turnip: clean up primitive output state
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 void
112 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
113 struct tu_cs *cs,
114 enum vgt_event_type event)
115 {
116 bool need_seqno = false;
117 switch (event) {
118 case CACHE_FLUSH_TS:
119 case WT_DONE_TS:
120 case RB_DONE_TS:
121 case PC_CCU_FLUSH_DEPTH_TS:
122 case PC_CCU_FLUSH_COLOR_TS:
123 case PC_CCU_RESOLVE_TS:
124 need_seqno = true;
125 break;
126 default:
127 break;
128 }
129
130 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
131 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
132 if (need_seqno) {
133 tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
134 tu_cs_emit(cs, 0);
135 }
136 }
137
138 static void
139 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
140 struct tu_cs *cs,
141 enum tu_cmd_flush_bits flushes)
142 {
143 /* Experiments show that invalidating CCU while it still has data in it
144 * doesn't work, so make sure to always flush before invalidating in case
145 * any data remains that hasn't yet been made available through a barrier.
146 * However it does seem to work for UCHE.
147 */
148 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
149 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
150 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
151 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
152 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
153 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
154 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
155 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
156 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
157 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
158 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
159 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
160 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
161 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
162 if (flushes & TU_CMD_FLAG_WFI)
163 tu_cs_emit_wfi(cs);
164 }
165
166 /* "Normal" cache flushes, that don't require any special handling */
167
168 static void
169 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
170 struct tu_cs *cs)
171 {
172 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
173 cmd_buffer->state.cache.flush_bits = 0;
174 }
175
176 /* Renderpass cache flushes */
177
178 void
179 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
180 struct tu_cs *cs)
181 {
182 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
183 cmd_buffer->state.renderpass_cache.flush_bits = 0;
184 }
185
186 /* Cache flushes for things that use the color/depth read/write path (i.e.
187 * blits and draws). This deals with changing CCU state as well as the usual
188 * cache flushing.
189 */
190
191 void
192 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
193 struct tu_cs *cs,
194 enum tu_cmd_ccu_state ccu_state)
195 {
196 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
197
198 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
199
200 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
201 * the CCU may also contain data that we haven't flushed out yet, so we
202 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
203 * emit a WFI as it isn't pipelined.
204 */
205 if (ccu_state != cmd_buffer->state.ccu_state) {
206 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
207 flushes |=
208 TU_CMD_FLAG_CCU_FLUSH_COLOR |
209 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
210 cmd_buffer->state.cache.pending_flush_bits &= ~(
211 TU_CMD_FLAG_CCU_FLUSH_COLOR |
212 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
213 }
214 flushes |=
215 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
216 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
217 TU_CMD_FLAG_WFI;
218 cmd_buffer->state.cache.pending_flush_bits &= ~(
219 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
220 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
221 }
222
223 tu6_emit_flushes(cmd_buffer, cs, flushes);
224 cmd_buffer->state.cache.flush_bits = 0;
225
226 if (ccu_state != cmd_buffer->state.ccu_state) {
227 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
228 tu_cs_emit_regs(cs,
229 A6XX_RB_CCU_CNTL(.offset =
230 ccu_state == TU_CMD_CCU_GMEM ?
231 phys_dev->ccu_offset_gmem :
232 phys_dev->ccu_offset_bypass,
233 .gmem = ccu_state == TU_CMD_CCU_GMEM));
234 cmd_buffer->state.ccu_state = ccu_state;
235 }
236 }
237
238 static void
239 tu6_emit_zs(struct tu_cmd_buffer *cmd,
240 const struct tu_subpass *subpass,
241 struct tu_cs *cs)
242 {
243 const struct tu_framebuffer *fb = cmd->state.framebuffer;
244
245 const uint32_t a = subpass->depth_stencil_attachment.attachment;
246 if (a == VK_ATTACHMENT_UNUSED) {
247 tu_cs_emit_regs(cs,
248 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
249 A6XX_RB_DEPTH_BUFFER_PITCH(0),
250 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
251 A6XX_RB_DEPTH_BUFFER_BASE(0),
252 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
253
254 tu_cs_emit_regs(cs,
255 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
256
257 tu_cs_emit_regs(cs,
258 A6XX_GRAS_LRZ_BUFFER_BASE(0),
259 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
260 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
261
262 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
263
264 return;
265 }
266
267 const struct tu_image_view *iview = fb->attachments[a].attachment;
268 const struct tu_render_pass_attachment *attachment =
269 &cmd->state.pass->attachments[a];
270 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
271
272 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
273 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
274 tu_cs_image_ref(cs, iview, 0);
275 tu_cs_emit(cs, attachment->gmem_offset);
276
277 tu_cs_emit_regs(cs,
278 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
279
280 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
281 tu_cs_image_flag_ref(cs, iview, 0);
282
283 tu_cs_emit_regs(cs,
284 A6XX_GRAS_LRZ_BUFFER_BASE(0),
285 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
286 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
287
288 if (attachment->format == VK_FORMAT_S8_UINT) {
289 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
290 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
291 tu_cs_image_ref(cs, iview, 0);
292 tu_cs_emit(cs, attachment->gmem_offset);
293 } else {
294 tu_cs_emit_regs(cs,
295 A6XX_RB_STENCIL_INFO(0));
296 }
297 }
298
299 static void
300 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
301 const struct tu_subpass *subpass,
302 struct tu_cs *cs)
303 {
304 const struct tu_framebuffer *fb = cmd->state.framebuffer;
305
306 for (uint32_t i = 0; i < subpass->color_count; ++i) {
307 uint32_t a = subpass->color_attachments[i].attachment;
308 if (a == VK_ATTACHMENT_UNUSED)
309 continue;
310
311 const struct tu_image_view *iview = fb->attachments[a].attachment;
312
313 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
314 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
315 tu_cs_image_ref(cs, iview, 0);
316 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
317
318 tu_cs_emit_regs(cs,
319 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
320
321 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
322 tu_cs_image_flag_ref(cs, iview, 0);
323 }
324
325 tu_cs_emit_regs(cs,
326 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
327 tu_cs_emit_regs(cs,
328 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
329
330 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
331 }
332
333 void
334 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
335 {
336 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
337 bool msaa_disable = samples == MSAA_ONE;
338
339 tu_cs_emit_regs(cs,
340 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
341 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
342 .msaa_disable = msaa_disable));
343
344 tu_cs_emit_regs(cs,
345 A6XX_GRAS_RAS_MSAA_CNTL(samples),
346 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
347 .msaa_disable = msaa_disable));
348
349 tu_cs_emit_regs(cs,
350 A6XX_RB_RAS_MSAA_CNTL(samples),
351 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
352 .msaa_disable = msaa_disable));
353
354 tu_cs_emit_regs(cs,
355 A6XX_RB_MSAA_CNTL(samples));
356 }
357
358 static void
359 tu6_emit_bin_size(struct tu_cs *cs,
360 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
361 {
362 tu_cs_emit_regs(cs,
363 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
364 .binh = bin_h,
365 .dword = flags));
366
367 tu_cs_emit_regs(cs,
368 A6XX_RB_BIN_CONTROL(.binw = bin_w,
369 .binh = bin_h,
370 .dword = flags));
371
372 /* no flag for RB_BIN_CONTROL2... */
373 tu_cs_emit_regs(cs,
374 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
375 .binh = bin_h));
376 }
377
378 static void
379 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
380 const struct tu_subpass *subpass,
381 struct tu_cs *cs,
382 bool binning)
383 {
384 const struct tu_framebuffer *fb = cmd->state.framebuffer;
385 uint32_t cntl = 0;
386 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
387 if (binning) {
388 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
389 } else {
390 uint32_t mrts_ubwc_enable = 0;
391 for (uint32_t i = 0; i < subpass->color_count; ++i) {
392 uint32_t a = subpass->color_attachments[i].attachment;
393 if (a == VK_ATTACHMENT_UNUSED)
394 continue;
395
396 const struct tu_image_view *iview = fb->attachments[a].attachment;
397 if (iview->ubwc_enabled)
398 mrts_ubwc_enable |= 1 << i;
399 }
400
401 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
402
403 const uint32_t a = subpass->depth_stencil_attachment.attachment;
404 if (a != VK_ATTACHMENT_UNUSED) {
405 const struct tu_image_view *iview = fb->attachments[a].attachment;
406 if (iview->ubwc_enabled)
407 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
408 }
409
410 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
411 * in order to set it correctly for the different subpasses. However,
412 * that means the packets we're emitting also happen during binning. So
413 * we need to guard the write on !BINNING at CP execution time.
414 */
415 tu_cs_reserve(cs, 3 + 4);
416 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
417 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
418 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
419 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
420 }
421
422 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
423 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
424 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
425 tu_cs_emit(cs, cntl);
426 }
427
428 static void
429 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
430 {
431 const VkRect2D *render_area = &cmd->state.render_area;
432 uint32_t x1 = render_area->offset.x;
433 uint32_t y1 = render_area->offset.y;
434 uint32_t x2 = x1 + render_area->extent.width - 1;
435 uint32_t y2 = y1 + render_area->extent.height - 1;
436
437 if (align) {
438 x1 = x1 & ~(GMEM_ALIGN_W - 1);
439 y1 = y1 & ~(GMEM_ALIGN_H - 1);
440 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
441 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
442 }
443
444 tu_cs_emit_regs(cs,
445 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
446 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
447 }
448
449 void
450 tu6_emit_window_scissor(struct tu_cs *cs,
451 uint32_t x1,
452 uint32_t y1,
453 uint32_t x2,
454 uint32_t y2)
455 {
456 tu_cs_emit_regs(cs,
457 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
458 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
459
460 tu_cs_emit_regs(cs,
461 A6XX_GRAS_RESOLVE_CNTL_1(.x = x1, .y = y1),
462 A6XX_GRAS_RESOLVE_CNTL_2(.x = x2, .y = y2));
463 }
464
465 void
466 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
467 {
468 tu_cs_emit_regs(cs,
469 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
470
471 tu_cs_emit_regs(cs,
472 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
473
474 tu_cs_emit_regs(cs,
475 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
476
477 tu_cs_emit_regs(cs,
478 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
479 }
480
481 static void
482 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
483 {
484 uint32_t enable_mask;
485 switch (id) {
486 case TU_DRAW_STATE_PROGRAM:
487 case TU_DRAW_STATE_VI:
488 case TU_DRAW_STATE_FS_CONST:
489 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
490 * when resources would actually be used in the binning shader.
491 * Presumably the overhead of prefetching the resources isn't
492 * worth it.
