turnip: move WFI out of draw state to fix a650 hangs
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 void
112 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
113 struct tu_cs *cs,
114 enum vgt_event_type event)
115 {
116 bool need_seqno = false;
117 switch (event) {
118 case CACHE_FLUSH_TS:
119 case WT_DONE_TS:
120 case RB_DONE_TS:
121 case PC_CCU_FLUSH_DEPTH_TS:
122 case PC_CCU_FLUSH_COLOR_TS:
123 case PC_CCU_RESOLVE_TS:
124 need_seqno = true;
125 break;
126 default:
127 break;
128 }
129
130 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
131 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
132 if (need_seqno) {
133 tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
134 tu_cs_emit(cs, 0);
135 }
136 }
137
138 static void
139 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
140 struct tu_cs *cs,
141 enum tu_cmd_flush_bits flushes)
142 {
143 /* Experiments show that invalidating CCU while it still has data in it
144 * doesn't work, so make sure to always flush before invalidating in case
145 * any data remains that hasn't yet been made available through a barrier.
146 * However it does seem to work for UCHE.
147 */
148 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
149 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
150 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
151 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
152 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
153 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
154 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
155 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
156 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
157 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
158 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
159 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
160 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
161 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
162 if (flushes & TU_CMD_FLAG_WAIT_MEM_WRITES)
163 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
164 if (flushes & TU_CMD_FLAG_WAIT_FOR_IDLE)
165 tu_cs_emit_wfi(cs);
166 if (flushes & TU_CMD_FLAG_WAIT_FOR_ME)
167 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
168 }
169
170 /* "Normal" cache flushes, that don't require any special handling */
171
172 static void
173 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
174 struct tu_cs *cs)
175 {
176 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
177 cmd_buffer->state.cache.flush_bits = 0;
178 }
179
180 /* Renderpass cache flushes */
181
182 void
183 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
184 struct tu_cs *cs)
185 {
186 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
187 cmd_buffer->state.renderpass_cache.flush_bits = 0;
188 }
189
190 /* Cache flushes for things that use the color/depth read/write path (i.e.
191 * blits and draws). This deals with changing CCU state as well as the usual
192 * cache flushing.
193 */
194
195 void
196 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
197 struct tu_cs *cs,
198 enum tu_cmd_ccu_state ccu_state)
199 {
200 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
201
202 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
203
204 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
205 * the CCU may also contain data that we haven't flushed out yet, so we
206 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
207 * emit a WFI as it isn't pipelined.
208 */
209 if (ccu_state != cmd_buffer->state.ccu_state) {
210 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
211 flushes |=
212 TU_CMD_FLAG_CCU_FLUSH_COLOR |
213 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
214 cmd_buffer->state.cache.pending_flush_bits &= ~(
215 TU_CMD_FLAG_CCU_FLUSH_COLOR |
216 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
217 }
218 flushes |=
219 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
220 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
221 TU_CMD_FLAG_WAIT_FOR_IDLE;
222 cmd_buffer->state.cache.pending_flush_bits &= ~(
223 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
224 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
225 TU_CMD_FLAG_WAIT_FOR_IDLE);
226 }
227
228 tu6_emit_flushes(cmd_buffer, cs, flushes);
229 cmd_buffer->state.cache.flush_bits = 0;
230
231 if (ccu_state != cmd_buffer->state.ccu_state) {
232 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
233 tu_cs_emit_regs(cs,
234 A6XX_RB_CCU_CNTL(.offset =
235 ccu_state == TU_CMD_CCU_GMEM ?
236 phys_dev->ccu_offset_gmem :
237 phys_dev->ccu_offset_bypass,
238 .gmem = ccu_state == TU_CMD_CCU_GMEM));
239 cmd_buffer->state.ccu_state = ccu_state;
240 }
241 }
242
243 static void
244 tu6_emit_zs(struct tu_cmd_buffer *cmd,
245 const struct tu_subpass *subpass,
246 struct tu_cs *cs)
247 {
248 const struct tu_framebuffer *fb = cmd->state.framebuffer;
249
250 const uint32_t a = subpass->depth_stencil_attachment.attachment;
251 if (a == VK_ATTACHMENT_UNUSED) {
252 tu_cs_emit_regs(cs,
253 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
254 A6XX_RB_DEPTH_BUFFER_PITCH(0),
255 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
256 A6XX_RB_DEPTH_BUFFER_BASE(0),
257 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
258
259 tu_cs_emit_regs(cs,
260 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
261
262 tu_cs_emit_regs(cs,
263 A6XX_GRAS_LRZ_BUFFER_BASE(0),
264 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
265 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
266
267 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
268
269 return;
270 }
271
272 const struct tu_image_view *iview = fb->attachments[a].attachment;
273 const struct tu_render_pass_attachment *attachment =
274 &cmd->state.pass->attachments[a];
275 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
276
277 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
278 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
279 tu_cs_image_ref(cs, iview, 0);
280 tu_cs_emit(cs, attachment->gmem_offset);
281
282 tu_cs_emit_regs(cs,
283 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
284
285 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
286 tu_cs_image_flag_ref(cs, iview, 0);
287
288 tu_cs_emit_regs(cs,
289 A6XX_GRAS_LRZ_BUFFER_BASE(0),
290 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
291 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
292
293 if (attachment->format == VK_FORMAT_S8_UINT) {
294 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
295 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
296 tu_cs_image_ref(cs, iview, 0);
297 tu_cs_emit(cs, attachment->gmem_offset);
298 } else {
299 tu_cs_emit_regs(cs,
300 A6XX_RB_STENCIL_INFO(0));
301 }
302 }
303
304 static void
305 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
306 const struct tu_subpass *subpass,
307 struct tu_cs *cs)
308 {
309 const struct tu_framebuffer *fb = cmd->state.framebuffer;
310
311 for (uint32_t i = 0; i < subpass->color_count; ++i) {
312 uint32_t a = subpass->color_attachments[i].attachment;
313 if (a == VK_ATTACHMENT_UNUSED)
314 continue;
315
316 const struct tu_image_view *iview = fb->attachments[a].attachment;
317
318 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
319 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
320 tu_cs_image_ref(cs, iview, 0);
321 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
322
323 tu_cs_emit_regs(cs,
324 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
325
326 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
327 tu_cs_image_flag_ref(cs, iview, 0);
328 }
329
330 tu_cs_emit_regs(cs,
331 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
332 tu_cs_emit_regs(cs,
333 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
334
335 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
336 }
337
338 void
339 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
340 {
341 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
342 bool msaa_disable = samples == MSAA_ONE;
343
344 tu_cs_emit_regs(cs,
345 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
346 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
347 .msaa_disable = msaa_disable));
348
349 tu_cs_emit_regs(cs,
350 A6XX_GRAS_RAS_MSAA_CNTL(samples),
351 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
352 .msaa_disable = msaa_disable));
353
354 tu_cs_emit_regs(cs,
355 A6XX_RB_RAS_MSAA_CNTL(samples),
356 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
357 .msaa_disable = msaa_disable));
358
359 tu_cs_emit_regs(cs,
360 A6XX_RB_MSAA_CNTL(samples));
361 }
362
363 static void
364 tu6_emit_bin_size(struct tu_cs *cs,
365 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
366 {
367 tu_cs_emit_regs(cs,
368 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
369 .binh = bin_h,
370 .dword = flags));
371
372 tu_cs_emit_regs(cs,
373 A6XX_RB_BIN_CONTROL(.binw = bin_w,
374 .binh = bin_h,
375 .dword = flags));
376
377 /* no flag for RB_BIN_CONTROL2... */
378 tu_cs_emit_regs(cs,
379 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
380 .binh = bin_h));
381 }
382
383 static void
384 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
385 const struct tu_subpass *subpass,
386 struct tu_cs *cs,
387 bool binning)
388 {
389 const struct tu_framebuffer *fb = cmd->state.framebuffer;
390 uint32_t cntl = 0;
391 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
392 if (binning) {
393 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
394 } else {
395 uint32_t mrts_ubwc_enable = 0;
396 for (uint32_t i = 0; i < subpass->color_count; ++i) {
397 uint32_t a = subpass->color_attachments[i].attachment;
398 if (a == VK_ATTACHMENT_UNUSED)
399 continue;
400
401 const struct tu_image_view *iview = fb->attachments[a].attachment;
402 if (iview->ubwc_enabled)
403 mrts_ubwc_enable |= 1 << i;
404 }
405
406 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
407
408 const uint32_t a = subpass->depth_stencil_attachment.attachment;
409 if (a != VK_ATTACHMENT_UNUSED) {
410 const struct tu_image_view *iview = fb->attachments[a].attachment;
411 if (iview->ubwc_enabled)
412 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
413 }
414
415 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
416 * in order to set it correctly for the different subpasses. However,
417 * that means the packets we're emitting also happen during binning. So
418 * we need to guard the write on !BINNING at CP execution time.
419 */
420 tu_cs_reserve(cs, 3 + 4);
421 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
422 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
423 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
424 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
425 }
426
427 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
428 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
429 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
430 tu_cs_emit(cs, cntl);
431 }
432
433 static void
434 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
435 {
436
437 const VkRect2D *render_area = &cmd->state.render_area;
438
439 /* Avoid assertion fails with an empty render area at (0, 0) where the
440 * subtraction below wraps around. Empty render areas should be forced to
441 * the sysmem path by use_sysmem_rendering(). It's not even clear whether
442 * an empty scissor here works, and the blob seems to force sysmem too as
443 * it sets something wrong (non-empty) for the scissor.
444 */
445 if (render_area->extent.width == 0 ||
446 render_area->extent.height == 0)
447 return;
448
449 uint32_t x1 = render_area->offset.x;
450 uint32_t y1 = render_area->offset.y;
451 uint32_t x2 = x1 + render_area->extent.width - 1;
452 uint32_t y2 = y1 + render_area->extent.height - 1;
453
454 if (align) {
455 x1 = x1 & ~(GMEM_ALIGN_W - 1);
456 y1 = y1 & ~(GMEM_ALIGN_H - 1);
457 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
458 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
459 }
460
461 tu_cs_emit_regs(cs,
462 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
463 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
464 }
465
466 void
467 tu6_emit_window_scissor(struct tu_cs *cs,
468 uint32_t x1,
469 uint32_t y1,
470 uint32_t x2,
471 uint32_t y2)
472 {
473 tu_cs_emit_regs(cs,
474 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
475 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
476
477 tu_cs_emit_regs(cs,
478 A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1),
479 A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2));
480 }
481
482 void
483 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
484 {
485 tu_cs_emit_regs(cs,
486 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
487
488 tu_cs_emit_regs(cs,
489 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
490
491 tu_cs_emit_regs(cs,
492 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
493
494 tu_cs_emit_regs(cs,
495 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
496 }
497
498 static void
499 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
500 {
501 uint32_t enable_mask;
502 switch (id) {
503 case TU_DRAW_STATE_PROGRAM:
504 case TU_DRAW_STATE_VI:
505 case TU_DRAW_STATE_FS_CONST:
506 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
507 * when resources would actually be used in the binning shader.
508 * Presumably the overhead of prefetching the resources isn't
509 * worth it.
