WAIT_FOR_ME)
167 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
168 }
169
170 /* "Normal" cache flushes, that don't require any special handling */
171
172 static void
173 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
174 struct tu_cs *cs)
175 {
176 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
177 cmd_buffer->state.cache.flush_bits = 0;
178 }
179
180 /* Renderpass cache flushes */
181
182 void
183 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
184 struct tu_cs *cs)
185 {
186 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
187 cmd_buffer->state.renderpass_cache.flush_bits = 0;
188 }
189
190 /* Cache flushes for things that use the color/depth read/write path (i.e.
191 * blits and draws). This deals with changing CCU state as well as the usual
192 * cache flushing.
193 */
194
195 void
196 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
197 struct tu_cs *cs,
198 enum tu_cmd_ccu_state ccu_state)
199 {
200 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
201
202 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
203
204 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
205 * the CCU may also contain data that we haven't flushed out yet, so we
206 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
207 * emit a WFI as it isn't pipelined.
208 */
209 if (ccu_state != cmd_buffer->state.ccu_state) {
210 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
211 flushes |=
212 TU_CMD_FLAG_CCU_FLUSH_COLOR |
213 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
214 cmd_buffer->state.cache.pending_flush_bits &= ~(
215 TU_CMD_FLAG_CCU_FLUSH_COLOR |
216 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
217 }
218 flushes |=
219 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
220 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
221 TU_CMD_FLAG_WAIT_FOR_IDLE;
222 cmd_buffer->state.cache.pending_flush_bits &= ~(
223 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
224 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
225 TU_CMD_FLAG_WAIT_FOR_IDLE);
226 }
227
228 tu6_emit_flushes(cmd_buffer, cs, flushes);
229 cmd_buffer->state.cache.flush_bits = 0;
230
231 if (ccu_state != cmd_buffer->state.ccu_state) {
232 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
233 tu_cs_emit_regs(cs,
234 A6XX_RB_CCU_CNTL(.offset =
235 ccu_state == TU_CMD_CCU_GMEM ?
236 phys_dev->ccu_offset_gmem :
237 phys_dev->ccu_offset_bypass,
238 .gmem = ccu_state == TU_CMD_CCU_GMEM));
239 cmd_buffer->state.ccu_state = ccu_state;
240 }
241 }
242
243 static void
244 tu6_emit_zs(struct tu_cmd_buffer *cmd,
245 const struct tu_subpass *subpass,
246 struct tu_cs *cs)
247 {
248 const struct tu_framebuffer *fb = cmd->state.framebuffer;
249
250 const uint32_t a = subpass->depth_stencil_attachment.attachment;
251 if (a == VK_ATTACHMENT_UNUSED) {
252 tu_cs_emit_regs(cs,
253 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
254 A6XX_RB_DEPTH_BUFFER_PITCH(0),
255 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
256 A6XX_RB_DEPTH_BUFFER_BASE(0),
257 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
258
259 tu_cs_emit_regs(cs,
260 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
261
262 tu_cs_emit_regs(cs,
263 A6XX_GRAS_LRZ_BUFFER_BASE(0),
264 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
265 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
266
267 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
268
269 return;
270 }
271
272 const struct tu_image_view *iview = fb->attachments[a].attachment;
273 const struct tu_render_pass_attachment *attachment =
274 &cmd->state.pass->attachments[a];
275 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
276
277 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
278 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
279 tu_cs_image_ref(cs, iview, 0);
280 tu_cs_emit(cs, attachment->gmem_offset);
281
282 tu_cs_emit_regs(cs,
283 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
284
285 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
286 tu_cs_image_flag_ref(cs, iview, 0);
287
288 tu_cs_emit_regs(cs,
289 A6XX_GRAS_LRZ_BUFFER_BASE(0),
290 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
291 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
292
293 if (attachment->format == VK_FORMAT_S8_UINT) {
294 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
295 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
296 tu_cs_image_ref(cs, iview, 0);
297 tu_cs_emit(cs, attachment->gmem_offset);
298 } else {
299 tu_cs_emit_regs(cs,
300 A6XX_RB_STENCIL_INFO(0));
301 }
302 }
303
304 static void
305 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
306 const struct tu_subpass *subpass,
307 struct tu_cs *cs)
308 {
309 const struct tu_framebuffer *fb = cmd->state.framebuffer;
310
311 for (uint32_t i = 0; i < subpass->color_count; ++i) {
312 uint32_t a = subpass->color_attachments[i].attachment;
313 if (a == VK_ATTACHMENT_UNUSED)
314 continue;
315
316 const struct tu_image_view *iview = fb->attachments[a].attachment;
317
318 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
319 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
320 tu_cs_image_ref(cs, iview, 0);
321 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
322
323 tu_cs_emit_regs(cs,
324 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
325
326 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
327 tu_cs_image_flag_ref(cs, iview, 0);
328 }
329
330 tu_cs_emit_regs(cs,
331 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
332 tu_cs_emit_regs(cs,
333 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
334
335 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
336 }
337
338 void
339 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
340 {
341 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
342 bool msaa_disable = samples == MSAA_ONE;
343
344 tu_cs_emit_regs(cs,
345 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
346 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
347 .msaa_disable = msaa_disable));
348
349 tu_cs_emit_regs(cs,
350 A6XX_GRAS_RAS_MSAA_CNTL(samples),
351 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
352 .msaa_disable = msaa_disable));
353
354 tu_cs_emit_regs(cs,
355 A6XX_RB_RAS_MSAA_CNTL(samples),
356 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
357 .msaa_disable = msaa_disable));
358
359 tu_cs_emit_regs(cs,
360 A6XX_RB_MSAA_CNTL(samples));
361 }
362
363 static void
364 tu6_emit_bin_size(struct tu_cs *cs,
365 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
366 {
367 tu_cs_emit_regs(cs,
368 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
369 .binh = bin_h,
370 .dword = flags));
371
372 tu_cs_emit_regs(cs,
373 A6XX_RB_BIN_CONTROL(.binw = bin_w,
374 .binh = bin_h,
375 .dword = flags));
376
377 /* no flag for RB_BIN_CONTROL2... */
378 tu_cs_emit_regs(cs,
379 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
380 .binh = bin_h));
381 }
382
383 static void
384 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
385 const struct tu_subpass *subpass,
386 struct tu_cs *cs,
387 bool binning)
388 {
389 const struct tu_framebuffer *fb = cmd->state.framebuffer;
390 uint32_t cntl = 0;
391 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
392 if (binning) {
393 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
394 } else {
395 uint32_t mrts_ubwc_enable = 0;
396 for (uint32_t i = 0; i < subpass->color_count; ++i) {
397 uint32_t a = subpass->color_attachments[i].attachment;
398 if (a == VK_ATTACHMENT_UNUSED)
399 continue;
400
401 const struct tu_image_view *iview = fb->attachments[a].attachment;
402 if (iview->ubwc_enabled)
403 mrts_ubwc_enable |= 1 << i;
404 }
405
406 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
407
408 const uint32_t a = subpass->depth_stencil_attachment.attachment;
409 if (a != VK_ATTACHMENT_UNUSED) {
410 const struct tu_image_view *iview = fb->attachments[a].attachment;
411 if (iview->ubwc_enabled)
412 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
413 }
414
415 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
416 * in order to set it correctly for the different subpasses. However,
417 * that means the packets we're emitting also happen during binning. So
418 * we need to guard the write on !BINNING at CP execution time.
419 */
420 tu_cs_reserve(cs, 3 + 4);
421 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
422 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
423 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
424 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
425 }
426
427 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
428 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
429 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
430 tu_cs_emit(cs, cntl);
431 }
432
433 static void
434 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
435 {
436 const VkRect2D *render_area = &cmd->state.render_area;
437 uint32_t x1 = render_area->offset.x;
438 uint32_t y1 = render_area->offset.y;
439 uint32_t x2 = x1 + render_area->extent.width - 1;
440 uint32_t y2 = y1 + render_area->extent.height - 1;
441
442 if (align) {
443 x1 = x1 & ~(GMEM_ALIGN_W - 1);
444 y1 = y1 & ~(GMEM_ALIGN_H - 1);
445 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
446 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
447 }
448
449 tu_cs_emit_regs(cs,
450 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
451 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
452 }
453
454 void
455 tu6_emit_window_scissor(struct tu_cs *cs,
456 uint32_t x1,
457 uint32_t y1,
458 uint32_t x2,
459 uint32_t y2)
460 {
461 tu_cs_emit_regs(cs,
462 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
463 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
464
465 tu_cs_emit_regs(cs,
466 A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1),
467 A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2));
468 }
469
470 void
471 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
472 {
473 tu_cs_emit_regs(cs,
474 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
475
476 tu_cs_emit_regs(cs,
477 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
478
479 tu_cs_emit_regs(cs,
480 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
481
482 tu_cs_emit_regs(cs,
483 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
484 }
485
486 static void
487 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
488 {
489 uint32_t enable_mask;
490 switch (id) {
491 case TU_DRAW_STATE_PROGRAM:
492 case TU_DRAW_STATE_VI:
493 case TU_DRAW_STATE_FS_CONST:
494 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
495 * when resources would actually be used in the binning shader.
496 * Presumably the overhead of prefetching the resources isn't
497 * worth it.
498 */
499 case TU_DRAW_STATE_DESC_SETS_LOAD:
500 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
501 CP_SET_DRAW_STATE__0_SYSMEM;
502 break;
503 case TU_DRAW_STATE_PROGRAM_BINNING:
504 case TU_DRAW_STATE_VI_BINNING:
505 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
506 break;
507 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
508 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
509 break;
510 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
511 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
512 break;
513 default:
514 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
515 CP_SET_DRAW_STATE__0_SYSMEM |
516 CP_SET_DRAW_STATE__0_BINNING;
517 break;
518 }
519
520 /* We need to reload the descriptors every time the descriptor sets
521 * change. However, the commands we send only depend on the pipeline
522 * because the whole point is to cache descriptors which are used by the
523 * pipeline. There's a problem here, in that the firmware has an
524 * "optimization" which skips executing groups that are set to the same
525 * value as the last draw. This means that if the descriptor sets change
526 * but not the pipeline, we'd try to re-execute the same buffer which
527 * the firmware would ignore and we wouldn't pre-load the new
528 * descriptors. Set the DIRTY bit to avoid this optimization
529 */
530 if (id == TU_DRAW_STATE_DESC_SETS_LOAD)
531 enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
532
533 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
534 enable_mask |
535 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
536 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
537 tu_cs_emit_qw(cs, state.iova);
538 }
539
540 static bool
541 use_hw_binning(struct tu_cmd_buffer *cmd)
542 {
543 const struct tu_framebuffer *fb = cmd->state.framebuffer;
544
545 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
546 * with non-hw binning GMEM rendering. this is required because some of the
547 * XFB commands need to only be executed once
548 */
549 if (cmd->state.xfb_used)
550 return true;
551
552 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
553 return false;
554
555 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
556 return true;
557
558 return (fb->tile_count.width * fb->tile_count.height) > 2;
559 }
560
561 static bool
562 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
563 {
564 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
565 return true;
566
567 /* can't fit attachments into gmem */
568 if (!cmd->state.pass->gmem_pixels)
569 return true;
570
571 if (cmd->state.framebuffer->layers > 1)
572 return true;
573
574 if (cmd->has_tess)
575 return true;
576
577 return false;
578 }
579
580 static void
581 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
582 struct tu_cs *cs,
583 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot)
584 {
585 const struct tu_framebuffer *fb = cmd->state.framebuffer;
586
587 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
588 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
589
590 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
591 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
592
593 const uint32_t x1 = fb->tile0.width * tx;
594 const uint32_t y1 = fb->tile0.height * ty;
595 const uint32_t x2 = x1 + fb->tile0.width - 1;
596 const uint32_t y2 = y1 + fb->tile0.height - 1;
597 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
598 tu6_emit_window_offset(cs, x1, y1);
599
600 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
601
602 if (use_hw_binning(cmd)) {
603 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
604
605 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
606 tu_cs_emit(cs, 0x0);
607
608 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
609 tu_cs_emit(cs, fb->pipe_sizes[pipe] |
610 CP_SET_BIN_DATA5_0_VSC_N(slot));
611 tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
612 tu_cs_emit(cs, pipe * 4);
613 tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
614
615 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
616 tu_cs_emit(cs, 0x0);
617
618 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
619 tu_cs_emit(cs, 0x0);
620 } else {
621 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
622 tu_cs_emit(cs, 0x1);
623
624 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
625 tu_cs_emit(cs, 0x0);
626 }
627 }
628
629 static void
630 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
631 struct tu_cs *cs,
632 uint32_t a,
633 uint32_t gmem_a)
634 {
635 const struct tu_framebuffer *fb = cmd->state.framebuffer;
636 struct tu_image_view *dst = fb->attachments[a].attachment;
637 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
638
639 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.render_area);
640 }
641
642 static void
643 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
644 struct tu_cs *cs,
645 const struct tu_subpass *subpass)
646 {
647 if (subpass->resolve_attachments) {
648 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
649 * Commands":
650 *
651 * End-of-subpass multisample resolves are treated as color
652 * attachment writes for the purposes of synchronization. That is,
653 * they are considered to execute in the
654 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
655 * their writes are synchronized with
656 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
657 * rendering within a subpass and any resolve operations at the end
658 * of the subpass occurs automatically, without need for explicit
659 * dependencies or pipeline barriers. However, if the resolve
660 * attachment is also used in a different subpass, an explicit
661 * dependency is needed.
