turnip: use draw states for input attachments
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 #define OVERFLOW_FLAG_REG REG_A6XX_CP_SCRATCH_REG(0)
38
39 void
40 tu_bo_list_init(struct tu_bo_list *list)
41 {
42 list->count = list->capacity = 0;
43 list->bo_infos = NULL;
44 }
45
46 void
47 tu_bo_list_destroy(struct tu_bo_list *list)
48 {
49 free(list->bo_infos);
50 }
51
52 void
53 tu_bo_list_reset(struct tu_bo_list *list)
54 {
55 list->count = 0;
56 }
57
58 /**
59 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
60 */
61 static uint32_t
62 tu_bo_list_add_info(struct tu_bo_list *list,
63 const struct drm_msm_gem_submit_bo *bo_info)
64 {
65 assert(bo_info->handle != 0);
66
67 for (uint32_t i = 0; i < list->count; ++i) {
68 if (list->bo_infos[i].handle == bo_info->handle) {
69 assert(list->bo_infos[i].presumed == bo_info->presumed);
70 list->bo_infos[i].flags |= bo_info->flags;
71 return i;
72 }
73 }
74
75 /* grow list->bo_infos if needed */
76 if (list->count == list->capacity) {
77 uint32_t new_capacity = MAX2(2 * list->count, 16);
78 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
79 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
80 if (!new_bo_infos)
81 return TU_BO_LIST_FAILED;
82 list->bo_infos = new_bo_infos;
83 list->capacity = new_capacity;
84 }
85
86 list->bo_infos[list->count] = *bo_info;
87 return list->count++;
88 }
89
90 uint32_t
91 tu_bo_list_add(struct tu_bo_list *list,
92 const struct tu_bo *bo,
93 uint32_t flags)
94 {
95 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
96 .flags = flags,
97 .handle = bo->gem_handle,
98 .presumed = bo->iova,
99 });
100 }
101
102 VkResult
103 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
104 {
105 for (uint32_t i = 0; i < other->count; i++) {
106 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
107 return VK_ERROR_OUT_OF_HOST_MEMORY;
108 }
109
110 return VK_SUCCESS;
111 }
112
113 static void
114 tu_tiling_config_update_tile_layout(struct tu_tiling_config *tiling,
115 const struct tu_device *dev,
116 const struct tu_render_pass *pass)
117 {
118 const uint32_t tile_align_w = pass->tile_align_w;
119 const uint32_t max_tile_width = 1024;
120
121 /* note: don't offset the tiling config by render_area.offset,
122 * because binning pass can't deal with it
123 * this means we might end up with more tiles than necessary,
124 * but load/store/etc are still scissored to the render_area
125 */
126 tiling->tile0.offset = (VkOffset2D) {};
127
128 const uint32_t ra_width =
129 tiling->render_area.extent.width +
130 (tiling->render_area.offset.x - tiling->tile0.offset.x);
131 const uint32_t ra_height =
132 tiling->render_area.extent.height +
133 (tiling->render_area.offset.y - tiling->tile0.offset.y);
134
135 /* start from 1 tile */
136 tiling->tile_count = (VkExtent2D) {
137 .width = 1,
138 .height = 1,
139 };
140 tiling->tile0.extent = (VkExtent2D) {
141 .width = util_align_npot(ra_width, tile_align_w),
142 .height = align(ra_height, TILE_ALIGN_H),
143 };
144
145 if (unlikely(dev->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN)) {
146 /* start with 2x2 tiles */
147 tiling->tile_count.width = 2;
148 tiling->tile_count.height = 2;
149 tiling->tile0.extent.width = util_align_npot(DIV_ROUND_UP(ra_width, 2), tile_align_w);
150 tiling->tile0.extent.height = align(DIV_ROUND_UP(ra_height, 2), TILE_ALIGN_H);
151 }
152
153 /* do not exceed max tile width */
154 while (tiling->tile0.extent.width > max_tile_width) {
155 tiling->tile_count.width++;
156 tiling->tile0.extent.width =
157 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
158 }
159
160 /* will force to sysmem, don't bother trying to have a valid tile config
161 * TODO: just skip all GMEM stuff when sysmem is forced?
162 */
163 if (!pass->gmem_pixels)
164 return;
165
166 /* do not exceed gmem size */
167 while (tiling->tile0.extent.width * tiling->tile0.extent.height > pass->gmem_pixels) {
168 if (tiling->tile0.extent.width > MAX2(tile_align_w, tiling->tile0.extent.height)) {
169 tiling->tile_count.width++;
170 tiling->tile0.extent.width =
171 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
172 } else {
173 /* if this assert fails then layout is impossible.. */
174 assert(tiling->tile0.extent.height > TILE_ALIGN_H);
175 tiling->tile_count.height++;
176 tiling->tile0.extent.height =
177 align(DIV_ROUND_UP(ra_height, tiling->tile_count.height), TILE_ALIGN_H);
178 }
179 }
180 }
181
182 static void
183 tu_tiling_config_update_pipe_layout(struct tu_tiling_config *tiling,
184 const struct tu_device *dev)
185 {
186 const uint32_t max_pipe_count = 32; /* A6xx */
187
188 /* start from 1 tile per pipe */
189 tiling->pipe0 = (VkExtent2D) {
190 .width = 1,
191 .height = 1,
192 };
193 tiling->pipe_count = tiling->tile_count;
194
195 while (tiling->pipe_count.width * tiling->pipe_count.height > max_pipe_count) {
196 if (tiling->pipe0.width < tiling->pipe0.height) {
197 tiling->pipe0.width += 1;
198 tiling->pipe_count.width =
199 DIV_ROUND_UP(tiling->tile_count.width, tiling->pipe0.width);
200 } else {
201 tiling->pipe0.height += 1;
202 tiling->pipe_count.height =
203 DIV_ROUND_UP(tiling->tile_count.height, tiling->pipe0.height);
204 }
205 }
206 }
207
208 static void
209 tu_tiling_config_update_pipes(struct tu_tiling_config *tiling,
210 const struct tu_device *dev)
211 {
212 const uint32_t max_pipe_count = 32; /* A6xx */
213 const uint32_t used_pipe_count =
214 tiling->pipe_count.width * tiling->pipe_count.height;
215 const VkExtent2D last_pipe = {
216 .width = (tiling->tile_count.width - 1) % tiling->pipe0.width + 1,
217 .height = (tiling->tile_count.height - 1) % tiling->pipe0.height + 1,
218 };
219
220 assert(used_pipe_count <= max_pipe_count);
221 assert(max_pipe_count <= ARRAY_SIZE(tiling->pipe_config));
222
223 for (uint32_t y = 0; y < tiling->pipe_count.height; y++) {
224 for (uint32_t x = 0; x < tiling->pipe_count.width; x++) {
225 const uint32_t pipe_x = tiling->pipe0.width * x;
226 const uint32_t pipe_y = tiling->pipe0.height * y;
227 const uint32_t pipe_w = (x == tiling->pipe_count.width - 1)
228 ? last_pipe.width
229 : tiling->pipe0.width;
230 const uint32_t pipe_h = (y == tiling->pipe_count.height - 1)
231 ? last_pipe.height
232 : tiling->pipe0.height;
233 const uint32_t n = tiling->pipe_count.width * y + x;
234
235 tiling->pipe_config[n] = A6XX_VSC_PIPE_CONFIG_REG_X(pipe_x) |
236 A6XX_VSC_PIPE_CONFIG_REG_Y(pipe_y) |
237 A6XX_VSC_PIPE_CONFIG_REG_W(pipe_w) |
238 A6XX_VSC_PIPE_CONFIG_REG_H(pipe_h);
239 tiling->pipe_sizes[n] = CP_SET_BIN_DATA5_0_VSC_SIZE(pipe_w * pipe_h);
240 }
241 }
242
243 memset(tiling->pipe_config + used_pipe_count, 0,
244 sizeof(uint32_t) * (max_pipe_count - used_pipe_count));
245 }
246
247 static void
248 tu_tiling_config_get_tile(const struct tu_tiling_config *tiling,
249 const struct tu_device *dev,
250 uint32_t tx,
251 uint32_t ty,
252 struct tu_tile *tile)
253 {
254 /* find the pipe and the slot for tile (tx, ty) */
255 const uint32_t px = tx / tiling->pipe0.width;
256 const uint32_t py = ty / tiling->pipe0.height;
257 const uint32_t sx = tx - tiling->pipe0.width * px;
258 const uint32_t sy = ty - tiling->pipe0.height * py;
259 /* last pipe has different width */
260 const uint32_t pipe_width =
261 MIN2(tiling->pipe0.width,
262 tiling->tile_count.width - px * tiling->pipe0.width);
263
264 assert(tx < tiling->tile_count.width && ty < tiling->tile_count.height);
265 assert(px < tiling->pipe_count.width && py < tiling->pipe_count.height);
266 assert(sx < tiling->pipe0.width && sy < tiling->pipe0.height);
267
268 /* convert to 1D indices */
269 tile->pipe = tiling->pipe_count.width * py + px;
270 tile->slot = pipe_width * sy + sx;
271
272 /* get the blit area for the tile */
273 tile->begin = (VkOffset2D) {
274 .x = tiling->tile0.offset.x + tiling->tile0.extent.width * tx,
275 .y = tiling->tile0.offset.y + tiling->tile0.extent.height * ty,
276 };
277 tile->end.x =
278 (tx == tiling->tile_count.width - 1)
279 ? tiling->render_area.offset.x + tiling->render_area.extent.width
280 : tile->begin.x + tiling->tile0.extent.width;
281 tile->end.y =
282 (ty == tiling->tile_count.height - 1)
283 ? tiling->render_area.offset.y + tiling->render_area.extent.height
284 : tile->begin.y + tiling->tile0.extent.height;
285 }
286
287 enum a3xx_msaa_samples
288 tu_msaa_samples(uint32_t samples)
289 {
290 switch (samples) {
291 case 1:
292 return MSAA_ONE;
293 case 2:
294 return MSAA_TWO;
295 case 4:
296 return MSAA_FOUR;
297 case 8:
298 return MSAA_EIGHT;
299 default:
300 assert(!"invalid sample count");
301 return MSAA_ONE;
302 }
303 }
304
305 static enum a4xx_index_size
306 tu6_index_size(VkIndexType type)
307 {
308 switch (type) {
309 case VK_INDEX_TYPE_UINT16:
310 return INDEX4_SIZE_16_BIT;
311 case VK_INDEX_TYPE_UINT32:
312 return INDEX4_SIZE_32_BIT;
313 default:
314 unreachable("invalid VkIndexType");
315 return INDEX4_SIZE_8_BIT;
316 }
317 }
318
319 void
320 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
321 struct tu_cs *cs,
322 enum vgt_event_type event)
323 {
324 bool need_seqno = false;
325 switch (event) {
326 case CACHE_FLUSH_TS:
327 case WT_DONE_TS:
328 case RB_DONE_TS:
329 case PC_CCU_FLUSH_DEPTH_TS:
330 case PC_CCU_FLUSH_COLOR_TS:
331 case PC_CCU_RESOLVE_TS:
332 need_seqno = true;
333 break;
334 default:
335 break;
336 }
337
338 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
339 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
340 if (need_seqno) {
341 tu_cs_emit_qw(cs, cmd->scratch_bo.iova);
342 tu_cs_emit(cs, 0);
343 }
344 }
345
346 static void
347 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
348 struct tu_cs *cs,
349 enum tu_cmd_flush_bits flushes)
350 {
351 /* Experiments show that invalidating CCU while it still has data in it
352 * doesn't work, so make sure to always flush before invalidating in case
353 * any data remains that hasn't yet been made available through a barrier.
354 * However it does seem to work for UCHE.