510 */
511 case TU_DRAW_STATE_DESC_SETS_LOAD:
512 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
513 CP_SET_DRAW_STATE__0_SYSMEM;
514 break;
515 case TU_DRAW_STATE_PROGRAM_BINNING:
516 case TU_DRAW_STATE_VI_BINNING:
517 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
518 break;
519 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
520 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
521 break;
522 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
523 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
524 break;
525 default:
526 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
527 CP_SET_DRAW_STATE__0_SYSMEM |
528 CP_SET_DRAW_STATE__0_BINNING;
529 break;
530 }
531
532 /* We need to reload the descriptors every time the descriptor sets
533 * change. However, the commands we send only depend on the pipeline
534 * because the whole point is to cache descriptors which are used by the
535 * pipeline. There's a problem here, in that the firmware has an
536 * "optimization" which skips executing groups that are set to the same
537 * value as the last draw. This means that if the descriptor sets change
538 * but not the pipeline, we'd try to re-execute the same buffer which
539 * the firmware would ignore and we wouldn't pre-load the new
540 * descriptors. Set the DIRTY bit to avoid this optimization
541 */
542 if (id == TU_DRAW_STATE_DESC_SETS_LOAD)
543 enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
544
545 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
546 enable_mask |
547 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
548 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
549 tu_cs_emit_qw(cs, state.iova);
550 }
551
552 static bool
553 use_hw_binning(struct tu_cmd_buffer *cmd)
554 {
555 const struct tu_framebuffer *fb = cmd->state.framebuffer;
556
557 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
558 * with non-hw binning GMEM rendering. this is required because some of the
559 * XFB commands need to only be executed once
560 */
561 if (cmd->state.xfb_used)
562 return true;
563
564 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
565 return false;
566
567 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
568 return true;
569
570 return (fb->tile_count.width * fb->tile_count.height) > 2;
571 }
572
573 static bool
574 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
575 {
576 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
577 return true;
578
579 /* can't fit attachments into gmem */
580 if (!cmd->state.pass->gmem_pixels)
581 return true;
582
583 if (cmd->state.framebuffer->layers > 1)
584 return true;
585
586 /* Use sysmem for empty render areas */
587 if (cmd->state.render_area.extent.width == 0 ||
588 cmd->state.render_area.extent.height == 0)
589 return true;
590
591 if (cmd->has_tess)
592 return true;
593
594 return false;
595 }
596
597 static void
598 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
599 struct tu_cs *cs,
600 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot)
601 {
602 const struct tu_framebuffer *fb = cmd->state.framebuffer;
603
604 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
605 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
606
607 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
608 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
609
610 const uint32_t x1 = fb->tile0.width * tx;
611 const uint32_t y1 = fb->tile0.height * ty;
612 const uint32_t x2 = x1 + fb->tile0.width - 1;
613 const uint32_t y2 = y1 + fb->tile0.height - 1;
614 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
615 tu6_emit_window_offset(cs, x1, y1);
616
617 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
618
619 if (use_hw_binning(cmd)) {
620 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
621
622 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
623 tu_cs_emit(cs, 0x0);
624
625 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
626 tu_cs_emit(cs, fb->pipe_sizes[pipe] |
627 CP_SET_BIN_DATA5_0_VSC_N(slot));
628 tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
629 tu_cs_emit(cs, pipe * 4);
630 tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
631
632 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
633 tu_cs_emit(cs, 0x0);
634
635 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
636 tu_cs_emit(cs, 0x0);
637 } else {
638 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
639 tu_cs_emit(cs, 0x1);
640
641 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
642 tu_cs_emit(cs, 0x0);
643 }
644 }
645
646 static void
647 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
648 struct tu_cs *cs,
649 uint32_t a,
650 uint32_t gmem_a)
651 {
652 const struct tu_framebuffer *fb = cmd->state.framebuffer;
653 struct tu_image_view *dst = fb->attachments[a].attachment;
654 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
655
656 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.render_area);
657 }
658
659 static void
660 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
661 struct tu_cs *cs,
662 const struct tu_subpass *subpass)
663 {
664 if (subpass->resolve_attachments) {
665 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
666 * Commands":
667 *
668 * End-of-subpass multisample resolves are treated as color
669 * attachment writes for the purposes of synchronization. That is,
670 * they are considered to execute in the
671 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
672 * their writes are synchronized with
673 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
674 * rendering within a subpass and any resolve operations at the end
675 * of the subpass occurs automatically, without need for explicit
676 * dependencies or pipeline barriers. However, if the resolve
677 * attachment is also used in a different subpass, an explicit
678 * dependency is needed.
679 *
680 * We use the CP_BLIT path for sysmem resolves, which is really a
681 * transfer command, so we have to manually flush similar to the gmem
682 * resolve case. However, a flush afterwards isn't needed because of the
683 * last sentence and the fact that we're in sysmem mode.
684 */
685 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
686 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
687
688 /* Wait for the flushes to land before using the 2D engine */
689 tu_cs_emit_wfi(cs);
690
691 for (unsigned i = 0; i < subpass->color_count; i++) {
692 uint32_t a = subpass->resolve_attachments[i].attachment;
693 if (a == VK_ATTACHMENT_UNUSED)
694 continue;
695
696 tu6_emit_sysmem_resolve(cmd, cs, a,
697 subpass->color_attachments[i].attachment);
698 }
699 }
700 }
701
702 static void
703 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
704 {
705 const struct tu_render_pass *pass = cmd->state.pass;
706 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
707
708 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
709 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
710 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
711 CP_SET_DRAW_STATE__0_GROUP_ID(0));
712 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
713 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
714
715 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
716 tu_cs_emit(cs, 0x0);
717
718 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
719 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
720
721 tu6_emit_blit_scissor(cmd, cs, true);
722
723 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
724 if (pass->attachments[a].gmem_offset >= 0)
725 tu_store_gmem_attachment(cmd, cs, a, a);
726 }
727
728 if (subpass->resolve_attachments) {
729 for (unsigned i = 0; i < subpass->color_count; i++) {
730 uint32_t a = subpass->resolve_attachments[i].attachment;
731 if (a != VK_ATTACHMENT_UNUSED)
732 tu_store_gmem_attachment(cmd, cs, a,
733 subpass->color_attachments[i].attachment);
734 }
735 }
736 }
737
738 static void
739 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
740 {
741 struct tu_device *dev = cmd->device;
742 const struct tu_physical_device *phys_dev = dev->physical_device;
743
744 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
745
746 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
747 .vs_state = true,
748 .hs_state = true,
749 .ds_state = true,
750 .gs_state = true,
751 .fs_state = true,
752 .cs_state = true,
753 .gfx_ibo = true,
754 .cs_ibo = true,
755 .gfx_shared_const = true,
756 .cs_shared_const = true,
757 .gfx_bindless = 0x1f,
758 .cs_bindless = 0x1f));
759
760 tu_cs_emit_wfi(cs);
761
762 cmd->state.cache.pending_flush_bits &=
763 ~(TU_CMD_FLAG_WAIT_FOR_IDLE | TU_CMD_FLAG_CACHE_INVALIDATE);
764
765 tu_cs_emit_regs(cs,
766 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
767 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
768 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
769 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
770 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
771 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
772 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
773 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
774 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
775 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
776
777 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
778 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
779 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
780 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
781 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
782 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
783 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_SHARED_CONSTS, 0);
784 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
785 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
786 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
787 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
788 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
789 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
790
791 /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
792 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
793 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
794 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
795
796 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
797
798 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
799
800 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
801 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
802 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
803 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
804 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
805 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
806 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
807 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
808 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
809 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
810 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
811
812 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
813
814 tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false));
815 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
816
817 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
818
819 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
820 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
821
822 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
823 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
824
825 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
826
827 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
828
829 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
830 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
831 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
832 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
833 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
834 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
835 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
836 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
837 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
838
839 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
840
841 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
842
843 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
844
845 /* we don't use this yet.. probably best to disable.. */
846 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
847 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
848 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
849 CP_SET_DRAW_STATE__0_GROUP_ID(0));
850 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
851 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
852
853 tu_cs_emit_regs(cs,
854 A6XX_SP_HS_CTRL_REG0(0));
855
856 tu_cs_emit_regs(cs,
857 A6XX_SP_GS_CTRL_REG0(0));
858
859 tu_cs_emit_regs(cs,
860 A6XX_GRAS_LRZ_CNTL(0));
861
862 tu_cs_emit_regs(cs,
863 A6XX_RB_LRZ_CNTL(0));
864
865 tu_cs_emit_regs(cs,
866 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
867 .bo_offset = gb_offset(border_color)));
868 tu_cs_emit_regs(cs,
869 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
870 .bo_offset = gb_offset(border_color)));
871
872 /* VSC buffers:
873 * use vsc pitches from the largest values used so far with this device
874 * if there hasn't been overflow, there will already be a scratch bo
875 * allocated for these sizes
876 *
877 * if overflow is detected, the stream size is increased by 2x
878 */
879 mtx_lock(&dev->vsc_pitch_mtx);
880
881 struct tu6_global *global = dev->global_bo.map;
882
883 uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
884 uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
885
886 if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
887 dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
888
889 if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
890 dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
891
892 cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
893 cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
894
895 mtx_unlock(&dev->vsc_pitch_mtx);
896
897 struct tu_bo *vsc_bo;
898 uint32_t size0 = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES +
899 cmd->vsc_draw_strm_pitch * MAX_VSC_PIPES;
900
901 tu_get_scratch_bo(dev, size0 + MAX_VSC_PIPES * 4, &vsc_bo);
902
903 tu_cs_emit_regs(cs,
904 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
905 tu_cs_emit_regs(cs,
906 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
907 tu_cs_emit_regs(cs,
908 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
909 .bo_offset = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES));
910
911 tu_bo_list_add(&cmd->bo_list, vsc_bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
912
913 tu_cs_sanity_check(cs);
914 }
915
916 static void
917 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
918 {
919 const struct tu_framebuffer *fb = cmd->state.framebuffer;
920
921 tu_cs_emit_regs(cs,
922 A6XX_VSC_BIN_SIZE(.width = fb->tile0.width,
923 .height = fb->tile0.height));
924
925 tu_cs_emit_regs(cs,
926 A6XX_VSC_BIN_COUNT(.nx = fb->tile_count.width,
927 .ny = fb->tile_count.height));
928
929 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
930 tu_cs_emit_array(cs, fb->pipe_config, 32);
931
932 tu_cs_emit_regs(cs,
933 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
934 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
935
936 tu_cs_emit_regs(cs,
937 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
938 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
939 }
940
941 static void
942 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
943 {
944 const struct tu_framebuffer *fb = cmd->state.framebuffer;
945 const uint32_t used_pipe_count =
946 fb->pipe_count.width * fb->pipe_count.height;
947
948 for (int i = 0; i < used_pipe_count; i++) {
949 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
950 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
951 CP_COND_WRITE5_0_WRITE_MEMORY);
952 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
953 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
954 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
955 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
956 tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
957 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
958
959 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
960 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
961 CP_COND_WRITE5_0_WRITE_MEMORY);
962 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
963 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
964 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
965 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
966 tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
967 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
968 }
969
970 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
971 }
972
973 static void
974 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
975 {
976 struct tu_physical_device *phys_dev = cmd->device->physical_device;
977 const struct tu_framebuffer *fb = cmd->state.framebuffer;
978
979 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
980
981 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
982 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
983
984 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
985 tu_cs_emit(cs, 0x1);
986
987 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
988 tu_cs_emit(cs, 0x1);
989
990 tu_cs_emit_wfi(cs);
991
992 tu_cs_emit_regs(cs,
993 A6XX_VFD_MODE_CNTL(.binning_pass = true));
994
995 update_vsc_pipe(cmd, cs);
996
997 tu_cs_emit_regs(cs,
998 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
999
1000 tu_cs_emit_regs(cs,
1001 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1002
1003 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1004 tu_cs_emit(cs, UNK_2C);
1005
1006 tu_cs_emit_regs(cs,
1007 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1008
1009 tu_cs_emit_regs(cs,
1010 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1011
1012 /* emit IB to binning drawcmds: */
1013 tu_cs_emit_call(cs, &cmd->draw_cs);
1014
1015 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1016 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1017 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1018 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1019 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1020 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1021
1022 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1023 tu_cs_emit(cs, UNK_2D);
1024
1025 /* This flush is probably required because the VSC, which produces the
1026 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1027 * visibility stream (without caching) to do draw skipping. The
1028 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1029 * submitted are finished before reading the VSC regs (in
1030 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1031 * part of draws).