662 *
663 * We use the CP_BLIT path for sysmem resolves, which is really a
664 * transfer command, so we have to manually flush similar to the gmem
665 * resolve case. However, a flush afterwards isn't needed because of the
666 * last sentence and the fact that we're in sysmem mode.
667 */
668 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
669 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
670
671 /* Wait for the flushes to land before using the 2D engine */
672 tu_cs_emit_wfi(cs);
673
674 for (unsigned i = 0; i < subpass->color_count; i++) {
675 uint32_t a = subpass->resolve_attachments[i].attachment;
676 if (a == VK_ATTACHMENT_UNUSED)
677 continue;
678
679 tu6_emit_sysmem_resolve(cmd, cs, a,
680 subpass->color_attachments[i].attachment);
681 }
682 }
683 }
684
685 static void
686 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
687 {
688 const struct tu_render_pass *pass = cmd->state.pass;
689 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
690
691 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
692 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
693 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
694 CP_SET_DRAW_STATE__0_GROUP_ID(0));
695 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
696 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
697
698 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
699 tu_cs_emit(cs, 0x0);
700
701 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
702 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
703
704 tu6_emit_blit_scissor(cmd, cs, true);
705
706 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
707 if (pass->attachments[a].gmem_offset >= 0)
708 tu_store_gmem_attachment(cmd, cs, a, a);
709 }
710
711 if (subpass->resolve_attachments) {
712 for (unsigned i = 0; i < subpass->color_count; i++) {
713 uint32_t a = subpass->resolve_attachments[i].attachment;
714 if (a != VK_ATTACHMENT_UNUSED)
715 tu_store_gmem_attachment(cmd, cs, a,
716 subpass->color_attachments[i].attachment);
717 }
718 }
719 }
720
721 static void
722 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
723 {
724 struct tu_device *dev = cmd->device;
725 const struct tu_physical_device *phys_dev = dev->physical_device;
726
727 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
728
729 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
730 .vs_state = true,
731 .hs_state = true,
732 .ds_state = true,
733 .gs_state = true,
734 .fs_state = true,
735 .cs_state = true,
736 .gfx_ibo = true,
737 .cs_ibo = true,
738 .gfx_shared_const = true,
739 .cs_shared_const = true,
740 .gfx_bindless = 0x1f,
741 .cs_bindless = 0x1f));
742
743 tu_cs_emit_regs(cs,
744 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
745 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
746 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
747 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
748 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
749 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
750 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
751 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
752 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
753 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
754
755 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
756 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
757 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
758 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
759 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
760 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
761 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_SHARED_CONSTS, 0);
762 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
763 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
764 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
765 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
766 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
767 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
768
769 /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
770 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
771 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
772 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
773
774 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
775
776 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
777
778 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
779 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
780 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
781 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
782 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
783 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
784 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
785 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
786 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
787 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
788 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
789
790 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
791
792 tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false));
793 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
794
795 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
796
797 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
798 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
799
800 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
801 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
802
803 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
804
805 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
806
807 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
808 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
809 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
810 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
811 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
812 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
813 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
814 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
815 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
816
817 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
818
819 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
820
821 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
822
823 /* we don't use this yet.. probably best to disable.. */
824 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
825 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
826 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
827 CP_SET_DRAW_STATE__0_GROUP_ID(0));
828 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
829 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
830
831 tu_cs_emit_regs(cs,
832 A6XX_SP_HS_CTRL_REG0(0));
833
834 tu_cs_emit_regs(cs,
835 A6XX_SP_GS_CTRL_REG0(0));
836
837 tu_cs_emit_regs(cs,
838 A6XX_GRAS_LRZ_CNTL(0));
839
840 tu_cs_emit_regs(cs,
841 A6XX_RB_LRZ_CNTL(0));
842
843 tu_cs_emit_regs(cs,
844 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
845 .bo_offset = gb_offset(border_color)));
846 tu_cs_emit_regs(cs,
847 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
848 .bo_offset = gb_offset(border_color)));
849
850 /* VSC buffers:
851 * use vsc pitches from the largest values used so far with this device
852 * if there hasn't been overflow, there will already be a scratch bo
853 * allocated for these sizes
854 *
855 * if overflow is detected, the stream size is increased by 2x
856 */
857 mtx_lock(&dev->vsc_pitch_mtx);
858
859 struct tu6_global *global = dev->global_bo.map;
860
861 uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
862 uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
863
864 if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
865 dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
866
867 if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
868 dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
869
870 cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
871 cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
872
873 mtx_unlock(&dev->vsc_pitch_mtx);
874
875 struct tu_bo *vsc_bo;
876 uint32_t size0 = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES +
877 cmd->vsc_draw_strm_pitch * MAX_VSC_PIPES;
878
879 tu_get_scratch_bo(dev, size0 + MAX_VSC_PIPES * 4, &vsc_bo);
880
881 tu_cs_emit_regs(cs,
882 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
883 tu_cs_emit_regs(cs,
884 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
885 tu_cs_emit_regs(cs,
886 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
887 .bo_offset = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES));
888
889 tu_bo_list_add(&cmd->bo_list, vsc_bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
890
891 tu_cs_sanity_check(cs);
892 }
893
894 static void
895 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
896 {
897 const struct tu_framebuffer *fb = cmd->state.framebuffer;
898
899 tu_cs_emit_regs(cs,
900 A6XX_VSC_BIN_SIZE(.width = fb->tile0.width,
901 .height = fb->tile0.height));
902
903 tu_cs_emit_regs(cs,
904 A6XX_VSC_BIN_COUNT(.nx = fb->tile_count.width,
905 .ny = fb->tile_count.height));
906
907 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
908 tu_cs_emit_array(cs, fb->pipe_config, 32);
909
910 tu_cs_emit_regs(cs,
911 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
912 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
913
914 tu_cs_emit_regs(cs,
915 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
916 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
917 }
918
919 static void
920 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
921 {
922 const struct tu_framebuffer *fb = cmd->state.framebuffer;
923 const uint32_t used_pipe_count =
924 fb->pipe_count.width * fb->pipe_count.height;
925
926 for (int i = 0; i < used_pipe_count; i++) {
927 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
928 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
929 CP_COND_WRITE5_0_WRITE_MEMORY);
930 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
931 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
932 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
933 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
934 tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
935 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
936
937 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
938 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
939 CP_COND_WRITE5_0_WRITE_MEMORY);
940 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
941 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
942 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
943 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
944 tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
945 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
946 }
947
948 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
949 }
950
951 static void
952 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
953 {
954 struct tu_physical_device *phys_dev = cmd->device->physical_device;
955 const struct tu_framebuffer *fb = cmd->state.framebuffer;
956
957 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
958
959 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
960 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
961
962 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
963 tu_cs_emit(cs, 0x1);
964
965 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
966 tu_cs_emit(cs, 0x1);
967
968 tu_cs_emit_wfi(cs);
969
970 tu_cs_emit_regs(cs,
971 A6XX_VFD_MODE_CNTL(.binning_pass = true));
972
973 update_vsc_pipe(cmd, cs);
974
975 tu_cs_emit_regs(cs,
976 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
977
978 tu_cs_emit_regs(cs,
979 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
980
981 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
982 tu_cs_emit(cs, UNK_2C);
983
984 tu_cs_emit_regs(cs,
985 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
986
987 tu_cs_emit_regs(cs,
988 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
989
990 /* emit IB to binning drawcmds: */
991 tu_cs_emit_call(cs, &cmd->draw_cs);
992
993 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
994 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
995 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
996 CP_SET_DRAW_STATE__0_GROUP_ID(0));
997 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
998 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
999
1000 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1001 tu_cs_emit(cs, UNK_2D);
1002
1003 /* This flush is probably required because the VSC, which produces the
1004 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1005 * visibility stream (without caching) to do draw skipping. The
1006 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1007 * submitted are finished before reading the VSC regs (in
1008 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1009 * part of draws).