493 */
494 case TU_DRAW_STATE_DESC_SETS_LOAD:
495 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
496 CP_SET_DRAW_STATE__0_SYSMEM;
497 break;
498 case TU_DRAW_STATE_PROGRAM_BINNING:
499 case TU_DRAW_STATE_VI_BINNING:
500 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
501 break;
502 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
503 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
504 break;
505 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
506 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
507 break;
508 default:
509 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
510 CP_SET_DRAW_STATE__0_SYSMEM |
511 CP_SET_DRAW_STATE__0_BINNING;
512 break;
513 }
514
515 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
516 enable_mask |
517 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
518 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
519 tu_cs_emit_qw(cs, state.iova);
520 }
521
522 /* note: get rid of this eventually */
523 static void
524 tu_cs_emit_sds_ib(struct tu_cs *cs, uint32_t id, struct tu_cs_entry entry)
525 {
526 tu_cs_emit_draw_state(cs, id, (struct tu_draw_state) {
527 .iova = entry.size ? entry.bo->iova + entry.offset : 0,
528 .size = entry.size / 4,
529 });
530 }
531
532 static bool
533 use_hw_binning(struct tu_cmd_buffer *cmd)
534 {
535 const struct tu_framebuffer *fb = cmd->state.framebuffer;
536
537 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
538 * with non-hw binning GMEM rendering. this is required because some of the
539 * XFB commands need to only be executed once
540 */
541 if (cmd->state.xfb_used)
542 return true;
543
544 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
545 return false;
546
547 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
548 return true;
549
550 return (fb->tile_count.width * fb->tile_count.height) > 2;
551 }
552
553 static bool
554 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
555 {
556 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
557 return true;
558
559 /* can't fit attachments into gmem */
560 if (!cmd->state.pass->gmem_pixels)
561 return true;
562
563 if (cmd->state.framebuffer->layers > 1)
564 return true;
565
566 if (cmd->has_tess)
567 return true;
568
569 return false;
570 }
571
572 static void
573 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
574 struct tu_cs *cs,
575 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot)
576 {
577 const struct tu_framebuffer *fb = cmd->state.framebuffer;
578
579 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
580 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
581
582 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
583 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
584
585 const uint32_t x1 = fb->tile0.width * tx;
586 const uint32_t y1 = fb->tile0.height * ty;
587 const uint32_t x2 = x1 + fb->tile0.width - 1;
588 const uint32_t y2 = y1 + fb->tile0.height - 1;
589 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
590 tu6_emit_window_offset(cs, x1, y1);
591
592 tu_cs_emit_regs(cs,
593 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
594
595 if (use_hw_binning(cmd)) {
596 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
597
598 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
599 tu_cs_emit(cs, 0x0);
600
601 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
602 tu_cs_emit(cs, fb->pipe_sizes[pipe] |
603 CP_SET_BIN_DATA5_0_VSC_N(slot));
604 tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
605 tu_cs_emit(cs, pipe * 4);
606 tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
607
608 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
609 tu_cs_emit(cs, 0x0);
610
611 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
612 tu_cs_emit(cs, 0x0);
613 } else {
614 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
615 tu_cs_emit(cs, 0x1);
616
617 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
618 tu_cs_emit(cs, 0x0);
619 }
620 }
621
622 static void
623 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
624 struct tu_cs *cs,
625 uint32_t a,
626 uint32_t gmem_a)
627 {
628 const struct tu_framebuffer *fb = cmd->state.framebuffer;
629 struct tu_image_view *dst = fb->attachments[a].attachment;
630 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
631
632 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.render_area);
633 }
634
635 static void
636 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
637 struct tu_cs *cs,
638 const struct tu_subpass *subpass)
639 {
640 if (subpass->resolve_attachments) {
641 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
642 * Commands":
643 *
644 * End-of-subpass multisample resolves are treated as color
645 * attachment writes for the purposes of synchronization. That is,
646 * they are considered to execute in the
647 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
648 * their writes are synchronized with
649 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
650 * rendering within a subpass and any resolve operations at the end
651 * of the subpass occurs automatically, without need for explicit
652 * dependencies or pipeline barriers. However, if the resolve
653 * attachment is also used in a different subpass, an explicit
654 * dependency is needed.
655 *
656 * We use the CP_BLIT path for sysmem resolves, which is really a
657 * transfer command, so we have to manually flush similar to the gmem
658 * resolve case. However, a flush afterwards isn't needed because of the
659 * last sentence and the fact that we're in sysmem mode.
660 */
661 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
662 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
663
664 /* Wait for the flushes to land before using the 2D engine */
665 tu_cs_emit_wfi(cs);
666
667 for (unsigned i = 0; i < subpass->color_count; i++) {
668 uint32_t a = subpass->resolve_attachments[i].attachment;
669 if (a == VK_ATTACHMENT_UNUSED)
670 continue;
671
672 tu6_emit_sysmem_resolve(cmd, cs, a,
673 subpass->color_attachments[i].attachment);
674 }
675 }
676 }
677
678 static void
679 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
680 {
681 const struct tu_render_pass *pass = cmd->state.pass;
682 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
683
684 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
685 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
686 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
687 CP_SET_DRAW_STATE__0_GROUP_ID(0));
688 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
689 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
690
691 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
692 tu_cs_emit(cs, 0x0);
693
694 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
695 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
696
697 tu6_emit_blit_scissor(cmd, cs, true);
698
699 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
700 if (pass->attachments[a].gmem_offset >= 0)
701 tu_store_gmem_attachment(cmd, cs, a, a);
702 }
703
704 if (subpass->resolve_attachments) {
705 for (unsigned i = 0; i < subpass->color_count; i++) {
706 uint32_t a = subpass->resolve_attachments[i].attachment;
707 if (a != VK_ATTACHMENT_UNUSED)
708 tu_store_gmem_attachment(cmd, cs, a,
709 subpass->color_attachments[i].attachment);
710 }
711 }
712 }
713
714 static void
715 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
716 {
717 struct tu_device *dev = cmd->device;
718 const struct tu_physical_device *phys_dev = dev->physical_device;
719
720 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
721
722 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 0xfffff);
723
724 tu_cs_emit_regs(cs,
725 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
726 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
727 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
728 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
729 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
730 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
731 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
732 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
733 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
734 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
735
736 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
737 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
738 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
739 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
740 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
741 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
742 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BB11, 0);
743 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
744 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
745 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
746 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
747 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
748 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
749
750 /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
751 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
752 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
753 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
754
755 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
756
757 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
758
759 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
760 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
761 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
762 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
763 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
764 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
765 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
766 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
767 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
768 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
769 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
770
771 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
772
773 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9236,
774 A6XX_VPC_UNKNOWN_9236_POINT_COORD_INVERT(0));
775 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
776
777 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_SO_OVERRIDE,
778 A6XX_VPC_SO_OVERRIDE_SO_DISABLE);
779
780 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
781 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
782 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9990, 0);
783
784 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
785 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
786
787 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
788
789 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
790
791 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
792 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
793 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
794 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
795 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
796 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
797 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
798 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
799 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
800
801 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
802
803 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
804
805 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
806
807 /* we don't use this yet.. probably best to disable.. */
808 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
809 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
810 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
811 CP_SET_DRAW_STATE__0_GROUP_ID(0));
812 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
813 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
814
815 tu_cs_emit_regs(cs,
816 A6XX_SP_HS_CTRL_REG0(0));
817
818 tu_cs_emit_regs(cs,
819 A6XX_SP_GS_CTRL_REG0(0));
820
821 tu_cs_emit_regs(cs,
822 A6XX_GRAS_LRZ_CNTL(0));
823
824 tu_cs_emit_regs(cs,
825 A6XX_RB_LRZ_CNTL(0));
826
827 tu_cs_emit_regs(cs,
828 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
829 .bo_offset = gb_offset(border_color)));
830 tu_cs_emit_regs(cs,
831 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
832 .bo_offset = gb_offset(border_color)));
833
834 /* VSC buffers:
835 * use vsc pitches from the largest values used so far with this device
836 * if there hasn't been overflow, there will already be a scratch bo
837 * allocated for these sizes
838 *
839 * if overflow is detected, the stream size is increased by 2x
840 */
841 mtx_lock(&dev->vsc_pitch_mtx);
842
843 struct tu6_global *global = dev->global_bo.map;
844
845 uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
846 uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
847
848 if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
849 dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
850
851 if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
852 dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
853
854 cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
855 cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
856
857 mtx_unlock(&dev->vsc_pitch_mtx);
858
859 struct tu_bo *vsc_bo;
860 uint32_t size0 = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES +
861 cmd->vsc_draw_strm_pitch * MAX_VSC_PIPES;
862
863 tu_get_scratch_bo(dev, size0 + MAX_VSC_PIPES * 4, &vsc_bo);
864
865 tu_cs_emit_regs(cs,
866 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
867 tu_cs_emit_regs(cs,
868 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
869 tu_cs_emit_regs(cs,
870 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
871 .bo_offset = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES));
872
873 tu_bo_list_add(&cmd->bo_list, vsc_bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
874
875 tu_cs_sanity_check(cs);
876 }
877
878 static void
879 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
880 {
881 const struct tu_framebuffer *fb = cmd->state.framebuffer;
882
883 tu_cs_emit_regs(cs,
884 A6XX_VSC_BIN_SIZE(.width = fb->tile0.width,
885 .height = fb->tile0.height));
886
887 tu_cs_emit_regs(cs,
888 A6XX_VSC_BIN_COUNT(.nx = fb->tile_count.width,
889 .ny = fb->tile_count.height));
890
891 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
892 tu_cs_emit_array(cs, fb->pipe_config, 32);
893
894 tu_cs_emit_regs(cs,
895 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
896 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
897
898 tu_cs_emit_regs(cs,
899 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
900 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
901 }
902
903 static void
904 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
905 {
906 const struct tu_framebuffer *fb = cmd->state.framebuffer;
907 const uint32_t used_pipe_count =
908 fb->pipe_count.width * fb->pipe_count.height;
909
910 for (int i = 0; i < used_pipe_count; i++) {
911 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
912 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
913 CP_COND_WRITE5_0_WRITE_MEMORY);
914 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
915 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
916 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
917 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
918 tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
919 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
920
921 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
922 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
923 CP_COND_WRITE5_0_WRITE_MEMORY);
924 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
925 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
926 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
927 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
928 tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
929 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
930 }
931
932 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
933 }
934
935 static void
936 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
937 {
938 struct tu_physical_device *phys_dev = cmd->device->physical_device;
939 const struct tu_framebuffer *fb = cmd->state.framebuffer;
940
941 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
942
943 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
944 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
945
946 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
947 tu_cs_emit(cs, 0x1);
948
949 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
950 tu_cs_emit(cs, 0x1);
951
952 tu_cs_emit_wfi(cs);
953
954 tu_cs_emit_regs(cs,
955 A6XX_VFD_MODE_CNTL(.binning_pass = true));
956
957 update_vsc_pipe(cmd, cs);
958
959 tu_cs_emit_regs(cs,
960 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
961
962 tu_cs_emit_regs(cs,
963 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
964
965 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
966 tu_cs_emit(cs, UNK_2C);
967
968 tu_cs_emit_regs(cs,
969 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
970
971 tu_cs_emit_regs(cs,
972 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
973
974 /* emit IB to binning drawcmds: */
975 tu_cs_emit_call(cs, &cmd->draw_cs);
976
977 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
978 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
979 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
980 CP_SET_DRAW_STATE__0_GROUP_ID(0));
981 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
982 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
983
984 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
985 tu_cs_emit(cs, UNK_2D);
986
987 /* This flush is probably required because the VSC, which produces the
988 * visibility stream, is a client of UCHE, whereas the CP needs to read the
989 * visibility stream (without caching) to do draw skipping. The
990 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
991 * submitted are finished before reading the VSC regs (in
992 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
993 * part of draws).