1032 */
1033 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1034
1035 tu_cs_emit_wfi(cs);
1036
1037 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1038
1039 emit_vsc_overflow_test(cmd, cs);
1040
1041 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1042 tu_cs_emit(cs, 0x0);
1043
1044 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1045 tu_cs_emit(cs, 0x0);
1046 }
1047
1048 static struct tu_draw_state
1049 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1050 const struct tu_subpass *subpass,
1051 bool gmem)
1052 {
1053 /* note: we can probably emit input attachments just once for the whole
1054 * renderpass, this would avoid emitting both sysmem/gmem versions
1055 *
1056 * emit two texture descriptors for each input, as a workaround for
1057 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1058 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1059 * in the pair
1060 * TODO: a smarter workaround
1061 */
1062
1063 if (!subpass->input_count)
1064 return (struct tu_draw_state) {};
1065
1066 struct tu_cs_memory texture;
1067 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1068 A6XX_TEX_CONST_DWORDS, &texture);
1069 assert(result == VK_SUCCESS);
1070
1071 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1072 uint32_t a = subpass->input_attachments[i / 2].attachment;
1073 if (a == VK_ATTACHMENT_UNUSED)
1074 continue;
1075
1076 struct tu_image_view *iview =
1077 cmd->state.framebuffer->attachments[a].attachment;
1078 const struct tu_render_pass_attachment *att =
1079 &cmd->state.pass->attachments[a];
1080 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1081
1082 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1083
1084 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1085 /* note this works because spec says fb and input attachments
1086 * must use identity swizzle
1087 */
1088 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1089 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1090 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1091 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1092 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1093 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1094 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1095 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1096 }
1097
1098 if (!gmem)
1099 continue;
1100
1101 /* patched for gmem */
1102 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1103 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1104 dst[2] =
1105 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1106 A6XX_TEX_CONST_2_PITCH(cmd->state.framebuffer->tile0.width * att->cpp);
1107 dst[3] = 0;
1108 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1109 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1110 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1111 dst[i] = 0;
1112 }
1113
1114 struct tu_cs cs;
1115 struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
1116
1117 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1118 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1119 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1120 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1121 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1122 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1123 tu_cs_emit_qw(&cs, texture.iova);
1124
1125 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1126 tu_cs_emit_qw(&cs, texture.iova);
1127
1128 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1129
1130 assert(cs.cur == cs.end); /* validate draw state size */
1131
1132 return ds;
1133 }
1134
1135 static void
1136 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1137 {
1138 struct tu_cs *cs = &cmd->draw_cs;
1139
1140 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1141 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
1142 tu_emit_input_attachments(cmd, subpass, true));
1143 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
1144 tu_emit_input_attachments(cmd, subpass, false));
1145 }
1146
1147 static void
1148 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1149 const VkRenderPassBeginInfo *info)
1150 {
1151 struct tu_cs *cs = &cmd->draw_cs;
1152
1153 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1154
1155 tu6_emit_blit_scissor(cmd, cs, true);
1156
1157 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1158 tu_load_gmem_attachment(cmd, cs, i, false);
1159
1160 tu6_emit_blit_scissor(cmd, cs, false);
1161
1162 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1163 tu_clear_gmem_attachment(cmd, cs, i, info);
1164
1165 tu_cond_exec_end(cs);
1166
1167 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1168
1169 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1170 tu_clear_sysmem_attachment(cmd, cs, i, info);
1171
1172 tu_cond_exec_end(cs);
1173 }
1174
1175 static void
1176 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1177 {
1178 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1179
1180 assert(fb->width > 0 && fb->height > 0);
1181 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1182 tu6_emit_window_offset(cs, 0, 0);
1183
1184 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1185
1186 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1187
1188 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1189 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1190
1191 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1192 tu_cs_emit(cs, 0x0);
1193
1194 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1195
1196 /* enable stream-out, with sysmem there is only one pass: */
1197 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1198
1199 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1200 tu_cs_emit(cs, 0x1);
1201
1202 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1203 tu_cs_emit(cs, 0x0);
1204
1205 tu_cs_sanity_check(cs);
1206 }
1207
1208 static void
1209 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1210 {
1211 /* Do any resolves of the last subpass. These are handled in the
1212 * tile_store_ib in the gmem path.
1213 */
1214 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1215
1216 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1217
1218 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1219 tu_cs_emit(cs, 0x0);
1220
1221 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1222
1223 tu_cs_sanity_check(cs);
1224 }
1225
1226 static void
1227 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1228 {
1229 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1230
1231 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1232
1233 /* lrz clear? */
1234
1235 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1236 tu_cs_emit(cs, 0x0);
1237
1238 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1239
1240 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1241 if (use_hw_binning(cmd)) {
1242 /* enable stream-out during binning pass: */
1243 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1244
1245 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1246 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1247
1248 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1249
1250 tu6_emit_binning_pass(cmd, cs);
1251
1252 /* and disable stream-out for draw pass: */
1253 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
1254
1255 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1256 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1257
1258 tu_cs_emit_regs(cs,
1259 A6XX_VFD_MODE_CNTL(0));
1260
1261 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1262
1263 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1264
1265 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1266 tu_cs_emit(cs, 0x1);
1267 } else {
1268 /* no binning pass, so enable stream-out for draw pass:: */
1269 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1270
1271 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height, 0x6000000);
1272 }
1273
1274 tu_cs_sanity_check(cs);
1275 }
1276
1277 static void
1278 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1279 {
1280 tu_cs_emit_call(cs, &cmd->draw_cs);
1281
1282 if (use_hw_binning(cmd)) {
1283 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1284 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1285 }
1286
1287 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1288
1289 tu_cs_sanity_check(cs);
1290 }
1291
1292 static void
1293 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1294 {
1295 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1296
1297 tu_cs_emit_regs(cs,
1298 A6XX_GRAS_LRZ_CNTL(0));
1299
1300 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1301
1302 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1303
1304 tu_cs_sanity_check(cs);
1305 }
1306
1307 static void
1308 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1309 {
1310 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1311
1312 tu6_tile_render_begin(cmd, &cmd->cs);
1313
1314 uint32_t pipe = 0;
1315 for (uint32_t py = 0; py < fb->pipe_count.height; py++) {
1316 for (uint32_t px = 0; px < fb->pipe_count.width; px++, pipe++) {
1317 uint32_t tx1 = px * fb->pipe0.width;
1318 uint32_t ty1 = py * fb->pipe0.height;
1319 uint32_t tx2 = MIN2(tx1 + fb->pipe0.width, fb->tile_count.width);
1320 uint32_t ty2 = MIN2(ty1 + fb->pipe0.height, fb->tile_count.height);
1321 uint32_t slot = 0;
1322 for (uint32_t ty = ty1; ty < ty2; ty++) {
1323 for (uint32_t tx = tx1; tx < tx2; tx++, slot++) {
1324 tu6_emit_tile_select(cmd, &cmd->cs, tx, ty, pipe, slot);
1325 tu6_render_tile(cmd, &cmd->cs);
1326 }
1327 }
1328 }
1329 }
1330
1331 tu6_tile_render_end(cmd, &cmd->cs);
1332 }
1333
1334 static void
1335 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1336 {
1337 tu6_sysmem_render_begin(cmd, &cmd->cs);
1338
1339 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1340
1341 tu6_sysmem_render_end(cmd, &cmd->cs);
1342 }
1343
1344 static void
1345 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1346 {
1347 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1348 struct tu_cs sub_cs;
1349
1350 VkResult result =
1351 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1352 if (result != VK_SUCCESS) {
1353 cmd->record_result = result;
1354 return;
1355 }
1356
1357 /* emit to tile-store sub_cs */
1358 tu6_emit_tile_store(cmd, &sub_cs);
1359
1360 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1361 }
1362
1363 static VkResult
1364 tu_create_cmd_buffer(struct tu_device *device,
1365 struct tu_cmd_pool *pool,
1366 VkCommandBufferLevel level,
1367 VkCommandBuffer *pCommandBuffer)
1368 {
1369 struct tu_cmd_buffer *cmd_buffer;
1370
1371 cmd_buffer = vk_object_zalloc(&device->vk, NULL, sizeof(*cmd_buffer),
1372 VK_OBJECT_TYPE_COMMAND_BUFFER);
1373 if (cmd_buffer == NULL)
1374 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1375
1376 cmd_buffer->device = device;
1377 cmd_buffer->pool = pool;
1378 cmd_buffer->level = level;
1379
1380 if (pool) {
1381 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1382 cmd_buffer->queue_family_index = pool->queue_family_index;
1383
1384 } else {
1385 /* Init the pool_link so we can safely call list_del when we destroy
1386 * the command buffer
1387 */
1388 list_inithead(&cmd_buffer->pool_link);
1389 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1390 }
1391
1392 tu_bo_list_init(&cmd_buffer->bo_list);
1393 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1394 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1395 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1396 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1397
1398 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1399
1400 list_inithead(&cmd_buffer->upload.list);
1401
1402 return VK_SUCCESS;
1403 }
1404
1405 static void
1406 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1407 {
1408 list_del(&cmd_buffer->pool_link);
1409
1410 tu_cs_finish(&cmd_buffer->cs);
1411 tu_cs_finish(&cmd_buffer->draw_cs);
1412 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1413 tu_cs_finish(&cmd_buffer->sub_cs);
1414
1415 tu_bo_list_destroy(&cmd_buffer->bo_list);
1416 vk_object_free(&cmd_buffer->device->vk, &cmd_buffer->pool->alloc, cmd_buffer);
1417 }
1418
1419 static VkResult
1420 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1421 {
1422 cmd_buffer->record_result = VK_SUCCESS;
1423
1424 tu_bo_list_reset(&cmd_buffer->bo_list);
1425 tu_cs_reset(&cmd_buffer->cs);
1426 tu_cs_reset(&cmd_buffer->draw_cs);
1427 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1428 tu_cs_reset(&cmd_buffer->sub_cs);
1429
1430 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1431 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1432
1433 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1434
1435 return cmd_buffer->record_result;
1436 }
1437
1438 VkResult
1439 tu_AllocateCommandBuffers(VkDevice _device,
1440 const VkCommandBufferAllocateInfo *pAllocateInfo,
1441 VkCommandBuffer *pCommandBuffers)
1442 {
1443 TU_FROM_HANDLE(tu_device, device, _device);
1444 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1445
1446 VkResult result = VK_SUCCESS;
1447 uint32_t i;
1448
1449 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1450
1451 if (!list_is_empty(&pool->free_cmd_buffers)) {
1452 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1453 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1454
1455 list_del(&cmd_buffer->pool_link);
1456 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1457
1458 result = tu_reset_cmd_buffer(cmd_buffer);
1459 cmd_buffer->level = pAllocateInfo->level;
1460
1461 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1462 } else {
1463 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1464 &pCommandBuffers[i]);
1465 }
1466 if (result != VK_SUCCESS)
1467 break;
1468 }
1469
1470 if (result != VK_SUCCESS) {
1471 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1472 pCommandBuffers);
1473
1474 /* From the Vulkan 1.0.66 spec:
1475 *
1476 * "vkAllocateCommandBuffers can be used to create multiple
1477 * command buffers. If the creation of any of those command
1478 * buffers fails, the implementation must destroy all
1479 * successfully created command buffer objects from this
1480 * command, set all entries of the pCommandBuffers array to
1481 * NULL and return the error."
1482 */
1483 memset(pCommandBuffers, 0,
1484 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1485 }
1486
1487 return result;
1488 }
1489
1490 void
1491 tu_FreeCommandBuffers(VkDevice device,
1492 VkCommandPool commandPool,
1493 uint32_t commandBufferCount,
1494 const VkCommandBuffer *pCommandBuffers)
1495 {
1496 for (uint32_t i = 0; i < commandBufferCount; i++) {
1497 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1498
1499 if (cmd_buffer) {
1500 if (cmd_buffer->pool) {
1501 list_del(&cmd_buffer->pool_link);
1502 list_addtail(&cmd_buffer->pool_link,
1503 &cmd_buffer->pool->free_cmd_buffers);
1504 } else
1505 tu_cmd_buffer_destroy(cmd_buffer);
1506 }
1507 }
1508 }
1509
1510 VkResult
1511 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1512 VkCommandBufferResetFlags flags)
1513 {
1514 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1515 return tu_reset_cmd_buffer(cmd_buffer);
1516 }
1517
1518 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1519 * invalidations.
1520 */
1521 static void
1522 tu_cache_init(struct tu_cache_state *cache)
1523 {
1524 cache->flush_bits = 0;
1525 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1526 }
1527
1528 VkResult
1529 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1530 const VkCommandBufferBeginInfo *pBeginInfo)
1531 {
1532 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1533 VkResult result = VK_SUCCESS;
1534
1535 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1536 /* If the command buffer has already been resetted with
1537 * vkResetCommandBuffer, no need to do it again.