1010 */
1011 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1012
1013 tu_cs_emit_wfi(cs);
1014
1015 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1016
1017 emit_vsc_overflow_test(cmd, cs);
1018
1019 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1020 tu_cs_emit(cs, 0x0);
1021
1022 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1023 tu_cs_emit(cs, 0x0);
1024 }
1025
1026 static struct tu_draw_state
1027 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1028 const struct tu_subpass *subpass,
1029 bool gmem)
1030 {
1031 /* note: we can probably emit input attachments just once for the whole
1032 * renderpass, this would avoid emitting both sysmem/gmem versions
1033 *
1034 * emit two texture descriptors for each input, as a workaround for
1035 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1036 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1037 * in the pair
1038 * TODO: a smarter workaround
1039 */
1040
1041 if (!subpass->input_count)
1042 return (struct tu_draw_state) {};
1043
1044 struct tu_cs_memory texture;
1045 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1046 A6XX_TEX_CONST_DWORDS, &texture);
1047 assert(result == VK_SUCCESS);
1048
1049 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1050 uint32_t a = subpass->input_attachments[i / 2].attachment;
1051 if (a == VK_ATTACHMENT_UNUSED)
1052 continue;
1053
1054 struct tu_image_view *iview =
1055 cmd->state.framebuffer->attachments[a].attachment;
1056 const struct tu_render_pass_attachment *att =
1057 &cmd->state.pass->attachments[a];
1058 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1059
1060 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1061
1062 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1063 /* note this works because spec says fb and input attachments
1064 * must use identity swizzle
1065 */
1066 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1067 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1068 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1069 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1070 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1071 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1072 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1073 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1074 }
1075
1076 if (!gmem)
1077 continue;
1078
1079 /* patched for gmem */
1080 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1081 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1082 dst[2] =
1083 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1084 A6XX_TEX_CONST_2_PITCH(cmd->state.framebuffer->tile0.width * att->cpp);
1085 dst[3] = 0;
1086 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1087 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1088 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1089 dst[i] = 0;
1090 }
1091
1092 struct tu_cs cs;
1093 struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
1094
1095 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1096 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1097 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1098 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1099 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1100 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1101 tu_cs_emit_qw(&cs, texture.iova);
1102
1103 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1104 tu_cs_emit_qw(&cs, texture.iova);
1105
1106 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1107
1108 assert(cs.cur == cs.end); /* validate draw state size */
1109
1110 return ds;
1111 }
1112
1113 static void
1114 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1115 {
1116 struct tu_cs *cs = &cmd->draw_cs;
1117
1118 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1119 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
1120 tu_emit_input_attachments(cmd, subpass, true));
1121 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
1122 tu_emit_input_attachments(cmd, subpass, false));
1123 }
1124
1125 static void
1126 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1127 const VkRenderPassBeginInfo *info)
1128 {
1129 struct tu_cs *cs = &cmd->draw_cs;
1130
1131 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1132
1133 tu6_emit_blit_scissor(cmd, cs, true);
1134
1135 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1136 tu_load_gmem_attachment(cmd, cs, i, false);
1137
1138 tu6_emit_blit_scissor(cmd, cs, false);
1139
1140 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1141 tu_clear_gmem_attachment(cmd, cs, i, info);
1142
1143 tu_cond_exec_end(cs);
1144
1145 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1146
1147 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1148 tu_clear_sysmem_attachment(cmd, cs, i, info);
1149
1150 tu_cond_exec_end(cs);
1151 }
1152
1153 static void
1154 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1155 {
1156 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1157
1158 assert(fb->width > 0 && fb->height > 0);
1159 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1160 tu6_emit_window_offset(cs, 0, 0);
1161
1162 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1163
1164 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1165
1166 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1167 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1168
1169 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1170 tu_cs_emit(cs, 0x0);
1171
1172 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1173
1174 /* enable stream-out, with sysmem there is only one pass: */
1175 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1176
1177 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1178 tu_cs_emit(cs, 0x1);
1179
1180 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1181 tu_cs_emit(cs, 0x0);
1182
1183 tu_cs_sanity_check(cs);
1184 }
1185
1186 static void
1187 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1188 {
1189 /* Do any resolves of the last subpass. These are handled in the
1190 * tile_store_ib in the gmem path.
1191 */
1192 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1193
1194 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1195
1196 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1197 tu_cs_emit(cs, 0x0);
1198
1199 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1200
1201 tu_cs_sanity_check(cs);
1202 }
1203
1204 static void
1205 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1206 {
1207 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1208
1209 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1210
1211 /* lrz clear? */
1212
1213 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1214 tu_cs_emit(cs, 0x0);
1215
1216 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1217
1218 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1219 if (use_hw_binning(cmd)) {
1220 /* enable stream-out during binning pass: */
1221 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1222
1223 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1224 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1225
1226 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1227
1228 tu6_emit_binning_pass(cmd, cs);
1229
1230 /* and disable stream-out for draw pass: */
1231 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
1232
1233 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1234 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1235
1236 tu_cs_emit_regs(cs,
1237 A6XX_VFD_MODE_CNTL(0));
1238
1239 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1240
1241 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1242
1243 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1244 tu_cs_emit(cs, 0x1);
1245 } else {
1246 /* no binning pass, so enable stream-out for draw pass:: */
1247 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1248
1249 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height, 0x6000000);
1250 }
1251
1252 tu_cs_sanity_check(cs);
1253 }
1254
1255 static void
1256 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1257 {
1258 tu_cs_emit_call(cs, &cmd->draw_cs);
1259
1260 if (use_hw_binning(cmd)) {
1261 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1262 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1263 }
1264
1265 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1266
1267 tu_cs_sanity_check(cs);
1268 }
1269
1270 static void
1271 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1272 {
1273 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1274
1275 tu_cs_emit_regs(cs,
1276 A6XX_GRAS_LRZ_CNTL(0));
1277
1278 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1279
1280 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1281
1282 tu_cs_sanity_check(cs);
1283 }
1284
1285 static void
1286 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1287 {
1288 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1289
1290 tu6_tile_render_begin(cmd, &cmd->cs);
1291
1292 uint32_t pipe = 0;
1293 for (uint32_t py = 0; py < fb->pipe_count.height; py++) {
1294 for (uint32_t px = 0; px < fb->pipe_count.width; px++, pipe++) {
1295 uint32_t tx1 = px * fb->pipe0.width;
1296 uint32_t ty1 = py * fb->pipe0.height;
1297 uint32_t tx2 = MIN2(tx1 + fb->pipe0.width, fb->tile_count.width);
1298 uint32_t ty2 = MIN2(ty1 + fb->pipe0.height, fb->tile_count.height);
1299 uint32_t slot = 0;
1300 for (uint32_t ty = ty1; ty < ty2; ty++) {
1301 for (uint32_t tx = tx1; tx < tx2; tx++, slot++) {
1302 tu6_emit_tile_select(cmd, &cmd->cs, tx, ty, pipe, slot);
1303 tu6_render_tile(cmd, &cmd->cs);
1304 }
1305 }
1306 }
1307 }
1308
1309 tu6_tile_render_end(cmd, &cmd->cs);
1310 }
1311
1312 static void
1313 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1314 {
1315 tu6_sysmem_render_begin(cmd, &cmd->cs);
1316
1317 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1318
1319 tu6_sysmem_render_end(cmd, &cmd->cs);
1320 }
1321
1322 static void
1323 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1324 {
1325 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1326 struct tu_cs sub_cs;
1327
1328 VkResult result =
1329 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1330 if (result != VK_SUCCESS) {
1331 cmd->record_result = result;
1332 return;
1333 }
1334
1335 /* emit to tile-store sub_cs */
1336 tu6_emit_tile_store(cmd, &sub_cs);
1337
1338 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1339 }
1340
1341 static VkResult
1342 tu_create_cmd_buffer(struct tu_device *device,
1343 struct tu_cmd_pool *pool,
1344 VkCommandBufferLevel level,
1345 VkCommandBuffer *pCommandBuffer)
1346 {
1347 struct tu_cmd_buffer *cmd_buffer;
1348
1349 cmd_buffer = vk_object_zalloc(&device->vk, NULL, sizeof(*cmd_buffer),
1350 VK_OBJECT_TYPE_COMMAND_BUFFER);
1351 if (cmd_buffer == NULL)
1352 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1353
1354 cmd_buffer->device = device;
1355 cmd_buffer->pool = pool;
1356 cmd_buffer->level = level;
1357
1358 if (pool) {
1359 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1360 cmd_buffer->queue_family_index = pool->queue_family_index;
1361
1362 } else {
1363 /* Init the pool_link so we can safely call list_del when we destroy
1364 * the command buffer
1365 */
1366 list_inithead(&cmd_buffer->pool_link);
1367 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1368 }
1369
1370 tu_bo_list_init(&cmd_buffer->bo_list);
1371 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1372 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1373 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1374 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1375
1376 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1377
1378 list_inithead(&cmd_buffer->upload.list);
1379
1380 return VK_SUCCESS;
1381 }
1382
1383 static void
1384 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1385 {
1386 list_del(&cmd_buffer->pool_link);
1387
1388 tu_cs_finish(&cmd_buffer->cs);
1389 tu_cs_finish(&cmd_buffer->draw_cs);
1390 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1391 tu_cs_finish(&cmd_buffer->sub_cs);
1392
1393 tu_bo_list_destroy(&cmd_buffer->bo_list);
1394 vk_object_free(&cmd_buffer->device->vk, &cmd_buffer->pool->alloc, cmd_buffer);
1395 }
1396
1397 static VkResult
1398 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1399 {
1400 cmd_buffer->record_result = VK_SUCCESS;
1401
1402 tu_bo_list_reset(&cmd_buffer->bo_list);
1403 tu_cs_reset(&cmd_buffer->cs);
1404 tu_cs_reset(&cmd_buffer->draw_cs);
1405 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1406 tu_cs_reset(&cmd_buffer->sub_cs);
1407
1408 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1409 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1410
1411 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1412
1413 return cmd_buffer->record_result;
1414 }
1415
1416 VkResult
1417 tu_AllocateCommandBuffers(VkDevice _device,
1418 const VkCommandBufferAllocateInfo *pAllocateInfo,
1419 VkCommandBuffer *pCommandBuffers)
1420 {
1421 TU_FROM_HANDLE(tu_device, device, _device);
1422 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1423
1424 VkResult result = VK_SUCCESS;
1425 uint32_t i;
1426
1427 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1428
1429 if (!list_is_empty(&pool->free_cmd_buffers)) {
1430 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1431 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1432
1433 list_del(&cmd_buffer->pool_link);
1434 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1435
1436 result = tu_reset_cmd_buffer(cmd_buffer);
1437 cmd_buffer->level = pAllocateInfo->level;
1438
1439 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1440 } else {
1441 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1442 &pCommandBuffers[i]);
1443 }
1444 if (result != VK_SUCCESS)
1445 break;
1446 }
1447
1448 if (result != VK_SUCCESS) {
1449 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1450 pCommandBuffers);
1451
1452 /* From the Vulkan 1.0.66 spec:
1453 *
1454 * "vkAllocateCommandBuffers can be used to create multiple
1455 * command buffers. If the creation of any of those command
1456 * buffers fails, the implementation must destroy all
1457 * successfully created command buffer objects from this
1458 * command, set all entries of the pCommandBuffers array to
1459 * NULL and return the error."
1460 */
1461 memset(pCommandBuffers, 0,
1462 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1463 }
1464
1465 return result;
1466 }
1467
1468 void
1469 tu_FreeCommandBuffers(VkDevice device,
1470 VkCommandPool commandPool,
1471 uint32_t commandBufferCount,
1472 const VkCommandBuffer *pCommandBuffers)
1473 {
1474 for (uint32_t i = 0; i < commandBufferCount; i++) {
1475 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1476
1477 if (cmd_buffer) {
1478 if (cmd_buffer->pool) {
1479 list_del(&cmd_buffer->pool_link);
1480 list_addtail(&cmd_buffer->pool_link,
1481 &cmd_buffer->pool->free_cmd_buffers);
1482 } else
1483 tu_cmd_buffer_destroy(cmd_buffer);
1484 }
1485 }
1486 }
1487
1488 VkResult
1489 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1490 VkCommandBufferResetFlags flags)
1491 {
1492 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1493 return tu_reset_cmd_buffer(cmd_buffer);
1494 }
1495
1496 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1497 * invalidations.
1498 */
1499 static void
1500 tu_cache_init(struct tu_cache_state *cache)
1501 {
1502 cache->flush_bits = 0;
1503 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1504 }
1505
1506 VkResult
1507 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1508 const VkCommandBufferBeginInfo *pBeginInfo)
1509 {
1510 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1511 VkResult result = VK_SUCCESS;
1512
1513 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1514 /* If the command buffer has already been resetted with
1515 * vkResetCommandBuffer, no need to do it again.
1516 */
1517 result = tu_reset_cmd_buffer(cmd_buffer);
1518 if (result != VK_SUCCESS)
1519 return result;
1520 }
1521
1522 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1523 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1524
1525 tu_cache_init(&cmd_buffer->state.cache);
1526 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1527 cmd_buffer->usage_flags = pBeginInfo->flags;
1528
1529 tu_cs_begin(&cmd_buffer->cs);
1530 tu_cs_begin(&cmd_buffer->draw_cs);
1531 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1532
1533 /* setup initial configuration into command buffer */
1534 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1535 switch (cmd_buffer->queue_family_index) {
1536 case TU_QUEUE_GENERAL:
1537 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1538 break;
1539 default:
1540 break;
1541 }
1542 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1543 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1544 assert(pBeginInfo->pInheritanceInfo);
1545 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1546 cmd_buffer->state.subpass =
1547 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1548 } else {
1549 /* When executing in the middle of another command buffer, the CCU
1550 * state is unknown.