355 */
356 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
357 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
358 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
359 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
360 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
361 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
362 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
363 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
364 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
365 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
366 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
367 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
368 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
369 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
370 if (flushes & TU_CMD_FLAG_WFI)
371 tu_cs_emit_wfi(cs);
372 }
373
374 /* "Normal" cache flushes, that don't require any special handling */
375
376 static void
377 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
378 struct tu_cs *cs)
379 {
380 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
381 cmd_buffer->state.cache.flush_bits = 0;
382 }
383
384 /* Renderpass cache flushes */
385
386 void
387 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
388 struct tu_cs *cs)
389 {
390 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
391 cmd_buffer->state.renderpass_cache.flush_bits = 0;
392 }
393
394 /* Cache flushes for things that use the color/depth read/write path (i.e.
395 * blits and draws). This deals with changing CCU state as well as the usual
396 * cache flushing.
397 */
398
399 void
400 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
401 struct tu_cs *cs,
402 enum tu_cmd_ccu_state ccu_state)
403 {
404 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
405
406 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
407
408 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
409 * the CCU may also contain data that we haven't flushed out yet, so we
410 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
411 * emit a WFI as it isn't pipelined.
412 */
413 if (ccu_state != cmd_buffer->state.ccu_state) {
414 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
415 flushes |=
416 TU_CMD_FLAG_CCU_FLUSH_COLOR |
417 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
418 cmd_buffer->state.cache.pending_flush_bits &= ~(
419 TU_CMD_FLAG_CCU_FLUSH_COLOR |
420 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
421 }
422 flushes |=
423 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
424 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
425 TU_CMD_FLAG_WFI;
426 cmd_buffer->state.cache.pending_flush_bits &= ~(
427 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
428 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
429 }
430
431 tu6_emit_flushes(cmd_buffer, cs, flushes);
432 cmd_buffer->state.cache.flush_bits = 0;
433
434 if (ccu_state != cmd_buffer->state.ccu_state) {
435 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
436 tu_cs_emit_regs(cs,
437 A6XX_RB_CCU_CNTL(.offset =
438 ccu_state == TU_CMD_CCU_GMEM ?
439 phys_dev->ccu_offset_gmem :
440 phys_dev->ccu_offset_bypass,
441 .gmem = ccu_state == TU_CMD_CCU_GMEM));
442 cmd_buffer->state.ccu_state = ccu_state;
443 }
444 }
445
446 static void
447 tu6_emit_zs(struct tu_cmd_buffer *cmd,
448 const struct tu_subpass *subpass,
449 struct tu_cs *cs)
450 {
451 const struct tu_framebuffer *fb = cmd->state.framebuffer;
452
453 const uint32_t a = subpass->depth_stencil_attachment.attachment;
454 if (a == VK_ATTACHMENT_UNUSED) {
455 tu_cs_emit_regs(cs,
456 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
457 A6XX_RB_DEPTH_BUFFER_PITCH(0),
458 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
459 A6XX_RB_DEPTH_BUFFER_BASE(0),
460 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
461
462 tu_cs_emit_regs(cs,
463 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
464
465 tu_cs_emit_regs(cs,
466 A6XX_GRAS_LRZ_BUFFER_BASE(0),
467 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
468 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
469
470 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
471
472 return;
473 }
474
475 const struct tu_image_view *iview = fb->attachments[a].attachment;
476 const struct tu_render_pass_attachment *attachment =
477 &cmd->state.pass->attachments[a];
478 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
479
480 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
481 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
482 tu_cs_image_ref(cs, iview, 0);
483 tu_cs_emit(cs, attachment->gmem_offset);
484
485 tu_cs_emit_regs(cs,
486 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
487
488 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
489 tu_cs_image_flag_ref(cs, iview, 0);
490
491 tu_cs_emit_regs(cs,
492 A6XX_GRAS_LRZ_BUFFER_BASE(0),
493 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
494 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
495
496 if (attachment->format == VK_FORMAT_S8_UINT) {
497 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
498 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
499 tu_cs_image_ref(cs, iview, 0);
500 tu_cs_emit(cs, attachment->gmem_offset);
501 } else {
502 tu_cs_emit_regs(cs,
503 A6XX_RB_STENCIL_INFO(0));
504 }
505 }
506
507 static void
508 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
509 const struct tu_subpass *subpass,
510 struct tu_cs *cs)
511 {
512 const struct tu_framebuffer *fb = cmd->state.framebuffer;
513
514 for (uint32_t i = 0; i < subpass->color_count; ++i) {
515 uint32_t a = subpass->color_attachments[i].attachment;
516 if (a == VK_ATTACHMENT_UNUSED)
517 continue;
518
519 const struct tu_image_view *iview = fb->attachments[a].attachment;
520
521 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
522 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
523 tu_cs_image_ref(cs, iview, 0);
524 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
525
526 tu_cs_emit_regs(cs,
527 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
528
529 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
530 tu_cs_image_flag_ref(cs, iview, 0);
531 }
532
533 tu_cs_emit_regs(cs,
534 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
535 tu_cs_emit_regs(cs,
536 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
537
538 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
539 }
540
541 void
542 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
543 {
544 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
545 bool msaa_disable = samples == MSAA_ONE;
546
547 tu_cs_emit_regs(cs,
548 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
549 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
550 .msaa_disable = msaa_disable));
551
552 tu_cs_emit_regs(cs,
553 A6XX_GRAS_RAS_MSAA_CNTL(samples),
554 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
555 .msaa_disable = msaa_disable));
556
557 tu_cs_emit_regs(cs,
558 A6XX_RB_RAS_MSAA_CNTL(samples),
559 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
560 .msaa_disable = msaa_disable));
561
562 tu_cs_emit_regs(cs,
563 A6XX_RB_MSAA_CNTL(samples));
564 }
565
566 static void
567 tu6_emit_bin_size(struct tu_cs *cs,
568 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
569 {
570 tu_cs_emit_regs(cs,
571 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
572 .binh = bin_h,
573 .dword = flags));
574
575 tu_cs_emit_regs(cs,
576 A6XX_RB_BIN_CONTROL(.binw = bin_w,
577 .binh = bin_h,
578 .dword = flags));
579
580 /* no flag for RB_BIN_CONTROL2... */
581 tu_cs_emit_regs(cs,
582 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
583 .binh = bin_h));
584 }
585
586 static void
587 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
588 const struct tu_subpass *subpass,
589 struct tu_cs *cs,
590 bool binning)
591 {
592 const struct tu_framebuffer *fb = cmd->state.framebuffer;
593 uint32_t cntl = 0;
594 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
595 if (binning) {
596 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
597 } else {
598 uint32_t mrts_ubwc_enable = 0;
599 for (uint32_t i = 0; i < subpass->color_count; ++i) {
600 uint32_t a = subpass->color_attachments[i].attachment;
601 if (a == VK_ATTACHMENT_UNUSED)
602 continue;
603
604 const struct tu_image_view *iview = fb->attachments[a].attachment;
605 if (iview->ubwc_enabled)
606 mrts_ubwc_enable |= 1 << i;
607 }
608
609 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
610
611 const uint32_t a = subpass->depth_stencil_attachment.attachment;
612 if (a != VK_ATTACHMENT_UNUSED) {
613 const struct tu_image_view *iview = fb->attachments[a].attachment;
614 if (iview->ubwc_enabled)
615 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
616 }
617
618 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
619 * in order to set it correctly for the different subpasses. However,
620 * that means the packets we're emitting also happen during binning. So
621 * we need to guard the write on !BINNING at CP execution time.
622 */
623 tu_cs_reserve(cs, 3 + 4);
624 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
625 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
626 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
627 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
628 }
629
630 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
631 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
632 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
633 tu_cs_emit(cs, cntl);
634 }
635
636 static void
637 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
638 {
639 const VkRect2D *render_area = &cmd->state.tiling_config.render_area;
640 uint32_t x1 = render_area->offset.x;
641 uint32_t y1 = render_area->offset.y;
642 uint32_t x2 = x1 + render_area->extent.width - 1;
643 uint32_t y2 = y1 + render_area->extent.height - 1;
644
645 if (align) {
646 x1 = x1 & ~(GMEM_ALIGN_W - 1);
647 y1 = y1 & ~(GMEM_ALIGN_H - 1);
648 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
649 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
650 }
651
652 tu_cs_emit_regs(cs,
653 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
654 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
655 }
656
657 void
658 tu6_emit_window_scissor(struct tu_cs *cs,
659 uint32_t x1,
660 uint32_t y1,
661 uint32_t x2,
662 uint32_t y2)
663 {
664 tu_cs_emit_regs(cs,
665 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
666 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
667
668 tu_cs_emit_regs(cs,
669 A6XX_GRAS_RESOLVE_CNTL_1(.x = x1, .y = y1),
670 A6XX_GRAS_RESOLVE_CNTL_2(.x = x2, .y = y2));
671 }
672
673 void
674 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
675 {
676 tu_cs_emit_regs(cs,
677 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
678
679 tu_cs_emit_regs(cs,
680 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
681
682 tu_cs_emit_regs(cs,
683 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
684
685 tu_cs_emit_regs(cs,
686 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
687 }
688
689 static void
690 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
691 {
692 uint32_t enable_mask;
693 switch (id) {
694 case TU_DRAW_STATE_PROGRAM:
695 case TU_DRAW_STATE_VI:
696 case TU_DRAW_STATE_FS_CONST:
697 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
698 * when resources would actually be used in the binning shader.
699 * Presumably the overhead of prefetching the resources isn't
700 * worth it.
701 */
702 case TU_DRAW_STATE_DESC_SETS_LOAD:
703 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
704 CP_SET_DRAW_STATE__0_SYSMEM;
705 break;
706 case TU_DRAW_STATE_PROGRAM_BINNING:
707 case TU_DRAW_STATE_VI_BINNING:
708 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
709 break;
710 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
711 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
712 break;
713 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
714 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
715 break;
716 default:
717 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
718 CP_SET_DRAW_STATE__0_SYSMEM |
719 CP_SET_DRAW_STATE__0_BINNING;
720 break;
721 }
722
723 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
724 enable_mask |
725 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
726 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
727 tu_cs_emit_qw(cs, state.iova);
728 }
729
730 /* note: get rid of this eventually */
731 static void
732 tu_cs_emit_sds_ib(struct tu_cs *cs, uint32_t id, struct tu_cs_entry entry)
733 {
734 tu_cs_emit_draw_state(cs, id, (struct tu_draw_state) {
735 .iova = entry.size ? entry.bo->iova + entry.offset : 0,
736 .size = entry.size / 4,
737 });
738 }
739
740 static bool
741 use_hw_binning(struct tu_cmd_buffer *cmd)
742 {
743 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
744
745 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
746 return false;
747
748 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
749 return true;
750
751 return (tiling->tile_count.width * tiling->tile_count.height) > 2;
752 }
753
754 static bool
755 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
756 {
757 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
758 return true;
759
760 /* can't fit attachments into gmem */
761 if (!cmd->state.pass->gmem_pixels)
762 return true;
763
764 if (cmd->state.framebuffer->layers > 1)
765 return true;
766
767 return cmd->state.tiling_config.force_sysmem;
768 }
769
770 static void
771 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
772 struct tu_cs *cs,
773 const struct tu_tile *tile)
774 {
775 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
776 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
777
778 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
779 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
780
781 const uint32_t x1 = tile->begin.x;
782 const uint32_t y1 = tile->begin.y;
783 const uint32_t x2 = tile->end.x - 1;
784 const uint32_t y2 = tile->end.y - 1;
785 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
786 tu6_emit_window_offset(cs, x1, y1);
787
788 tu_cs_emit_regs(cs,
789 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
790
791 if (use_hw_binning(cmd)) {
792 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
793
794 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
795 tu_cs_emit(cs, 0x0);
796
797 tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
798 tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(OVERFLOW_FLAG_REG) |
799 A6XX_CP_REG_TEST_0_BIT(0) |
800 A6XX_CP_REG_TEST_0_WAIT_FOR_ME);
801
802 tu_cs_reserve(cs, 3 + 11);
803 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
804 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(PRED_TEST));
805 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(11));
806
807 /* if (no overflow) */ {
808 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5, 7);
809 tu_cs_emit(cs, cmd->state.tiling_config.pipe_sizes[tile->pipe] |
810 CP_SET_BIN_DATA5_0_VSC_N(tile->slot));
811 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + tile->pipe * cmd->vsc_draw_strm_pitch);
812 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + (tile->pipe * 4) + (32 * cmd->vsc_draw_strm_pitch));
813 tu_cs_emit_qw(cs, cmd->vsc_prim_strm.iova + (tile->pipe * cmd->vsc_prim_strm_pitch));
814
815 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
816 tu_cs_emit(cs, 0x0);
817
818 /* use a NOP packet to skip over the 'else' side: */
819 tu_cs_emit_pkt7(cs, CP_NOP, 2);
820 } /* else */ {
821 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
822 tu_cs_emit(cs, 0x1);
823 }
824
825 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
826 tu_cs_emit(cs, 0x0);
827 } else {
828 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
829 tu_cs_emit(cs, 0x1);
830
831 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
832 tu_cs_emit(cs, 0x0);
833 }
834 }
835
836 static void
837 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
838 struct tu_cs *cs,
839 uint32_t a,
840 uint32_t gmem_a)
841 {
842 const struct tu_framebuffer *fb = cmd->state.framebuffer;
843 struct tu_image_view *dst = fb->attachments[a].attachment;
844 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
845
846 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.tiling_config.render_area);
847 }
848
849 static void
850 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
851 struct tu_cs *cs,
852 const struct tu_subpass *subpass)
853 {
854 if (subpass->resolve_attachments) {
855 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
856 * Commands":
857 *
858 * End-of-subpass multisample resolves are treated as color
859 * attachment writes for the purposes of synchronization. That is,
860 * they are considered to execute in the
861 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
862 * their writes are synchronized with
863 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
864 * rendering within a subpass and any resolve operations at the end
865 * of the subpass occurs automatically, without need for explicit
866 * dependencies or pipeline barriers. However, if the resolve
867 * attachment is also used in a different subpass, an explicit
868 * dependency is needed.