1538 */
1539 result = tu_reset_cmd_buffer(cmd_buffer);
1540 if (result != VK_SUCCESS)
1541 return result;
1542 }
1543
1544 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1545 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1546
1547 tu_cache_init(&cmd_buffer->state.cache);
1548 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1549 cmd_buffer->usage_flags = pBeginInfo->flags;
1550
1551 tu_cs_begin(&cmd_buffer->cs);
1552 tu_cs_begin(&cmd_buffer->draw_cs);
1553 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1554
1555 /* setup initial configuration into command buffer */
1556 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1557 switch (cmd_buffer->queue_family_index) {
1558 case TU_QUEUE_GENERAL:
1559 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1560 break;
1561 default:
1562 break;
1563 }
1564 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1565 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1566 assert(pBeginInfo->pInheritanceInfo);
1567 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1568 cmd_buffer->state.subpass =
1569 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1570 } else {
1571 /* When executing in the middle of another command buffer, the CCU
1572 * state is unknown.
1573 */
1574 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1575 }
1576 }
1577
1578 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1579
1580 return VK_SUCCESS;
1581 }
1582
1583 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1584 * rendering can skip over unused state), so we need to collect all the
1585 * bindings together into a single state emit at draw time.
1586 */
1587 void
1588 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1589 uint32_t firstBinding,
1590 uint32_t bindingCount,
1591 const VkBuffer *pBuffers,
1592 const VkDeviceSize *pOffsets)
1593 {
1594 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1595
1596 assert(firstBinding + bindingCount <= MAX_VBS);
1597
1598 for (uint32_t i = 0; i < bindingCount; i++) {
1599 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1600
1601 cmd->state.vb.buffers[firstBinding + i] = buf;
1602 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1603
1604 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1605 }
1606
1607 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1608 }
1609
1610 void
1611 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1612 VkBuffer buffer,
1613 VkDeviceSize offset,
1614 VkIndexType indexType)
1615 {
1616 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1617 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1618
1619
1620
1621 uint32_t index_size, index_shift, restart_index;
1622
1623 switch (indexType) {
1624 case VK_INDEX_TYPE_UINT16:
1625 index_size = INDEX4_SIZE_16_BIT;
1626 index_shift = 1;
1627 restart_index = 0xffff;
1628 break;
1629 case VK_INDEX_TYPE_UINT32:
1630 index_size = INDEX4_SIZE_32_BIT;
1631 index_shift = 2;
1632 restart_index = 0xffffffff;
1633 break;
1634 case VK_INDEX_TYPE_UINT8_EXT:
1635 index_size = INDEX4_SIZE_8_BIT;
1636 index_shift = 0;
1637 restart_index = 0xff;
1638 break;
1639 default:
1640 unreachable("invalid VkIndexType");
1641 }
1642
1643 /* initialize/update the restart index */
1644 if (cmd->state.index_size != index_size)
1645 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1646
1647 assert(buf->size >= offset);
1648
1649 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1650 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1651 cmd->state.index_size = index_size;
1652
1653 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1654 }
1655
1656 void
1657 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1658 VkPipelineBindPoint pipelineBindPoint,
1659 VkPipelineLayout _layout,
1660 uint32_t firstSet,
1661 uint32_t descriptorSetCount,
1662 const VkDescriptorSet *pDescriptorSets,
1663 uint32_t dynamicOffsetCount,
1664 const uint32_t *pDynamicOffsets)
1665 {
1666 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1667 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1668 unsigned dyn_idx = 0;
1669
1670 struct tu_descriptor_state *descriptors_state =
1671 tu_get_descriptors_state(cmd, pipelineBindPoint);
1672
1673 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1674 unsigned idx = i + firstSet;
1675 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1676
1677 descriptors_state->sets[idx] = set;
1678
1679 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1680 /* update the contents of the dynamic descriptor set */
1681 unsigned src_idx = j;
1682 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1683 assert(dyn_idx < dynamicOffsetCount);
1684
1685 uint32_t *dst =
1686 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1687 uint32_t *src =
1688 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1689 uint32_t offset = pDynamicOffsets[dyn_idx];
1690
1691 /* Patch the storage/uniform descriptors right away. */
1692 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1693 /* Note: we can assume here that the addition won't roll over and
1694 * change the SIZE field.
1695 */
1696 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1697 va += offset;
1698 dst[0] = va;
1699 dst[1] = va >> 32;
1700 } else {
1701 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1702 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1703 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1704 va += offset;
1705 dst[4] = va;
1706 dst[5] = va >> 32;
1707 }
1708 }
1709
1710 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1711 if (set->buffers[j]) {
1712 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1713 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1714 }
1715 }
1716
1717 if (set->size > 0) {
1718 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1719 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1720 }
1721 }
1722 assert(dyn_idx == dynamicOffsetCount);
1723
1724 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_invalidate_value;
1725 uint64_t addr[MAX_SETS + 1] = {};
1726 struct tu_cs *cs, state_cs;
1727
1728 for (uint32_t i = 0; i < MAX_SETS; i++) {
1729 struct tu_descriptor_set *set = descriptors_state->sets[i];
1730 if (set)
1731 addr[i] = set->va | 3;
1732 }
1733
1734 if (layout->dynamic_offset_count) {
1735 /* allocate and fill out dynamic descriptor set */
1736 struct tu_cs_memory dynamic_desc_set;
1737 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1738 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1739 assert(result == VK_SUCCESS);
1740
1741 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1742 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1743 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1744 }
1745
1746 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1747 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1748 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1749 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_GFX_BINDLESS(0x1f);
1750
1751 cmd->state.desc_sets = tu_cs_draw_state(&cmd->sub_cs, &state_cs, 24);
1752 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
1753 cs = &state_cs;
1754 } else {
1755 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1756
1757 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1758 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1759 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_CS_BINDLESS(0x1f);
1760
1761 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
1762 cs = &cmd->cs;
1763 }
1764
1765 tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 10);
1766 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1767 tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 10);
1768 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1769 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(.dword = hlsq_invalidate_value));
1770
1771 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1772 assert(cs->cur == cs->end); /* validate draw state size */
1773 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1774 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
1775 }
1776 }
1777
1778 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1779 uint32_t firstBinding,
1780 uint32_t bindingCount,
1781 const VkBuffer *pBuffers,
1782 const VkDeviceSize *pOffsets,
1783 const VkDeviceSize *pSizes)
1784 {
1785 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1786 struct tu_cs *cs = &cmd->draw_cs;
1787
1788 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1789 * presumably there isn't any benefit using a draw state when the
1790 * condition is (SYSMEM | BINNING)
1791 */
1792 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1793 CP_COND_REG_EXEC_0_SYSMEM |
1794 CP_COND_REG_EXEC_0_BINNING);
1795
1796 for (uint32_t i = 0; i < bindingCount; i++) {
1797 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1798 uint64_t iova = buf->bo->iova + pOffsets[i];
1799 uint32_t size = buf->bo->size - pOffsets[i];
1800 uint32_t idx = i + firstBinding;
1801
1802 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1803 size = pSizes[i];
1804
1805 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1806 uint32_t offset = iova & 0x1f;
1807 iova &= ~(uint64_t) 0x1f;
1808
1809 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1810 tu_cs_emit_qw(cs, iova);
1811 tu_cs_emit(cs, size + offset);
1812
1813 cmd->state.streamout_offset[idx] = offset;
1814
1815 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1816 }
1817
1818 tu_cond_exec_end(cs);
1819 }
1820
1821 void
1822 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1823 uint32_t firstCounterBuffer,
1824 uint32_t counterBufferCount,
1825 const VkBuffer *pCounterBuffers,
1826 const VkDeviceSize *pCounterBufferOffsets)
1827 {
1828 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1829 struct tu_cs *cs = &cmd->draw_cs;
1830
1831 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1832 CP_COND_REG_EXEC_0_SYSMEM |
1833 CP_COND_REG_EXEC_0_BINNING);
1834
1835 /* TODO: only update offset for active buffers */
1836 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1837 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1838
1839 for (uint32_t i = 0; i < counterBufferCount; i++) {
1840 uint32_t idx = firstCounterBuffer + i;
1841 uint32_t offset = cmd->state.streamout_offset[idx];
1842
1843 if (!pCounterBuffers[i])
1844 continue;
1845
1846 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1847
1848 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1849
1850 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1851 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1852 CP_MEM_TO_REG_0_UNK31 |
1853 CP_MEM_TO_REG_0_CNT(1));
1854 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1855
1856 if (offset) {
1857 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1858 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1859 CP_REG_RMW_0_SRC1_ADD);
1860 tu_cs_emit_qw(cs, 0xffffffff);
1861 tu_cs_emit_qw(cs, offset);
1862 }
1863 }
1864
1865 tu_cond_exec_end(cs);
1866 }
1867
1868 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1869 uint32_t firstCounterBuffer,
1870 uint32_t counterBufferCount,
1871 const VkBuffer *pCounterBuffers,
1872 const VkDeviceSize *pCounterBufferOffsets)
1873 {
1874 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1875 struct tu_cs *cs = &cmd->draw_cs;
1876
1877 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1878 CP_COND_REG_EXEC_0_SYSMEM |
1879 CP_COND_REG_EXEC_0_BINNING);
1880
1881 /* TODO: only flush buffers that need to be flushed */
1882 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
1883 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
1884 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
1885 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[i]));
1886 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
1887 }
1888
1889 for (uint32_t i = 0; i < counterBufferCount; i++) {
1890 uint32_t idx = firstCounterBuffer + i;
1891 uint32_t offset = cmd->state.streamout_offset[idx];
1892
1893 if (!pCounterBuffers[i])
1894 continue;
1895
1896 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1897
1898 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1899
1900 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
1901 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1902 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1903 CP_MEM_TO_REG_0_SHIFT_BY_2 |
1904 0x40000 | /* ??? */
1905 CP_MEM_TO_REG_0_UNK31 |
1906 CP_MEM_TO_REG_0_CNT(1));
1907 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[idx]));
1908
1909 if (offset) {
1910 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1911 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1912 CP_REG_RMW_0_SRC1_ADD);
1913 tu_cs_emit_qw(cs, 0xffffffff);
1914 tu_cs_emit_qw(cs, -offset);
1915 }
1916
1917 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
1918 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1919 CP_REG_TO_MEM_0_CNT(1));
1920 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1921 }
1922
1923 tu_cond_exec_end(cs);
1924
1925 cmd->state.xfb_used = true;
1926 }
1927
1928 void
1929 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
1930 VkPipelineLayout layout,
1931 VkShaderStageFlags stageFlags,
1932 uint32_t offset,
1933 uint32_t size,
1934 const void *pValues)
1935 {
1936 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1937 memcpy((void*) cmd->push_constants + offset, pValues, size);
1938 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
1939 }
1940
1941 /* Flush everything which has been made available but we haven't actually
1942 * flushed yet.
1943 */
1944 static void
1945 tu_flush_all_pending(struct tu_cache_state *cache)
1946 {
1947 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
1948 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
1949 }
1950
1951 VkResult
1952 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
1953 {
1954 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1955
1956 /* We currently flush CCU at the end of the command buffer, like
1957 * what the blob does. There's implicit synchronization around every
1958 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
1959 * know yet if this command buffer will be the last in the submit so we
1960 * have to defensively flush everything else.
1961 *
1962 * TODO: We could definitely do better than this, since these flushes
1963 * aren't required by Vulkan, but we'd need kernel support to do that.
1964 * Ideally, we'd like the kernel to flush everything afterwards, so that we
1965 * wouldn't have to do any flushes here, and when submitting multiple
1966 * command buffers there wouldn't be any unnecessary flushes in between.
1967 */
1968 if (cmd_buffer->state.pass) {
1969 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
1970 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
1971 } else {
1972 tu_flush_all_pending(&cmd_buffer->state.cache);
1973 cmd_buffer->state.cache.flush_bits |=
1974 TU_CMD_FLAG_CCU_FLUSH_COLOR |
1975 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
1976 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
1977 }
1978
1979 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->global_bo,
1980 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1981
1982 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
1983 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
1984 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1985 }
1986
1987 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
1988 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
1989 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1990 }
1991
1992 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
1993 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
1994 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1995 }
1996
1997 tu_cs_end(&cmd_buffer->cs);
1998 tu_cs_end(&cmd_buffer->draw_cs);
1999 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
2000
2001 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
2002
2003 return cmd_buffer->record_result;
2004 }
2005
2006 static struct tu_cs
2007 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2008 {
2009 struct tu_cs cs;
2010
2011 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2012 cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
2013
2014 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2015 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2016
2017 return cs;
2018 }
2019
2020 void
2021 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2022 VkPipelineBindPoint pipelineBindPoint,
2023 VkPipeline _pipeline)
2024 {
2025 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2026 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2027
2028 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2029 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2030 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2031 }
2032
2033 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2034 cmd->state.compute_pipeline = pipeline;
2035 tu_cs_emit_state_ib(&cmd->cs, pipeline->program.state);
2036 return;
2037 }
2038
2039 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2040
2041 cmd->state.pipeline = pipeline;
2042 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
2043
2044 struct tu_cs *cs = &cmd->draw_cs;
2045 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2046 uint32_t i;
2047
2048 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2049 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
2050 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
2051 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
2052 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
2053 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
2054 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
2055 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
2056 for_each_bit(i, mask)
2057 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2058
2059 /* If the new pipeline requires more VBs than we had previously set up, we
2060 * need to re-emit them in SDS. If it requires the same set or fewer, we
2061 * can just re-use the old SDS.