1551 */
1552 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1553 }
1554 }
1555
1556 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1557
1558 return VK_SUCCESS;
1559 }
1560
1561 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1562 * rendering can skip over unused state), so we need to collect all the
1563 * bindings together into a single state emit at draw time.
1564 */
1565 void
1566 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1567 uint32_t firstBinding,
1568 uint32_t bindingCount,
1569 const VkBuffer *pBuffers,
1570 const VkDeviceSize *pOffsets)
1571 {
1572 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1573
1574 assert(firstBinding + bindingCount <= MAX_VBS);
1575
1576 for (uint32_t i = 0; i < bindingCount; i++) {
1577 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1578
1579 cmd->state.vb.buffers[firstBinding + i] = buf;
1580 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1581
1582 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1583 }
1584
1585 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1586 }
1587
1588 void
1589 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1590 VkBuffer buffer,
1591 VkDeviceSize offset,
1592 VkIndexType indexType)
1593 {
1594 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1595 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1596
1597
1598
1599 uint32_t index_size, index_shift, restart_index;
1600
1601 switch (indexType) {
1602 case VK_INDEX_TYPE_UINT16:
1603 index_size = INDEX4_SIZE_16_BIT;
1604 index_shift = 1;
1605 restart_index = 0xffff;
1606 break;
1607 case VK_INDEX_TYPE_UINT32:
1608 index_size = INDEX4_SIZE_32_BIT;
1609 index_shift = 2;
1610 restart_index = 0xffffffff;
1611 break;
1612 case VK_INDEX_TYPE_UINT8_EXT:
1613 index_size = INDEX4_SIZE_8_BIT;
1614 index_shift = 0;
1615 restart_index = 0xff;
1616 break;
1617 default:
1618 unreachable("invalid VkIndexType");
1619 }
1620
1621 /* initialize/update the restart index */
1622 if (cmd->state.index_size != index_size)
1623 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1624
1625 assert(buf->size >= offset);
1626
1627 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1628 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1629 cmd->state.index_size = index_size;
1630
1631 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1632 }
1633
1634 void
1635 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1636 VkPipelineBindPoint pipelineBindPoint,
1637 VkPipelineLayout _layout,
1638 uint32_t firstSet,
1639 uint32_t descriptorSetCount,
1640 const VkDescriptorSet *pDescriptorSets,
1641 uint32_t dynamicOffsetCount,
1642 const uint32_t *pDynamicOffsets)
1643 {
1644 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1645 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1646 unsigned dyn_idx = 0;
1647
1648 struct tu_descriptor_state *descriptors_state =
1649 tu_get_descriptors_state(cmd, pipelineBindPoint);
1650
1651 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1652 unsigned idx = i + firstSet;
1653 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1654
1655 descriptors_state->sets[idx] = set;
1656
1657 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1658 /* update the contents of the dynamic descriptor set */
1659 unsigned src_idx = j;
1660 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1661 assert(dyn_idx < dynamicOffsetCount);
1662
1663 uint32_t *dst =
1664 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1665 uint32_t *src =
1666 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1667 uint32_t offset = pDynamicOffsets[dyn_idx];
1668
1669 /* Patch the storage/uniform descriptors right away. */
1670 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1671 /* Note: we can assume here that the addition won't roll over and
1672 * change the SIZE field.
1673 */
1674 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1675 va += offset;
1676 dst[0] = va;
1677 dst[1] = va >> 32;
1678 } else {
1679 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1680 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1681 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1682 va += offset;
1683 dst[4] = va;
1684 dst[5] = va >> 32;
1685 }
1686 }
1687
1688 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1689 if (set->buffers[j]) {
1690 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1691 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1692 }
1693 }
1694
1695 if (set->size > 0) {
1696 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1697 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1698 }
1699 }
1700 assert(dyn_idx == dynamicOffsetCount);
1701
1702 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_invalidate_value;
1703 uint64_t addr[MAX_SETS + 1] = {};
1704 struct tu_cs *cs, state_cs;
1705
1706 for (uint32_t i = 0; i < MAX_SETS; i++) {
1707 struct tu_descriptor_set *set = descriptors_state->sets[i];
1708 if (set)
1709 addr[i] = set->va | 3;
1710 }
1711
1712 if (layout->dynamic_offset_count) {
1713 /* allocate and fill out dynamic descriptor set */
1714 struct tu_cs_memory dynamic_desc_set;
1715 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1716 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1717 assert(result == VK_SUCCESS);
1718
1719 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1720 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1721 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1722 }
1723
1724 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1725 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1726 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1727 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_GFX_BINDLESS(0x1f);
1728
1729 cmd->state.desc_sets = tu_cs_draw_state(&cmd->sub_cs, &state_cs, 24);
1730 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
1731 cs = &state_cs;
1732 } else {
1733 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1734
1735 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1736 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1737 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_CS_BINDLESS(0x1f);
1738
1739 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
1740 cs = &cmd->cs;
1741 }
1742
1743 tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 10);
1744 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1745 tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 10);
1746 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1747 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(.dword = hlsq_invalidate_value));
1748
1749 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1750 assert(cs->cur == cs->end); /* validate draw state size */
1751 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1752 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
1753 }
1754 }
1755
1756 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1757 uint32_t firstBinding,
1758 uint32_t bindingCount,
1759 const VkBuffer *pBuffers,
1760 const VkDeviceSize *pOffsets,
1761 const VkDeviceSize *pSizes)
1762 {
1763 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1764 struct tu_cs *cs = &cmd->draw_cs;
1765
1766 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1767 * presumably there isn't any benefit using a draw state when the
1768 * condition is (SYSMEM | BINNING)
1769 */
1770 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1771 CP_COND_REG_EXEC_0_SYSMEM |
1772 CP_COND_REG_EXEC_0_BINNING);
1773
1774 for (uint32_t i = 0; i < bindingCount; i++) {
1775 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1776 uint64_t iova = buf->bo->iova + pOffsets[i];
1777 uint32_t size = buf->bo->size - pOffsets[i];
1778 uint32_t idx = i + firstBinding;
1779
1780 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1781 size = pSizes[i];
1782
1783 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1784 uint32_t offset = iova & 0x1f;
1785 iova &= ~(uint64_t) 0x1f;
1786
1787 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1788 tu_cs_emit_qw(cs, iova);
1789 tu_cs_emit(cs, size + offset);
1790
1791 cmd->state.streamout_offset[idx] = offset;
1792
1793 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1794 }
1795
1796 tu_cond_exec_end(cs);
1797 }
1798
1799 void
1800 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1801 uint32_t firstCounterBuffer,
1802 uint32_t counterBufferCount,
1803 const VkBuffer *pCounterBuffers,
1804 const VkDeviceSize *pCounterBufferOffsets)
1805 {
1806 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1807 struct tu_cs *cs = &cmd->draw_cs;
1808
1809 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1810 CP_COND_REG_EXEC_0_SYSMEM |
1811 CP_COND_REG_EXEC_0_BINNING);
1812
1813 /* TODO: only update offset for active buffers */
1814 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1815 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1816
1817 for (uint32_t i = 0; i < counterBufferCount; i++) {
1818 uint32_t idx = firstCounterBuffer + i;
1819 uint32_t offset = cmd->state.streamout_offset[idx];
1820
1821 if (!pCounterBuffers[i])
1822 continue;
1823
1824 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1825
1826 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1827
1828 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1829 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1830 CP_MEM_TO_REG_0_UNK31 |
1831 CP_MEM_TO_REG_0_CNT(1));
1832 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1833
1834 if (offset) {
1835 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1836 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1837 CP_REG_RMW_0_SRC1_ADD);
1838 tu_cs_emit_qw(cs, 0xffffffff);
1839 tu_cs_emit_qw(cs, offset);
1840 }
1841 }
1842
1843 tu_cond_exec_end(cs);
1844 }
1845
1846 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1847 uint32_t firstCounterBuffer,
1848 uint32_t counterBufferCount,
1849 const VkBuffer *pCounterBuffers,
1850 const VkDeviceSize *pCounterBufferOffsets)
1851 {
1852 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1853 struct tu_cs *cs = &cmd->draw_cs;
1854
1855 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1856 CP_COND_REG_EXEC_0_SYSMEM |
1857 CP_COND_REG_EXEC_0_BINNING);
1858
1859 /* TODO: only flush buffers that need to be flushed */
1860 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
1861 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
1862 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
1863 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[i]));
1864 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
1865 }
1866
1867 for (uint32_t i = 0; i < counterBufferCount; i++) {
1868 uint32_t idx = firstCounterBuffer + i;
1869 uint32_t offset = cmd->state.streamout_offset[idx];
1870
1871 if (!pCounterBuffers[i])
1872 continue;
1873
1874 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1875
1876 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1877
1878 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
1879 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1880 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1881 CP_MEM_TO_REG_0_SHIFT_BY_2 |
1882 0x40000 | /* ??? */
1883 CP_MEM_TO_REG_0_UNK31 |
1884 CP_MEM_TO_REG_0_CNT(1));
1885 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[idx]));
1886
1887 if (offset) {
1888 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1889 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1890 CP_REG_RMW_0_SRC1_ADD);
1891 tu_cs_emit_qw(cs, 0xffffffff);
1892 tu_cs_emit_qw(cs, -offset);
1893 }
1894
1895 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
1896 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1897 CP_REG_TO_MEM_0_CNT(1));
1898 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1899 }
1900
1901 tu_cond_exec_end(cs);
1902
1903 cmd->state.xfb_used = true;
1904 }
1905
1906 void
1907 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
1908 VkPipelineLayout layout,
1909 VkShaderStageFlags stageFlags,
1910 uint32_t offset,
1911 uint32_t size,
1912 const void *pValues)
1913 {
1914 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1915 memcpy((void*) cmd->push_constants + offset, pValues, size);
1916 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
1917 }
1918
1919 /* Flush everything which has been made available but we haven't actually
1920 * flushed yet.
1921 */
1922 static void
1923 tu_flush_all_pending(struct tu_cache_state *cache)
1924 {
1925 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
1926 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
1927 }
1928
1929 VkResult
1930 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
1931 {
1932 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1933
1934 /* We currently flush CCU at the end of the command buffer, like
1935 * what the blob does. There's implicit synchronization around every
1936 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
1937 * know yet if this command buffer will be the last in the submit so we
1938 * have to defensively flush everything else.
1939 *
1940 * TODO: We could definitely do better than this, since these flushes
1941 * aren't required by Vulkan, but we'd need kernel support to do that.
1942 * Ideally, we'd like the kernel to flush everything afterwards, so that we
1943 * wouldn't have to do any flushes here, and when submitting multiple
1944 * command buffers there wouldn't be any unnecessary flushes in between.