869 *
870 * We use the CP_BLIT path for sysmem resolves, which is really a
871 * transfer command, so we have to manually flush similar to the gmem
872 * resolve case. However, a flush afterwards isn't needed because of the
873 * last sentence and the fact that we're in sysmem mode.
874 */
875 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
876 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
877
878 /* Wait for the flushes to land before using the 2D engine */
879 tu_cs_emit_wfi(cs);
880
881 for (unsigned i = 0; i < subpass->color_count; i++) {
882 uint32_t a = subpass->resolve_attachments[i].attachment;
883 if (a == VK_ATTACHMENT_UNUSED)
884 continue;
885
886 tu6_emit_sysmem_resolve(cmd, cs, a,
887 subpass->color_attachments[i].attachment);
888 }
889 }
890 }
891
892 static void
893 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
894 {
895 const struct tu_render_pass *pass = cmd->state.pass;
896 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
897
898 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
899 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
900 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
901 CP_SET_DRAW_STATE__0_GROUP_ID(0));
902 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
903 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
904
905 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
906 tu_cs_emit(cs, 0x0);
907
908 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
909 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
910
911 tu6_emit_blit_scissor(cmd, cs, true);
912
913 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
914 if (pass->attachments[a].gmem_offset >= 0)
915 tu_store_gmem_attachment(cmd, cs, a, a);
916 }
917
918 if (subpass->resolve_attachments) {
919 for (unsigned i = 0; i < subpass->color_count; i++) {
920 uint32_t a = subpass->resolve_attachments[i].attachment;
921 if (a != VK_ATTACHMENT_UNUSED)
922 tu_store_gmem_attachment(cmd, cs, a,
923 subpass->color_attachments[i].attachment);
924 }
925 }
926 }
927
928 static void
929 tu6_emit_restart_index(struct tu_cs *cs, uint32_t restart_index)
930 {
931 tu_cs_emit_regs(cs,
932 A6XX_PC_RESTART_INDEX(restart_index));
933 }
934
935 static void
936 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
937 {
938 const struct tu_physical_device *phys_dev = cmd->device->physical_device;
939
940 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
941
942 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 0xfffff);
943
944 tu_cs_emit_regs(cs,
945 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
946 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
947 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
948 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
949 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
950 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
951 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
952 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
953 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
954 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
955
956 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
957 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
958 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
959 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
960 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
961 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
962 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BB11, 0);
963 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
964 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
965 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
966 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
967 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
968 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
969 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_GS_SIV_CNTL, 0x0000ffff);
970
971 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
972 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
973 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
974
975 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
976
977 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
978
979 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
980 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
981 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
982 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
983 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
984 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
985 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
986 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
987 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
988 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
989 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
990
991 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9101, 0xffff00);
992 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
993
994 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9236,
995 A6XX_VPC_UNKNOWN_9236_POINT_COORD_INVERT(0));
996 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
997
998 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_SO_OVERRIDE,
999 A6XX_VPC_SO_OVERRIDE_SO_DISABLE);
1000
1001 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
1002 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
1003 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9990, 0);
1004
1005 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
1006 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
1007
1008 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
1009
1010 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
1011
1012 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
1013 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_809B, 0);
1014 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
1015 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
1016 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
1017 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
1018 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
1019 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9981, 0x3);
1020 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
1021 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9108, 0x3);
1022 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
1023 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8878, 0);
1024 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8879, 0);
1025 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
1026
1027 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
1028
1029 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
1030
1031 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
1032
1033 /* we don't use this yet.. probably best to disable.. */
1034 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1035 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1036 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1037 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1038 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1039 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1040
1041 /* Set not to use streamout by default, */
1042 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 4);
1043 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
1044 tu_cs_emit(cs, 0);
1045 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
1046 tu_cs_emit(cs, 0);
1047
1048 tu_cs_emit_regs(cs,
1049 A6XX_SP_HS_CTRL_REG0(0));
1050
1051 tu_cs_emit_regs(cs,
1052 A6XX_SP_GS_CTRL_REG0(0));
1053
1054 tu_cs_emit_regs(cs,
1055 A6XX_GRAS_LRZ_CNTL(0));
1056
1057 tu_cs_emit_regs(cs,
1058 A6XX_RB_LRZ_CNTL(0));
1059
1060 tu_cs_emit_regs(cs,
1061 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1062 tu_cs_emit_regs(cs,
1063 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1064
1065 tu_cs_sanity_check(cs);
1066 }
1067
1068 static void
1069 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1070 {
1071 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1072
1073 tu_cs_emit_regs(cs,
1074 A6XX_VSC_BIN_SIZE(.width = tiling->tile0.extent.width,
1075 .height = tiling->tile0.extent.height),
1076 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = &cmd->vsc_draw_strm,
1077 .bo_offset = 32 * cmd->vsc_draw_strm_pitch));
1078
1079 tu_cs_emit_regs(cs,
1080 A6XX_VSC_BIN_COUNT(.nx = tiling->tile_count.width,
1081 .ny = tiling->tile_count.height));
1082
1083 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
1084 for (unsigned i = 0; i < 32; i++)
1085 tu_cs_emit(cs, tiling->pipe_config[i]);
1086
1087 tu_cs_emit_regs(cs,
1088 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = &cmd->vsc_prim_strm),
1089 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
1090 A6XX_VSC_PRIM_STRM_ARRAY_PITCH(cmd->vsc_prim_strm.size));
1091
1092 tu_cs_emit_regs(cs,
1093 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = &cmd->vsc_draw_strm),
1094 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
1095 A6XX_VSC_DRAW_STRM_ARRAY_PITCH(cmd->vsc_draw_strm.size));
1096 }
1097
1098 static void
1099 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1100 {
1101 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1102 const uint32_t used_pipe_count =
1103 tiling->pipe_count.width * tiling->pipe_count.height;
1104
1105 /* Clear vsc_scratch: */
1106 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
1107 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1108 tu_cs_emit(cs, 0x0);
1109
1110 /* Check for overflow, write vsc_scratch if detected: */
1111 for (int i = 0; i < used_pipe_count; i++) {
1112 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1113 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1114 CP_COND_WRITE5_0_WRITE_MEMORY);
1115 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
1116 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1117 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch));
1118 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1119 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1120 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(1 + cmd->vsc_draw_strm_pitch));
1121
1122 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1123 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1124 CP_COND_WRITE5_0_WRITE_MEMORY);
1125 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
1126 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1127 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch));
1128 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1129 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1130 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(3 + cmd->vsc_prim_strm_pitch));
1131 }
1132
1133 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1134
1135 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1136
1137 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1138 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(OVERFLOW_FLAG_REG) |
1139 CP_MEM_TO_REG_0_CNT(1 - 1));
1140 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1141
1142 /*
1143 * This is a bit awkward, we really want a way to invert the
1144 * CP_REG_TEST/CP_COND_REG_EXEC logic, so that we can conditionally
1145 * execute cmds to use hwbinning when a bit is *not* set. This
1146 * dance is to invert OVERFLOW_FLAG_REG
1147 *
1148 * A CP_NOP packet is used to skip executing the 'else' clause
1149 * if (b0 set)..
1150 */
1151
1152 /* b0 will be set if VSC_DRAW_STRM or VSC_PRIM_STRM overflow: */
1153 tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
1154 tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(OVERFLOW_FLAG_REG) |
1155 A6XX_CP_REG_TEST_0_BIT(0) |
1156 A6XX_CP_REG_TEST_0_WAIT_FOR_ME);
1157
1158 tu_cs_reserve(cs, 3 + 7);
1159 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
1160 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(PRED_TEST));
1161 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(7));
1162
1163 /* if (b0 set) */ {
1164 /*
1165 * On overflow, mirror the value to control->vsc_overflow
1166 * which CPU is checking to detect overflow (see
1167 * check_vsc_overflow())
1168 */
1169 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
1170 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(OVERFLOW_FLAG_REG) |
1171 CP_REG_TO_MEM_0_CNT(0));
1172 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_overflow));
1173
1174 tu_cs_emit_pkt4(cs, OVERFLOW_FLAG_REG, 1);
1175 tu_cs_emit(cs, 0x0);
1176
1177 tu_cs_emit_pkt7(cs, CP_NOP, 2); /* skip 'else' when 'if' is taken */
1178 } /* else */ {
1179 tu_cs_emit_pkt4(cs, OVERFLOW_FLAG_REG, 1);
1180 tu_cs_emit(cs, 0x1);
1181 }
1182 }
1183
1184 static void
1185 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1186 {
1187 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1188 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1189
1190 uint32_t x1 = tiling->tile0.offset.x;
1191 uint32_t y1 = tiling->tile0.offset.y;
1192 uint32_t x2 = tiling->render_area.offset.x + tiling->render_area.extent.width - 1;
1193 uint32_t y2 = tiling->render_area.offset.y + tiling->render_area.extent.height - 1;
1194
1195 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
1196
1197 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1198 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
1199
1200 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1201 tu_cs_emit(cs, 0x1);
1202
1203 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1204 tu_cs_emit(cs, 0x1);
1205
1206 tu_cs_emit_wfi(cs);
1207
1208 tu_cs_emit_regs(cs,
1209 A6XX_VFD_MODE_CNTL(.binning_pass = true));
1210
1211 update_vsc_pipe(cmd, cs);
1212
1213 tu_cs_emit_regs(cs,
1214 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1215
1216 tu_cs_emit_regs(cs,
1217 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1218
1219 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1220 tu_cs_emit(cs, UNK_2C);
1221
1222 tu_cs_emit_regs(cs,
1223 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1224
1225 tu_cs_emit_regs(cs,
1226 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1227
1228 /* emit IB to binning drawcmds: */
1229 tu_cs_emit_call(cs, &cmd->draw_cs);
1230
1231 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1232 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1233 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1234 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1235 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1236 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1237
1238 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1239 tu_cs_emit(cs, UNK_2D);
1240
1241 /* This flush is probably required because the VSC, which produces the
1242 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1243 * visibility stream (without caching) to do draw skipping. The
1244 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1245 * submitted are finished before reading the VSC regs (in
1246 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1247 * part of draws).