994 */
995 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
996
997 tu_cs_emit_wfi(cs);
998
999 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1000
1001 emit_vsc_overflow_test(cmd, cs);
1002
1003 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1004 tu_cs_emit(cs, 0x0);
1005
1006 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1007 tu_cs_emit(cs, 0x0);
1008 }
1009
1010 static void
1011 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1012 const struct tu_subpass *subpass,
1013 struct tu_cs_entry *ib,
1014 bool gmem)
1015 {
1016 /* note: we can probably emit input attachments just once for the whole
1017 * renderpass, this would avoid emitting both sysmem/gmem versions
1018 *
1019 * emit two texture descriptors for each input, as a workaround for
1020 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1021 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1022 * in the pair
1023 * TODO: a smarter workaround
1024 */
1025
1026 if (!subpass->input_count)
1027 return;
1028
1029 struct tu_cs_memory texture;
1030 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1031 A6XX_TEX_CONST_DWORDS, &texture);
1032 assert(result == VK_SUCCESS);
1033
1034 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1035 uint32_t a = subpass->input_attachments[i / 2].attachment;
1036 if (a == VK_ATTACHMENT_UNUSED)
1037 continue;
1038
1039 struct tu_image_view *iview =
1040 cmd->state.framebuffer->attachments[a].attachment;
1041 const struct tu_render_pass_attachment *att =
1042 &cmd->state.pass->attachments[a];
1043 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1044
1045 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1046
1047 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1048 /* note this works because spec says fb and input attachments
1049 * must use identity swizzle
1050 */
1051 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1052 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1053 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1054 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1055 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1056 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1057 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1058 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1059 }
1060
1061 if (!gmem)
1062 continue;
1063
1064 /* patched for gmem */
1065 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1066 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1067 dst[2] =
1068 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1069 A6XX_TEX_CONST_2_PITCH(cmd->state.framebuffer->tile0.width * att->cpp);
1070 dst[3] = 0;
1071 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1072 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1073 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1074 dst[i] = 0;
1075 }
1076
1077 struct tu_cs cs;
1078 tu_cs_begin_sub_stream(&cmd->sub_cs, 9, &cs);
1079
1080 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1081 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1082 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1083 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1084 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1085 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1086 tu_cs_emit_qw(&cs, texture.iova);
1087
1088 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1089 tu_cs_emit_qw(&cs, texture.iova);
1090
1091 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1092
1093 *ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1094 }
1095
1096 static void
1097 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1098 {
1099 struct tu_cs *cs = &cmd->draw_cs;
1100
1101 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_gmem_ib, true);
1102 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_sysmem_ib, false);
1103
1104 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1105 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM, cmd->state.ia_gmem_ib);
1106 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM, cmd->state.ia_sysmem_ib);
1107 }
1108
1109 static void
1110 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1111 const VkRenderPassBeginInfo *info)
1112 {
1113 struct tu_cs *cs = &cmd->draw_cs;
1114
1115 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1116
1117 tu6_emit_blit_scissor(cmd, cs, true);
1118
1119 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1120 tu_load_gmem_attachment(cmd, cs, i, false);
1121
1122 tu6_emit_blit_scissor(cmd, cs, false);
1123
1124 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1125 tu_clear_gmem_attachment(cmd, cs, i, info);
1126
1127 tu_cond_exec_end(cs);
1128
1129 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1130
1131 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1132 tu_clear_sysmem_attachment(cmd, cs, i, info);
1133
1134 tu_cond_exec_end(cs);
1135 }
1136
1137 static void
1138 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1139 {
1140 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1141
1142 assert(fb->width > 0 && fb->height > 0);
1143 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1144 tu6_emit_window_offset(cs, 0, 0);
1145
1146 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1147
1148 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1149
1150 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1151 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1152
1153 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1154 tu_cs_emit(cs, 0x0);
1155
1156 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1157
1158 /* enable stream-out, with sysmem there is only one pass: */
1159 tu_cs_emit_regs(cs,
1160 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
1161
1162 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1163 tu_cs_emit(cs, 0x1);
1164
1165 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1166 tu_cs_emit(cs, 0x0);
1167
1168 tu_cs_sanity_check(cs);
1169 }
1170
1171 static void
1172 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1173 {
1174 /* Do any resolves of the last subpass. These are handled in the
1175 * tile_store_ib in the gmem path.
1176 */
1177 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1178
1179 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1180
1181 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1182 tu_cs_emit(cs, 0x0);
1183
1184 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1185
1186 tu_cs_sanity_check(cs);
1187 }
1188
1189 static void
1190 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1191 {
1192 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1193
1194 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1195
1196 /* lrz clear? */
1197
1198 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1199 tu_cs_emit(cs, 0x0);
1200
1201 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1202
1203 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1204 if (use_hw_binning(cmd)) {
1205 /* enable stream-out during binning pass: */
1206 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1207
1208 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1209 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1210
1211 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1212
1213 tu6_emit_binning_pass(cmd, cs);
1214
1215 /* and disable stream-out for draw pass: */
1216 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=true));
1217
1218 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1219 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1220
1221 tu_cs_emit_regs(cs,
1222 A6XX_VFD_MODE_CNTL(0));
1223
1224 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1225
1226 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1227
1228 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1229 tu_cs_emit(cs, 0x1);
1230 } else {
1231 /* no binning pass, so enable stream-out for draw pass:: */
1232 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1233
1234 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height, 0x6000000);
1235 }
1236
1237 tu_cs_sanity_check(cs);
1238 }
1239
1240 static void
1241 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1242 {
1243 tu_cs_emit_call(cs, &cmd->draw_cs);
1244
1245 if (use_hw_binning(cmd)) {
1246 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1247 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1248 }
1249
1250 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1251
1252 tu_cs_sanity_check(cs);
1253 }
1254
1255 static void
1256 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1257 {
1258 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1259
1260 tu_cs_emit_regs(cs,
1261 A6XX_GRAS_LRZ_CNTL(0));
1262
1263 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1264
1265 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1266
1267 tu_cs_sanity_check(cs);
1268 }
1269
1270 static void
1271 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1272 {
1273 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1274
1275 tu6_tile_render_begin(cmd, &cmd->cs);
1276
1277 uint32_t pipe = 0;
1278 for (uint32_t py = 0; py < fb->pipe_count.height; py++) {
1279 for (uint32_t px = 0; px < fb->pipe_count.width; px++, pipe++) {
1280 uint32_t tx1 = px * fb->pipe0.width;
1281 uint32_t ty1 = py * fb->pipe0.height;
1282 uint32_t tx2 = MIN2(tx1 + fb->pipe0.width, fb->tile_count.width);
1283 uint32_t ty2 = MIN2(ty1 + fb->pipe0.height, fb->tile_count.height);
1284 uint32_t slot = 0;
1285 for (uint32_t ty = ty1; ty < ty2; ty++) {
1286 for (uint32_t tx = tx1; tx < tx2; tx++, slot++) {
1287 tu6_emit_tile_select(cmd, &cmd->cs, tx, ty, pipe, slot);
1288 tu6_render_tile(cmd, &cmd->cs);
1289 }
1290 }
1291 }
1292 }
1293
1294 tu6_tile_render_end(cmd, &cmd->cs);
1295 }
1296
1297 static void
1298 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1299 {
1300 tu6_sysmem_render_begin(cmd, &cmd->cs);
1301
1302 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1303
1304 tu6_sysmem_render_end(cmd, &cmd->cs);
1305 }
1306
1307 static void
1308 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1309 {
1310 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1311 struct tu_cs sub_cs;
1312
1313 VkResult result =
1314 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1315 if (result != VK_SUCCESS) {
1316 cmd->record_result = result;
1317 return;
1318 }
1319
1320 /* emit to tile-store sub_cs */
1321 tu6_emit_tile_store(cmd, &sub_cs);
1322
1323 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1324 }
1325
1326 static VkResult
1327 tu_create_cmd_buffer(struct tu_device *device,
1328 struct tu_cmd_pool *pool,
1329 VkCommandBufferLevel level,
1330 VkCommandBuffer *pCommandBuffer)
1331 {
1332 struct tu_cmd_buffer *cmd_buffer;
1333
1334 cmd_buffer = vk_object_zalloc(&device->vk, NULL, sizeof(*cmd_buffer),
1335 VK_OBJECT_TYPE_COMMAND_BUFFER);
1336 if (cmd_buffer == NULL)
1337 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1338
1339 cmd_buffer->device = device;
1340 cmd_buffer->pool = pool;
1341 cmd_buffer->level = level;
1342
1343 if (pool) {
1344 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1345 cmd_buffer->queue_family_index = pool->queue_family_index;
1346
1347 } else {
1348 /* Init the pool_link so we can safely call list_del when we destroy
1349 * the command buffer
1350 */
1351 list_inithead(&cmd_buffer->pool_link);
1352 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1353 }
1354
1355 tu_bo_list_init(&cmd_buffer->bo_list);
1356 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1357 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1358 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1359 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1360
1361 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1362
1363 list_inithead(&cmd_buffer->upload.list);
1364
1365 return VK_SUCCESS;
1366 }
1367
1368 static void
1369 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1370 {
1371 list_del(&cmd_buffer->pool_link);
1372
1373 tu_cs_finish(&cmd_buffer->cs);
1374 tu_cs_finish(&cmd_buffer->draw_cs);
1375 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1376 tu_cs_finish(&cmd_buffer->sub_cs);
1377
1378 tu_bo_list_destroy(&cmd_buffer->bo_list);
1379 vk_object_free(&cmd_buffer->device->vk, &cmd_buffer->pool->alloc, cmd_buffer);
1380 }
1381
1382 static VkResult
1383 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1384 {
1385 cmd_buffer->record_result = VK_SUCCESS;
1386
1387 tu_bo_list_reset(&cmd_buffer->bo_list);
1388 tu_cs_reset(&cmd_buffer->cs);
1389 tu_cs_reset(&cmd_buffer->draw_cs);
1390 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1391 tu_cs_reset(&cmd_buffer->sub_cs);
1392
1393 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1394 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1395
1396 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1397
1398 return cmd_buffer->record_result;
1399 }
1400
1401 VkResult
1402 tu_AllocateCommandBuffers(VkDevice _device,
1403 const VkCommandBufferAllocateInfo *pAllocateInfo,
1404 VkCommandBuffer *pCommandBuffers)
1405 {
1406 TU_FROM_HANDLE(tu_device, device, _device);
1407 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1408
1409 VkResult result = VK_SUCCESS;
1410 uint32_t i;
1411
1412 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1413
1414 if (!list_is_empty(&pool->free_cmd_buffers)) {
1415 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1416 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1417
1418 list_del(&cmd_buffer->pool_link);
1419 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1420
1421 result = tu_reset_cmd_buffer(cmd_buffer);
1422 cmd_buffer->level = pAllocateInfo->level;
1423
1424 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1425 } else {
1426 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1427 &pCommandBuffers[i]);
1428 }
1429 if (result != VK_SUCCESS)
1430 break;
1431 }
1432
1433 if (result != VK_SUCCESS) {
1434 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1435 pCommandBuffers);
1436
1437 /* From the Vulkan 1.0.66 spec:
1438 *
1439 * "vkAllocateCommandBuffers can be used to create multiple
1440 * command buffers. If the creation of any of those command
1441 * buffers fails, the implementation must destroy all
1442 * successfully created command buffer objects from this
1443 * command, set all entries of the pCommandBuffers array to
1444 * NULL and return the error."
1445 */
1446 memset(pCommandBuffers, 0,
1447 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1448 }
1449
1450 return result;
1451 }
1452
1453 void
1454 tu_FreeCommandBuffers(VkDevice device,
1455 VkCommandPool commandPool,
1456 uint32_t commandBufferCount,
1457 const VkCommandBuffer *pCommandBuffers)
1458 {
1459 for (uint32_t i = 0; i < commandBufferCount; i++) {
1460 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1461
1462 if (cmd_buffer) {
1463 if (cmd_buffer->pool) {
1464 list_del(&cmd_buffer->pool_link);
1465 list_addtail(&cmd_buffer->pool_link,
1466 &cmd_buffer->pool->free_cmd_buffers);
1467 } else
1468 tu_cmd_buffer_destroy(cmd_buffer);
1469 }
1470 }
1471 }
1472
1473 VkResult
1474 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1475 VkCommandBufferResetFlags flags)
1476 {
1477 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1478 return tu_reset_cmd_buffer(cmd_buffer);
1479 }
1480
1481 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1482 * invalidations.
1483 */
1484 static void
1485 tu_cache_init(struct tu_cache_state *cache)
1486 {
1487 cache->flush_bits = 0;
1488 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1489 }
1490
1491 VkResult
1492 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1493 const VkCommandBufferBeginInfo *pBeginInfo)
1494 {
1495 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1496 VkResult result = VK_SUCCESS;
1497
1498 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1499 /* If the command buffer has already been resetted with
1500 * vkResetCommandBuffer, no need to do it again.