1945 */
1946 if (cmd_buffer->state.pass) {
1947 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
1948 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
1949 } else {
1950 tu_flush_all_pending(&cmd_buffer->state.cache);
1951 cmd_buffer->state.cache.flush_bits |=
1952 TU_CMD_FLAG_CCU_FLUSH_COLOR |
1953 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
1954 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
1955 }
1956
1957 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->global_bo,
1958 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1959
1960 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
1961 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
1962 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1963 }
1964
1965 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
1966 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
1967 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1968 }
1969
1970 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
1971 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
1972 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1973 }
1974
1975 tu_cs_end(&cmd_buffer->cs);
1976 tu_cs_end(&cmd_buffer->draw_cs);
1977 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
1978
1979 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
1980
1981 return cmd_buffer->record_result;
1982 }
1983
1984 static struct tu_cs
1985 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
1986 {
1987 struct tu_cs cs;
1988
1989 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
1990 cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
1991
1992 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1993 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
1994
1995 return cs;
1996 }
1997
1998 void
1999 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2000 VkPipelineBindPoint pipelineBindPoint,
2001 VkPipeline _pipeline)
2002 {
2003 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2004 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2005
2006 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2007 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2008 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2009 }
2010
2011 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2012 cmd->state.compute_pipeline = pipeline;
2013 tu_cs_emit_state_ib(&cmd->cs, pipeline->program.state);
2014 return;
2015 }
2016
2017 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2018
2019 cmd->state.pipeline = pipeline;
2020 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
2021
2022 struct tu_cs *cs = &cmd->draw_cs;
2023 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2024 uint32_t i;
2025
2026 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2027 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
2028 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
2029 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
2030 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
2031 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
2032 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
2033 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
2034 for_each_bit(i, mask)
2035 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2036
2037 /* If the new pipeline requires more VBs than we had previously set up, we
2038 * need to re-emit them in SDS. If it requires the same set or fewer, we
2039 * can just re-use the old SDS.
2040 */
2041 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2042 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2043
2044 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2045 * so the dynamic state ib must be updated when pipeline changes
2046 */
2047 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2048 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2049
2050 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2051 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2052
2053 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2054 }
2055 }
2056
2057 void
2058 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2059 uint32_t firstViewport,
2060 uint32_t viewportCount,
2061 const VkViewport *pViewports)
2062 {
2063 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2064 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2065
2066 assert(firstViewport == 0 && viewportCount == 1);
2067
2068 tu6_emit_viewport(&cs, pViewports);
2069 }
2070
2071 void
2072 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2073 uint32_t firstScissor,
2074 uint32_t scissorCount,
2075 const VkRect2D *pScissors)
2076 {
2077 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2078 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2079
2080 assert(firstScissor == 0 && scissorCount == 1);
2081
2082 tu6_emit_scissor(&cs, pScissors);
2083 }
2084
2085 void
2086 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2087 {
2088 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2089 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2090
2091 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2092 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2093
2094 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2095 }
2096
2097 void
2098 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2099 float depthBiasConstantFactor,
2100 float depthBiasClamp,
2101 float depthBiasSlopeFactor)
2102 {
2103 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2104 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2105
2106 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2107 }
2108
2109 void
2110 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2111 const float blendConstants[4])
2112 {
2113 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2114 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2115
2116 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2117 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2118 }
2119
2120 void
2121 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2122 float minDepthBounds,
2123 float maxDepthBounds)
2124 {
2125 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2126 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
2127
2128 tu_cs_emit_regs(&cs,
2129 A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
2130 A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
2131 }
2132
2133 static void
2134 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2135 {
2136 if (face & VK_STENCIL_FACE_FRONT_BIT)
2137 *value = (*value & 0xff00) | (mask & 0xff);
2138 if (face & VK_STENCIL_FACE_BACK_BIT)
2139 *value = (*value & 0xff) | (mask & 0xff) << 8;
2140 }
2141
2142 void
2143 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2144 VkStencilFaceFlags faceMask,
2145 uint32_t compareMask)
2146 {
2147 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2148 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2149
2150 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2151
2152 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2153 }
2154
2155 void
2156 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2157 VkStencilFaceFlags faceMask,
2158 uint32_t writeMask)
2159 {
2160 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2161 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2162
2163 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2164
2165 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2166 }
2167
2168 void
2169 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2170 VkStencilFaceFlags faceMask,
2171 uint32_t reference)
2172 {
2173 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2174 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2175
2176 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2177
2178 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2179 }
2180
2181 void
2182 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2183 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2184 {
2185 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2186 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2187
2188 assert(pSampleLocationsInfo);
2189
2190 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2191 }
2192
2193 static void
2194 tu_flush_for_access(struct tu_cache_state *cache,
2195 enum tu_cmd_access_mask src_mask,
2196 enum tu_cmd_access_mask dst_mask)
2197 {
2198 enum tu_cmd_flush_bits flush_bits = 0;
2199
2200 if (src_mask & TU_ACCESS_HOST_WRITE) {
2201 /* Host writes are always visible to CP, so only invalidate GPU caches */
2202 cache->pending_flush_bits |= TU_CMD_FLAG_GPU_INVALIDATE;
2203 }
2204
2205 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2206 /* Invalidate CP and 2D engine (make it do WFI + WFM if necessary) as
2207 * well.
2208 */
2209 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2210 }
2211
2212 if (src_mask & TU_ACCESS_CP_WRITE) {
2213 /* Flush the CP write queue. However a WFI shouldn't be necessary as
2214 * WAIT_MEM_WRITES should cover it.
2215 */
2216 cache->pending_flush_bits |=
2217 TU_CMD_FLAG_WAIT_MEM_WRITES |
2218 TU_CMD_FLAG_GPU_INVALIDATE |
2219 TU_CMD_FLAG_WAIT_FOR_ME;
2220 }
2221
2222 #define SRC_FLUSH(domain, flush, invalidate) \
2223 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2224 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2225 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2226 }
2227
2228 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2229 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2230 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2231
2232 #undef SRC_FLUSH
2233
2234 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2235 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2236 flush_bits |= TU_CMD_FLAG_##flush; \
2237 cache->pending_flush_bits |= \
2238 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2239 }
2240
2241 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2242 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2243
2244 #undef SRC_INCOHERENT_FLUSH
2245
2246 /* Treat host & sysmem write accesses the same, since the kernel implicitly
2247 * drains the queue before signalling completion to the host.
2248 */
2249 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE |
2250 TU_ACCESS_HOST_READ | TU_ACCESS_HOST_WRITE)) {
2251 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2252 }
2253
2254 #define DST_FLUSH(domain, flush, invalidate) \
2255 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2256 TU_ACCESS_##domain##_WRITE)) { \
2257 flush_bits |= cache->pending_flush_bits & \
2258 (TU_CMD_FLAG_##invalidate | \
2259 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2260 }
2261
2262 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2263 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2264 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2265
2266 #undef DST_FLUSH
2267
2268 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2269 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2270 TU_ACCESS_##domain##_WRITE)) { \
2271 flush_bits |= TU_CMD_FLAG_##invalidate | \
2272 (cache->pending_flush_bits & \
2273 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2274 }
2275
2276 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2277 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2278
2279 #undef DST_INCOHERENT_FLUSH
2280
2281 if (dst_mask & TU_ACCESS_WFI_READ) {
2282 flush_bits |= cache->pending_flush_bits &
2283 (TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_WAIT_FOR_IDLE);
2284 }
2285
2286 if (dst_mask & TU_ACCESS_WFM_READ) {
2287 flush_bits |= cache->pending_flush_bits &
2288 (TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_WAIT_FOR_ME);
2289 }
2290
2291 cache->flush_bits |= flush_bits;
2292 cache->pending_flush_bits &= ~flush_bits;
2293 }
2294
2295 static enum tu_cmd_access_mask
2296 vk2tu_access(VkAccessFlags flags, bool gmem)
2297 {
2298 enum tu_cmd_access_mask mask = 0;
2299
2300 /* If the GPU writes a buffer that is then read by an indirect draw
2301 * command, we theoretically need to emit a WFI to wait for any cache
2302 * flushes, and then a WAIT_FOR_ME to wait on the CP for the WFI to
2303 * complete. Waiting for the WFI to complete is performed as part of the
2304 * draw by the firmware, so we just need to execute the WFI.
2305 *
2306 * Transform feedback counters are read via CP_MEM_TO_REG, which implicitly
2307 * does CP_WAIT_FOR_ME, but we still need a WFI if the GPU writes it.
2308 */
2309 if (flags &
2310 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2311 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT |
2312 VK_ACCESS_MEMORY_READ_BIT)) {
2313 mask |= TU_ACCESS_WFI_READ;
2314 }
2315
2316 if (flags &
2317 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2318 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2319 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP */
2320 VK_ACCESS_MEMORY_READ_BIT)) {
2321 mask |= TU_ACCESS_SYSMEM_READ;
2322 }
2323
2324 if (flags &
2325 (VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT |
2326 VK_ACCESS_MEMORY_WRITE_BIT)) {
2327 mask |= TU_ACCESS_CP_WRITE;
2328 }
2329
2330 if (flags &
2331 (VK_ACCESS_HOST_READ_BIT |
2332 VK_ACCESS_MEMORY_WRITE_BIT)) {
2333 mask |= TU_ACCESS_HOST_READ;
2334 }
2335
2336 if (flags &
2337 (VK_ACCESS_HOST_WRITE_BIT |
2338 VK_ACCESS_MEMORY_WRITE_BIT)) {
2339 mask |= TU_ACCESS_HOST_WRITE;
2340 }
2341
2342 if (flags &
2343 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2344 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2345 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2346 /* TODO: Is there a no-cache bit for textures so that we can ignore
2347 * these?
2348 */
2349 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2350 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2351 VK_ACCESS_MEMORY_READ_BIT)) {
2352 mask |= TU_ACCESS_UCHE_READ;
2353 }
2354
2355 if (flags &
2356 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2357 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2358 VK_ACCESS_MEMORY_WRITE_BIT)) {
2359 mask |= TU_ACCESS_UCHE_WRITE;
2360 }
2361
2362 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2363 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2364 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2365 * can ignore CCU and pretend that color attachments and transfers use
2366 * sysmem directly.
2367 */
2368
2369 if (flags &
2370 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2371 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2372 VK_ACCESS_MEMORY_READ_BIT)) {
2373 if (gmem)
2374 mask |= TU_ACCESS_SYSMEM_READ;
2375 else
2376 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2377 }
2378
2379 if (flags &
2380 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2381 VK_ACCESS_MEMORY_READ_BIT)) {
2382 if (gmem)
2383 mask |= TU_ACCESS_SYSMEM_READ;
2384 else
2385 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2386 }
2387
2388 if (flags &
2389 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2390 VK_ACCESS_MEMORY_WRITE_BIT)) {
2391 if (gmem) {
2392 mask |= TU_ACCESS_SYSMEM_WRITE;
2393 } else {
2394 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2395 }
2396 }
2397
2398 if (flags &
2399 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2400 VK_ACCESS_MEMORY_WRITE_BIT)) {
2401 if (gmem) {
2402 mask |= TU_ACCESS_SYSMEM_WRITE;
2403 } else {
2404 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2405 }
2406 }
2407
2408 /* When the dst access is a transfer read/write, it seems we sometimes need
2409 * to insert a WFI after any flushes, to guarantee that the flushes finish
2410 * before the 2D engine starts. However the opposite (i.e. a WFI after
2411 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2412 * the blob doesn't emit such a WFI.
2413 */
2414
2415 if (flags &
2416 (VK_ACCESS_TRANSFER_WRITE_BIT |
2417 VK_ACCESS_MEMORY_WRITE_BIT)) {
2418 if (gmem) {
2419 mask |= TU_ACCESS_SYSMEM_WRITE;
2420 } else {
2421 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2422 }
2423 mask |= TU_ACCESS_WFI_READ;
2424 }
2425
2426 if (flags &
2427 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2428 VK_ACCESS_MEMORY_READ_BIT)) {
2429 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2430 }
2431
2432 return mask;
2433 }
2434
2435
2436 void
2437 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2438 uint32_t commandBufferCount,
2439 const VkCommandBuffer *pCmdBuffers)
2440 {
2441 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2442 VkResult result;
2443
2444 assert(commandBufferCount > 0);
2445
2446 /* Emit any pending flushes. */
2447 if (cmd->state.pass) {
2448 tu_flush_all_pending(&cmd->state.renderpass_cache);
2449 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2450 } else {
2451 tu_flush_all_pending(&cmd->state.cache);
2452 tu_emit_cache_flush(cmd, &cmd->cs);
2453 }
2454
2455 for (uint32_t i = 0; i < commandBufferCount; i++) {
2456 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2457
2458 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2459 if (result != VK_SUCCESS) {
2460 cmd->record_result = result;
2461 break;
2462 }
2463
2464 if (secondary->usage_flags &
2465 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2466 assert(tu_cs_is_empty(&secondary->cs));
2467
2468 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2469 if (result != VK_SUCCESS) {
2470 cmd->record_result = result;
2471 break;
2472 }
2473
2474 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2475 &secondary->draw_epilogue_cs);
2476 if (result != VK_SUCCESS) {
2477 cmd->record_result = result;
2478 break;
2479 }
2480
2481 if (secondary->has_tess)
2482 cmd->has_tess = true;
2483 } else {
2484 assert(tu_cs_is_empty(&secondary->draw_cs));
2485 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2486
2487 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2488 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2489 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2490 }
2491
2492 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2493 }
2494
2495 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2496 }
2497 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2498
2499 /* After executing secondary command buffers, there may have been arbitrary
2500 * flushes executed, so when we encounter a pipeline barrier with a
2501 * srcMask, we have to assume that we need to invalidate. Therefore we need
2502 * to re-initialize the cache with all pending invalidate bits set.