2062 */
2063 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2064 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2065
2066 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2067 * so the dynamic state ib must be updated when pipeline changes
2068 */
2069 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2070 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2071
2072 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2073 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2074
2075 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2076 }
2077 }
2078
2079 void
2080 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2081 uint32_t firstViewport,
2082 uint32_t viewportCount,
2083 const VkViewport *pViewports)
2084 {
2085 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2086 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2087
2088 assert(firstViewport == 0 && viewportCount == 1);
2089
2090 tu6_emit_viewport(&cs, pViewports);
2091 }
2092
2093 void
2094 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2095 uint32_t firstScissor,
2096 uint32_t scissorCount,
2097 const VkRect2D *pScissors)
2098 {
2099 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2100 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2101
2102 assert(firstScissor == 0 && scissorCount == 1);
2103
2104 tu6_emit_scissor(&cs, pScissors);
2105 }
2106
2107 void
2108 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2109 {
2110 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2111 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2112
2113 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2114 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2115
2116 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2117 }
2118
2119 void
2120 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2121 float depthBiasConstantFactor,
2122 float depthBiasClamp,
2123 float depthBiasSlopeFactor)
2124 {
2125 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2126 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2127
2128 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2129 }
2130
2131 void
2132 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2133 const float blendConstants[4])
2134 {
2135 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2136 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2137
2138 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2139 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2140 }
2141
2142 void
2143 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2144 float minDepthBounds,
2145 float maxDepthBounds)
2146 {
2147 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2148 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
2149
2150 tu_cs_emit_regs(&cs,
2151 A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
2152 A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
2153 }
2154
2155 static void
2156 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2157 {
2158 if (face & VK_STENCIL_FACE_FRONT_BIT)
2159 *value = (*value & 0xff00) | (mask & 0xff);
2160 if (face & VK_STENCIL_FACE_BACK_BIT)
2161 *value = (*value & 0xff) | (mask & 0xff) << 8;
2162 }
2163
2164 void
2165 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2166 VkStencilFaceFlags faceMask,
2167 uint32_t compareMask)
2168 {
2169 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2170 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2171
2172 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2173
2174 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2175 }
2176
2177 void
2178 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2179 VkStencilFaceFlags faceMask,
2180 uint32_t writeMask)
2181 {
2182 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2183 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2184
2185 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2186
2187 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2188 }
2189
2190 void
2191 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2192 VkStencilFaceFlags faceMask,
2193 uint32_t reference)
2194 {
2195 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2196 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2197
2198 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2199
2200 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2201 }
2202
2203 void
2204 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2205 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2206 {
2207 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2208 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2209
2210 assert(pSampleLocationsInfo);
2211
2212 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2213 }
2214
2215 static void
2216 tu_flush_for_access(struct tu_cache_state *cache,
2217 enum tu_cmd_access_mask src_mask,
2218 enum tu_cmd_access_mask dst_mask)
2219 {
2220 enum tu_cmd_flush_bits flush_bits = 0;
2221
2222 if (src_mask & TU_ACCESS_HOST_WRITE) {
2223 /* Host writes are always visible to CP, so only invalidate GPU caches */
2224 cache->pending_flush_bits |= TU_CMD_FLAG_GPU_INVALIDATE;
2225 }
2226
2227 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2228 /* Invalidate CP and 2D engine (make it do WFI + WFM if necessary) as
2229 * well.
2230 */
2231 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2232 }
2233
2234 if (src_mask & TU_ACCESS_CP_WRITE) {
2235 /* Flush the CP write queue. However a WFI shouldn't be necessary as
2236 * WAIT_MEM_WRITES should cover it.
2237 */
2238 cache->pending_flush_bits |=
2239 TU_CMD_FLAG_WAIT_MEM_WRITES |
2240 TU_CMD_FLAG_GPU_INVALIDATE |
2241 TU_CMD_FLAG_WAIT_FOR_ME;
2242 }
2243
2244 #define SRC_FLUSH(domain, flush, invalidate) \
2245 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2246 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2247 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2248 }
2249
2250 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2251 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2252 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2253
2254 #undef SRC_FLUSH
2255
2256 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2257 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2258 flush_bits |= TU_CMD_FLAG_##flush; \
2259 cache->pending_flush_bits |= \
2260 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2261 }
2262
2263 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2264 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2265
2266 #undef SRC_INCOHERENT_FLUSH
2267
2268 /* Treat host & sysmem write accesses the same, since the kernel implicitly
2269 * drains the queue before signalling completion to the host.
2270 */
2271 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE |
2272 TU_ACCESS_HOST_READ | TU_ACCESS_HOST_WRITE)) {
2273 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2274 }
2275
2276 #define DST_FLUSH(domain, flush, invalidate) \
2277 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2278 TU_ACCESS_##domain##_WRITE)) { \
2279 flush_bits |= cache->pending_flush_bits & \
2280 (TU_CMD_FLAG_##invalidate | \
2281 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2282 }
2283
2284 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2285 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2286 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2287
2288 #undef DST_FLUSH
2289
2290 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2291 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2292 TU_ACCESS_##domain##_WRITE)) { \
2293 flush_bits |= TU_CMD_FLAG_##invalidate | \
2294 (cache->pending_flush_bits & \
2295 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2296 }
2297
2298 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2299 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2300
2301 #undef DST_INCOHERENT_FLUSH
2302
2303 if (dst_mask & TU_ACCESS_WFI_READ) {
2304 flush_bits |= cache->pending_flush_bits &
2305 (TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_WAIT_FOR_IDLE);
2306 }
2307
2308 if (dst_mask & TU_ACCESS_WFM_READ) {
2309 flush_bits |= cache->pending_flush_bits &
2310 (TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_WAIT_FOR_ME);
2311 }
2312
2313 cache->flush_bits |= flush_bits;
2314 cache->pending_flush_bits &= ~flush_bits;
2315 }
2316
2317 static enum tu_cmd_access_mask
2318 vk2tu_access(VkAccessFlags flags, bool gmem)
2319 {
2320 enum tu_cmd_access_mask mask = 0;
2321
2322 /* If the GPU writes a buffer that is then read by an indirect draw
2323 * command, we theoretically need to emit a WFI to wait for any cache
2324 * flushes, and then a WAIT_FOR_ME to wait on the CP for the WFI to
2325 * complete. Waiting for the WFI to complete is performed as part of the
2326 * draw by the firmware, so we just need to execute the WFI.
2327 *
2328 * Transform feedback counters are read via CP_MEM_TO_REG, which implicitly
2329 * does CP_WAIT_FOR_ME, but we still need a WFI if the GPU writes it.
2330 */
2331 if (flags &
2332 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2333 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT |
2334 VK_ACCESS_MEMORY_READ_BIT)) {
2335 mask |= TU_ACCESS_WFI_READ;
2336 }
2337
2338 if (flags &
2339 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2340 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2341 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP */
2342 VK_ACCESS_MEMORY_READ_BIT)) {
2343 mask |= TU_ACCESS_SYSMEM_READ;
2344 }
2345
2346 if (flags &
2347 (VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT |
2348 VK_ACCESS_MEMORY_WRITE_BIT)) {
2349 mask |= TU_ACCESS_CP_WRITE;
2350 }
2351
2352 if (flags &
2353 (VK_ACCESS_HOST_READ_BIT |
2354 VK_ACCESS_MEMORY_WRITE_BIT)) {
2355 mask |= TU_ACCESS_HOST_READ;
2356 }
2357
2358 if (flags &
2359 (VK_ACCESS_HOST_WRITE_BIT |
2360 VK_ACCESS_MEMORY_WRITE_BIT)) {
2361 mask |= TU_ACCESS_HOST_WRITE;
2362 }
2363
2364 if (flags &
2365 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2366 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2367 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2368 /* TODO: Is there a no-cache bit for textures so that we can ignore
2369 * these?
2370 */
2371 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2372 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2373 VK_ACCESS_MEMORY_READ_BIT)) {
2374 mask |= TU_ACCESS_UCHE_READ;
2375 }
2376
2377 if (flags &
2378 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2379 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2380 VK_ACCESS_MEMORY_WRITE_BIT)) {
2381 mask |= TU_ACCESS_UCHE_WRITE;
2382 }
2383
2384 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2385 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2386 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2387 * can ignore CCU and pretend that color attachments and transfers use
2388 * sysmem directly.
2389 */
2390
2391 if (flags &
2392 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2393 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2394 VK_ACCESS_MEMORY_READ_BIT)) {
2395 if (gmem)
2396 mask |= TU_ACCESS_SYSMEM_READ;
2397 else
2398 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2399 }
2400
2401 if (flags &
2402 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2403 VK_ACCESS_MEMORY_READ_BIT)) {
2404 if (gmem)
2405 mask |= TU_ACCESS_SYSMEM_READ;
2406 else
2407 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2408 }
2409
2410 if (flags &
2411 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2412 VK_ACCESS_MEMORY_WRITE_BIT)) {
2413 if (gmem) {
2414 mask |= TU_ACCESS_SYSMEM_WRITE;
2415 } else {
2416 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2417 }
2418 }
2419
2420 if (flags &
2421 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2422 VK_ACCESS_MEMORY_WRITE_BIT)) {
2423 if (gmem) {
2424 mask |= TU_ACCESS_SYSMEM_WRITE;
2425 } else {
2426 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2427 }
2428 }
2429
2430 /* When the dst access is a transfer read/write, it seems we sometimes need
2431 * to insert a WFI after any flushes, to guarantee that the flushes finish
2432 * before the 2D engine starts. However the opposite (i.e. a WFI after
2433 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2434 * the blob doesn't emit such a WFI.
2435 */
2436
2437 if (flags &
2438 (VK_ACCESS_TRANSFER_WRITE_BIT |
2439 VK_ACCESS_MEMORY_WRITE_BIT)) {
2440 if (gmem) {
2441 mask |= TU_ACCESS_SYSMEM_WRITE;
2442 } else {
2443 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2444 }
2445 mask |= TU_ACCESS_WFI_READ;
2446 }
2447
2448 if (flags &
2449 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2450 VK_ACCESS_MEMORY_READ_BIT)) {
2451 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2452 }
2453
2454 return mask;
2455 }
2456
2457
2458 void
2459 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2460 uint32_t commandBufferCount,
2461 const VkCommandBuffer *pCmdBuffers)
2462 {
2463 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2464 VkResult result;
2465
2466 assert(commandBufferCount > 0);
2467
2468 /* Emit any pending flushes. */
2469 if (cmd->state.pass) {
2470 tu_flush_all_pending(&cmd->state.renderpass_cache);
2471 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2472 } else {
2473 tu_flush_all_pending(&cmd->state.cache);
2474 tu_emit_cache_flush(cmd, &cmd->cs);
2475 }
2476
2477 for (uint32_t i = 0; i < commandBufferCount; i++) {
2478 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2479
2480 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2481 if (result != VK_SUCCESS) {
2482 cmd->record_result = result;
2483 break;
2484 }
2485
2486 if (secondary->usage_flags &
2487 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2488 assert(tu_cs_is_empty(&secondary->cs));
2489
2490 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2491 if (result != VK_SUCCESS) {
2492 cmd->record_result = result;
2493 break;
2494 }
2495
2496 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2497 &secondary->draw_epilogue_cs);
2498 if (result != VK_SUCCESS) {
2499 cmd->record_result = result;
2500 break;
2501 }
2502
2503 if (secondary->has_tess)
2504 cmd->has_tess = true;
2505 } else {
2506 assert(tu_cs_is_empty(&secondary->draw_cs));
2507 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2508
2509 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2510 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2511 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2512 }
2513
2514 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2515 }
2516
2517 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2518 }
2519 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2520
2521 /* After executing secondary command buffers, there may have been arbitrary
2522 * flushes executed, so when we encounter a pipeline barrier with a
2523 * srcMask, we have to assume that we need to invalidate. Therefore we need
2524 * to re-initialize the cache with all pending invalidate bits set.