1501 */
1502 result = tu_reset_cmd_buffer(cmd_buffer);
1503 if (result != VK_SUCCESS)
1504 return result;
1505 }
1506
1507 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1508 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1509
1510 tu_cache_init(&cmd_buffer->state.cache);
1511 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1512 cmd_buffer->usage_flags = pBeginInfo->flags;
1513
1514 tu_cs_begin(&cmd_buffer->cs);
1515 tu_cs_begin(&cmd_buffer->draw_cs);
1516 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1517
1518 /* setup initial configuration into command buffer */
1519 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1520 switch (cmd_buffer->queue_family_index) {
1521 case TU_QUEUE_GENERAL:
1522 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1523 break;
1524 default:
1525 break;
1526 }
1527 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1528 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1529 assert(pBeginInfo->pInheritanceInfo);
1530 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1531 cmd_buffer->state.subpass =
1532 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1533 } else {
1534 /* When executing in the middle of another command buffer, the CCU
1535 * state is unknown.
1536 */
1537 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1538 }
1539 }
1540
1541 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1542
1543 return VK_SUCCESS;
1544 }
1545
1546 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1547 * rendering can skip over unused state), so we need to collect all the
1548 * bindings together into a single state emit at draw time.
1549 */
1550 void
1551 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1552 uint32_t firstBinding,
1553 uint32_t bindingCount,
1554 const VkBuffer *pBuffers,
1555 const VkDeviceSize *pOffsets)
1556 {
1557 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1558
1559 assert(firstBinding + bindingCount <= MAX_VBS);
1560
1561 for (uint32_t i = 0; i < bindingCount; i++) {
1562 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1563
1564 cmd->state.vb.buffers[firstBinding + i] = buf;
1565 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1566
1567 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1568 }
1569
1570 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1571 }
1572
1573 void
1574 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1575 VkBuffer buffer,
1576 VkDeviceSize offset,
1577 VkIndexType indexType)
1578 {
1579 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1580 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1581
1582
1583
1584 uint32_t index_size, index_shift, restart_index;
1585
1586 switch (indexType) {
1587 case VK_INDEX_TYPE_UINT16:
1588 index_size = INDEX4_SIZE_16_BIT;
1589 index_shift = 1;
1590 restart_index = 0xffff;
1591 break;
1592 case VK_INDEX_TYPE_UINT32:
1593 index_size = INDEX4_SIZE_32_BIT;
1594 index_shift = 2;
1595 restart_index = 0xffffffff;
1596 break;
1597 case VK_INDEX_TYPE_UINT8_EXT:
1598 index_size = INDEX4_SIZE_8_BIT;
1599 index_shift = 0;
1600 restart_index = 0xff;
1601 break;
1602 default:
1603 unreachable("invalid VkIndexType");
1604 }
1605
1606 /* initialize/update the restart index */
1607 if (cmd->state.index_size != index_size)
1608 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1609
1610 assert(buf->size >= offset);
1611
1612 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1613 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1614 cmd->state.index_size = index_size;
1615
1616 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1617 }
1618
1619 void
1620 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1621 VkPipelineBindPoint pipelineBindPoint,
1622 VkPipelineLayout _layout,
1623 uint32_t firstSet,
1624 uint32_t descriptorSetCount,
1625 const VkDescriptorSet *pDescriptorSets,
1626 uint32_t dynamicOffsetCount,
1627 const uint32_t *pDynamicOffsets)
1628 {
1629 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1630 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1631 unsigned dyn_idx = 0;
1632
1633 struct tu_descriptor_state *descriptors_state =
1634 tu_get_descriptors_state(cmd, pipelineBindPoint);
1635
1636 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1637 unsigned idx = i + firstSet;
1638 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1639
1640 descriptors_state->sets[idx] = set;
1641
1642 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1643 /* update the contents of the dynamic descriptor set */
1644 unsigned src_idx = j;
1645 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1646 assert(dyn_idx < dynamicOffsetCount);
1647
1648 uint32_t *dst =
1649 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1650 uint32_t *src =
1651 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1652 uint32_t offset = pDynamicOffsets[dyn_idx];
1653
1654 /* Patch the storage/uniform descriptors right away. */
1655 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1656 /* Note: we can assume here that the addition won't roll over and
1657 * change the SIZE field.
1658 */
1659 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1660 va += offset;
1661 dst[0] = va;
1662 dst[1] = va >> 32;
1663 } else {
1664 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1665 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1666 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1667 va += offset;
1668 dst[4] = va;
1669 dst[5] = va >> 32;
1670 }
1671 }
1672
1673 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1674 if (set->buffers[j]) {
1675 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1676 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1677 }
1678 }
1679
1680 if (set->size > 0) {
1681 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1682 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1683 }
1684 }
1685 assert(dyn_idx == dynamicOffsetCount);
1686
1687 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_update_value;
1688 uint64_t addr[MAX_SETS + 1] = {};
1689 struct tu_cs cs;
1690
1691 for (uint32_t i = 0; i < MAX_SETS; i++) {
1692 struct tu_descriptor_set *set = descriptors_state->sets[i];
1693 if (set)
1694 addr[i] = set->va | 3;
1695 }
1696
1697 if (layout->dynamic_offset_count) {
1698 /* allocate and fill out dynamic descriptor set */
1699 struct tu_cs_memory dynamic_desc_set;
1700 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1701 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1702 assert(result == VK_SUCCESS);
1703
1704 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1705 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1706 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1707 }
1708
1709 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1710 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1711 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1712 hlsq_update_value = 0x7c000;
1713
1714 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS | TU_CMD_DIRTY_SHADER_CONSTS;
1715 } else {
1716 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1717
1718 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1719 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1720 hlsq_update_value = 0x3e00;
1721
1722 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS;
1723 }
1724
1725 tu_cs_begin_sub_stream(&cmd->sub_cs, 24, &cs);
1726
1727 tu_cs_emit_pkt4(&cs, sp_bindless_base_reg, 10);
1728 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1729 tu_cs_emit_pkt4(&cs, hlsq_bindless_base_reg, 10);
1730 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1731 tu_cs_emit_regs(&cs, A6XX_HLSQ_UPDATE_CNTL(.dword = hlsq_update_value));
1732
1733 struct tu_cs_entry ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1734 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1735 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1736 tu_cs_emit_sds_ib(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, ib);
1737 cmd->state.desc_sets_ib = ib;
1738 } else {
1739 /* note: for compute we could emit directly, instead of a CP_INDIRECT
1740 * however, the blob uses draw states for compute
1741 */
1742 tu_cs_emit_ib(&cmd->cs, &ib);
1743 }
1744 }
1745
1746 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1747 uint32_t firstBinding,
1748 uint32_t bindingCount,
1749 const VkBuffer *pBuffers,
1750 const VkDeviceSize *pOffsets,
1751 const VkDeviceSize *pSizes)
1752 {
1753 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1754 struct tu_cs *cs = &cmd->draw_cs;
1755
1756 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1757 * presumably there isn't any benefit using a draw state when the
1758 * condition is (SYSMEM | BINNING)
1759 */
1760 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1761 CP_COND_REG_EXEC_0_SYSMEM |
1762 CP_COND_REG_EXEC_0_BINNING);
1763
1764 for (uint32_t i = 0; i < bindingCount; i++) {
1765 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1766 uint64_t iova = buf->bo->iova + pOffsets[i];
1767 uint32_t size = buf->bo->size - pOffsets[i];
1768 uint32_t idx = i + firstBinding;
1769
1770 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1771 size = pSizes[i];
1772
1773 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1774 uint32_t offset = iova & 0x1f;
1775 iova &= ~(uint64_t) 0x1f;
1776
1777 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1778 tu_cs_emit_qw(cs, iova);
1779 tu_cs_emit(cs, size + offset);
1780
1781 cmd->state.streamout_offset[idx] = offset;
1782
1783 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1784 }
1785
1786 tu_cond_exec_end(cs);
1787 }
1788
1789 void
1790 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1791 uint32_t firstCounterBuffer,
1792 uint32_t counterBufferCount,
1793 const VkBuffer *pCounterBuffers,
1794 const VkDeviceSize *pCounterBufferOffsets)
1795 {
1796 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1797 struct tu_cs *cs = &cmd->draw_cs;
1798
1799 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1800 CP_COND_REG_EXEC_0_SYSMEM |
1801 CP_COND_REG_EXEC_0_BINNING);
1802
1803 /* TODO: only update offset for active buffers */
1804 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1805 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1806
1807 for (uint32_t i = 0; i < counterBufferCount; i++) {
1808 uint32_t idx = firstCounterBuffer + i;
1809 uint32_t offset = cmd->state.streamout_offset[idx];
1810
1811 if (!pCounterBuffers[i])
1812 continue;
1813
1814 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1815
1816 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1817
1818 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1819 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1820 CP_MEM_TO_REG_0_UNK31 |
1821 CP_MEM_TO_REG_0_CNT(1));
1822 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1823
1824 if (offset) {
1825 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1826 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1827 CP_REG_RMW_0_SRC1_ADD);
1828 tu_cs_emit_qw(cs, 0xffffffff);
1829 tu_cs_emit_qw(cs, offset);
1830 }
1831 }
1832
1833 tu_cond_exec_end(cs);
1834 }
1835
1836 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1837 uint32_t firstCounterBuffer,
1838 uint32_t counterBufferCount,
1839 const VkBuffer *pCounterBuffers,
1840 const VkDeviceSize *pCounterBufferOffsets)
1841 {
1842 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1843 struct tu_cs *cs = &cmd->draw_cs;
1844
1845 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1846 CP_COND_REG_EXEC_0_SYSMEM |
1847 CP_COND_REG_EXEC_0_BINNING);
1848
1849 /* TODO: only flush buffers that need to be flushed */
1850 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
1851 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
1852 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
1853 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[i]));
1854 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
1855 }
1856
1857 for (uint32_t i = 0; i < counterBufferCount; i++) {
1858 uint32_t idx = firstCounterBuffer + i;
1859 uint32_t offset = cmd->state.streamout_offset[idx];
1860
1861 if (!pCounterBuffers[i])
1862 continue;
1863
1864 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1865
1866 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1867
1868 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
1869 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1870 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1871 CP_MEM_TO_REG_0_SHIFT_BY_2 |
1872 0x40000 | /* ??? */
1873 CP_MEM_TO_REG_0_UNK31 |
1874 CP_MEM_TO_REG_0_CNT(1));
1875 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[idx]));
1876
1877 if (offset) {
1878 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1879 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1880 CP_REG_RMW_0_SRC1_ADD);
1881 tu_cs_emit_qw(cs, 0xffffffff);
1882 tu_cs_emit_qw(cs, -offset);
1883 }
1884
1885 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
1886 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1887 CP_REG_TO_MEM_0_CNT(1));
1888 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1889 }
1890
1891 tu_cond_exec_end(cs);
1892
1893 cmd->state.xfb_used = true;
1894 }
1895
1896 void
1897 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
1898 VkPipelineLayout layout,
1899 VkShaderStageFlags stageFlags,
1900 uint32_t offset,
1901 uint32_t size,
1902 const void *pValues)
1903 {
1904 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1905 memcpy((void*) cmd->push_constants + offset, pValues, size);
1906 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
1907 }
1908
1909 /* Flush everything which has been made available but we haven't actually
1910 * flushed yet.
1911 */
1912 static void
1913 tu_flush_all_pending(struct tu_cache_state *cache)
1914 {
1915 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
1916 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
1917 }
1918
1919 VkResult
1920 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
1921 {
1922 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1923
1924 /* We currently flush CCU at the end of the command buffer, like
1925 * what the blob does. There's implicit synchronization around every
1926 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
1927 * know yet if this command buffer will be the last in the submit so we
1928 * have to defensively flush everything else.