1248 */
1249 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1250
1251 tu_cs_emit_wfi(cs);
1252
1253 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1254
1255 emit_vsc_overflow_test(cmd, cs);
1256
1257 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1258 tu_cs_emit(cs, 0x0);
1259
1260 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1261 tu_cs_emit(cs, 0x0);
1262 }
1263
1264 static void
1265 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1266 const struct tu_subpass *subpass,
1267 struct tu_cs_entry *ib,
1268 bool gmem)
1269 {
1270 /* note: we can probably emit input attachments just once for the whole
1271 * renderpass, this would avoid emitting both sysmem/gmem versions
1272 *
1273 * emit two texture descriptors for each input, as a workaround for
1274 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1275 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1276 * in the pair
1277 * TODO: a smarter workaround
1278 */
1279
1280 if (!subpass->input_count)
1281 return;
1282
1283 struct ts_cs_memory texture;
1284 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1285 A6XX_TEX_CONST_DWORDS, &texture);
1286 assert(result == VK_SUCCESS);
1287
1288 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1289 uint32_t a = subpass->input_attachments[i / 2].attachment;
1290 if (a == VK_ATTACHMENT_UNUSED)
1291 continue;
1292
1293 struct tu_image_view *iview =
1294 cmd->state.framebuffer->attachments[a].attachment;
1295 const struct tu_render_pass_attachment *att =
1296 &cmd->state.pass->attachments[a];
1297 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1298
1299 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1300
1301 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1302 /* note this works because spec says fb and input attachments
1303 * must use identity swizzle
1304 */
1305 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1306 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1307 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1308 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1309 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1310 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1311 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1312 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1313 }
1314
1315 if (!gmem)
1316 continue;
1317
1318 /* patched for gmem */
1319 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1320 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1321 dst[2] &= ~(A6XX_TEX_CONST_2_TYPE__MASK | A6XX_TEX_CONST_2_PITCH__MASK);
1322 dst[2] |=
1323 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1324 A6XX_TEX_CONST_2_PITCH(cmd->state.tiling_config.tile0.extent.width * att->cpp);
1325 dst[3] = 0;
1326 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1327 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1328 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1329 dst[i] = 0;
1330 }
1331
1332 struct tu_cs cs;
1333 tu_cs_begin_sub_stream(&cmd->sub_cs, 9, &cs);
1334
1335 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1336 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1337 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1338 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1339 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1340 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1341 tu_cs_emit_qw(&cs, texture.iova);
1342
1343 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1344 tu_cs_emit_qw(&cs, texture.iova);
1345
1346 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1347
1348 *ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1349 }
1350
1351 static void
1352 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1353 {
1354 struct tu_cs *cs = &cmd->draw_cs;
1355
1356 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_gmem_ib, true);
1357 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_sysmem_ib, false);
1358
1359 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1360 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM, cmd->state.ia_gmem_ib);
1361 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM, cmd->state.ia_sysmem_ib);
1362 }
1363
1364 static void
1365 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1366 const VkRenderPassBeginInfo *info)
1367 {
1368 struct tu_cs *cs = &cmd->draw_cs;
1369
1370 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1371
1372 tu6_emit_blit_scissor(cmd, cs, true);
1373
1374 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1375 tu_load_gmem_attachment(cmd, cs, i, false);
1376
1377 tu6_emit_blit_scissor(cmd, cs, false);
1378
1379 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1380 tu_clear_gmem_attachment(cmd, cs, i, info);
1381
1382 tu_cond_exec_end(cs);
1383
1384 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1385
1386 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1387 tu_clear_sysmem_attachment(cmd, cs, i, info);
1388
1389 tu_cond_exec_end(cs);
1390 }
1391
1392 static void
1393 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1394 const struct VkRect2D *renderArea)
1395 {
1396 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1397
1398 assert(fb->width > 0 && fb->height > 0);
1399 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1400 tu6_emit_window_offset(cs, 0, 0);
1401
1402 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1403
1404 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1405
1406 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1407 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1408
1409 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1410 tu_cs_emit(cs, 0x0);
1411
1412 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1413
1414 /* enable stream-out, with sysmem there is only one pass: */
1415 tu_cs_emit_regs(cs,
1416 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
1417
1418 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1419 tu_cs_emit(cs, 0x1);
1420
1421 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1422 tu_cs_emit(cs, 0x0);
1423
1424 tu_cs_sanity_check(cs);
1425 }
1426
1427 static void
1428 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1429 {
1430 /* Do any resolves of the last subpass. These are handled in the
1431 * tile_store_ib in the gmem path.
1432 */
1433 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1434
1435 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1436
1437 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1438 tu_cs_emit(cs, 0x0);
1439
1440 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1441
1442 tu_cs_sanity_check(cs);
1443 }
1444
1445 static void
1446 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1447 {
1448 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1449
1450 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1451
1452 /* lrz clear? */
1453
1454 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1455 tu_cs_emit(cs, 0x0);
1456
1457 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1458
1459 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1460 if (use_hw_binning(cmd)) {
1461 /* enable stream-out during binning pass: */
1462 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1463
1464 tu6_emit_bin_size(cs,
1465 tiling->tile0.extent.width,
1466 tiling->tile0.extent.height,
1467 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1468
1469 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1470
1471 tu6_emit_binning_pass(cmd, cs);
1472
1473 /* and disable stream-out for draw pass: */
1474 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=true));
1475
1476 tu6_emit_bin_size(cs,
1477 tiling->tile0.extent.width,
1478 tiling->tile0.extent.height,
1479 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1480
1481 tu_cs_emit_regs(cs,
1482 A6XX_VFD_MODE_CNTL(0));
1483
1484 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1485
1486 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1487
1488 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1489 tu_cs_emit(cs, 0x1);
1490 } else {
1491 /* no binning pass, so enable stream-out for draw pass:: */
1492 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1493
1494 tu6_emit_bin_size(cs,
1495 tiling->tile0.extent.width,
1496 tiling->tile0.extent.height,
1497 0x6000000);
1498 }
1499
1500 tu_cs_sanity_check(cs);
1501 }
1502
1503 static void
1504 tu6_render_tile(struct tu_cmd_buffer *cmd,
1505 struct tu_cs *cs,
1506 const struct tu_tile *tile)
1507 {
1508 tu6_emit_tile_select(cmd, cs, tile);
1509
1510 tu_cs_emit_call(cs, &cmd->draw_cs);
1511
1512 if (use_hw_binning(cmd)) {
1513 tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
1514 tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(OVERFLOW_FLAG_REG) |
1515 A6XX_CP_REG_TEST_0_BIT(0) |
1516 A6XX_CP_REG_TEST_0_WAIT_FOR_ME);
1517
1518 tu_cs_reserve(cs, 3 + 2);
1519 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
1520 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(PRED_TEST));
1521 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(2));
1522
1523 /* if (no overflow) */ {
1524 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1525 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1526 }
1527 }
1528
1529 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1530
1531 tu_cs_sanity_check(cs);
1532 }
1533
1534 static void
1535 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1536 {
1537 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1538
1539 tu_cs_emit_regs(cs,
1540 A6XX_GRAS_LRZ_CNTL(0));
1541
1542 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1543
1544 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1545
1546 tu_cs_sanity_check(cs);
1547 }
1548
1549 static void
1550 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1551 {
1552 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1553
1554 tu6_tile_render_begin(cmd, &cmd->cs);
1555
1556 for (uint32_t y = 0; y < tiling->tile_count.height; y++) {
1557 for (uint32_t x = 0; x < tiling->tile_count.width; x++) {
1558 struct tu_tile tile;
1559 tu_tiling_config_get_tile(tiling, cmd->device, x, y, &tile);
1560 tu6_render_tile(cmd, &cmd->cs, &tile);
1561 }
1562 }
1563
1564 tu6_tile_render_end(cmd, &cmd->cs);
1565 }
1566
1567 static void
1568 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1569 {
1570 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1571
1572 tu6_sysmem_render_begin(cmd, &cmd->cs, &tiling->render_area);
1573
1574 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1575
1576 tu6_sysmem_render_end(cmd, &cmd->cs);
1577 }
1578
1579 static void
1580 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1581 {
1582 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1583 struct tu_cs sub_cs;
1584
1585 VkResult result =
1586 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1587 if (result != VK_SUCCESS) {
1588 cmd->record_result = result;
1589 return;
1590 }
1591
1592 /* emit to tile-store sub_cs */
1593 tu6_emit_tile_store(cmd, &sub_cs);
1594
1595 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1596 }
1597
1598 static void
1599 tu_cmd_update_tiling_config(struct tu_cmd_buffer *cmd,
1600 const VkRect2D *render_area)
1601 {
1602 const struct tu_device *dev = cmd->device;
1603 struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1604
1605 tiling->render_area = *render_area;
1606 tiling->force_sysmem = false;
1607
1608 tu_tiling_config_update_tile_layout(tiling, dev, cmd->state.pass);
1609 tu_tiling_config_update_pipe_layout(tiling, dev);
1610 tu_tiling_config_update_pipes(tiling, dev);
1611 }
1612
1613 static VkResult
1614 tu_create_cmd_buffer(struct tu_device *device,
1615 struct tu_cmd_pool *pool,
1616 VkCommandBufferLevel level,
1617 VkCommandBuffer *pCommandBuffer)
1618 {
1619 struct tu_cmd_buffer *cmd_buffer;
1620 cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8,
1621 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1622 if (cmd_buffer == NULL)
1623 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1624
1625 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1626 cmd_buffer->device = device;
1627 cmd_buffer->pool = pool;
1628 cmd_buffer->level = level;
1629
1630 if (pool) {
1631 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1632 cmd_buffer->queue_family_index = pool->queue_family_index;
1633
1634 } else {
1635 /* Init the pool_link so we can safely call list_del when we destroy
1636 * the command buffer
1637 */
1638 list_inithead(&cmd_buffer->pool_link);
1639 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1640 }
1641
1642 tu_bo_list_init(&cmd_buffer->bo_list);
1643 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1644 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1645 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1646 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1647
1648 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1649
1650 list_inithead(&cmd_buffer->upload.list);
1651
1652 VkResult result = tu_bo_init_new(device, &cmd_buffer->scratch_bo, 0x1000);
1653 if (result != VK_SUCCESS)
1654 goto fail_scratch_bo;
1655
1656 /* TODO: resize on overflow */
1657 cmd_buffer->vsc_draw_strm_pitch = device->vsc_draw_strm_pitch;
1658 cmd_buffer->vsc_prim_strm_pitch = device->vsc_prim_strm_pitch;
1659 cmd_buffer->vsc_draw_strm = device->vsc_draw_strm;
1660 cmd_buffer->vsc_prim_strm = device->vsc_prim_strm;
1661
1662 return VK_SUCCESS;
1663
1664 fail_scratch_bo:
1665 list_del(&cmd_buffer->pool_link);
1666 return result;
1667 }
1668
1669 static void
1670 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1671 {
1672 tu_bo_finish(cmd_buffer->device, &cmd_buffer->scratch_bo);
1673
1674 list_del(&cmd_buffer->pool_link);
1675
1676 tu_cs_finish(&cmd_buffer->cs);
1677 tu_cs_finish(&cmd_buffer->draw_cs);
1678 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1679 tu_cs_finish(&cmd_buffer->sub_cs);
1680
1681 tu_bo_list_destroy(&cmd_buffer->bo_list);
1682 vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
1683 }
1684
1685 static VkResult
1686 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1687 {
1688 cmd_buffer->record_result = VK_SUCCESS;
1689
1690 tu_bo_list_reset(&cmd_buffer->bo_list);
1691 tu_cs_reset(&cmd_buffer->cs);
1692 tu_cs_reset(&cmd_buffer->draw_cs);
1693 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1694 tu_cs_reset(&cmd_buffer->sub_cs);
1695
1696 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1697 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1698
1699 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1700
1701 return cmd_buffer->record_result;
1702 }
1703
1704 VkResult
1705 tu_AllocateCommandBuffers(VkDevice _device,
1706 const VkCommandBufferAllocateInfo *pAllocateInfo,
1707 VkCommandBuffer *pCommandBuffers)
1708 {
1709 TU_FROM_HANDLE(tu_device, device, _device);
1710 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1711
1712 VkResult result = VK_SUCCESS;
1713 uint32_t i;
1714
1715 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1716
1717 if (!list_is_empty(&pool->free_cmd_buffers)) {
1718 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1719 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1720
1721 list_del(&cmd_buffer->pool_link);
1722 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1723
1724 result = tu_reset_cmd_buffer(cmd_buffer);
1725 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1726 cmd_buffer->level = pAllocateInfo->level;
1727
1728 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1729 } else {
1730 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1731 &pCommandBuffers[i]);
1732 }
1733 if (result != VK_SUCCESS)
1734 break;
1735 }
1736
1737 if (result != VK_SUCCESS) {
1738 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1739 pCommandBuffers);
1740
1741 /* From the Vulkan 1.0.66 spec:
1742 *
1743 * "vkAllocateCommandBuffers can be used to create multiple
1744 * command buffers. If the creation of any of those command
1745 * buffers fails, the implementation must destroy all
1746 * successfully created command buffer objects from this
1747 * command, set all entries of the pCommandBuffers array to
1748 * NULL and return the error."