2525 */
2526 if (cmd->state.pass) {
2527 tu_cache_init(&cmd->state.renderpass_cache);
2528 } else {
2529 tu_cache_init(&cmd->state.cache);
2530 }
2531 }
2532
2533 VkResult
2534 tu_CreateCommandPool(VkDevice _device,
2535 const VkCommandPoolCreateInfo *pCreateInfo,
2536 const VkAllocationCallbacks *pAllocator,
2537 VkCommandPool *pCmdPool)
2538 {
2539 TU_FROM_HANDLE(tu_device, device, _device);
2540 struct tu_cmd_pool *pool;
2541
2542 pool = vk_object_alloc(&device->vk, pAllocator, sizeof(*pool),
2543 VK_OBJECT_TYPE_COMMAND_POOL);
2544 if (pool == NULL)
2545 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2546
2547 if (pAllocator)
2548 pool->alloc = *pAllocator;
2549 else
2550 pool->alloc = device->vk.alloc;
2551
2552 list_inithead(&pool->cmd_buffers);
2553 list_inithead(&pool->free_cmd_buffers);
2554
2555 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2556
2557 *pCmdPool = tu_cmd_pool_to_handle(pool);
2558
2559 return VK_SUCCESS;
2560 }
2561
2562 void
2563 tu_DestroyCommandPool(VkDevice _device,
2564 VkCommandPool commandPool,
2565 const VkAllocationCallbacks *pAllocator)
2566 {
2567 TU_FROM_HANDLE(tu_device, device, _device);
2568 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2569
2570 if (!pool)
2571 return;
2572
2573 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2574 &pool->cmd_buffers, pool_link)
2575 {
2576 tu_cmd_buffer_destroy(cmd_buffer);
2577 }
2578
2579 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2580 &pool->free_cmd_buffers, pool_link)
2581 {
2582 tu_cmd_buffer_destroy(cmd_buffer);
2583 }
2584
2585 vk_object_free(&device->vk, pAllocator, pool);
2586 }
2587
2588 VkResult
2589 tu_ResetCommandPool(VkDevice device,
2590 VkCommandPool commandPool,
2591 VkCommandPoolResetFlags flags)
2592 {
2593 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2594 VkResult result;
2595
2596 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2597 pool_link)
2598 {
2599 result = tu_reset_cmd_buffer(cmd_buffer);
2600 if (result != VK_SUCCESS)
2601 return result;
2602 }
2603
2604 return VK_SUCCESS;
2605 }
2606
2607 void
2608 tu_TrimCommandPool(VkDevice device,
2609 VkCommandPool commandPool,
2610 VkCommandPoolTrimFlags flags)
2611 {
2612 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2613
2614 if (!pool)
2615 return;
2616
2617 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2618 &pool->free_cmd_buffers, pool_link)
2619 {
2620 tu_cmd_buffer_destroy(cmd_buffer);
2621 }
2622 }
2623
2624 static void
2625 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2626 const struct tu_subpass_barrier *barrier,
2627 bool external)
2628 {
2629 /* Note: we don't know until the end of the subpass whether we'll use
2630 * sysmem, so assume sysmem here to be safe.
2631 */
2632 struct tu_cache_state *cache =
2633 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2634 enum tu_cmd_access_mask src_flags =
2635 vk2tu_access(barrier->src_access_mask, false);
2636 enum tu_cmd_access_mask dst_flags =
2637 vk2tu_access(barrier->dst_access_mask, false);
2638
2639 if (barrier->incoherent_ccu_color)
2640 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2641 if (barrier->incoherent_ccu_depth)
2642 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2643
2644 tu_flush_for_access(cache, src_flags, dst_flags);
2645 }
2646
2647 void
2648 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2649 const VkRenderPassBeginInfo *pRenderPassBegin,
2650 VkSubpassContents contents)
2651 {
2652 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2653 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2654 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2655
2656 cmd->state.pass = pass;
2657 cmd->state.subpass = pass->subpasses;
2658 cmd->state.framebuffer = fb;
2659 cmd->state.render_area = pRenderPassBegin->renderArea;
2660
2661 tu_cmd_prepare_tile_store_ib(cmd);
2662
2663 /* Note: because this is external, any flushes will happen before draw_cs
2664 * gets called. However deferred flushes could have to happen later as part
2665 * of the subpass.
2666 */
2667 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2668 cmd->state.renderpass_cache.pending_flush_bits =
2669 cmd->state.cache.pending_flush_bits;
2670 cmd->state.renderpass_cache.flush_bits = 0;
2671
2672 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2673
2674 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2675 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2676 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2677 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2678
2679 tu_set_input_attachments(cmd, cmd->state.subpass);
2680
2681 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2682 const struct tu_image_view *iview = fb->attachments[i].attachment;
2683 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2684 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2685 }
2686
2687 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2688 }
2689
2690 void
2691 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2692 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2693 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2694 {
2695 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2696 pSubpassBeginInfo->contents);
2697 }
2698
2699 void
2700 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2701 {
2702 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2703 const struct tu_render_pass *pass = cmd->state.pass;
2704 struct tu_cs *cs = &cmd->draw_cs;
2705
2706 const struct tu_subpass *subpass = cmd->state.subpass++;
2707
2708 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2709
2710 if (subpass->resolve_attachments) {
2711 tu6_emit_blit_scissor(cmd, cs, true);
2712
2713 for (unsigned i = 0; i < subpass->color_count; i++) {
2714 uint32_t a = subpass->resolve_attachments[i].attachment;
2715 if (a == VK_ATTACHMENT_UNUSED)
2716 continue;
2717
2718 tu_store_gmem_attachment(cmd, cs, a,
2719 subpass->color_attachments[i].attachment);
2720
2721 if (pass->attachments[a].gmem_offset < 0)
2722 continue;
2723
2724 /* TODO:
2725 * check if the resolved attachment is needed by later subpasses,
2726 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2727 */
2728 tu_finishme("missing GMEM->GMEM resolve path\n");
2729 tu_load_gmem_attachment(cmd, cs, a, true);
2730 }
2731 }
2732
2733 tu_cond_exec_end(cs);
2734
2735 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2736
2737 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2738
2739 tu_cond_exec_end(cs);
2740
2741 /* Handle dependencies for the next subpass */
2742 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2743
2744 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2745 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2746 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2747 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2748 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2749
2750 tu_set_input_attachments(cmd, cmd->state.subpass);
2751 }
2752
2753 void
2754 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2755 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2756 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2757 {
2758 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2759 }
2760
2761 static void
2762 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2763 struct tu_descriptor_state *descriptors_state,
2764 gl_shader_stage type,
2765 uint32_t *push_constants)
2766 {
2767 const struct tu_program_descriptor_linkage *link =
2768 &pipeline->program.link[type];
2769 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2770
2771 if (link->push_consts.count > 0) {
2772 unsigned num_units = link->push_consts.count;
2773 unsigned offset = link->push_consts.lo;
2774 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2775 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2776 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2777 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2778 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2779 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2780 tu_cs_emit(cs, 0);
2781 tu_cs_emit(cs, 0);
2782 for (unsigned i = 0; i < num_units * 4; i++)
2783 tu_cs_emit(cs, push_constants[i + offset * 4]);
2784 }
2785
2786 for (uint32_t i = 0; i < state->num_enabled; i++) {
2787 uint32_t size = state->range[i].end - state->range[i].start;
2788 uint32_t offset = state->range[i].start;
2789
2790 /* and even if the start of the const buffer is before
2791 * first_immediate, the end may not be:
2792 */
2793 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2794
2795 if (size == 0)
2796 continue;
2797
2798 /* things should be aligned to vec4: */
2799 debug_assert((state->range[i].offset % 16) == 0);
2800 debug_assert((size % 16) == 0);
2801 debug_assert((offset % 16) == 0);
2802
2803 /* Dig out the descriptor from the descriptor state and read the VA from
2804 * it.
2805 */
2806 assert(state->range[i].ubo.bindless);
2807 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2808 descriptors_state->dynamic_descriptors :
2809 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2810 unsigned block = state->range[i].ubo.block;
2811 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2812 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2813 assert(va);
2814
2815 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2816 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2817 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2818 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2819 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2820 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2821 tu_cs_emit_qw(cs, va + offset);
2822 }
2823 }
2824
2825 static struct tu_draw_state
2826 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2827 const struct tu_pipeline *pipeline,
2828 struct tu_descriptor_state *descriptors_state,
2829 gl_shader_stage type)
2830 {
2831 struct tu_cs cs;
2832 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2833
2834 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2835
2836 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2837 }
2838
2839 static struct tu_draw_state
2840 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
2841 const struct tu_pipeline *pipeline)
2842 {
2843 struct tu_cs cs;
2844 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
2845
2846 int binding;
2847 for_each_bit(binding, pipeline->vi.bindings_used) {
2848 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
2849 const VkDeviceSize offset = buf->bo_offset +
2850 cmd->state.vb.offsets[binding];
2851
2852 tu_cs_emit_regs(&cs,
2853 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
2854 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
2855
2856 }
2857
2858 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
2859
2860 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2861 }
2862
2863 static uint64_t
2864 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
2865 uint32_t draw_count)
2866 {
2867 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2868 * Still not sure what to do here, so just allocate a reasonably large
2869 * BO and hope for the best for now. */
2870 if (!draw_count)
2871 draw_count = 2048;
2872
2873 /* the tess param BO is pipeline->tess.param_stride bytes per patch,
2874 * which includes both the per-vertex outputs and per-patch outputs
2875 * build_primitive_map in ir3 calculates this stride
2876 */
2877 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2878 uint32_t num_patches = draw_count / verts_per_patch;
2879 return num_patches * pipeline->tess.param_stride;
2880 }
2881
2882 static uint64_t
2883 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
2884 uint32_t draw_count)
2885 {
2886 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2887 * Still not sure what to do here, so just allocate a reasonably large
2888 * BO and hope for the best for now. */
2889 if (!draw_count)
2890 draw_count = 2048;
2891
2892 /* Each distinct patch gets its own tess factor output. */
2893 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2894 uint32_t num_patches = draw_count / verts_per_patch;
2895 uint32_t factor_stride;
2896 switch (pipeline->tess.patch_type) {
2897 case IR3_TESS_ISOLINES:
2898 factor_stride = 12;
2899 break;
2900 case IR3_TESS_TRIANGLES:
2901 factor_stride = 20;
2902 break;
2903 case IR3_TESS_QUADS:
2904 factor_stride = 28;
2905 break;
2906 default:
2907 unreachable("bad tessmode");
2908 }
2909 return factor_stride * num_patches;
2910 }
2911
2912 static VkResult
2913 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
2914 uint32_t draw_count,
2915 const struct tu_pipeline *pipeline,
2916 struct tu_draw_state *state,
2917 uint64_t *factor_iova)
2918 {
2919 struct tu_cs cs;
2920 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 16, &cs);
2921 if (result != VK_SUCCESS)
2922 return result;
2923
2924 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
2925 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
2926 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
2927 if (tess_bo_size > 0) {
2928 struct tu_bo *tess_bo;
2929 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
2930 if (result != VK_SUCCESS)
2931 return result;
2932
2933 tu_bo_list_add(&cmd->bo_list, tess_bo,
2934 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2935 uint64_t tess_factor_iova = tess_bo->iova;
2936 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
2937
2938 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2939 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
2940 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2941 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2942 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
2943 CP_LOAD_STATE6_0_NUM_UNIT(1));
2944 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2945 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2946 tu_cs_emit_qw(&cs, tess_param_iova);
2947 tu_cs_emit_qw(&cs, tess_factor_iova);
2948
2949 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2950 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
2951 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2952 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2953 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
2954 CP_LOAD_STATE6_0_NUM_UNIT(1));
2955 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2956 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2957 tu_cs_emit_qw(&cs, tess_param_iova);
2958 tu_cs_emit_qw(&cs, tess_factor_iova);
2959
2960 *factor_iova = tess_factor_iova;
2961 }
2962 *state = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2963 return VK_SUCCESS;
2964 }
2965
2966 static VkResult
2967 tu6_draw_common(struct tu_cmd_buffer *cmd,
2968 struct tu_cs *cs,
2969 bool indexed,
2970 /* note: draw_count is 0 for indirect */
2971 uint32_t draw_count)
2972 {
2973 const struct tu_pipeline *pipeline = cmd->state.pipeline;
2974 VkResult result;
2975
2976 struct tu_descriptor_state *descriptors_state =
2977 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
2978
2979 tu_emit_cache_flush_renderpass(cmd, cs);
2980
2981 /* TODO lrz */
2982
2983 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
2984 .primitive_restart =
2985 pipeline->ia.primitive_restart && indexed,
2986 .tess_upper_left_domain_origin =
2987 pipeline->tess.upper_left_domain_origin));
2988
2989 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
2990 cmd->state.shader_const[MESA_SHADER_VERTEX] =
2991 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
2992 cmd->state.shader_const[MESA_SHADER_TESS_CTRL] =
2993 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
2994 cmd->state.shader_const[MESA_SHADER_TESS_EVAL] =
2995 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
2996 cmd->state.shader_const[MESA_SHADER_GEOMETRY] =
2997 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
2998 cmd->state.shader_const[MESA_SHADER_FRAGMENT] =
2999 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
3000 }
3001
3002 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3003 cmd->state.vertex_buffers = tu6_emit_vertex_buffers(cmd, pipeline);
3004
3005 bool has_tess =
3006 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3007 struct tu_draw_state tess_consts = {};
3008 if (has_tess) {
3009 uint64_t tess_factor_iova = 0;
3010
3011 cmd->has_tess = true;
3012 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts, &tess_factor_iova);
3013 if (result != VK_SUCCESS)
3014 return result;
3015
3016 /* this sequence matches what the blob does before every tess draw
3017 * PC_TESSFACTOR_ADDR_LO is a non-context register and needs a wfi
3018 * before writing to it
3019 */
3020 tu_cs_emit_wfi(cs);
3021
3022 tu_cs_emit_pkt4(cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
3023 tu_cs_emit_qw(cs, tess_factor_iova);
3024
3025 tu_cs_emit_pkt7(cs, CP_SET_SUBDRAW_SIZE, 1);
3026 tu_cs_emit(cs, draw_count);
3027 }
3028
3029 /* for the first draw in a renderpass, re-emit all the draw states
3030 *
3031 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3032 * used, then draw states must be re-emitted. note however this only happens
3033 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3034 *
3035 * the two input attachment states are excluded because secondary command
3036 * buffer doesn't have a state ib to restore it, and not re-emitting them
3037 * is OK since CmdClearAttachments won't disable/overwrite them
3038 */
3039 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3040 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3041
3042 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
3043 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
3044 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
3045 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
3046 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
3047 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
3048 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
3049 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
3050 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
3051 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
3052 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
3053 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
3054 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
3055 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
3056 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
3057 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
3058 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3059
3060 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3061 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3062 ((pipeline->dynamic_state_mask & BIT(i)) ?