1929 *
1930 * TODO: We could definitely do better than this, since these flushes
1931 * aren't required by Vulkan, but we'd need kernel support to do that.
1932 * Ideally, we'd like the kernel to flush everything afterwards, so that we
1933 * wouldn't have to do any flushes here, and when submitting multiple
1934 * command buffers there wouldn't be any unnecessary flushes in between.
1935 */
1936 if (cmd_buffer->state.pass) {
1937 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
1938 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
1939 } else {
1940 tu_flush_all_pending(&cmd_buffer->state.cache);
1941 cmd_buffer->state.cache.flush_bits |=
1942 TU_CMD_FLAG_CCU_FLUSH_COLOR |
1943 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
1944 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
1945 }
1946
1947 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->global_bo,
1948 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1949
1950 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
1951 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
1952 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1953 }
1954
1955 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
1956 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
1957 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1958 }
1959
1960 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
1961 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
1962 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1963 }
1964
1965 tu_cs_end(&cmd_buffer->cs);
1966 tu_cs_end(&cmd_buffer->draw_cs);
1967 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
1968
1969 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
1970
1971 return cmd_buffer->record_result;
1972 }
1973
1974 static struct tu_cs
1975 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
1976 {
1977 struct tu_cs_memory memory;
1978 struct tu_cs cs;
1979
1980 /* TODO: share this logic with tu_pipeline_static_state */
1981 tu_cs_alloc(&cmd->sub_cs, size, 1, &memory);
1982 tu_cs_init_external(&cs, memory.map, memory.map + size);
1983 tu_cs_begin(&cs);
1984 tu_cs_reserve_space(&cs, size);
1985
1986 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
1987 cmd->state.dynamic_state[id].iova = memory.iova;
1988 cmd->state.dynamic_state[id].size = size;
1989
1990 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1991 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
1992
1993 return cs;
1994 }
1995
1996 void
1997 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
1998 VkPipelineBindPoint pipelineBindPoint,
1999 VkPipeline _pipeline)
2000 {
2001 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2002 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2003
2004 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2005 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2006 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2007 }
2008
2009 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2010 cmd->state.compute_pipeline = pipeline;
2011 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_PIPELINE;
2012 return;
2013 }
2014
2015 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2016
2017 cmd->state.pipeline = pipeline;
2018 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2019
2020 struct tu_cs *cs = &cmd->draw_cs;
2021 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2022 uint32_t i;
2023
2024 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2025 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
2026 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
2027 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
2028 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
2029 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
2030 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
2031 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
2032
2033 for_each_bit(i, mask)
2034 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2035
2036 /* If the new pipeline requires more VBs than we had previously set up, we
2037 * need to re-emit them in SDS. If it requires the same set or fewer, we
2038 * can just re-use the old SDS.
2039 */
2040 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2041 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2042
2043 /* If the pipeline needs a dynamic descriptor, re-emit descriptor sets */
2044 if (pipeline->layout->dynamic_offset_count)
2045 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS;
2046
2047 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2048 * so the dynamic state ib must be updated when pipeline changes
2049 */
2050 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2051 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2052
2053 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2054 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2055
2056 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2057 }
2058 }
2059
2060 void
2061 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2062 uint32_t firstViewport,
2063 uint32_t viewportCount,
2064 const VkViewport *pViewports)
2065 {
2066 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2067 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2068
2069 assert(firstViewport == 0 && viewportCount == 1);
2070
2071 tu6_emit_viewport(&cs, pViewports);
2072 }
2073
2074 void
2075 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2076 uint32_t firstScissor,
2077 uint32_t scissorCount,
2078 const VkRect2D *pScissors)
2079 {
2080 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2081 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2082
2083 assert(firstScissor == 0 && scissorCount == 1);
2084
2085 tu6_emit_scissor(&cs, pScissors);
2086 }
2087
2088 void
2089 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2090 {
2091 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2092 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2093
2094 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2095 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2096
2097 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2098 }
2099
2100 void
2101 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2102 float depthBiasConstantFactor,
2103 float depthBiasClamp,
2104 float depthBiasSlopeFactor)
2105 {
2106 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2107 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2108
2109 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2110 }
2111
2112 void
2113 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2114 const float blendConstants[4])
2115 {
2116 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2117 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2118
2119 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2120 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2121 }
2122
2123 void
2124 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2125 float minDepthBounds,
2126 float maxDepthBounds)
2127 {
2128 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2129 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
2130
2131 tu_cs_emit_regs(&cs,
2132 A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
2133 A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
2134 }
2135
2136 static void
2137 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2138 {
2139 if (face & VK_STENCIL_FACE_FRONT_BIT)
2140 *value = (*value & 0xff00) | (mask & 0xff);
2141 if (face & VK_STENCIL_FACE_BACK_BIT)
2142 *value = (*value & 0xff) | (mask & 0xff) << 8;
2143 }
2144
2145 void
2146 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2147 VkStencilFaceFlags faceMask,
2148 uint32_t compareMask)
2149 {
2150 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2151 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2152
2153 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2154
2155 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2156 }
2157
2158 void
2159 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2160 VkStencilFaceFlags faceMask,
2161 uint32_t writeMask)
2162 {
2163 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2164 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2165
2166 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2167
2168 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2169 }
2170
2171 void
2172 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2173 VkStencilFaceFlags faceMask,
2174 uint32_t reference)
2175 {
2176 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2177 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2178
2179 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2180
2181 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2182 }
2183
2184 void
2185 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2186 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2187 {
2188 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2189 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2190
2191 assert(pSampleLocationsInfo);
2192
2193 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2194 }
2195
2196 static void
2197 tu_flush_for_access(struct tu_cache_state *cache,
2198 enum tu_cmd_access_mask src_mask,
2199 enum tu_cmd_access_mask dst_mask)
2200 {
2201 enum tu_cmd_flush_bits flush_bits = 0;
2202
2203 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2204 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2205 }
2206
2207 #define SRC_FLUSH(domain, flush, invalidate) \
2208 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2209 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2210 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2211 }
2212
2213 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2214 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2215 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2216
2217 #undef SRC_FLUSH
2218
2219 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2220 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2221 flush_bits |= TU_CMD_FLAG_##flush; \
2222 cache->pending_flush_bits |= \
2223 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2224 }
2225
2226 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2227 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2228
2229 #undef SRC_INCOHERENT_FLUSH
2230
2231 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
2232 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2233 }
2234
2235 #define DST_FLUSH(domain, flush, invalidate) \
2236 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2237 TU_ACCESS_##domain##_WRITE)) { \
2238 flush_bits |= cache->pending_flush_bits & \
2239 (TU_CMD_FLAG_##invalidate | \
2240 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2241 }
2242
2243 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2244 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2245 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2246
2247 #undef DST_FLUSH
2248
2249 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2250 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2251 TU_ACCESS_##domain##_WRITE)) { \
2252 flush_bits |= TU_CMD_FLAG_##invalidate | \
2253 (cache->pending_flush_bits & \
2254 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2255 }
2256
2257 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2258 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2259
2260 #undef DST_INCOHERENT_FLUSH
2261
2262 if (dst_mask & TU_ACCESS_WFI_READ) {
2263 flush_bits |= TU_CMD_FLAG_WFI;
2264 }
2265
2266 cache->flush_bits |= flush_bits;
2267 cache->pending_flush_bits &= ~flush_bits;
2268 }
2269
2270 static enum tu_cmd_access_mask
2271 vk2tu_access(VkAccessFlags flags, bool gmem)
2272 {
2273 enum tu_cmd_access_mask mask = 0;
2274
2275 /* If the GPU writes a buffer that is then read by an indirect draw
2276 * command, we theoretically need a WFI + WAIT_FOR_ME combination to
2277 * wait for the writes to complete. The WAIT_FOR_ME is performed as part
2278 * of the draw by the firmware, so we just need to execute a WFI.
2279 */
2280 if (flags &
2281 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2282 VK_ACCESS_MEMORY_READ_BIT)) {
2283 mask |= TU_ACCESS_WFI_READ;
2284 }
2285
2286 if (flags &
2287 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2288 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
2289 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2290 VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
2291 VK_ACCESS_MEMORY_READ_BIT)) {
2292 mask |= TU_ACCESS_SYSMEM_READ;
2293 }
2294
2295 if (flags &
2296 (VK_ACCESS_HOST_WRITE_BIT |
2297 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
2298 VK_ACCESS_MEMORY_WRITE_BIT)) {
2299 mask |= TU_ACCESS_SYSMEM_WRITE;
2300 }
2301
2302 if (flags &
2303 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2304 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2305 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2306 /* TODO: Is there a no-cache bit for textures so that we can ignore
2307 * these?
2308 */
2309 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2310 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2311 VK_ACCESS_MEMORY_READ_BIT)) {
2312 mask |= TU_ACCESS_UCHE_READ;
2313 }
2314
2315 if (flags &
2316 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2317 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2318 VK_ACCESS_MEMORY_WRITE_BIT)) {
2319 mask |= TU_ACCESS_UCHE_WRITE;
2320 }
2321
2322 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2323 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2324 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2325 * can ignore CCU and pretend that color attachments and transfers use
2326 * sysmem directly.
2327 */
2328
2329 if (flags &
2330 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2331 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2332 VK_ACCESS_MEMORY_READ_BIT)) {
2333 if (gmem)
2334 mask |= TU_ACCESS_SYSMEM_READ;
2335 else
2336 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2337 }
2338
2339 if (flags &
2340 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2341 VK_ACCESS_MEMORY_READ_BIT)) {
2342 if (gmem)
2343 mask |= TU_ACCESS_SYSMEM_READ;
2344 else
2345 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2346 }
2347
2348 if (flags &
2349 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2350 VK_ACCESS_MEMORY_WRITE_BIT)) {
2351 if (gmem) {
2352 mask |= TU_ACCESS_SYSMEM_WRITE;
2353 } else {
2354 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2355 }
2356 }
2357
2358 if (flags &
2359 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2360 VK_ACCESS_MEMORY_WRITE_BIT)) {
2361 if (gmem) {
2362 mask |= TU_ACCESS_SYSMEM_WRITE;
2363 } else {
2364 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2365 }
2366 }
2367
2368 /* When the dst access is a transfer read/write, it seems we sometimes need
2369 * to insert a WFI after any flushes, to guarantee that the flushes finish
2370 * before the 2D engine starts. However the opposite (i.e. a WFI after
2371 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2372 * the blob doesn't emit such a WFI.
2373 */
2374
2375 if (flags &
2376 (VK_ACCESS_TRANSFER_WRITE_BIT |
2377 VK_ACCESS_MEMORY_WRITE_BIT)) {
2378 if (gmem) {
2379 mask |= TU_ACCESS_SYSMEM_WRITE;
2380 } else {
2381 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2382 }
2383 mask |= TU_ACCESS_WFI_READ;
2384 }
2385
2386 if (flags &
2387 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2388 VK_ACCESS_MEMORY_READ_BIT)) {
2389 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2390 }
2391
2392 return mask;
2393 }
2394
2395
2396 void
2397 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2398 uint32_t commandBufferCount,
2399 const VkCommandBuffer *pCmdBuffers)
2400 {
2401 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2402 VkResult result;
2403
2404 assert(commandBufferCount > 0);
2405
2406 /* Emit any pending flushes. */
2407 if (cmd->state.pass) {
2408 tu_flush_all_pending(&cmd->state.renderpass_cache);
2409 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2410 } else {
2411 tu_flush_all_pending(&cmd->state.cache);
2412 tu_emit_cache_flush(cmd, &cmd->cs);
2413 }
2414
2415 for (uint32_t i = 0; i < commandBufferCount; i++) {
2416 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2417
2418 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2419 if (result != VK_SUCCESS) {
2420 cmd->record_result = result;
2421 break;
2422 }
2423
2424 if (secondary->usage_flags &
2425 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2426 assert(tu_cs_is_empty(&secondary->cs));
2427
2428 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2429 if (result != VK_SUCCESS) {
2430 cmd->record_result = result;
2431 break;
2432 }
2433
2434 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2435 &secondary->draw_epilogue_cs);
2436 if (result != VK_SUCCESS) {
2437 cmd->record_result = result;
2438 break;
2439 }
2440
2441 if (secondary->has_tess)
2442 cmd->has_tess = true;
2443 } else {
2444 assert(tu_cs_is_empty(&secondary->draw_cs));
2445 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2446
2447 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2448 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2449 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2450 }
2451
2452 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2453 }
2454
2455 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2456 }
2457 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2458
2459 /* After executing secondary command buffers, there may have been arbitrary
2460 * flushes executed, so when we encounter a pipeline barrier with a
2461 * srcMask, we have to assume that we need to invalidate. Therefore we need
2462 * to re-initialize the cache with all pending invalidate bits set.