1749 */
1750 memset(pCommandBuffers, 0,
1751 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1752 }
1753
1754 return result;
1755 }
1756
1757 void
1758 tu_FreeCommandBuffers(VkDevice device,
1759 VkCommandPool commandPool,
1760 uint32_t commandBufferCount,
1761 const VkCommandBuffer *pCommandBuffers)
1762 {
1763 for (uint32_t i = 0; i < commandBufferCount; i++) {
1764 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1765
1766 if (cmd_buffer) {
1767 if (cmd_buffer->pool) {
1768 list_del(&cmd_buffer->pool_link);
1769 list_addtail(&cmd_buffer->pool_link,
1770 &cmd_buffer->pool->free_cmd_buffers);
1771 } else
1772 tu_cmd_buffer_destroy(cmd_buffer);
1773 }
1774 }
1775 }
1776
1777 VkResult
1778 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1779 VkCommandBufferResetFlags flags)
1780 {
1781 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1782 return tu_reset_cmd_buffer(cmd_buffer);
1783 }
1784
1785 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1786 * invalidations.
1787 */
1788 static void
1789 tu_cache_init(struct tu_cache_state *cache)
1790 {
1791 cache->flush_bits = 0;
1792 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1793 }
1794
1795 VkResult
1796 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1797 const VkCommandBufferBeginInfo *pBeginInfo)
1798 {
1799 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1800 VkResult result = VK_SUCCESS;
1801
1802 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1803 /* If the command buffer has already been resetted with
1804 * vkResetCommandBuffer, no need to do it again.
1805 */
1806 result = tu_reset_cmd_buffer(cmd_buffer);
1807 if (result != VK_SUCCESS)
1808 return result;
1809 }
1810
1811 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1812 tu_cache_init(&cmd_buffer->state.cache);
1813 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1814 cmd_buffer->usage_flags = pBeginInfo->flags;
1815
1816 tu_cs_begin(&cmd_buffer->cs);
1817 tu_cs_begin(&cmd_buffer->draw_cs);
1818 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1819
1820 /* setup initial configuration into command buffer */
1821 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1822 switch (cmd_buffer->queue_family_index) {
1823 case TU_QUEUE_GENERAL:
1824 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1825 break;
1826 default:
1827 break;
1828 }
1829 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1830 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1831 assert(pBeginInfo->pInheritanceInfo);
1832 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1833 cmd_buffer->state.subpass =
1834 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1835 } else {
1836 /* When executing in the middle of another command buffer, the CCU
1837 * state is unknown.
1838 */
1839 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1840 }
1841 }
1842
1843 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1844
1845 return VK_SUCCESS;
1846 }
1847
1848 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1849 * rendering can skip over unused state), so we need to collect all the
1850 * bindings together into a single state emit at draw time.
1851 */
1852 void
1853 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1854 uint32_t firstBinding,
1855 uint32_t bindingCount,
1856 const VkBuffer *pBuffers,
1857 const VkDeviceSize *pOffsets)
1858 {
1859 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1860
1861 assert(firstBinding + bindingCount <= MAX_VBS);
1862
1863 for (uint32_t i = 0; i < bindingCount; i++) {
1864 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1865
1866 cmd->state.vb.buffers[firstBinding + i] = buf;
1867 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1868
1869 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1870 }
1871
1872 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1873 }
1874
1875 void
1876 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1877 VkBuffer buffer,
1878 VkDeviceSize offset,
1879 VkIndexType indexType)
1880 {
1881 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1882 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1883
1884 /* initialize/update the restart index */
1885 if (!cmd->state.index_buffer || cmd->state.index_type != indexType) {
1886 struct tu_cs *draw_cs = &cmd->draw_cs;
1887
1888 tu6_emit_restart_index(
1889 draw_cs, indexType == VK_INDEX_TYPE_UINT32 ? 0xffffffff : 0xffff);
1890
1891 tu_cs_sanity_check(draw_cs);
1892 }
1893
1894 /* track the BO */
1895 if (cmd->state.index_buffer != buf)
1896 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1897
1898 cmd->state.index_buffer = buf;
1899 cmd->state.index_offset = offset;
1900 cmd->state.index_type = indexType;
1901 }
1902
1903 void
1904 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1905 VkPipelineBindPoint pipelineBindPoint,
1906 VkPipelineLayout _layout,
1907 uint32_t firstSet,
1908 uint32_t descriptorSetCount,
1909 const VkDescriptorSet *pDescriptorSets,
1910 uint32_t dynamicOffsetCount,
1911 const uint32_t *pDynamicOffsets)
1912 {
1913 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1914 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1915 unsigned dyn_idx = 0;
1916
1917 struct tu_descriptor_state *descriptors_state =
1918 tu_get_descriptors_state(cmd, pipelineBindPoint);
1919
1920 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1921 unsigned idx = i + firstSet;
1922 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1923
1924 descriptors_state->sets[idx] = set;
1925
1926 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1927 /* update the contents of the dynamic descriptor set */
1928 unsigned src_idx = j;
1929 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1930 assert(dyn_idx < dynamicOffsetCount);
1931
1932 uint32_t *dst =
1933 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1934 uint32_t *src =
1935 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1936 uint32_t offset = pDynamicOffsets[dyn_idx];
1937
1938 /* Patch the storage/uniform descriptors right away. */
1939 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1940 /* Note: we can assume here that the addition won't roll over and
1941 * change the SIZE field.
1942 */
1943 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1944 va += offset;
1945 dst[0] = va;
1946 dst[1] = va >> 32;
1947 } else {
1948 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1949 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1950 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1951 va += offset;
1952 dst[4] = va;
1953 dst[5] = va >> 32;
1954 }
1955 }
1956
1957 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1958 if (set->buffers[j]) {
1959 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1960 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1961 }
1962 }
1963
1964 if (set->size > 0) {
1965 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1966 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1967 }
1968 }
1969 assert(dyn_idx == dynamicOffsetCount);
1970
1971 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_update_value;
1972 uint64_t addr[MAX_SETS + 1] = {};
1973 struct tu_cs cs;
1974
1975 for (uint32_t i = 0; i < MAX_SETS; i++) {
1976 struct tu_descriptor_set *set = descriptors_state->sets[i];
1977 if (set)
1978 addr[i] = set->va | 3;
1979 }
1980
1981 if (layout->dynamic_offset_count) {
1982 /* allocate and fill out dynamic descriptor set */
1983 struct ts_cs_memory dynamic_desc_set;
1984 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1985 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1986 assert(result == VK_SUCCESS);
1987
1988 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1989 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1990 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1991 }
1992
1993 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1994 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1995 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1996 hlsq_update_value = 0x7c000;
1997
1998 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS | TU_CMD_DIRTY_SHADER_CONSTS;
1999 } else {
2000 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
2001
2002 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
2003 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
2004 hlsq_update_value = 0x3e00;
2005
2006 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS;
2007 }
2008
2009 tu_cs_begin_sub_stream(&cmd->sub_cs, 24, &cs);
2010
2011 tu_cs_emit_pkt4(&cs, sp_bindless_base_reg, 10);
2012 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
2013 tu_cs_emit_pkt4(&cs, hlsq_bindless_base_reg, 10);
2014 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
2015 tu_cs_emit_regs(&cs, A6XX_HLSQ_UPDATE_CNTL(.dword = hlsq_update_value));
2016
2017 struct tu_cs_entry ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2018 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
2019 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2020 tu_cs_emit_sds_ib(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, ib);
2021 cmd->state.desc_sets_ib = ib;
2022 } else {
2023 /* note: for compute we could emit directly, instead of a CP_INDIRECT
2024 * however, the blob uses draw states for compute
2025 */
2026 tu_cs_emit_ib(&cmd->cs, &ib);
2027 }
2028 }
2029
2030 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
2031 uint32_t firstBinding,
2032 uint32_t bindingCount,
2033 const VkBuffer *pBuffers,
2034 const VkDeviceSize *pOffsets,
2035 const VkDeviceSize *pSizes)
2036 {
2037 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2038 assert(firstBinding + bindingCount <= IR3_MAX_SO_BUFFERS);
2039
2040 for (uint32_t i = 0; i < bindingCount; i++) {
2041 uint32_t idx = firstBinding + i;
2042 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
2043
2044 if (pOffsets[i] != 0)
2045 cmd->state.streamout_reset |= 1 << idx;
2046
2047 cmd->state.streamout_buf.buffers[idx] = buf;
2048 cmd->state.streamout_buf.offsets[idx] = pOffsets[i];
2049 cmd->state.streamout_buf.sizes[idx] = pSizes[i];
2050
2051 cmd->state.streamout_enabled |= 1 << idx;
2052 }
2053
2054 cmd->state.dirty |= TU_CMD_DIRTY_STREAMOUT_BUFFERS;
2055 }
2056
2057 void tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
2058 uint32_t firstCounterBuffer,
2059 uint32_t counterBufferCount,
2060 const VkBuffer *pCounterBuffers,
2061 const VkDeviceSize *pCounterBufferOffsets)
2062 {
2063 assert(firstCounterBuffer + counterBufferCount <= IR3_MAX_SO_BUFFERS);
2064 /* TODO do something with counter buffer? */
2065 }
2066
2067 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
2068 uint32_t firstCounterBuffer,
2069 uint32_t counterBufferCount,
2070 const VkBuffer *pCounterBuffers,
2071 const VkDeviceSize *pCounterBufferOffsets)
2072 {
2073 assert(firstCounterBuffer + counterBufferCount <= IR3_MAX_SO_BUFFERS);
2074 /* TODO do something with counter buffer? */
2075
2076 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2077 cmd->state.streamout_enabled = 0;
2078 }
2079
2080 void
2081 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
2082 VkPipelineLayout layout,
2083 VkShaderStageFlags stageFlags,
2084 uint32_t offset,
2085 uint32_t size,
2086 const void *pValues)
2087 {
2088 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2089 memcpy((void*) cmd->push_constants + offset, pValues, size);
2090 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2091 }
2092
2093 /* Flush everything which has been made available but we haven't actually
2094 * flushed yet.