2503 */
2504 if (cmd->state.pass) {
2505 tu_cache_init(&cmd->state.renderpass_cache);
2506 } else {
2507 tu_cache_init(&cmd->state.cache);
2508 }
2509 }
2510
2511 VkResult
2512 tu_CreateCommandPool(VkDevice _device,
2513 const VkCommandPoolCreateInfo *pCreateInfo,
2514 const VkAllocationCallbacks *pAllocator,
2515 VkCommandPool *pCmdPool)
2516 {
2517 TU_FROM_HANDLE(tu_device, device, _device);
2518 struct tu_cmd_pool *pool;
2519
2520 pool = vk_object_alloc(&device->vk, pAllocator, sizeof(*pool),
2521 VK_OBJECT_TYPE_COMMAND_POOL);
2522 if (pool == NULL)
2523 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2524
2525 if (pAllocator)
2526 pool->alloc = *pAllocator;
2527 else
2528 pool->alloc = device->vk.alloc;
2529
2530 list_inithead(&pool->cmd_buffers);
2531 list_inithead(&pool->free_cmd_buffers);
2532
2533 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2534
2535 *pCmdPool = tu_cmd_pool_to_handle(pool);
2536
2537 return VK_SUCCESS;
2538 }
2539
2540 void
2541 tu_DestroyCommandPool(VkDevice _device,
2542 VkCommandPool commandPool,
2543 const VkAllocationCallbacks *pAllocator)
2544 {
2545 TU_FROM_HANDLE(tu_device, device, _device);
2546 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2547
2548 if (!pool)
2549 return;
2550
2551 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2552 &pool->cmd_buffers, pool_link)
2553 {
2554 tu_cmd_buffer_destroy(cmd_buffer);
2555 }
2556
2557 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2558 &pool->free_cmd_buffers, pool_link)
2559 {
2560 tu_cmd_buffer_destroy(cmd_buffer);
2561 }
2562
2563 vk_object_free(&device->vk, pAllocator, pool);
2564 }
2565
2566 VkResult
2567 tu_ResetCommandPool(VkDevice device,
2568 VkCommandPool commandPool,
2569 VkCommandPoolResetFlags flags)
2570 {
2571 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2572 VkResult result;
2573
2574 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2575 pool_link)
2576 {
2577 result = tu_reset_cmd_buffer(cmd_buffer);
2578 if (result != VK_SUCCESS)
2579 return result;
2580 }
2581
2582 return VK_SUCCESS;
2583 }
2584
2585 void
2586 tu_TrimCommandPool(VkDevice device,
2587 VkCommandPool commandPool,
2588 VkCommandPoolTrimFlags flags)
2589 {
2590 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2591
2592 if (!pool)
2593 return;
2594
2595 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2596 &pool->free_cmd_buffers, pool_link)
2597 {
2598 tu_cmd_buffer_destroy(cmd_buffer);
2599 }
2600 }
2601
2602 static void
2603 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2604 const struct tu_subpass_barrier *barrier,
2605 bool external)
2606 {
2607 /* Note: we don't know until the end of the subpass whether we'll use
2608 * sysmem, so assume sysmem here to be safe.
2609 */
2610 struct tu_cache_state *cache =
2611 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2612 enum tu_cmd_access_mask src_flags =
2613 vk2tu_access(barrier->src_access_mask, false);
2614 enum tu_cmd_access_mask dst_flags =
2615 vk2tu_access(barrier->dst_access_mask, false);
2616
2617 if (barrier->incoherent_ccu_color)
2618 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2619 if (barrier->incoherent_ccu_depth)
2620 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2621
2622 tu_flush_for_access(cache, src_flags, dst_flags);
2623 }
2624
2625 void
2626 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2627 const VkRenderPassBeginInfo *pRenderPassBegin,
2628 VkSubpassContents contents)
2629 {
2630 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2631 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2632 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2633
2634 cmd->state.pass = pass;
2635 cmd->state.subpass = pass->subpasses;
2636 cmd->state.framebuffer = fb;
2637 cmd->state.render_area = pRenderPassBegin->renderArea;
2638
2639 tu_cmd_prepare_tile_store_ib(cmd);
2640
2641 /* Note: because this is external, any flushes will happen before draw_cs
2642 * gets called. However deferred flushes could have to happen later as part
2643 * of the subpass.
2644 */
2645 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2646 cmd->state.renderpass_cache.pending_flush_bits =
2647 cmd->state.cache.pending_flush_bits;
2648 cmd->state.renderpass_cache.flush_bits = 0;
2649
2650 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2651
2652 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2653 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2654 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2655 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2656
2657 tu_set_input_attachments(cmd, cmd->state.subpass);
2658
2659 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2660 const struct tu_image_view *iview = fb->attachments[i].attachment;
2661 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2662 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2663 }
2664
2665 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2666 }
2667
2668 void
2669 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2670 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2671 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2672 {
2673 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2674 pSubpassBeginInfo->contents);
2675 }
2676
2677 void
2678 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2679 {
2680 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2681 const struct tu_render_pass *pass = cmd->state.pass;
2682 struct tu_cs *cs = &cmd->draw_cs;
2683
2684 const struct tu_subpass *subpass = cmd->state.subpass++;
2685
2686 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2687
2688 if (subpass->resolve_attachments) {
2689 tu6_emit_blit_scissor(cmd, cs, true);
2690
2691 for (unsigned i = 0; i < subpass->color_count; i++) {
2692 uint32_t a = subpass->resolve_attachments[i].attachment;
2693 if (a == VK_ATTACHMENT_UNUSED)
2694 continue;
2695
2696 tu_store_gmem_attachment(cmd, cs, a,
2697 subpass->color_attachments[i].attachment);
2698
2699 if (pass->attachments[a].gmem_offset < 0)
2700 continue;
2701
2702 /* TODO:
2703 * check if the resolved attachment is needed by later subpasses,
2704 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2705 */
2706 tu_finishme("missing GMEM->GMEM resolve path\n");
2707 tu_load_gmem_attachment(cmd, cs, a, true);
2708 }
2709 }
2710
2711 tu_cond_exec_end(cs);
2712
2713 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2714
2715 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2716
2717 tu_cond_exec_end(cs);
2718
2719 /* Handle dependencies for the next subpass */
2720 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2721
2722 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2723 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2724 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2725 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2726 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2727
2728 tu_set_input_attachments(cmd, cmd->state.subpass);
2729 }
2730
2731 void
2732 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2733 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2734 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2735 {
2736 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2737 }
2738
2739 static void
2740 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2741 struct tu_descriptor_state *descriptors_state,
2742 gl_shader_stage type,
2743 uint32_t *push_constants)
2744 {
2745 const struct tu_program_descriptor_linkage *link =
2746 &pipeline->program.link[type];
2747 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2748
2749 if (link->push_consts.count > 0) {
2750 unsigned num_units = link->push_consts.count;
2751 unsigned offset = link->push_consts.lo;
2752 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2753 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2754 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2755 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2756 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2757 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2758 tu_cs_emit(cs, 0);
2759 tu_cs_emit(cs, 0);
2760 for (unsigned i = 0; i < num_units * 4; i++)
2761 tu_cs_emit(cs, push_constants[i + offset * 4]);
2762 }
2763
2764 for (uint32_t i = 0; i < state->num_enabled; i++) {
2765 uint32_t size = state->range[i].end - state->range[i].start;
2766 uint32_t offset = state->range[i].start;
2767
2768 /* and even if the start of the const buffer is before
2769 * first_immediate, the end may not be:
2770 */
2771 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2772
2773 if (size == 0)
2774 continue;
2775
2776 /* things should be aligned to vec4: */
2777 debug_assert((state->range[i].offset % 16) == 0);
2778 debug_assert((size % 16) == 0);
2779 debug_assert((offset % 16) == 0);
2780
2781 /* Dig out the descriptor from the descriptor state and read the VA from
2782 * it.