2463 */
2464 if (cmd->state.pass) {
2465 tu_cache_init(&cmd->state.renderpass_cache);
2466 } else {
2467 tu_cache_init(&cmd->state.cache);
2468 }
2469 }
2470
2471 VkResult
2472 tu_CreateCommandPool(VkDevice _device,
2473 const VkCommandPoolCreateInfo *pCreateInfo,
2474 const VkAllocationCallbacks *pAllocator,
2475 VkCommandPool *pCmdPool)
2476 {
2477 TU_FROM_HANDLE(tu_device, device, _device);
2478 struct tu_cmd_pool *pool;
2479
2480 pool = vk_object_alloc(&device->vk, pAllocator, sizeof(*pool),
2481 VK_OBJECT_TYPE_COMMAND_POOL);
2482 if (pool == NULL)
2483 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2484
2485 if (pAllocator)
2486 pool->alloc = *pAllocator;
2487 else
2488 pool->alloc = device->vk.alloc;
2489
2490 list_inithead(&pool->cmd_buffers);
2491 list_inithead(&pool->free_cmd_buffers);
2492
2493 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2494
2495 *pCmdPool = tu_cmd_pool_to_handle(pool);
2496
2497 return VK_SUCCESS;
2498 }
2499
2500 void
2501 tu_DestroyCommandPool(VkDevice _device,
2502 VkCommandPool commandPool,
2503 const VkAllocationCallbacks *pAllocator)
2504 {
2505 TU_FROM_HANDLE(tu_device, device, _device);
2506 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2507
2508 if (!pool)
2509 return;
2510
2511 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2512 &pool->cmd_buffers, pool_link)
2513 {
2514 tu_cmd_buffer_destroy(cmd_buffer);
2515 }
2516
2517 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2518 &pool->free_cmd_buffers, pool_link)
2519 {
2520 tu_cmd_buffer_destroy(cmd_buffer);
2521 }
2522
2523 vk_object_free(&device->vk, pAllocator, pool);
2524 }
2525
2526 VkResult
2527 tu_ResetCommandPool(VkDevice device,
2528 VkCommandPool commandPool,
2529 VkCommandPoolResetFlags flags)
2530 {
2531 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2532 VkResult result;
2533
2534 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2535 pool_link)
2536 {
2537 result = tu_reset_cmd_buffer(cmd_buffer);
2538 if (result != VK_SUCCESS)
2539 return result;
2540 }
2541
2542 return VK_SUCCESS;
2543 }
2544
2545 void
2546 tu_TrimCommandPool(VkDevice device,
2547 VkCommandPool commandPool,
2548 VkCommandPoolTrimFlags flags)
2549 {
2550 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2551
2552 if (!pool)
2553 return;
2554
2555 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2556 &pool->free_cmd_buffers, pool_link)
2557 {
2558 tu_cmd_buffer_destroy(cmd_buffer);
2559 }
2560 }
2561
2562 static void
2563 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2564 const struct tu_subpass_barrier *barrier,
2565 bool external)
2566 {
2567 /* Note: we don't know until the end of the subpass whether we'll use
2568 * sysmem, so assume sysmem here to be safe.
2569 */
2570 struct tu_cache_state *cache =
2571 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2572 enum tu_cmd_access_mask src_flags =
2573 vk2tu_access(barrier->src_access_mask, false);
2574 enum tu_cmd_access_mask dst_flags =
2575 vk2tu_access(barrier->dst_access_mask, false);
2576
2577 if (barrier->incoherent_ccu_color)
2578 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2579 if (barrier->incoherent_ccu_depth)
2580 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2581
2582 tu_flush_for_access(cache, src_flags, dst_flags);
2583 }
2584
2585 void
2586 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2587 const VkRenderPassBeginInfo *pRenderPassBegin,
2588 VkSubpassContents contents)
2589 {
2590 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2591 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2592 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2593
2594 cmd->state.pass = pass;
2595 cmd->state.subpass = pass->subpasses;
2596 cmd->state.framebuffer = fb;
2597 cmd->state.render_area = pRenderPassBegin->renderArea;
2598
2599 tu_cmd_prepare_tile_store_ib(cmd);
2600
2601 /* Note: because this is external, any flushes will happen before draw_cs
2602 * gets called. However deferred flushes could have to happen later as part
2603 * of the subpass.
2604 */
2605 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2606 cmd->state.renderpass_cache.pending_flush_bits =
2607 cmd->state.cache.pending_flush_bits;
2608 cmd->state.renderpass_cache.flush_bits = 0;
2609
2610 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2611
2612 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2613 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2614 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2615 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2616
2617 tu_set_input_attachments(cmd, cmd->state.subpass);
2618
2619 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2620 const struct tu_image_view *iview = fb->attachments[i].attachment;
2621 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2622 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2623 }
2624
2625 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2626 }
2627
2628 void
2629 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2630 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2631 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2632 {
2633 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2634 pSubpassBeginInfo->contents);
2635 }
2636
2637 void
2638 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2639 {
2640 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2641 const struct tu_render_pass *pass = cmd->state.pass;
2642 struct tu_cs *cs = &cmd->draw_cs;
2643
2644 const struct tu_subpass *subpass = cmd->state.subpass++;
2645
2646 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2647
2648 if (subpass->resolve_attachments) {
2649 tu6_emit_blit_scissor(cmd, cs, true);
2650
2651 for (unsigned i = 0; i < subpass->color_count; i++) {
2652 uint32_t a = subpass->resolve_attachments[i].attachment;
2653 if (a == VK_ATTACHMENT_UNUSED)
2654 continue;
2655
2656 tu_store_gmem_attachment(cmd, cs, a,
2657 subpass->color_attachments[i].attachment);
2658
2659 if (pass->attachments[a].gmem_offset < 0)
2660 continue;
2661
2662 /* TODO:
2663 * check if the resolved attachment is needed by later subpasses,
2664 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2665 */
2666 tu_finishme("missing GMEM->GMEM resolve path\n");
2667 tu_load_gmem_attachment(cmd, cs, a, true);
2668 }
2669 }
2670
2671 tu_cond_exec_end(cs);
2672
2673 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2674
2675 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2676
2677 tu_cond_exec_end(cs);
2678
2679 /* Handle dependencies for the next subpass */
2680 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2681
2682 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2683 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2684 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2685 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2686 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2687
2688 tu_set_input_attachments(cmd, cmd->state.subpass);
2689 }
2690
2691 void
2692 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2693 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2694 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2695 {
2696 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2697 }
2698
2699 static void
2700 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2701 struct tu_descriptor_state *descriptors_state,
2702 gl_shader_stage type,
2703 uint32_t *push_constants)
2704 {
2705 const struct tu_program_descriptor_linkage *link =
2706 &pipeline->program.link[type];
2707 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2708
2709 if (link->push_consts.count > 0) {
2710 unsigned num_units = link->push_consts.count;
2711 unsigned offset = link->push_consts.lo;
2712 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2713 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2714 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2715 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2716 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2717 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2718 tu_cs_emit(cs, 0);
2719 tu_cs_emit(cs, 0);
2720 for (unsigned i = 0; i < num_units * 4; i++)
2721 tu_cs_emit(cs, push_constants[i + offset * 4]);
2722 }
2723
2724 for (uint32_t i = 0; i < state->num_enabled; i++) {
2725 uint32_t size = state->range[i].end - state->range[i].start;
2726 uint32_t offset = state->range[i].start;
2727
2728 /* and even if the start of the const buffer is before
2729 * first_immediate, the end may not be:
2730 */
2731 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2732
2733 if (size == 0)
2734 continue;
2735
2736 /* things should be aligned to vec4: */
2737 debug_assert((state->range[i].offset % 16) == 0);
2738 debug_assert((size % 16) == 0);
2739 debug_assert((offset % 16) == 0);
2740
2741 /* Dig out the descriptor from the descriptor state and read the VA from
2742 * it.