3063 cmd->state.dynamic_state[i] :
3064 pipeline->dynamic_state[i]));
3065 }
3066 } else {
3067
3068 /* emit draw states that were just updated
3069 * note we eventually don't want to have to emit anything here
3070 */
3071 uint32_t draw_state_count =
3072 has_tess +
3073 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
3074 ((cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD) ? 1 : 0) +
3075 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3076 1; /* vs_params */
3077
3078 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3079
3080 /* We may need to re-emit tess consts if the current draw call is
3081 * sufficiently larger than the last draw call. */
3082 if (has_tess)
3083 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
3084 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3085 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
3086 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
3087 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
3088 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
3089 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
3090 }
3091 if (cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD)
3092 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
3093 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3094 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
3095 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3096 }
3097
3098 tu_cs_sanity_check(cs);
3099
3100 /* There are too many graphics dirty bits to list here, so just list the
3101 * bits to preserve instead. The only things not emitted here are
3102 * compute-related state.
3103 */
3104 cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3105 return VK_SUCCESS;
3106 }
3107
3108 static uint32_t
3109 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
3110 {
3111 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3112 uint32_t initiator =
3113 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3114 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
3115 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3116 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3117
3118 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3119 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3120
3121 switch (pipeline->tess.patch_type) {
3122 case IR3_TESS_TRIANGLES:
3123 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3124 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3125 break;
3126 case IR3_TESS_ISOLINES:
3127 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3128 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3129 break;
3130 case IR3_TESS_NONE:
3131 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3132 break;
3133 case IR3_TESS_QUADS:
3134 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3135 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3136 break;
3137 }
3138 return initiator;
3139 }
3140
3141
3142 static uint32_t
3143 vs_params_offset(struct tu_cmd_buffer *cmd)
3144 {
3145 const struct tu_program_descriptor_linkage *link =
3146 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
3147 const struct ir3_const_state *const_state = &link->const_state;
3148
3149 if (const_state->offsets.driver_param >= link->constlen)
3150 return 0;
3151
3152 /* this layout is required by CP_DRAW_INDIRECT_MULTI */
3153 STATIC_ASSERT(IR3_DP_DRAWID == 0);
3154 STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
3155 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3156
3157 /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
3158 assert(const_state->offsets.driver_param != 0);
3159
3160 return const_state->offsets.driver_param;
3161 }
3162
3163 static struct tu_draw_state
3164 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
3165 uint32_t vertex_offset,
3166 uint32_t first_instance)
3167 {
3168 uint32_t offset = vs_params_offset(cmd);
3169
3170 struct tu_cs cs;
3171 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 8 : 0), &cs);
3172 if (result != VK_SUCCESS) {
3173 cmd->record_result = result;
3174 return (struct tu_draw_state) {};
3175 }
3176
3177 /* TODO: don't make a new draw state when it doesn't change */
3178
3179 tu_cs_emit_regs(&cs,
3180 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3181 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3182
3183 if (offset) {
3184 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3185 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3186 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3187 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3188 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3189 CP_LOAD_STATE6_0_NUM_UNIT(1));
3190 tu_cs_emit(&cs, 0);
3191 tu_cs_emit(&cs, 0);
3192
3193 tu_cs_emit(&cs, 0);
3194 tu_cs_emit(&cs, vertex_offset);
3195 tu_cs_emit(&cs, first_instance);
3196 tu_cs_emit(&cs, 0);
3197 }
3198
3199 struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3200 return (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
3201 }
3202
3203 void
3204 tu_CmdDraw(VkCommandBuffer commandBuffer,
3205 uint32_t vertexCount,
3206 uint32_t instanceCount,
3207 uint32_t firstVertex,
3208 uint32_t firstInstance)
3209 {
3210 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3211 struct tu_cs *cs = &cmd->draw_cs;
3212
3213 cmd->state.vs_params = tu6_emit_vs_params(cmd, firstVertex, firstInstance);
3214
3215 tu6_draw_common(cmd, cs, false, vertexCount);
3216
3217 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3218 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3219 tu_cs_emit(cs, instanceCount);
3220 tu_cs_emit(cs, vertexCount);
3221 }
3222
3223 void
3224 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3225 uint32_t indexCount,
3226 uint32_t instanceCount,
3227 uint32_t firstIndex,
3228 int32_t vertexOffset,
3229 uint32_t firstInstance)
3230 {
3231 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3232 struct tu_cs *cs = &cmd->draw_cs;
3233
3234 cmd->state.vs_params = tu6_emit_vs_params(cmd, vertexOffset, firstInstance);
3235
3236 tu6_draw_common(cmd, cs, true, indexCount);
3237
3238 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3239 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3240 tu_cs_emit(cs, instanceCount);
3241 tu_cs_emit(cs, indexCount);
3242 tu_cs_emit(cs, firstIndex);
3243 tu_cs_emit_qw(cs, cmd->state.index_va);
3244 tu_cs_emit(cs, cmd->state.max_index_count);
3245 }
3246
3247 /* Various firmware bugs/inconsistencies mean that some indirect draw opcodes
3248 * do not wait for WFI's to complete before executing. Add a WAIT_FOR_ME if
3249 * pending for these opcodes. This may result in a few extra WAIT_FOR_ME's
3250 * with these opcodes, but the alternative would add unnecessary WAIT_FOR_ME's
3251 * before draw opcodes that don't need it.
3252 */
3253 static void
3254 draw_wfm(struct tu_cmd_buffer *cmd)
3255 {
3256 cmd->state.renderpass_cache.flush_bits |=
3257 cmd->state.renderpass_cache.pending_flush_bits & TU_CMD_FLAG_WAIT_FOR_ME;
3258 cmd->state.renderpass_cache.pending_flush_bits &= ~TU_CMD_FLAG_WAIT_FOR_ME;
3259 }
3260
3261 void
3262 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3263 VkBuffer _buffer,
3264 VkDeviceSize offset,
3265 uint32_t drawCount,
3266 uint32_t stride)
3267 {
3268 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3269 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3270 struct tu_cs *cs = &cmd->draw_cs;
3271
3272 cmd->state.vs_params = (struct tu_draw_state) {};
3273
3274 /* The latest known a630_sqe.fw fails to wait for WFI before reading the
3275 * indirect buffer when using CP_DRAW_INDIRECT_MULTI, so we have to fall
3276 * back to CP_WAIT_FOR_ME except for a650 which has a fixed firmware.
3277 *
3278 * TODO: There may be newer a630_sqe.fw released in the future which fixes
3279 * this, if so we should detect it and avoid this workaround.
3280 */
3281 if (cmd->device->physical_device->gpu_id != 650)
3282 draw_wfm(cmd);
3283
3284 tu6_draw_common(cmd, cs, false, 0);
3285
3286 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
3287 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3288 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
3289 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3290 tu_cs_emit(cs, drawCount);
3291 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3292 tu_cs_emit(cs, stride);
3293
3294 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3295 }
3296
3297 void
3298 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3299 VkBuffer _buffer,
3300 VkDeviceSize offset,
3301 uint32_t drawCount,
3302 uint32_t stride)
3303 {
3304 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3305 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3306 struct tu_cs *cs = &cmd->draw_cs;
3307
3308 cmd->state.vs_params = (struct tu_draw_state) {};
3309
3310 if (cmd->device->physical_device->gpu_id != 650)
3311 draw_wfm(cmd);
3312
3313 tu6_draw_common(cmd, cs, true, 0);
3314
3315 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
3316 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3317 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
3318 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3319 tu_cs_emit(cs, drawCount);
3320 tu_cs_emit_qw(cs, cmd->state.index_va);
3321 tu_cs_emit(cs, cmd->state.max_index_count);
3322 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3323 tu_cs_emit(cs, stride);
3324
3325 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3326 }
3327
3328 void
3329 tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,
3330 VkBuffer _buffer,
3331 VkDeviceSize offset,
3332 VkBuffer countBuffer,
3333 VkDeviceSize countBufferOffset,
3334 uint32_t drawCount,
3335 uint32_t stride)
3336 {
3337 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3338 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3339 TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
3340 struct tu_cs *cs = &cmd->draw_cs;
3341
3342 cmd->state.vs_params = (struct tu_draw_state) {};
3343
3344 /* It turns out that the firmware we have for a650 only partially fixed the
3345 * problem with CP_DRAW_INDIRECT_MULTI not waiting for WFI's to complete
3346 * before reading indirect parameters. It waits for WFI's before reading
3347 * the draw parameters, but after reading the indirect count :(.