2095 */
2096 static void
2097 tu_flush_all_pending(struct tu_cache_state *cache)
2098 {
2099 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2100 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
2101 }
2102
2103 VkResult
2104 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
2105 {
2106 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
2107
2108 /* We currently flush CCU at the end of the command buffer, like
2109 * what the blob does. There's implicit synchronization around every
2110 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
2111 * know yet if this command buffer will be the last in the submit so we
2112 * have to defensively flush everything else.
2113 *
2114 * TODO: We could definitely do better than this, since these flushes
2115 * aren't required by Vulkan, but we'd need kernel support to do that.
2116 * Ideally, we'd like the kernel to flush everything afterwards, so that we
2117 * wouldn't have to do any flushes here, and when submitting multiple
2118 * command buffers there wouldn't be any unnecessary flushes in between.
2119 */
2120 if (cmd_buffer->state.pass) {
2121 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
2122 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
2123 } else {
2124 tu_flush_all_pending(&cmd_buffer->state.cache);
2125 cmd_buffer->state.cache.flush_bits |=
2126 TU_CMD_FLAG_CCU_FLUSH_COLOR |
2127 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
2128 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
2129 }
2130
2131 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->scratch_bo,
2132 MSM_SUBMIT_BO_WRITE);
2133
2134 if (cmd_buffer->use_vsc_data) {
2135 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_draw_strm,
2136 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2137 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_prim_strm,
2138 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2139 }
2140
2141 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->border_color,
2142 MSM_SUBMIT_BO_READ);
2143
2144 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
2145 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
2146 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2147 }
2148
2149 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
2150 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
2151 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2152 }
2153
2154 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
2155 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
2156 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2157 }
2158
2159 tu_cs_end(&cmd_buffer->cs);
2160 tu_cs_end(&cmd_buffer->draw_cs);
2161 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
2162
2163 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
2164
2165 return cmd_buffer->record_result;
2166 }
2167
2168 static struct tu_cs
2169 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2170 {
2171 struct ts_cs_memory memory;
2172 struct tu_cs cs;
2173
2174 /* TODO: share this logic with tu_pipeline_static_state */
2175 tu_cs_alloc(&cmd->sub_cs, size, 1, &memory);
2176 tu_cs_init_external(&cs, memory.map, memory.map + size);
2177 tu_cs_begin(&cs);
2178 tu_cs_reserve_space(&cs, size);
2179
2180 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2181 cmd->state.dynamic_state[id].iova = memory.iova;
2182 cmd->state.dynamic_state[id].size = size;
2183
2184 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2185 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2186
2187 return cs;
2188 }
2189
2190 void
2191 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2192 VkPipelineBindPoint pipelineBindPoint,
2193 VkPipeline _pipeline)
2194 {
2195 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2196 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2197
2198 tu_bo_list_add(&cmd->bo_list, &pipeline->program.binary_bo,
2199 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2200 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2201 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2202 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2203 }
2204
2205 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2206 cmd->state.compute_pipeline = pipeline;
2207 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_PIPELINE;
2208 return;
2209 }
2210
2211 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2212
2213 cmd->state.pipeline = pipeline;
2214 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2215
2216 struct tu_cs *cs = &cmd->draw_cs;
2217 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2218 uint32_t i;
2219
2220 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2221 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
2222 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
2223 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
2224 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
2225 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
2226 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
2227 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
2228
2229 for_each_bit(i, mask)
2230 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2231
2232 /* If the new pipeline requires more VBs than we had previously set up, we
2233 * need to re-emit them in SDS. If it requires the same set or fewer, we
2234 * can just re-use the old SDS.
2235 */
2236 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2237 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2238
2239 /* If the pipeline needs a dynamic descriptor, re-emit descriptor sets */
2240 if (pipeline->layout->dynamic_offset_count)
2241 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS;
2242
2243 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2244 * so the dynamic state ib must be updated when pipeline changes
2245 */
2246 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2247 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2248
2249 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2250 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2251
2252 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2253 }
2254 }
2255
2256 void
2257 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2258 uint32_t firstViewport,
2259 uint32_t viewportCount,
2260 const VkViewport *pViewports)
2261 {
2262 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2263 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2264
2265 assert(firstViewport == 0 && viewportCount == 1);
2266
2267 tu6_emit_viewport(&cs, pViewports);
2268 }
2269
2270 void
2271 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2272 uint32_t firstScissor,
2273 uint32_t scissorCount,
2274 const VkRect2D *pScissors)
2275 {
2276 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2277 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2278
2279 assert(firstScissor == 0 && scissorCount == 1);
2280
2281 tu6_emit_scissor(&cs, pScissors);
2282 }
2283
2284 void
2285 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2286 {
2287 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2288 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2289
2290 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2291 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2292
2293 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2294 }
2295
2296 void
2297 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2298 float depthBiasConstantFactor,
2299 float depthBiasClamp,
2300 float depthBiasSlopeFactor)
2301 {
2302 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2303 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2304
2305 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2306 }
2307
2308 void
2309 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2310 const float blendConstants[4])
2311 {
2312 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2313 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2314
2315 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2316 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2317 }
2318
2319 void
2320 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2321 float minDepthBounds,
2322 float maxDepthBounds)
2323 {
2324 }
2325
2326 static void
2327 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2328 {
2329 if (face & VK_STENCIL_FACE_FRONT_BIT)
2330 *value |= A6XX_RB_STENCILMASK_MASK(mask);
2331 if (face & VK_STENCIL_FACE_BACK_BIT)
2332 *value |= A6XX_RB_STENCILMASK_BFMASK(mask);
2333 }
2334
2335 void
2336 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2337 VkStencilFaceFlags faceMask,
2338 uint32_t compareMask)
2339 {
2340 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2341 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2342
2343 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2344
2345 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2346 }
2347
2348 void
2349 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2350 VkStencilFaceFlags faceMask,
2351 uint32_t writeMask)
2352 {
2353 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2354 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2355
2356 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2357
2358 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2359 }
2360
2361 void
2362 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2363 VkStencilFaceFlags faceMask,
2364 uint32_t reference)
2365 {
2366 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2367 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2368
2369 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2370
2371 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2372 }
2373
2374 void
2375 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2376 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2377 {
2378 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2379 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2380
2381 assert(pSampleLocationsInfo);
2382
2383 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2384 }
2385
2386 static void
2387 tu_flush_for_access(struct tu_cache_state *cache,
2388 enum tu_cmd_access_mask src_mask,
2389 enum tu_cmd_access_mask dst_mask)
2390 {
2391 enum tu_cmd_flush_bits flush_bits = 0;
2392
2393 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2394 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2395 }
2396
2397 #define SRC_FLUSH(domain, flush, invalidate) \
2398 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2399 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2400 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2401 }
2402
2403 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2404 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2405 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2406
2407 #undef SRC_FLUSH
2408
2409 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2410 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2411 flush_bits |= TU_CMD_FLAG_##flush; \
2412 cache->pending_flush_bits |= \
2413 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2414 }
2415
2416 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2417 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2418
2419 #undef SRC_INCOHERENT_FLUSH
2420
2421 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
2422 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2423 }
2424
2425 #define DST_FLUSH(domain, flush, invalidate) \
2426 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2427 TU_ACCESS_##domain##_WRITE)) { \
2428 flush_bits |= cache->pending_flush_bits & \
2429 (TU_CMD_FLAG_##invalidate | \
2430 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2431 }
2432
2433 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2434 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2435 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2436
2437 #undef DST_FLUSH
2438
2439 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2440 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2441 TU_ACCESS_##domain##_WRITE)) { \
2442 flush_bits |= TU_CMD_FLAG_##invalidate | \
2443 (cache->pending_flush_bits & \
2444 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2445 }
2446
2447 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2448 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2449
2450 #undef DST_INCOHERENT_FLUSH
2451
2452 if (dst_mask & TU_ACCESS_WFI_READ) {
2453 flush_bits |= TU_CMD_FLAG_WFI;
2454 }
2455
2456 cache->flush_bits |= flush_bits;
2457 cache->pending_flush_bits &= ~flush_bits;
2458 }
2459
2460 static enum tu_cmd_access_mask
2461 vk2tu_access(VkAccessFlags flags, bool gmem)
2462 {
2463 enum tu_cmd_access_mask mask = 0;
2464
2465 /* If the GPU writes a buffer that is then read by an indirect draw
2466 * command, we theoretically need a WFI + WAIT_FOR_ME combination to
2467 * wait for the writes to complete. The WAIT_FOR_ME is performed as part
2468 * of the draw by the firmware, so we just need to execute a WFI.
2469 */
2470 if (flags &
2471 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2472 VK_ACCESS_MEMORY_READ_BIT)) {
2473 mask |= TU_ACCESS_WFI_READ;
2474 }
2475
2476 if (flags &
2477 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2478 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
2479 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2480 VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
2481 VK_ACCESS_MEMORY_READ_BIT)) {
2482 mask |= TU_ACCESS_SYSMEM_READ;
2483 }
2484
2485 if (flags &
2486 (VK_ACCESS_HOST_WRITE_BIT |
2487 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
2488 VK_ACCESS_MEMORY_WRITE_BIT)) {
2489 mask |= TU_ACCESS_SYSMEM_WRITE;
2490 }
2491
2492 if (flags &
2493 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2494 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2495 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2496 /* TODO: Is there a no-cache bit for textures so that we can ignore
2497 * these?
2498 */
2499 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2500 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2501 VK_ACCESS_MEMORY_READ_BIT)) {
2502 mask |= TU_ACCESS_UCHE_READ;
2503 }
2504
2505 if (flags &
2506 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2507 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2508 VK_ACCESS_MEMORY_WRITE_BIT)) {
2509 mask |= TU_ACCESS_UCHE_WRITE;
2510 }
2511
2512 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2513 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2514 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2515 * can ignore CCU and pretend that color attachments and transfers use
2516 * sysmem directly.
2517 */
2518
2519 if (flags &
2520 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2521 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2522 VK_ACCESS_MEMORY_READ_BIT)) {
2523 if (gmem)
2524 mask |= TU_ACCESS_SYSMEM_READ;
2525 else
2526 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2527 }
2528
2529 if (flags &
2530 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2531 VK_ACCESS_MEMORY_READ_BIT)) {
2532 if (gmem)
2533 mask |= TU_ACCESS_SYSMEM_READ;
2534 else
2535 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2536 }
2537
2538 if (flags &
2539 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2540 VK_ACCESS_MEMORY_WRITE_BIT)) {
2541 if (gmem) {
2542 mask |= TU_ACCESS_SYSMEM_WRITE;
2543 } else {
2544 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2545 }
2546 }
2547
2548 if (flags &
2549 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2550 VK_ACCESS_MEMORY_WRITE_BIT)) {
2551 if (gmem) {
2552 mask |= TU_ACCESS_SYSMEM_WRITE;
2553 } else {
2554 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2555 }
2556 }
2557
2558 /* When the dst access is a transfer read/write, it seems we sometimes need
2559 * to insert a WFI after any flushes, to guarantee that the flushes finish
2560 * before the 2D engine starts. However the opposite (i.e. a WFI after
2561 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2562 * the blob doesn't emit such a WFI.