2743 */
2744 assert(state->range[i].ubo.bindless);
2745 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2746 descriptors_state->dynamic_descriptors :
2747 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2748 unsigned block = state->range[i].ubo.block;
2749 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2750 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2751 assert(va);
2752
2753 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2754 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2755 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2756 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2757 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2758 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2759 tu_cs_emit_qw(cs, va + offset);
2760 }
2761 }
2762
2763 static struct tu_cs_entry
2764 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2765 const struct tu_pipeline *pipeline,
2766 struct tu_descriptor_state *descriptors_state,
2767 gl_shader_stage type)
2768 {
2769 struct tu_cs cs;
2770 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2771
2772 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2773
2774 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2775 }
2776
2777 static struct tu_cs_entry
2778 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
2779 const struct tu_pipeline *pipeline)
2780 {
2781 struct tu_cs cs;
2782 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
2783
2784 int binding;
2785 for_each_bit(binding, pipeline->vi.bindings_used) {
2786 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
2787 const VkDeviceSize offset = buf->bo_offset +
2788 cmd->state.vb.offsets[binding];
2789
2790 tu_cs_emit_regs(&cs,
2791 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
2792 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
2793
2794 }
2795
2796 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
2797
2798 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2799 }
2800
2801 static uint64_t
2802 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
2803 uint32_t draw_count)
2804 {
2805 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2806 * Still not sure what to do here, so just allocate a reasonably large
2807 * BO and hope for the best for now. */
2808 if (!draw_count)
2809 draw_count = 2048;
2810
2811 /* the tess param BO is pipeline->tess.param_stride bytes per patch,
2812 * which includes both the per-vertex outputs and per-patch outputs
2813 * build_primitive_map in ir3 calculates this stride
2814 */
2815 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2816 uint32_t num_patches = draw_count / verts_per_patch;
2817 return num_patches * pipeline->tess.param_stride;
2818 }
2819
2820 static uint64_t
2821 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
2822 uint32_t draw_count)
2823 {
2824 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2825 * Still not sure what to do here, so just allocate a reasonably large
2826 * BO and hope for the best for now. */
2827 if (!draw_count)
2828 draw_count = 2048;
2829
2830 /* Each distinct patch gets its own tess factor output. */
2831 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2832 uint32_t num_patches = draw_count / verts_per_patch;
2833 uint32_t factor_stride;
2834 switch (pipeline->tess.patch_type) {
2835 case IR3_TESS_ISOLINES:
2836 factor_stride = 12;
2837 break;
2838 case IR3_TESS_TRIANGLES:
2839 factor_stride = 20;
2840 break;
2841 case IR3_TESS_QUADS:
2842 factor_stride = 28;
2843 break;
2844 default:
2845 unreachable("bad tessmode");
2846 }
2847 return factor_stride * num_patches;
2848 }
2849
2850 static VkResult
2851 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
2852 uint32_t draw_count,
2853 const struct tu_pipeline *pipeline,
2854 struct tu_cs_entry *entry)
2855 {
2856 struct tu_cs cs;
2857 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 20, &cs);
2858 if (result != VK_SUCCESS)
2859 return result;
2860
2861 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
2862 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
2863 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
2864 if (tess_bo_size > 0) {
2865 struct tu_bo *tess_bo;
2866 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
2867 if (result != VK_SUCCESS)
2868 return result;
2869
2870 tu_bo_list_add(&cmd->bo_list, tess_bo,
2871 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2872 uint64_t tess_factor_iova = tess_bo->iova;
2873 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
2874
2875 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2876 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
2877 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2878 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2879 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
2880 CP_LOAD_STATE6_0_NUM_UNIT(1));
2881 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2882 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2883 tu_cs_emit_qw(&cs, tess_param_iova);
2884 tu_cs_emit_qw(&cs, tess_factor_iova);
2885
2886 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2887 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
2888 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2889 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2890 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
2891 CP_LOAD_STATE6_0_NUM_UNIT(1));
2892 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2893 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2894 tu_cs_emit_qw(&cs, tess_param_iova);
2895 tu_cs_emit_qw(&cs, tess_factor_iova);
2896
2897 tu_cs_emit_pkt4(&cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
2898 tu_cs_emit_qw(&cs, tess_factor_iova);
2899
2900 /* TODO: Without this WFI here, the hardware seems unable to read these
2901 * addresses we just emitted. Freedreno emits these consts as part of
2902 * IB1 instead of in a draw state which might make this WFI unnecessary,
2903 * but it requires a bit more indirection (SS6_INDIRECT for consts). */
2904 tu_cs_emit_wfi(&cs);
2905 }
2906 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2907 return VK_SUCCESS;
2908 }
2909
2910 static VkResult
2911 tu6_draw_common(struct tu_cmd_buffer *cmd,
2912 struct tu_cs *cs,
2913 bool indexed,
2914 /* note: draw_count is 0 for indirect */
2915 uint32_t draw_count)
2916 {
2917 const struct tu_pipeline *pipeline = cmd->state.pipeline;
2918 VkResult result;
2919
2920 struct tu_descriptor_state *descriptors_state =
2921 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
2922
2923 tu_emit_cache_flush_renderpass(cmd, cs);
2924
2925 /* TODO lrz */
2926
2927 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
2928 .primitive_restart =
2929 pipeline->ia.primitive_restart && indexed,
2930 .tess_upper_left_domain_origin =
2931 pipeline->tess.upper_left_domain_origin));
2932
2933 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
2934 cmd->state.shader_const_ib[MESA_SHADER_VERTEX] =
2935 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
2936 cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL] =
2937 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
2938 cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL] =
2939 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
2940 cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY] =
2941 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
2942 cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT] =
2943 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
2944 }
2945
2946 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) {
2947 /* We need to reload the descriptors every time the descriptor sets
2948 * change. However, the commands we send only depend on the pipeline
2949 * because the whole point is to cache descriptors which are used by the
2950 * pipeline. There's a problem here, in that the firmware has an
2951 * "optimization" which skips executing groups that are set to the same
2952 * value as the last draw. This means that if the descriptor sets change
2953 * but not the pipeline, we'd try to re-execute the same buffer which
2954 * the firmware would ignore and we wouldn't pre-load the new
2955 * descriptors. The blob seems to re-emit the LOAD_STATE group whenever
2956 * the descriptor sets change, which we emulate here by copying the
2957 * pre-prepared buffer.
2958 */
2959 const struct tu_cs_entry *load_entry = &pipeline->load_state.state_ib;
2960 if (load_entry->size > 0) {
2961 struct tu_cs load_cs;
2962 result = tu_cs_begin_sub_stream(&cmd->sub_cs, load_entry->size, &load_cs);
2963 if (result != VK_SUCCESS)
2964 return result;
2965 tu_cs_emit_array(&load_cs,
2966 (uint32_t *)((char *)load_entry->bo->map + load_entry->offset),
2967 load_entry->size / 4);
2968 cmd->state.desc_sets_load_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &load_cs);
2969 } else {
2970 cmd->state.desc_sets_load_ib.size = 0;
2971 }
2972 }
2973
2974 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
2975 cmd->state.vertex_buffers_ib = tu6_emit_vertex_buffers(cmd, pipeline);
2976
2977 bool has_tess =
2978 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
2979 struct tu_cs_entry tess_consts = {};
2980 if (has_tess) {
2981 cmd->has_tess = true;
2982 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts);
2983 if (result != VK_SUCCESS)
2984 return result;
2985 }
2986
2987 /* for the first draw in a renderpass, re-emit all the draw states
2988 *
2989 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
2990 * used, then draw states must be re-emitted. note however this only happens
2991 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
2992 *
2993 * the two input attachment states are excluded because secondary command
2994 * buffer doesn't have a state ib to restore it, and not re-emitting them
2995 * is OK since CmdClearAttachments won't disable/overwrite them
2996 */
2997 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
2998 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
2999
3000 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
3001 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
3002 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3003 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
3004 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
3005 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
3006 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
3007 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
3008 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3009 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3010 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3011 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3012 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3013 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets_ib);
3014 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3015 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3016 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3017
3018 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3019 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3020 ((pipeline->dynamic_state_mask & BIT(i)) ?
3021 cmd->state.dynamic_state[i] :
3022 pipeline->dynamic_state[i]));
3023 }
3024 } else {
3025
3026 /* emit draw states that were just updated
3027 * note we eventually don't want to have to emit anything here
3028 */
3029 uint32_t draw_state_count =
3030 has_tess +
3031 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
3032 ((cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) ? 1 : 0) +
3033 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3034 1; /* vs_params */
3035
3036 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3037
3038 /* We may need to re-emit tess consts if the current draw call is
3039 * sufficiently larger than the last draw call. */
3040 if (has_tess)
3041 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3042 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3043 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3044 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3045 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3046 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3047 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3048 }
3049 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS)
3050 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3051 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3052 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3053 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3054 }
3055
3056 tu_cs_sanity_check(cs);
3057
3058 /* There are too many graphics dirty bits to list here, so just list the
3059 * bits to preserve instead. The only things not emitted here are
3060 * compute-related state.
3061 */
3062 cmd->state.dirty &= (TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3063 return VK_SUCCESS;
3064 }
3065
3066 static uint32_t
3067 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
3068 {
3069 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3070 uint32_t initiator =
3071 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3072 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
3073 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3074 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3075
3076 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3077 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3078
3079 switch (pipeline->tess.patch_type) {
3080 case IR3_TESS_TRIANGLES:
3081 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3082 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3083 break;
3084 case IR3_TESS_ISOLINES:
3085 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3086 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3087 break;
3088 case IR3_TESS_NONE:
3089 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3090 break;
3091 case IR3_TESS_QUADS:
3092 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3093 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3094 break;
3095 }
3096 return initiator;
3097 }
3098
3099
3100 static uint32_t
3101 vs_params_offset(struct tu_cmd_buffer *cmd)
3102 {
3103 const struct tu_program_descriptor_linkage *link =
3104 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
3105 const struct ir3_const_state *const_state = &link->const_state;
3106
3107 if (const_state->offsets.driver_param >= link->constlen)
3108 return 0;
3109
3110 /* this layout is required by CP_DRAW_INDIRECT_MULTI */
3111 STATIC_ASSERT(IR3_DP_DRAWID == 0);
3112 STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
3113 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3114
3115 /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
3116 assert(const_state->offsets.driver_param != 0);
3117
3118 return const_state->offsets.driver_param;
3119 }
3120
3121 static struct tu_draw_state
3122 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
3123 uint32_t vertex_offset,
3124 uint32_t first_instance)
3125 {
3126 uint32_t offset = vs_params_offset(cmd);
3127
3128 struct tu_cs cs;
3129 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 8 : 0), &cs);
3130 if (result != VK_SUCCESS) {
3131 cmd->record_result = result;
3132 return (struct tu_draw_state) {};
3133 }
3134
3135 /* TODO: don't make a new draw state when it doesn't change */
3136
3137 tu_cs_emit_regs(&cs,
3138 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3139 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3140
3141 if (offset) {
3142 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3143 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3144 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3145 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3146 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3147 CP_LOAD_STATE6_0_NUM_UNIT(1));
3148 tu_cs_emit(&cs, 0);
3149 tu_cs_emit(&cs, 0);
3150
3151 tu_cs_emit(&cs, 0);
3152 tu_cs_emit(&cs, vertex_offset);
3153 tu_cs_emit(&cs, first_instance);
3154 tu_cs_emit(&cs, 0);
3155 }
3156
3157 struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3158 return (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
3159 }
3160
3161 void
3162 tu_CmdDraw(VkCommandBuffer commandBuffer,
3163 uint32_t vertexCount,
3164 uint32_t instanceCount,
3165 uint32_t firstVertex,
3166 uint32_t firstInstance)
3167 {
3168 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3169 struct tu_cs *cs = &cmd->draw_cs;
3170
3171 cmd->state.vs_params = tu6_emit_vs_params(cmd, firstVertex, firstInstance);
3172
3173 tu6_draw_common(cmd, cs, false, vertexCount);
3174
3175 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3176 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3177 tu_cs_emit(cs, instanceCount);
3178 tu_cs_emit(cs, vertexCount);
3179 }
3180
3181 void
3182 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3183 uint32_t indexCount,
3184 uint32_t instanceCount,
3185 uint32_t firstIndex,
3186 int32_t vertexOffset,
3187 uint32_t firstInstance)
3188 {
3189 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3190 struct tu_cs *cs = &cmd->draw_cs;
3191
3192 cmd->state.vs_params = tu6_emit_vs_params(cmd, vertexOffset, firstInstance);
3193
3194 tu6_draw_common(cmd, cs, true, indexCount);
3195
3196 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3197 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3198 tu_cs_emit(cs, instanceCount);
3199 tu_cs_emit(cs, indexCount);
3200 tu_cs_emit(cs, firstIndex);
3201 tu_cs_emit_qw(cs, cmd->state.index_va);
3202 tu_cs_emit(cs, cmd->state.max_index_count);
3203 }
3204
3205 void
3206 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3207 VkBuffer _buffer,
3208 VkDeviceSize offset,
3209 uint32_t drawCount,
3210 uint32_t stride)
3211 {
3212 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3213 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3214 struct tu_cs *cs = &cmd->draw_cs;
3215
3216 cmd->state.vs_params = (struct tu_draw_state) {};
3217
3218 tu6_draw_common(cmd, cs, false, 0);
3219
3220 /* workaround for a firmware bug with CP_DRAW_INDIRECT_MULTI, where it
3221 * doesn't wait for WFIs to be completed and leads to GPU fault/hang
3222 * TODO: this could be worked around in a more performant way,
3223 * or there may exist newer firmware that has been fixed
3224 */
3225 if (cmd->device->physical_device->gpu_id != 650)
3226 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
3227
3228 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
3229 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3230 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
3231 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3232 tu_cs_emit(cs, drawCount);
3233 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3234 tu_cs_emit(cs, stride);
3235
3236 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3237 }
3238
3239 void
3240 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3241 VkBuffer _buffer,
3242 VkDeviceSize offset,
3243 uint32_t drawCount,
3244 uint32_t stride)
3245 {
3246 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3247 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3248 struct tu_cs *cs = &cmd->draw_cs;
3249
3250 cmd->state.vs_params = (struct tu_draw_state) {};
3251
3252 tu6_draw_common(cmd, cs, true, 0);
3253
3254 /* workaround for a firmware bug with CP_DRAW_INDIRECT_MULTI, where it
3255 * doesn't wait for WFIs to be completed and leads to GPU fault/hang
3256 * TODO: this could be worked around in a more performant way,
3257 * or there may exist newer firmware that has been fixed
3258 */
3259 if (cmd->device->physical_device->gpu_id != 650)
3260 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
3261
3262 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
3263 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3264 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
3265 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3266 tu_cs_emit(cs, drawCount);
3267 tu_cs_emit_qw(cs, cmd->state.index_va);
3268 tu_cs_emit(cs, cmd->state.max_index_count);
3269 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3270 tu_cs_emit(cs, stride);
3271
3272 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3273 }
3274
3275 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3276 uint32_t instanceCount,
3277 uint32_t firstInstance,
3278 VkBuffer _counterBuffer,
3279 VkDeviceSize counterBufferOffset,
3280 uint32_t counterOffset,
3281 uint32_t vertexStride)
3282 {
3283 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3284 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
3285 struct tu_cs *cs = &cmd->draw_cs;
3286
3287 cmd->state.vs_params = tu6_emit_vs_params(cmd, 0, firstInstance);
3288
3289 tu6_draw_common(cmd, cs, false, 0);
3290
3291 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
3292 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
3293 tu_cs_emit(cs, instanceCount);
3294 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
3295 tu_cs_emit(cs, counterOffset);
3296 tu_cs_emit(cs, vertexStride);
3297
3298 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3299 }
3300
3301 struct tu_dispatch_info
3302 {
3303 /**
3304 * Determine the layout of the grid (in block units) to be used.