2783 */
2784 assert(state->range[i].ubo.bindless);
2785 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2786 descriptors_state->dynamic_descriptors :
2787 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2788 unsigned block = state->range[i].ubo.block;
2789 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2790 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2791 assert(va);
2792
2793 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2794 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2795 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2796 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2797 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2798 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2799 tu_cs_emit_qw(cs, va + offset);
2800 }
2801 }
2802
2803 static struct tu_draw_state
2804 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2805 const struct tu_pipeline *pipeline,
2806 struct tu_descriptor_state *descriptors_state,
2807 gl_shader_stage type)
2808 {
2809 struct tu_cs cs;
2810 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2811
2812 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2813
2814 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2815 }
2816
2817 static struct tu_draw_state
2818 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
2819 const struct tu_pipeline *pipeline)
2820 {
2821 struct tu_cs cs;
2822 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
2823
2824 int binding;
2825 for_each_bit(binding, pipeline->vi.bindings_used) {
2826 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
2827 const VkDeviceSize offset = buf->bo_offset +
2828 cmd->state.vb.offsets[binding];
2829
2830 tu_cs_emit_regs(&cs,
2831 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
2832 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
2833
2834 }
2835
2836 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
2837
2838 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2839 }
2840
2841 static uint64_t
2842 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
2843 uint32_t draw_count)
2844 {
2845 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2846 * Still not sure what to do here, so just allocate a reasonably large
2847 * BO and hope for the best for now. */
2848 if (!draw_count)
2849 draw_count = 2048;
2850
2851 /* the tess param BO is pipeline->tess.param_stride bytes per patch,
2852 * which includes both the per-vertex outputs and per-patch outputs
2853 * build_primitive_map in ir3 calculates this stride
2854 */
2855 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2856 uint32_t num_patches = draw_count / verts_per_patch;
2857 return num_patches * pipeline->tess.param_stride;
2858 }
2859
2860 static uint64_t
2861 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
2862 uint32_t draw_count)
2863 {
2864 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2865 * Still not sure what to do here, so just allocate a reasonably large
2866 * BO and hope for the best for now. */
2867 if (!draw_count)
2868 draw_count = 2048;
2869
2870 /* Each distinct patch gets its own tess factor output. */
2871 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2872 uint32_t num_patches = draw_count / verts_per_patch;
2873 uint32_t factor_stride;
2874 switch (pipeline->tess.patch_type) {
2875 case IR3_TESS_ISOLINES:
2876 factor_stride = 12;
2877 break;
2878 case IR3_TESS_TRIANGLES:
2879 factor_stride = 20;
2880 break;
2881 case IR3_TESS_QUADS:
2882 factor_stride = 28;
2883 break;
2884 default:
2885 unreachable("bad tessmode");
2886 }
2887 return factor_stride * num_patches;
2888 }
2889
2890 static VkResult
2891 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
2892 uint32_t draw_count,
2893 const struct tu_pipeline *pipeline,
2894 struct tu_draw_state *state)
2895 {
2896 struct tu_cs cs;
2897 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 20, &cs);
2898 if (result != VK_SUCCESS)
2899 return result;
2900
2901 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
2902 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
2903 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
2904 if (tess_bo_size > 0) {
2905 struct tu_bo *tess_bo;
2906 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
2907 if (result != VK_SUCCESS)
2908 return result;
2909
2910 tu_bo_list_add(&cmd->bo_list, tess_bo,
2911 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2912 uint64_t tess_factor_iova = tess_bo->iova;
2913 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
2914
2915 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2916 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
2917 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2918 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2919 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
2920 CP_LOAD_STATE6_0_NUM_UNIT(1));
2921 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2922 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2923 tu_cs_emit_qw(&cs, tess_param_iova);
2924 tu_cs_emit_qw(&cs, tess_factor_iova);
2925
2926 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2927 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
2928 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2929 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2930 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
2931 CP_LOAD_STATE6_0_NUM_UNIT(1));
2932 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2933 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2934 tu_cs_emit_qw(&cs, tess_param_iova);
2935 tu_cs_emit_qw(&cs, tess_factor_iova);
2936
2937 tu_cs_emit_pkt4(&cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
2938 tu_cs_emit_qw(&cs, tess_factor_iova);
2939
2940 /* TODO: Without this WFI here, the hardware seems unable to read these
2941 * addresses we just emitted. Freedreno emits these consts as part of
2942 * IB1 instead of in a draw state which might make this WFI unnecessary,
2943 * but it requires a bit more indirection (SS6_INDIRECT for consts). */
2944 tu_cs_emit_wfi(&cs);
2945 }
2946 *state = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2947 return VK_SUCCESS;
2948 }
2949
2950 static VkResult
2951 tu6_draw_common(struct tu_cmd_buffer *cmd,
2952 struct tu_cs *cs,
2953 bool indexed,
2954 /* note: draw_count is 0 for indirect */
2955 uint32_t draw_count)
2956 {
2957 const struct tu_pipeline *pipeline = cmd->state.pipeline;
2958 VkResult result;
2959
2960 struct tu_descriptor_state *descriptors_state =
2961 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
2962
2963 tu_emit_cache_flush_renderpass(cmd, cs);
2964
2965 /* TODO lrz */
2966
2967 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
2968 .primitive_restart =
2969 pipeline->ia.primitive_restart && indexed,
2970 .tess_upper_left_domain_origin =
2971 pipeline->tess.upper_left_domain_origin));
2972
2973 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
2974 cmd->state.shader_const[MESA_SHADER_VERTEX] =
2975 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
2976 cmd->state.shader_const[MESA_SHADER_TESS_CTRL] =
2977 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
2978 cmd->state.shader_const[MESA_SHADER_TESS_EVAL] =
2979 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
2980 cmd->state.shader_const[MESA_SHADER_GEOMETRY] =
2981 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
2982 cmd->state.shader_const[MESA_SHADER_FRAGMENT] =
2983 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
2984 }
2985
2986 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
2987 cmd->state.vertex_buffers = tu6_emit_vertex_buffers(cmd, pipeline);
2988
2989 bool has_tess =
2990 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
2991 struct tu_draw_state tess_consts = {};
2992 if (has_tess) {
2993 cmd->has_tess = true;
2994 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts);
2995 if (result != VK_SUCCESS)
2996 return result;
2997 }
2998
2999 /* for the first draw in a renderpass, re-emit all the draw states
3000 *
3001 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3002 * used, then draw states must be re-emitted. note however this only happens
3003 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3004 *
3005 * the two input attachment states are excluded because secondary command
3006 * buffer doesn't have a state ib to restore it, and not re-emitting them
3007 * is OK since CmdClearAttachments won't disable/overwrite them
3008 */
3009 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3010 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3011
3012 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
3013 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
3014 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
3015 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
3016 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
3017 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
3018 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
3019 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
3020 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
3021 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
3022 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
3023 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
3024 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
3025 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
3026 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
3027 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
3028 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3029
3030 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3031 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3032 ((pipeline->dynamic_state_mask & BIT(i)) ?
3033 cmd->state.dynamic_state[i] :
3034 pipeline->dynamic_state[i]));
3035 }
3036 } else {
3037
3038 /* emit draw states that were just updated
3039 * note we eventually don't want to have to emit anything here
3040 */
3041 uint32_t draw_state_count =
3042 has_tess +
3043 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
3044 ((cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD) ? 1 : 0) +
3045 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3046 1; /* vs_params */
3047
3048 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3049
3050 /* We may need to re-emit tess consts if the current draw call is
3051 * sufficiently larger than the last draw call. */
3052 if (has_tess)
3053 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
3054 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3055 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
3056 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
3057 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
3058 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
3059 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
3060 }
3061 if (cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD)
3062 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
3063 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3064 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
3065 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3066 }
3067
3068 tu_cs_sanity_check(cs);
3069
3070 /* There are too many graphics dirty bits to list here, so just list the
3071 * bits to preserve instead. The only things not emitted here are
3072 * compute-related state.
3073 */
3074 cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3075 return VK_SUCCESS;
3076 }
3077
3078 static uint32_t
3079 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
3080 {
3081 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3082 uint32_t initiator =
3083 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3084 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
3085 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3086 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3087
3088 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3089 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3090
3091 switch (pipeline->tess.patch_type) {
3092 case IR3_TESS_TRIANGLES:
3093 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3094 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3095 break;
3096 case IR3_TESS_ISOLINES:
3097 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3098 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3099 break;
3100 case IR3_TESS_NONE:
3101 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3102 break;
3103 case IR3_TESS_QUADS:
3104 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3105 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3106 break;
3107 }
3108 return initiator;
3109 }
3110
3111
3112 static uint32_t
3113 vs_params_offset(struct tu_cmd_buffer *cmd)
3114 {
3115 const struct tu_program_descriptor_linkage *link =
3116 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
3117 const struct ir3_const_state *const_state = &link->const_state;
3118
3119 if (const_state->offsets.driver_param >= link->constlen)
3120 return 0;
3121
3122 /* this layout is required by CP_DRAW_INDIRECT_MULTI */
3123 STATIC_ASSERT(IR3_DP_DRAWID == 0);
3124 STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
3125 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3126
3127 /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
3128 assert(const_state->offsets.driver_param != 0);
3129
3130 return const_state->offsets.driver_param;
3131 }
3132
3133 static struct tu_draw_state
3134 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
3135 uint32_t vertex_offset,
3136 uint32_t first_instance)
3137 {
3138 uint32_t offset = vs_params_offset(cmd);
3139
3140 struct tu_cs cs;
3141 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 8 : 0), &cs);
3142 if (result != VK_SUCCESS) {
3143 cmd->record_result = result;
3144 return (struct tu_draw_state) {};
3145 }
3146
3147 /* TODO: don't make a new draw state when it doesn't change */
3148
3149 tu_cs_emit_regs(&cs,
3150 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3151 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3152
3153 if (offset) {
3154 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3155 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3156 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3157 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3158 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3159 CP_LOAD_STATE6_0_NUM_UNIT(1));
3160 tu_cs_emit(&cs, 0);
3161 tu_cs_emit(&cs, 0);
3162
3163 tu_cs_emit(&cs, 0);
3164 tu_cs_emit(&cs, vertex_offset);
3165 tu_cs_emit(&cs, first_instance);
3166 tu_cs_emit(&cs, 0);
3167 }
3168
3169 struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3170 return (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
3171 }
3172
3173 void
3174 tu_CmdDraw(VkCommandBuffer commandBuffer,
3175 uint32_t vertexCount,
3176 uint32_t instanceCount,
3177 uint32_t firstVertex,
3178 uint32_t firstInstance)
3179 {
3180 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3181 struct tu_cs *cs = &cmd->draw_cs;
3182
3183 cmd->state.vs_params = tu6_emit_vs_params(cmd, firstVertex, firstInstance);
3184
3185 tu6_draw_common(cmd, cs, false, vertexCount);
3186
3187 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3188 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3189 tu_cs_emit(cs, instanceCount);
3190 tu_cs_emit(cs, vertexCount);
3191 }
3192
3193 void
3194 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3195 uint32_t indexCount,
3196 uint32_t instanceCount,
3197 uint32_t firstIndex,
3198 int32_t vertexOffset,
3199 uint32_t firstInstance)
3200 {
3201 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3202 struct tu_cs *cs = &cmd->draw_cs;
3203
3204 cmd->state.vs_params = tu6_emit_vs_params(cmd, vertexOffset, firstInstance);
3205
3206 tu6_draw_common(cmd, cs, true, indexCount);
3207
3208 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3209 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3210 tu_cs_emit(cs, instanceCount);
3211 tu_cs_emit(cs, indexCount);
3212 tu_cs_emit(cs, firstIndex);
3213 tu_cs_emit_qw(cs, cmd->state.index_va);
3214 tu_cs_emit(cs, cmd->state.max_index_count);
3215 }
3216
3217 /* Various firmware bugs/inconsistencies mean that some indirect draw opcodes
3218 * do not wait for WFI's to complete before executing. Add a WAIT_FOR_ME if
3219 * pending for these opcodes. This may result in a few extra WAIT_FOR_ME's
3220 * with these opcodes, but the alternative would add unnecessary WAIT_FOR_ME's
3221 * before draw opcodes that don't need it.
3222 */
3223 static void
3224 draw_wfm(struct tu_cmd_buffer *cmd)
3225 {
3226 cmd->state.renderpass_cache.flush_bits |=
3227 cmd->state.renderpass_cache.pending_flush_bits & TU_CMD_FLAG_WAIT_FOR_ME;
3228 cmd->state.renderpass_cache.pending_flush_bits &= ~TU_CMD_FLAG_WAIT_FOR_ME;
3229 }
3230
3231 void
3232 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3233 VkBuffer _buffer,
3234 VkDeviceSize offset,
3235 uint32_t drawCount,
3236 uint32_t stride)
3237 {
3238 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3239 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3240 struct tu_cs *cs = &cmd->draw_cs;
3241
3242 cmd->state.vs_params = (struct tu_draw_state) {};
3243
3244 /* The latest known a630_sqe.fw fails to wait for WFI before reading the
3245 * indirect buffer when using CP_DRAW_INDIRECT_MULTI, so we have to fall
3246 * back to CP_WAIT_FOR_ME except for a650 which has a fixed firmware.
3247 *
3248 * TODO: There may be newer a630_sqe.fw released in the future which fixes
3249 * this, if so we should detect it and avoid this workaround.
3250 */
3251 if (cmd->device->physical_device->gpu_id != 650)
3252 draw_wfm(cmd);
3253
3254 tu6_draw_common(cmd, cs, false, 0);
3255
3256 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
3257 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3258 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
3259 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3260 tu_cs_emit(cs, drawCount);
3261 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3262 tu_cs_emit(cs, stride);
3263
3264 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3265 }
3266
3267 void
3268 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3269 VkBuffer _buffer,
3270 VkDeviceSize offset,
3271 uint32_t drawCount,
3272 uint32_t stride)
3273 {
3274 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3275 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3276 struct tu_cs *cs = &cmd->draw_cs;
3277
3278 cmd->state.vs_params = (struct tu_draw_state) {};
3279
3280 if (cmd->device->physical_device->gpu_id != 650)
3281 draw_wfm(cmd);
3282
3283 tu6_draw_common(cmd, cs, true, 0);
3284
3285 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
3286 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3287 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
3288 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3289 tu_cs_emit(cs, drawCount);
3290 tu_cs_emit_qw(cs, cmd->state.index_va);
3291 tu_cs_emit(cs, cmd->state.max_index_count);
3292 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3293 tu_cs_emit(cs, stride);
3294
3295 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3296 }
3297
3298 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3299 uint32_t instanceCount,
3300 uint32_t firstInstance,
3301 VkBuffer _counterBuffer,
3302 VkDeviceSize counterBufferOffset,
3303 uint32_t counterOffset,
3304 uint32_t vertexStride)
3305 {
3306 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3307 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
3308 struct tu_cs *cs = &cmd->draw_cs;
3309
3310 /* All known firmware versions do not wait for WFI's with CP_DRAW_AUTO.