2563 */
2564
2565 if (flags &
2566 (VK_ACCESS_TRANSFER_WRITE_BIT |
2567 VK_ACCESS_MEMORY_WRITE_BIT)) {
2568 if (gmem) {
2569 mask |= TU_ACCESS_SYSMEM_WRITE;
2570 } else {
2571 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2572 }
2573 mask |= TU_ACCESS_WFI_READ;
2574 }
2575
2576 if (flags &
2577 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2578 VK_ACCESS_MEMORY_READ_BIT)) {
2579 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2580 }
2581
2582 return mask;
2583 }
2584
2585
2586 void
2587 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2588 uint32_t commandBufferCount,
2589 const VkCommandBuffer *pCmdBuffers)
2590 {
2591 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2592 VkResult result;
2593
2594 assert(commandBufferCount > 0);
2595
2596 /* Emit any pending flushes. */
2597 if (cmd->state.pass) {
2598 tu_flush_all_pending(&cmd->state.renderpass_cache);
2599 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2600 } else {
2601 tu_flush_all_pending(&cmd->state.cache);
2602 tu_emit_cache_flush(cmd, &cmd->cs);
2603 }
2604
2605 for (uint32_t i = 0; i < commandBufferCount; i++) {
2606 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2607
2608 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2609 if (result != VK_SUCCESS) {
2610 cmd->record_result = result;
2611 break;
2612 }
2613
2614 if (secondary->usage_flags &
2615 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2616 assert(tu_cs_is_empty(&secondary->cs));
2617
2618 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2619 if (result != VK_SUCCESS) {
2620 cmd->record_result = result;
2621 break;
2622 }
2623
2624 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2625 &secondary->draw_epilogue_cs);
2626 if (result != VK_SUCCESS) {
2627 cmd->record_result = result;
2628 break;
2629 }
2630 } else {
2631 assert(tu_cs_is_empty(&secondary->draw_cs));
2632 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2633
2634 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2635 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2636 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2637 }
2638
2639 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2640 }
2641 }
2642 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2643
2644 /* After executing secondary command buffers, there may have been arbitrary
2645 * flushes executed, so when we encounter a pipeline barrier with a
2646 * srcMask, we have to assume that we need to invalidate. Therefore we need
2647 * to re-initialize the cache with all pending invalidate bits set.
2648 */
2649 if (cmd->state.pass) {
2650 tu_cache_init(&cmd->state.renderpass_cache);
2651 } else {
2652 tu_cache_init(&cmd->state.cache);
2653 }
2654 }
2655
2656 VkResult
2657 tu_CreateCommandPool(VkDevice _device,
2658 const VkCommandPoolCreateInfo *pCreateInfo,
2659 const VkAllocationCallbacks *pAllocator,
2660 VkCommandPool *pCmdPool)
2661 {
2662 TU_FROM_HANDLE(tu_device, device, _device);
2663 struct tu_cmd_pool *pool;
2664
2665 pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
2666 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2667 if (pool == NULL)
2668 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2669
2670 if (pAllocator)
2671 pool->alloc = *pAllocator;
2672 else
2673 pool->alloc = device->alloc;
2674
2675 list_inithead(&pool->cmd_buffers);
2676 list_inithead(&pool->free_cmd_buffers);
2677
2678 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2679
2680 *pCmdPool = tu_cmd_pool_to_handle(pool);
2681
2682 return VK_SUCCESS;
2683 }
2684
2685 void
2686 tu_DestroyCommandPool(VkDevice _device,
2687 VkCommandPool commandPool,
2688 const VkAllocationCallbacks *pAllocator)
2689 {
2690 TU_FROM_HANDLE(tu_device, device, _device);
2691 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2692
2693 if (!pool)
2694 return;
2695
2696 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2697 &pool->cmd_buffers, pool_link)
2698 {
2699 tu_cmd_buffer_destroy(cmd_buffer);
2700 }
2701
2702 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2703 &pool->free_cmd_buffers, pool_link)
2704 {
2705 tu_cmd_buffer_destroy(cmd_buffer);
2706 }
2707
2708 vk_free2(&device->alloc, pAllocator, pool);
2709 }
2710
2711 VkResult
2712 tu_ResetCommandPool(VkDevice device,
2713 VkCommandPool commandPool,
2714 VkCommandPoolResetFlags flags)
2715 {
2716 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2717 VkResult result;
2718
2719 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2720 pool_link)
2721 {
2722 result = tu_reset_cmd_buffer(cmd_buffer);
2723 if (result != VK_SUCCESS)
2724 return result;
2725 }
2726
2727 return VK_SUCCESS;
2728 }
2729
2730 void
2731 tu_TrimCommandPool(VkDevice device,
2732 VkCommandPool commandPool,
2733 VkCommandPoolTrimFlags flags)
2734 {
2735 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2736
2737 if (!pool)
2738 return;
2739
2740 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2741 &pool->free_cmd_buffers, pool_link)
2742 {
2743 tu_cmd_buffer_destroy(cmd_buffer);
2744 }
2745 }
2746
2747 static void
2748 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2749 const struct tu_subpass_barrier *barrier,
2750 bool external)
2751 {
2752 /* Note: we don't know until the end of the subpass whether we'll use
2753 * sysmem, so assume sysmem here to be safe.
2754 */
2755 struct tu_cache_state *cache =
2756 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2757 enum tu_cmd_access_mask src_flags =
2758 vk2tu_access(barrier->src_access_mask, false);
2759 enum tu_cmd_access_mask dst_flags =
2760 vk2tu_access(barrier->dst_access_mask, false);
2761
2762 if (barrier->incoherent_ccu_color)
2763 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2764 if (barrier->incoherent_ccu_depth)
2765 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2766
2767 tu_flush_for_access(cache, src_flags, dst_flags);
2768 }
2769
2770 void
2771 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2772 const VkRenderPassBeginInfo *pRenderPassBegin,
2773 VkSubpassContents contents)
2774 {
2775 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2776 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2777 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2778
2779 cmd->state.pass = pass;
2780 cmd->state.subpass = pass->subpasses;
2781 cmd->state.framebuffer = fb;
2782
2783 tu_cmd_update_tiling_config(cmd, &pRenderPassBegin->renderArea);
2784 tu_cmd_prepare_tile_store_ib(cmd);
2785
2786 /* Note: because this is external, any flushes will happen before draw_cs
2787 * gets called. However deferred flushes could have to happen later as part
2788 * of the subpass.
2789 */
2790 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2791 cmd->state.renderpass_cache.pending_flush_bits =
2792 cmd->state.cache.pending_flush_bits;
2793 cmd->state.renderpass_cache.flush_bits = 0;
2794
2795 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2796
2797 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2798 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2799 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2800 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2801
2802 tu_set_input_attachments(cmd, cmd->state.subpass);
2803
2804 /* note: use_hw_binning only checks tiling config */
2805 if (use_hw_binning(cmd))
2806 cmd->use_vsc_data = true;
2807
2808 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2809 const struct tu_image_view *iview = fb->attachments[i].attachment;
2810 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2811 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2812 }
2813
2814 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2815 }
2816
2817 void
2818 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2819 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2820 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2821 {
2822 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2823 pSubpassBeginInfo->contents);
2824 }
2825
2826 void
2827 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2828 {
2829 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2830 const struct tu_render_pass *pass = cmd->state.pass;
2831 struct tu_cs *cs = &cmd->draw_cs;
2832
2833 const struct tu_subpass *subpass = cmd->state.subpass++;
2834
2835 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2836
2837 if (subpass->resolve_attachments) {
2838 tu6_emit_blit_scissor(cmd, cs, true);
2839
2840 for (unsigned i = 0; i < subpass->color_count; i++) {
2841 uint32_t a = subpass->resolve_attachments[i].attachment;
2842 if (a == VK_ATTACHMENT_UNUSED)
2843 continue;
2844
2845 tu_store_gmem_attachment(cmd, cs, a,
2846 subpass->color_attachments[i].attachment);
2847
2848 if (pass->attachments[a].gmem_offset < 0)
2849 continue;
2850
2851 /* TODO:
2852 * check if the resolved attachment is needed by later subpasses,
2853 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2854 */
2855 tu_finishme("missing GMEM->GMEM resolve path\n");
2856 tu_load_gmem_attachment(cmd, cs, a, true);
2857 }
2858 }
2859
2860 tu_cond_exec_end(cs);
2861
2862 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2863
2864 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2865
2866 tu_cond_exec_end(cs);
2867
2868 /* Handle dependencies for the next subpass */
2869 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2870
2871 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2872 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2873 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2874 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2875 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2876
2877 tu_set_input_attachments(cmd, cmd->state.subpass);
2878 }
2879
2880 void
2881 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2882 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2883 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2884 {
2885 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2886 }
2887
2888 struct tu_draw_info
2889 {
2890 /**
2891 * Number of vertices.
2892 */
2893 uint32_t count;
2894
2895 /**
2896 * Index of the first vertex.
2897 */
2898 int32_t vertex_offset;
2899
2900 /**
2901 * First instance id.
2902 */
2903 uint32_t first_instance;
2904
2905 /**
2906 * Number of instances.
2907 */
2908 uint32_t instance_count;
2909
2910 /**
2911 * First index (indexed draws only).
2912 */
2913 uint32_t first_index;
2914
2915 /**
2916 * Whether it's an indexed draw.
2917 */
2918 bool indexed;
2919
2920 /**
2921 * Indirect draw parameters resource.
2922 */
2923 struct tu_buffer *indirect;
2924 uint64_t indirect_offset;
2925 uint32_t stride;
2926
2927 /**
2928 * Draw count parameters resource.
2929 */
2930 struct tu_buffer *count_buffer;
2931 uint64_t count_buffer_offset;
2932
2933 /**
2934 * Stream output parameters resource.
2935 */
2936 struct tu_buffer *streamout_buffer;
2937 uint64_t streamout_buffer_offset;
2938 };
2939
2940 static void
2941 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2942 struct tu_descriptor_state *descriptors_state,
2943 gl_shader_stage type,
2944 uint32_t *push_constants)
2945 {
2946 const struct tu_program_descriptor_linkage *link =
2947 &pipeline->program.link[type];
2948 const struct ir3_ubo_analysis_state *state = &link->ubo_state;
2949
2950 if (link->push_consts.count > 0) {
2951 unsigned num_units = link->push_consts.count;
2952 unsigned offset = link->push_consts.lo;
2953 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2954 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2955 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2956 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2957 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2958 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2959 tu_cs_emit(cs, 0);
2960 tu_cs_emit(cs, 0);
2961 for (unsigned i = 0; i < num_units * 4; i++)
2962 tu_cs_emit(cs, push_constants[i + offset * 4]);
2963 }
2964
2965 for (uint32_t i = 0; i < state->num_enabled; i++) {
2966 uint32_t size = state->range[i].end - state->range[i].start;
2967 uint32_t offset = state->range[i].start;
2968
2969 /* and even if the start of the const buffer is before
2970 * first_immediate, the end may not be:
2971 */
2972 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2973
2974 if (size == 0)
2975 continue;
2976
2977 /* things should be aligned to vec4: */
2978 debug_assert((state->range[i].offset % 16) == 0);
2979 debug_assert((size % 16) == 0);
2980 debug_assert((offset % 16) == 0);
2981
2982 /* Dig out the descriptor from the descriptor state and read the VA from
2983 * it.
2984 */
2985 assert(state->range[i].bindless);
2986 uint32_t *base = state->range[i].bindless_base == MAX_SETS ?