3305 */
3306 uint32_t blocks[3];
3307
3308 /**
3309 * A starting offset for the grid. If unaligned is set, the offset
3310 * must still be aligned.
3311 */
3312 uint32_t offsets[3];
3313 /**
3314 * Whether it's an unaligned compute dispatch.
3315 */
3316 bool unaligned;
3317
3318 /**
3319 * Indirect compute parameters resource.
3320 */
3321 struct tu_buffer *indirect;
3322 uint64_t indirect_offset;
3323 };
3324
3325 static void
3326 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3327 const struct tu_dispatch_info *info)
3328 {
3329 gl_shader_stage type = MESA_SHADER_COMPUTE;
3330 const struct tu_program_descriptor_linkage *link =
3331 &pipeline->program.link[type];
3332 const struct ir3_const_state *const_state = &link->const_state;
3333 uint32_t offset = const_state->offsets.driver_param;
3334
3335 if (link->constlen <= offset)
3336 return;
3337
3338 if (!info->indirect) {
3339 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3340 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3341 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3342 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3343 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3344 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3345 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3346 };
3347
3348 uint32_t num_consts = MIN2(const_state->num_driver_params,
3349 (link->constlen - offset) * 4);
3350 /* push constants */
3351 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3352 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3353 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3354 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3355 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3356 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3357 tu_cs_emit(cs, 0);
3358 tu_cs_emit(cs, 0);
3359 uint32_t i;
3360 for (i = 0; i < num_consts; i++)
3361 tu_cs_emit(cs, driver_params[i]);
3362 } else {
3363 tu_finishme("Indirect driver params");
3364 }
3365 }
3366
3367 static void
3368 tu_dispatch(struct tu_cmd_buffer *cmd,
3369 const struct tu_dispatch_info *info)
3370 {
3371 struct tu_cs *cs = &cmd->cs;
3372 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3373 struct tu_descriptor_state *descriptors_state =
3374 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3375
3376 /* TODO: We could probably flush less if we add a compute_flush_bits
3377 * bitfield.
3378 */
3379 tu_emit_cache_flush(cmd, cs);
3380
3381 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_PIPELINE)
3382 tu_cs_emit_ib(cs, &pipeline->program.state_ib);
3383
3384 struct tu_cs_entry ib;
3385
3386 ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE);
3387 if (ib.size)
3388 tu_cs_emit_ib(cs, &ib);
3389
3390 tu_emit_compute_driver_params(cs, pipeline, info);
3391
3392 if ((cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS) &&
3393 pipeline->load_state.state_ib.size > 0) {
3394 tu_cs_emit_ib(cs, &pipeline->load_state.state_ib);
3395 }
3396
3397 cmd->state.dirty &=
3398 ~(TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3399
3400 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3401 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3402
3403 const uint32_t *local_size = pipeline->compute.local_size;
3404 const uint32_t *num_groups = info->blocks;
3405 tu_cs_emit_regs(cs,
3406 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3407 .localsizex = local_size[0] - 1,
3408 .localsizey = local_size[1] - 1,
3409 .localsizez = local_size[2] - 1),
3410 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3411 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3412 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3413 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3414 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3415 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3416
3417 tu_cs_emit_regs(cs,
3418 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3419 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3420 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3421
3422 if (info->indirect) {
3423 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3424
3425 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3426 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3427
3428 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3429 tu_cs_emit(cs, 0x00000000);
3430 tu_cs_emit_qw(cs, iova);
3431 tu_cs_emit(cs,
3432 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3433 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3434 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3435 } else {
3436 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3437 tu_cs_emit(cs, 0x00000000);
3438 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3439 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3440 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3441 }
3442
3443 tu_cs_emit_wfi(cs);
3444 }
3445
3446 void
3447 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3448 uint32_t base_x,
3449 uint32_t base_y,
3450 uint32_t base_z,
3451 uint32_t x,
3452 uint32_t y,
3453 uint32_t z)
3454 {
3455 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3456 struct tu_dispatch_info info = {};
3457
3458 info.blocks[0] = x;
3459 info.blocks[1] = y;
3460 info.blocks[2] = z;
3461
3462 info.offsets[0] = base_x;
3463 info.offsets[1] = base_y;
3464 info.offsets[2] = base_z;
3465 tu_dispatch(cmd_buffer, &info);
3466 }
3467
3468 void
3469 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3470 uint32_t x,
3471 uint32_t y,
3472 uint32_t z)
3473 {
3474 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3475 }
3476
3477 void
3478 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3479 VkBuffer _buffer,
3480 VkDeviceSize offset)
3481 {
3482 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3483 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3484 struct tu_dispatch_info info = {};
3485
3486 info.indirect = buffer;
3487 info.indirect_offset = offset;
3488
3489 tu_dispatch(cmd_buffer, &info);
3490 }
3491
3492 void
3493 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3494 {
3495 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3496
3497 tu_cs_end(&cmd_buffer->draw_cs);
3498 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3499
3500 if (use_sysmem_rendering(cmd_buffer))
3501 tu_cmd_render_sysmem(cmd_buffer);
3502 else
3503 tu_cmd_render_tiles(cmd_buffer);
3504
3505 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3506 rendered */
3507 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3508 tu_cs_begin(&cmd_buffer->draw_cs);
3509 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3510 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3511
3512 cmd_buffer->state.cache.pending_flush_bits |=
3513 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3514 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3515
3516 cmd_buffer->state.pass = NULL;
3517 cmd_buffer->state.subpass = NULL;
3518 cmd_buffer->state.framebuffer = NULL;
3519 }
3520
3521 void
3522 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3523 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3524 {
3525 tu_CmdEndRenderPass(commandBuffer);
3526 }
3527
3528 struct tu_barrier_info
3529 {
3530 uint32_t eventCount;
3531 const VkEvent *pEvents;
3532 VkPipelineStageFlags srcStageMask;
3533 };
3534
3535 static void
3536 tu_barrier(struct tu_cmd_buffer *cmd,
3537 uint32_t memoryBarrierCount,
3538 const VkMemoryBarrier *pMemoryBarriers,
3539 uint32_t bufferMemoryBarrierCount,
3540 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3541 uint32_t imageMemoryBarrierCount,
3542 const VkImageMemoryBarrier *pImageMemoryBarriers,
3543 const struct tu_barrier_info *info)
3544 {
3545 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3546 VkAccessFlags srcAccessMask = 0;
3547 VkAccessFlags dstAccessMask = 0;
3548
3549 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3550 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3551 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3552 }
3553
3554 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3555 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3556 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3557 }
3558
3559 enum tu_cmd_access_mask src_flags = 0;
3560 enum tu_cmd_access_mask dst_flags = 0;
3561
3562 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3563 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3564 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3565 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3566 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3567 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3568 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3569 /* The underlying memory for this image may have been used earlier
3570 * within the same queue submission for a different image, which
3571 * means that there may be old, stale cache entries which are in the
3572 * "wrong" location, which could cause problems later after writing
3573 * to the image. We don't want these entries being flushed later and
3574 * overwriting the actual image, so we need to flush the CCU.
3575 */
3576 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3577 }
3578 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3579 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3580 }
3581
3582 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3583 * so we have to use the sysmem flushes.
3584 */
3585 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3586 !cmd->state.pass;
3587 src_flags |= vk2tu_access(srcAccessMask, gmem);
3588 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3589
3590 struct tu_cache_state *cache =
3591 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3592 tu_flush_for_access(cache, src_flags, dst_flags);
3593
3594 for (uint32_t i = 0; i < info->eventCount; i++) {
3595 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3596
3597 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3598
3599 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3600 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3601 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3602 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3603 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3604 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3605 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3606 }
3607 }
3608
3609 void
3610 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3611 VkPipelineStageFlags srcStageMask,
3612 VkPipelineStageFlags dstStageMask,
3613 VkDependencyFlags dependencyFlags,
3614 uint32_t memoryBarrierCount,
3615 const VkMemoryBarrier *pMemoryBarriers,
3616 uint32_t bufferMemoryBarrierCount,
3617 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3618 uint32_t imageMemoryBarrierCount,
3619 const VkImageMemoryBarrier *pImageMemoryBarriers)
3620 {
3621 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3622 struct tu_barrier_info info;
3623
3624 info.eventCount = 0;
3625 info.pEvents = NULL;
3626 info.srcStageMask = srcStageMask;
3627
3628 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3629 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3630 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3631 }
3632
3633 static void
3634 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3635 VkPipelineStageFlags stageMask, unsigned value)
3636 {
3637 struct tu_cs *cs = &cmd->cs;
3638
3639 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3640 assert(!cmd->state.pass);
3641
3642 tu_emit_cache_flush(cmd, cs);
3643
3644 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3645
3646 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3647 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3648 */
3649 VkPipelineStageFlags top_of_pipe_flags =
3650 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3651 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3652
3653 if (!(stageMask & ~top_of_pipe_flags)) {
3654 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3655 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3656 tu_cs_emit(cs, value);
3657 } else {
3658 /* Use a RB_DONE_TS event to wait for everything to complete. */
3659 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3660 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3661 tu_cs_emit_qw(cs, event->bo.iova);
3662 tu_cs_emit(cs, value);
3663 }
3664 }
3665
3666 void
3667 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3668 VkEvent _event,
3669 VkPipelineStageFlags stageMask)
3670 {
3671 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3672 TU_FROM_HANDLE(tu_event, event, _event);
3673
3674 write_event(cmd, event, stageMask, 1);
3675 }
3676
3677 void
3678 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3679 VkEvent _event,
3680 VkPipelineStageFlags stageMask)
3681 {
3682 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3683 TU_FROM_HANDLE(tu_event, event, _event);
3684
3685 write_event(cmd, event, stageMask, 0);
3686 }
3687
3688 void
3689 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3690 uint32_t eventCount,
3691 const VkEvent *pEvents,
3692 VkPipelineStageFlags srcStageMask,
3693 VkPipelineStageFlags dstStageMask,
3694 uint32_t memoryBarrierCount,
3695 const VkMemoryBarrier *pMemoryBarriers,
3696 uint32_t bufferMemoryBarrierCount,
3697 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3698 uint32_t imageMemoryBarrierCount,
3699 const VkImageMemoryBarrier *pImageMemoryBarriers)
3700 {
3701 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3702 struct tu_barrier_info info;
3703
3704 info.eventCount = eventCount;
3705 info.pEvents = pEvents;
3706 info.srcStageMask = 0;
3707
3708 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3709 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3710 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3711 }
3712
3713 void
3714 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3715 {
3716 /* No-op */
3717 }