3348 */
3349 draw_wfm(cmd);
3350
3351 tu6_draw_common(cmd, cs, false, 0);
3352
3353 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 8);
3354 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3355 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT) |
3356 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3357 tu_cs_emit(cs, drawCount);
3358 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3359 tu_cs_emit_qw(cs, count_buf->bo->iova + count_buf->bo_offset + countBufferOffset);
3360 tu_cs_emit(cs, stride);
3361
3362 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3363 tu_bo_list_add(&cmd->bo_list, count_buf->bo, MSM_SUBMIT_BO_READ);
3364 }
3365
3366 void
3367 tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,
3368 VkBuffer _buffer,
3369 VkDeviceSize offset,
3370 VkBuffer countBuffer,
3371 VkDeviceSize countBufferOffset,
3372 uint32_t drawCount,
3373 uint32_t stride)
3374 {
3375 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3376 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3377 TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
3378 struct tu_cs *cs = &cmd->draw_cs;
3379
3380 cmd->state.vs_params = (struct tu_draw_state) {};
3381
3382 draw_wfm(cmd);
3383
3384 tu6_draw_common(cmd, cs, true, 0);
3385
3386 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 11);
3387 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3388 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT_INDEXED) |
3389 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3390 tu_cs_emit(cs, drawCount);
3391 tu_cs_emit_qw(cs, cmd->state.index_va);
3392 tu_cs_emit(cs, cmd->state.max_index_count);
3393 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3394 tu_cs_emit_qw(cs, count_buf->bo->iova + count_buf->bo_offset + countBufferOffset);
3395 tu_cs_emit(cs, stride);
3396
3397 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3398 tu_bo_list_add(&cmd->bo_list, count_buf->bo, MSM_SUBMIT_BO_READ);
3399 }
3400
3401 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3402 uint32_t instanceCount,
3403 uint32_t firstInstance,
3404 VkBuffer _counterBuffer,
3405 VkDeviceSize counterBufferOffset,
3406 uint32_t counterOffset,
3407 uint32_t vertexStride)
3408 {
3409 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3410 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
3411 struct tu_cs *cs = &cmd->draw_cs;
3412
3413 /* All known firmware versions do not wait for WFI's with CP_DRAW_AUTO.
3414 * Plus, for the common case where the counter buffer is written by
3415 * vkCmdEndTransformFeedback, we need to wait for the CP_WAIT_MEM_WRITES to
3416 * complete which means we need a WAIT_FOR_ME anyway.
3417 */
3418 draw_wfm(cmd);
3419
3420 cmd->state.vs_params = tu6_emit_vs_params(cmd, 0, firstInstance);
3421
3422 tu6_draw_common(cmd, cs, false, 0);
3423
3424 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
3425 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
3426 tu_cs_emit(cs, instanceCount);
3427 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
3428 tu_cs_emit(cs, counterOffset);
3429 tu_cs_emit(cs, vertexStride);
3430
3431 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3432 }
3433
3434 struct tu_dispatch_info
3435 {
3436 /**
3437 * Determine the layout of the grid (in block units) to be used.
3438 */
3439 uint32_t blocks[3];
3440
3441 /**
3442 * A starting offset for the grid. If unaligned is set, the offset
3443 * must still be aligned.
3444 */
3445 uint32_t offsets[3];
3446 /**
3447 * Whether it's an unaligned compute dispatch.
3448 */
3449 bool unaligned;
3450
3451 /**
3452 * Indirect compute parameters resource.
3453 */
3454 struct tu_buffer *indirect;
3455 uint64_t indirect_offset;
3456 };
3457
3458 static void
3459 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3460 const struct tu_dispatch_info *info)
3461 {
3462 gl_shader_stage type = MESA_SHADER_COMPUTE;
3463 const struct tu_program_descriptor_linkage *link =
3464 &pipeline->program.link[type];
3465 const struct ir3_const_state *const_state = &link->const_state;
3466 uint32_t offset = const_state->offsets.driver_param;
3467
3468 if (link->constlen <= offset)
3469 return;
3470
3471 if (!info->indirect) {
3472 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3473 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3474 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3475 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3476 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3477 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3478 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3479 };
3480
3481 uint32_t num_consts = MIN2(const_state->num_driver_params,
3482 (link->constlen - offset) * 4);
3483 /* push constants */
3484 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3485 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3486 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3487 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3488 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3489 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3490 tu_cs_emit(cs, 0);
3491 tu_cs_emit(cs, 0);
3492 uint32_t i;
3493 for (i = 0; i < num_consts; i++)
3494 tu_cs_emit(cs, driver_params[i]);
3495 } else {
3496 tu_finishme("Indirect driver params");
3497 }
3498 }
3499
3500 static void
3501 tu_dispatch(struct tu_cmd_buffer *cmd,
3502 const struct tu_dispatch_info *info)
3503 {
3504 struct tu_cs *cs = &cmd->cs;
3505 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3506 struct tu_descriptor_state *descriptors_state =
3507 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3508
3509 /* TODO: We could probably flush less if we add a compute_flush_bits
3510 * bitfield.
3511 */
3512 tu_emit_cache_flush(cmd, cs);
3513
3514 /* note: no reason to have this in a separate IB */
3515 tu_cs_emit_state_ib(cs,
3516 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE));
3517
3518 tu_emit_compute_driver_params(cs, pipeline, info);
3519
3520 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD)
3521 tu_cs_emit_state_ib(cs, pipeline->load_state);
3522
3523 cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3524
3525 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3526 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3527
3528 const uint32_t *local_size = pipeline->compute.local_size;
3529 const uint32_t *num_groups = info->blocks;
3530 tu_cs_emit_regs(cs,
3531 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3532 .localsizex = local_size[0] - 1,
3533 .localsizey = local_size[1] - 1,
3534 .localsizez = local_size[2] - 1),
3535 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3536 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3537 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3538 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3539 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3540 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3541
3542 tu_cs_emit_regs(cs,
3543 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3544 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3545 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3546
3547 if (info->indirect) {
3548 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3549
3550 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3551 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3552
3553 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3554 tu_cs_emit(cs, 0x00000000);
3555 tu_cs_emit_qw(cs, iova);
3556 tu_cs_emit(cs,
3557 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3558 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3559 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3560 } else {
3561 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3562 tu_cs_emit(cs, 0x00000000);
3563 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3564 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3565 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3566 }
3567
3568 tu_cs_emit_wfi(cs);
3569 }
3570
3571 void
3572 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3573 uint32_t base_x,
3574 uint32_t base_y,
3575 uint32_t base_z,
3576 uint32_t x,
3577 uint32_t y,
3578 uint32_t z)
3579 {
3580 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3581 struct tu_dispatch_info info = {};
3582
3583 info.blocks[0] = x;
3584 info.blocks[1] = y;
3585 info.blocks[2] = z;
3586
3587 info.offsets[0] = base_x;
3588 info.offsets[1] = base_y;
3589 info.offsets[2] = base_z;
3590 tu_dispatch(cmd_buffer, &info);
3591 }
3592
3593 void
3594 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3595 uint32_t x,
3596 uint32_t y,
3597 uint32_t z)
3598 {
3599 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3600 }
3601
3602 void
3603 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3604 VkBuffer _buffer,
3605 VkDeviceSize offset)
3606 {
3607 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3608 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3609 struct tu_dispatch_info info = {};
3610
3611 info.indirect = buffer;
3612 info.indirect_offset = offset;
3613
3614 tu_dispatch(cmd_buffer, &info);
3615 }
3616
3617 void
3618 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3619 {
3620 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3621
3622 tu_cs_end(&cmd_buffer->draw_cs);
3623 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3624
3625 if (use_sysmem_rendering(cmd_buffer))
3626 tu_cmd_render_sysmem(cmd_buffer);
3627 else
3628 tu_cmd_render_tiles(cmd_buffer);
3629
3630 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3631 rendered */
3632 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3633 tu_cs_begin(&cmd_buffer->draw_cs);
3634 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3635 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3636
3637 cmd_buffer->state.cache.pending_flush_bits |=
3638 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3639 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3640
3641 cmd_buffer->state.pass = NULL;
3642 cmd_buffer->state.subpass = NULL;
3643 cmd_buffer->state.framebuffer = NULL;
3644 }
3645
3646 void
3647 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3648 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3649 {
3650 tu_CmdEndRenderPass(commandBuffer);
3651 }
3652
3653 struct tu_barrier_info
3654 {
3655 uint32_t eventCount;
3656 const VkEvent *pEvents;
3657 VkPipelineStageFlags srcStageMask;
3658 };
3659
3660 static void
3661 tu_barrier(struct tu_cmd_buffer *cmd,
3662 uint32_t memoryBarrierCount,
3663 const VkMemoryBarrier *pMemoryBarriers,
3664 uint32_t bufferMemoryBarrierCount,
3665 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3666 uint32_t imageMemoryBarrierCount,
3667 const VkImageMemoryBarrier *pImageMemoryBarriers,
3668 const struct tu_barrier_info *info)
3669 {
3670 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3671 VkAccessFlags srcAccessMask = 0;
3672 VkAccessFlags dstAccessMask = 0;
3673
3674 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3675 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3676 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3677 }
3678
3679 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3680 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3681 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3682 }
3683
3684 enum tu_cmd_access_mask src_flags = 0;
3685 enum tu_cmd_access_mask dst_flags = 0;
3686
3687 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3688 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3689 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3690 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3691 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3692 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3693 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3694 /* The underlying memory for this image may have been used earlier
3695 * within the same queue submission for a different image, which
3696 * means that there may be old, stale cache entries which are in the
3697 * "wrong" location, which could cause problems later after writing
3698 * to the image. We don't want these entries being flushed later and
3699 * overwriting the actual image, so we need to flush the CCU.
3700 */
3701 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3702 }
3703 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3704 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3705 }
3706
3707 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3708 * so we have to use the sysmem flushes.
3709 */
3710 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3711 !cmd->state.pass;
3712 src_flags |= vk2tu_access(srcAccessMask, gmem);
3713 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3714
3715 struct tu_cache_state *cache =
3716 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3717 tu_flush_for_access(cache, src_flags, dst_flags);
3718
3719 for (uint32_t i = 0; i < info->eventCount; i++) {
3720 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3721
3722 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3723
3724 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3725 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3726 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3727 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3728 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3729 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3730 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3731 }
3732 }
3733
3734 void
3735 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3736 VkPipelineStageFlags srcStageMask,
3737 VkPipelineStageFlags dstStageMask,
3738 VkDependencyFlags dependencyFlags,
3739 uint32_t memoryBarrierCount,
3740 const VkMemoryBarrier *pMemoryBarriers,
3741 uint32_t bufferMemoryBarrierCount,
3742 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3743 uint32_t imageMemoryBarrierCount,
3744 const VkImageMemoryBarrier *pImageMemoryBarriers)
3745 {
3746 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3747 struct tu_barrier_info info;
3748
3749 info.eventCount = 0;
3750 info.pEvents = NULL;
3751 info.srcStageMask = srcStageMask;
3752
3753 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3754 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3755 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3756 }
3757
3758 static void
3759 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3760 VkPipelineStageFlags stageMask, unsigned value)
3761 {
3762 struct tu_cs *cs = &cmd->cs;
3763
3764 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3765 assert(!cmd->state.pass);
3766
3767 tu_emit_cache_flush(cmd, cs);
3768
3769 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3770
3771 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3772 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3773 */
3774 VkPipelineStageFlags top_of_pipe_flags =
3775 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3776 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3777
3778 if (!(stageMask & ~top_of_pipe_flags)) {
3779 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3780 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3781 tu_cs_emit(cs, value);
3782 } else {
3783 /* Use a RB_DONE_TS event to wait for everything to complete. */
3784 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3785 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3786 tu_cs_emit_qw(cs, event->bo.iova);
3787 tu_cs_emit(cs, value);
3788 }
3789 }
3790
3791 void
3792 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3793 VkEvent _event,
3794 VkPipelineStageFlags stageMask)
3795 {
3796 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3797 TU_FROM_HANDLE(tu_event, event, _event);
3798
3799 write_event(cmd, event, stageMask, 1);
3800 }
3801
3802 void
3803 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3804 VkEvent _event,
3805 VkPipelineStageFlags stageMask)
3806 {
3807 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3808 TU_FROM_HANDLE(tu_event, event, _event);
3809
3810 write_event(cmd, event, stageMask, 0);
3811 }
3812
3813 void
3814 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3815 uint32_t eventCount,
3816 const VkEvent *pEvents,
3817 VkPipelineStageFlags srcStageMask,
3818 VkPipelineStageFlags dstStageMask,
3819 uint32_t memoryBarrierCount,
3820 const VkMemoryBarrier *pMemoryBarriers,
3821 uint32_t bufferMemoryBarrierCount,
3822 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3823 uint32_t imageMemoryBarrierCount,
3824 const VkImageMemoryBarrier *pImageMemoryBarriers)
3825 {
3826 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3827 struct tu_barrier_info info;
3828
3829 info.eventCount = eventCount;
3830 info.pEvents = pEvents;
3831 info.srcStageMask = 0;
3832
3833 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3834 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3835 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3836 }
3837
3838 void
3839 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3840 {
3841 /* No-op */
3842 }