3311 * Plus, for the common case where the counter buffer is written by
3312 * vkCmdEndTransformFeedback, we need to wait for the CP_WAIT_MEM_WRITES to
3313 * complete which means we need a WAIT_FOR_ME anyway.
3314 */
3315 draw_wfm(cmd);
3316
3317 cmd->state.vs_params = tu6_emit_vs_params(cmd, 0, firstInstance);
3318
3319 tu6_draw_common(cmd, cs, false, 0);
3320
3321 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
3322 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
3323 tu_cs_emit(cs, instanceCount);
3324 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
3325 tu_cs_emit(cs, counterOffset);
3326 tu_cs_emit(cs, vertexStride);
3327
3328 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3329 }
3330
3331 struct tu_dispatch_info
3332 {
3333 /**
3334 * Determine the layout of the grid (in block units) to be used.
3335 */
3336 uint32_t blocks[3];
3337
3338 /**
3339 * A starting offset for the grid. If unaligned is set, the offset
3340 * must still be aligned.
3341 */
3342 uint32_t offsets[3];
3343 /**
3344 * Whether it's an unaligned compute dispatch.
3345 */
3346 bool unaligned;
3347
3348 /**
3349 * Indirect compute parameters resource.
3350 */
3351 struct tu_buffer *indirect;
3352 uint64_t indirect_offset;
3353 };
3354
3355 static void
3356 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3357 const struct tu_dispatch_info *info)
3358 {
3359 gl_shader_stage type = MESA_SHADER_COMPUTE;
3360 const struct tu_program_descriptor_linkage *link =
3361 &pipeline->program.link[type];
3362 const struct ir3_const_state *const_state = &link->const_state;
3363 uint32_t offset = const_state->offsets.driver_param;
3364
3365 if (link->constlen <= offset)
3366 return;
3367
3368 if (!info->indirect) {
3369 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3370 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3371 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3372 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3373 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3374 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3375 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3376 };
3377
3378 uint32_t num_consts = MIN2(const_state->num_driver_params,
3379 (link->constlen - offset) * 4);
3380 /* push constants */
3381 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3382 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3383 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3384 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3385 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3386 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3387 tu_cs_emit(cs, 0);
3388 tu_cs_emit(cs, 0);
3389 uint32_t i;
3390 for (i = 0; i < num_consts; i++)
3391 tu_cs_emit(cs, driver_params[i]);
3392 } else {
3393 tu_finishme("Indirect driver params");
3394 }
3395 }
3396
3397 static void
3398 tu_dispatch(struct tu_cmd_buffer *cmd,
3399 const struct tu_dispatch_info *info)
3400 {
3401 struct tu_cs *cs = &cmd->cs;
3402 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3403 struct tu_descriptor_state *descriptors_state =
3404 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3405
3406 /* TODO: We could probably flush less if we add a compute_flush_bits
3407 * bitfield.
3408 */
3409 tu_emit_cache_flush(cmd, cs);
3410
3411 /* note: no reason to have this in a separate IB */
3412 tu_cs_emit_state_ib(cs,
3413 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE));
3414
3415 tu_emit_compute_driver_params(cs, pipeline, info);
3416
3417 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD)
3418 tu_cs_emit_state_ib(cs, pipeline->load_state);
3419
3420 cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3421
3422 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3423 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3424
3425 const uint32_t *local_size = pipeline->compute.local_size;
3426 const uint32_t *num_groups = info->blocks;
3427 tu_cs_emit_regs(cs,
3428 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3429 .localsizex = local_size[0] - 1,
3430 .localsizey = local_size[1] - 1,
3431 .localsizez = local_size[2] - 1),
3432 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3433 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3434 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3435 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3436 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3437 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3438
3439 tu_cs_emit_regs(cs,
3440 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3441 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3442 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3443
3444 if (info->indirect) {
3445 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3446
3447 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3448 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3449
3450 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3451 tu_cs_emit(cs, 0x00000000);
3452 tu_cs_emit_qw(cs, iova);
3453 tu_cs_emit(cs,
3454 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3455 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3456 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3457 } else {
3458 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3459 tu_cs_emit(cs, 0x00000000);
3460 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3461 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3462 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3463 }
3464
3465 tu_cs_emit_wfi(cs);
3466 }
3467
3468 void
3469 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3470 uint32_t base_x,
3471 uint32_t base_y,
3472 uint32_t base_z,
3473 uint32_t x,
3474 uint32_t y,
3475 uint32_t z)
3476 {
3477 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3478 struct tu_dispatch_info info = {};
3479
3480 info.blocks[0] = x;
3481 info.blocks[1] = y;
3482 info.blocks[2] = z;
3483
3484 info.offsets[0] = base_x;
3485 info.offsets[1] = base_y;
3486 info.offsets[2] = base_z;
3487 tu_dispatch(cmd_buffer, &info);
3488 }
3489
3490 void
3491 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3492 uint32_t x,
3493 uint32_t y,
3494 uint32_t z)
3495 {
3496 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3497 }
3498
3499 void
3500 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3501 VkBuffer _buffer,
3502 VkDeviceSize offset)
3503 {
3504 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3505 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3506 struct tu_dispatch_info info = {};
3507
3508 info.indirect = buffer;
3509 info.indirect_offset = offset;
3510
3511 tu_dispatch(cmd_buffer, &info);
3512 }
3513
3514 void
3515 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3516 {
3517 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3518
3519 tu_cs_end(&cmd_buffer->draw_cs);
3520 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3521
3522 if (use_sysmem_rendering(cmd_buffer))
3523 tu_cmd_render_sysmem(cmd_buffer);
3524 else
3525 tu_cmd_render_tiles(cmd_buffer);
3526
3527 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3528 rendered */
3529 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3530 tu_cs_begin(&cmd_buffer->draw_cs);
3531 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3532 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3533
3534 cmd_buffer->state.cache.pending_flush_bits |=
3535 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3536 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3537
3538 cmd_buffer->state.pass = NULL;
3539 cmd_buffer->state.subpass = NULL;
3540 cmd_buffer->state.framebuffer = NULL;
3541 }
3542
3543 void
3544 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3545 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3546 {
3547 tu_CmdEndRenderPass(commandBuffer);
3548 }
3549
3550 struct tu_barrier_info
3551 {
3552 uint32_t eventCount;
3553 const VkEvent *pEvents;
3554 VkPipelineStageFlags srcStageMask;
3555 };
3556
3557 static void
3558 tu_barrier(struct tu_cmd_buffer *cmd,
3559 uint32_t memoryBarrierCount,
3560 const VkMemoryBarrier *pMemoryBarriers,
3561 uint32_t bufferMemoryBarrierCount,
3562 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3563 uint32_t imageMemoryBarrierCount,
3564 const VkImageMemoryBarrier *pImageMemoryBarriers,
3565 const struct tu_barrier_info *info)
3566 {
3567 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3568 VkAccessFlags srcAccessMask = 0;
3569 VkAccessFlags dstAccessMask = 0;
3570
3571 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3572 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3573 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3574 }
3575
3576 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3577 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3578 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3579 }
3580
3581 enum tu_cmd_access_mask src_flags = 0;
3582 enum tu_cmd_access_mask dst_flags = 0;
3583
3584 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3585 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3586 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3587 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3588 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3589 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3590 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3591 /* The underlying memory for this image may have been used earlier
3592 * within the same queue submission for a different image, which
3593 * means that there may be old, stale cache entries which are in the
3594 * "wrong" location, which could cause problems later after writing
3595 * to the image. We don't want these entries being flushed later and
3596 * overwriting the actual image, so we need to flush the CCU.
3597 */
3598 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3599 }
3600 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3601 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3602 }
3603
3604 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3605 * so we have to use the sysmem flushes.
3606 */
3607 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3608 !cmd->state.pass;
3609 src_flags |= vk2tu_access(srcAccessMask, gmem);
3610 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3611
3612 struct tu_cache_state *cache =
3613 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3614 tu_flush_for_access(cache, src_flags, dst_flags);
3615
3616 for (uint32_t i = 0; i < info->eventCount; i++) {
3617 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3618
3619 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3620
3621 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3622 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3623 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3624 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3625 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3626 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3627 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3628 }
3629 }
3630
3631 void
3632 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3633 VkPipelineStageFlags srcStageMask,
3634 VkPipelineStageFlags dstStageMask,
3635 VkDependencyFlags dependencyFlags,
3636 uint32_t memoryBarrierCount,
3637 const VkMemoryBarrier *pMemoryBarriers,
3638 uint32_t bufferMemoryBarrierCount,
3639 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3640 uint32_t imageMemoryBarrierCount,
3641 const VkImageMemoryBarrier *pImageMemoryBarriers)
3642 {
3643 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3644 struct tu_barrier_info info;
3645
3646 info.eventCount = 0;
3647 info.pEvents = NULL;
3648 info.srcStageMask = srcStageMask;
3649
3650 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3651 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3652 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3653 }
3654
3655 static void
3656 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3657 VkPipelineStageFlags stageMask, unsigned value)
3658 {
3659 struct tu_cs *cs = &cmd->cs;
3660
3661 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3662 assert(!cmd->state.pass);
3663
3664 tu_emit_cache_flush(cmd, cs);
3665
3666 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3667
3668 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3669 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3670 */
3671 VkPipelineStageFlags top_of_pipe_flags =
3672 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3673 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3674
3675 if (!(stageMask & ~top_of_pipe_flags)) {
3676 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3677 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3678 tu_cs_emit(cs, value);
3679 } else {
3680 /* Use a RB_DONE_TS event to wait for everything to complete. */
3681 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3682 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3683 tu_cs_emit_qw(cs, event->bo.iova);
3684 tu_cs_emit(cs, value);
3685 }
3686 }
3687
3688 void
3689 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3690 VkEvent _event,
3691 VkPipelineStageFlags stageMask)
3692 {
3693 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3694 TU_FROM_HANDLE(tu_event, event, _event);
3695
3696 write_event(cmd, event, stageMask, 1);
3697 }
3698
3699 void
3700 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3701 VkEvent _event,
3702 VkPipelineStageFlags stageMask)
3703 {
3704 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3705 TU_FROM_HANDLE(tu_event, event, _event);
3706
3707 write_event(cmd, event, stageMask, 0);
3708 }
3709
3710 void
3711 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3712 uint32_t eventCount,
3713 const VkEvent *pEvents,
3714 VkPipelineStageFlags srcStageMask,
3715 VkPipelineStageFlags dstStageMask,
3716 uint32_t memoryBarrierCount,
3717 const VkMemoryBarrier *pMemoryBarriers,
3718 uint32_t bufferMemoryBarrierCount,
3719 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3720 uint32_t imageMemoryBarrierCount,
3721 const VkImageMemoryBarrier *pImageMemoryBarriers)
3722 {
3723 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3724 struct tu_barrier_info info;
3725
3726 info.eventCount = eventCount;
3727 info.pEvents = pEvents;
3728 info.srcStageMask = 0;
3729
3730 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3731 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3732 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3733 }
3734
3735 void
3736 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3737 {
3738 /* No-op */
3739 }