2987 descriptors_state->dynamic_descriptors :
2988 descriptors_state->sets[state->range[i].bindless_base]->mapped_ptr;
2989 unsigned block = state->range[i].block;
2990 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2991 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2992 assert(va);
2993
2994 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2995 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2996 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2997 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2998 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2999 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
3000 tu_cs_emit_qw(cs, va + offset);
3001 }
3002 }
3003
3004 static struct tu_cs_entry
3005 tu6_emit_consts(struct tu_cmd_buffer *cmd,
3006 const struct tu_pipeline *pipeline,
3007 struct tu_descriptor_state *descriptors_state,
3008 gl_shader_stage type)
3009 {
3010 struct tu_cs cs;
3011 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
3012
3013 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
3014
3015 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3016 }
3017
3018 static VkResult
3019 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
3020 const struct tu_draw_info *draw,
3021 struct tu_cs_entry *entry)
3022 {
3023 /* TODO: fill out more than just base instance */
3024 const struct tu_program_descriptor_linkage *link =
3025 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
3026 const struct ir3_const_state *const_state = &link->const_state;
3027 struct tu_cs cs;
3028
3029 if (const_state->offsets.driver_param >= link->constlen) {
3030 *entry = (struct tu_cs_entry) {};
3031 return VK_SUCCESS;
3032 }
3033
3034 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 8, &cs);
3035 if (result != VK_SUCCESS)
3036 return result;
3037
3038 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3039 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(const_state->offsets.driver_param) |
3040 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3041 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3042 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3043 CP_LOAD_STATE6_0_NUM_UNIT(1));
3044 tu_cs_emit(&cs, 0);
3045 tu_cs_emit(&cs, 0);
3046
3047 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3048
3049 tu_cs_emit(&cs, 0);
3050 tu_cs_emit(&cs, 0);
3051 tu_cs_emit(&cs, draw->first_instance);
3052 tu_cs_emit(&cs, 0);
3053
3054 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3055 return VK_SUCCESS;
3056 }
3057
3058 static struct tu_cs_entry
3059 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
3060 const struct tu_pipeline *pipeline)
3061 {
3062 struct tu_cs cs;
3063 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
3064
3065 int binding;
3066 for_each_bit(binding, pipeline->vi.bindings_used) {
3067 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
3068 const VkDeviceSize offset = buf->bo_offset +
3069 cmd->state.vb.offsets[binding];
3070
3071 tu_cs_emit_regs(&cs,
3072 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
3073 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
3074
3075 }
3076
3077 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
3078
3079 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3080 }
3081
3082 static void
3083 tu6_emit_streamout(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
3084 {
3085 struct tu_streamout_state *tf = &cmd->state.pipeline->streamout;
3086
3087 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
3088 struct tu_buffer *buf = cmd->state.streamout_buf.buffers[i];
3089 if (!buf)
3090 continue;
3091
3092 uint32_t offset;
3093 offset = cmd->state.streamout_buf.offsets[i];
3094
3095 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_BASE(i, .bo = buf->bo,
3096 .bo_offset = buf->bo_offset));
3097 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_SIZE(i, buf->size));
3098
3099 if (cmd->state.streamout_reset & (1 << i)) {
3100 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, offset));
3101 cmd->state.streamout_reset &= ~(1 << i);
3102 } else {
3103 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
3104 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(i)) |
3105 CP_MEM_TO_REG_0_SHIFT_BY_2 | CP_MEM_TO_REG_0_UNK31 |
3106 CP_MEM_TO_REG_0_CNT(0));
3107 tu_cs_emit_qw(cs, cmd->scratch_bo.iova +
3108 ctrl_offset(flush_base[i].offset));
3109 }
3110
3111 tu_cs_emit_regs(cs, A6XX_VPC_SO_FLUSH_BASE(i, .bo = &cmd->scratch_bo,
3112 .bo_offset =
3113 ctrl_offset(flush_base[i])));
3114 }
3115
3116 if (cmd->state.streamout_enabled) {
3117 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 12 + (2 * tf->prog_count));
3118 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
3119 tu_cs_emit(cs, tf->vpc_so_buf_cntl);
3120 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(0));
3121 tu_cs_emit(cs, tf->ncomp[0]);
3122 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(1));
3123 tu_cs_emit(cs, tf->ncomp[1]);
3124 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(2));
3125 tu_cs_emit(cs, tf->ncomp[2]);
3126 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(3));
3127 tu_cs_emit(cs, tf->ncomp[3]);
3128 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
3129 tu_cs_emit(cs, A6XX_VPC_SO_CNTL_ENABLE);
3130 for (unsigned i = 0; i < tf->prog_count; i++) {
3131 tu_cs_emit(cs, REG_A6XX_VPC_SO_PROG);
3132 tu_cs_emit(cs, tf->prog[i]);
3133 }
3134 } else {
3135 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 4);
3136 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
3137 tu_cs_emit(cs, 0);
3138 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
3139 tu_cs_emit(cs, 0);
3140 }
3141 }
3142
3143 static VkResult
3144 tu6_bind_draw_states(struct tu_cmd_buffer *cmd,
3145 struct tu_cs *cs,
3146 const struct tu_draw_info *draw)
3147 {
3148 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3149 VkResult result;
3150
3151 struct tu_descriptor_state *descriptors_state =
3152 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
3153
3154 /* TODO lrz */
3155
3156 tu_cs_emit_regs(cs,
3157 A6XX_PC_PRIMITIVE_CNTL_0(.primitive_restart =
3158 pipeline->ia.primitive_restart && draw->indexed));
3159
3160 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3161 cmd->state.shader_const_ib[MESA_SHADER_VERTEX] =
3162 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
3163 cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY] =
3164 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
3165 cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT] =
3166 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
3167 }
3168
3169 if (cmd->state.dirty & TU_CMD_DIRTY_STREAMOUT_BUFFERS)
3170 tu6_emit_streamout(cmd, cs);
3171
3172 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) {
3173 /* We need to reload the descriptors every time the descriptor sets
3174 * change. However, the commands we send only depend on the pipeline
3175 * because the whole point is to cache descriptors which are used by the
3176 * pipeline. There's a problem here, in that the firmware has an
3177 * "optimization" which skips executing groups that are set to the same
3178 * value as the last draw. This means that if the descriptor sets change
3179 * but not the pipeline, we'd try to re-execute the same buffer which
3180 * the firmware would ignore and we wouldn't pre-load the new
3181 * descriptors. The blob seems to re-emit the LOAD_STATE group whenever
3182 * the descriptor sets change, which we emulate here by copying the
3183 * pre-prepared buffer.
3184 */
3185 const struct tu_cs_entry *load_entry = &pipeline->load_state.state_ib;
3186 if (load_entry->size > 0) {
3187 struct tu_cs load_cs;
3188 result = tu_cs_begin_sub_stream(&cmd->sub_cs, load_entry->size, &load_cs);
3189 if (result != VK_SUCCESS)
3190 return result;
3191 tu_cs_emit_array(&load_cs,
3192 (uint32_t *)((char *)load_entry->bo->map + load_entry->offset),
3193 load_entry->size / 4);
3194 cmd->state.desc_sets_load_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &load_cs);
3195 } else {
3196 cmd->state.desc_sets_load_ib.size = 0;
3197 }
3198 }
3199
3200 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3201 cmd->state.vertex_buffers_ib = tu6_emit_vertex_buffers(cmd, pipeline);
3202
3203 struct tu_cs_entry vs_params;
3204 result = tu6_emit_vs_params(cmd, draw, &vs_params);
3205 if (result != VK_SUCCESS)
3206 return result;
3207
3208 /* for the first draw in a renderpass, re-emit all the draw states
3209 *
3210 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3211 * used, then draw states must be re-emitted. note however this only happens
3212 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3213 *
3214 * the two input attachment states are excluded because secondary command
3215 * buffer doesn't have a state ib to restore it, and not re-emitting them
3216 * is OK since CmdClearAttachments won't disable/overwrite them
3217 */
3218 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3219 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3220
3221 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
3222 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
3223 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
3224 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
3225 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
3226 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
3227 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
3228 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3229 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3230 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3231 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets_ib);
3232 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3233 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3234 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_PARAMS, vs_params);
3235
3236 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3237 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3238 ((pipeline->dynamic_state_mask & BIT(i)) ?
3239 cmd->state.dynamic_state[i] :
3240 pipeline->dynamic_state[i]));
3241 }
3242 } else {
3243
3244 /* emit draw states that were just updated
3245 * note we eventually don't want to have to emit anything here
3246 */
3247 uint32_t draw_state_count =
3248 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 3 : 0) +
3249 ((cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) ? 1 : 0) +
3250 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3251 1; /* vs_params */
3252
3253 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3254
3255 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3256 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3257 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3258 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3259 }
3260 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS)
3261 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3262 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3263 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3264 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_PARAMS, vs_params);
3265 }
3266
3267 tu_cs_sanity_check(cs);
3268
3269 /* track BOs */
3270 if (cmd->state.dirty & TU_CMD_DIRTY_STREAMOUT_BUFFERS) {
3271 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
3272 const struct tu_buffer *buf = cmd->state.streamout_buf.buffers[i];
3273 if (buf) {
3274 tu_bo_list_add(&cmd->bo_list, buf->bo,
3275 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3276 }
3277 }
3278 }
3279
3280 /* There are too many graphics dirty bits to list here, so just list the
3281 * bits to preserve instead. The only things not emitted here are
3282 * compute-related state.
3283 */
3284 cmd->state.dirty &= (TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3285 return VK_SUCCESS;
3286 }
3287
3288 static void
3289 tu6_emit_draw_indirect(struct tu_cmd_buffer *cmd,
3290 struct tu_cs *cs,
3291 const struct tu_draw_info *draw)
3292 {
3293 const enum pc_di_primtype primtype = cmd->state.pipeline->ia.primtype;
3294 bool has_gs = cmd->state.pipeline->active_stages &
3295 VK_SHADER_STAGE_GEOMETRY_BIT;
3296
3297 tu_cs_emit_regs(cs,
3298 A6XX_VFD_INDEX_OFFSET(draw->vertex_offset),
3299 A6XX_VFD_INSTANCE_START_OFFSET(draw->first_instance));
3300
3301 if (draw->indexed) {
3302 const enum a4xx_index_size index_size =
3303 tu6_index_size(cmd->state.index_type);
3304 const uint32_t index_bytes =
3305 (cmd->state.index_type == VK_INDEX_TYPE_UINT32) ? 4 : 2;
3306 const struct tu_buffer *index_buf = cmd->state.index_buffer;
3307 unsigned max_indicies =
3308 (index_buf->size - cmd->state.index_offset) / index_bytes;
3309
3310 const uint32_t cp_draw_indx =
3311 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3312 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_DMA) |
3313 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(index_size) |
3314 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3315 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
3316
3317 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_INDIRECT, 6);
3318 tu_cs_emit(cs, cp_draw_indx);
3319 tu_cs_emit_qw(cs, index_buf->bo->iova + cmd->state.index_offset);
3320 tu_cs_emit(cs, A5XX_CP_DRAW_INDX_INDIRECT_3_MAX_INDICES(max_indicies));
3321 tu_cs_emit_qw(cs, draw->indirect->bo->iova + draw->indirect_offset);
3322 } else {
3323 const uint32_t cp_draw_indx =
3324 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3325 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_AUTO_INDEX) |
3326 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3327 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
3328
3329 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT, 3);
3330 tu_cs_emit(cs, cp_draw_indx);
3331 tu_cs_emit_qw(cs, draw->indirect->bo->iova + draw->indirect_offset);
3332 }
3333
3334 tu_bo_list_add(&cmd->bo_list, draw->indirect->bo, MSM_SUBMIT_BO_READ);
3335 }
3336
3337 static void
3338 tu6_emit_draw_direct(struct tu_cmd_buffer *cmd,
3339 struct tu_cs *cs,
3340 const struct tu_draw_info *draw)
3341 {
3342
3343 const enum pc_di_primtype primtype = cmd->state.pipeline->ia.primtype;
3344 bool has_gs = cmd->state.pipeline->active_stages &
3345 VK_SHADER_STAGE_GEOMETRY_BIT;
3346
3347 tu_cs_emit_regs(cs,
3348 A6XX_VFD_INDEX_OFFSET(draw->vertex_offset),
3349 A6XX_VFD_INSTANCE_START_OFFSET(draw->first_instance));
3350
3351 /* TODO hw binning */
3352 if (draw->indexed) {
3353 const enum a4xx_index_size index_size =
3354 tu6_index_size(cmd->state.index_type);
3355 const uint32_t index_bytes =
3356 (cmd->state.index_type == VK_INDEX_TYPE_UINT32) ? 4 : 2;
3357 const struct tu_buffer *buf = cmd->state.index_buffer;
3358 const VkDeviceSize offset = buf->bo_offset + cmd->state.index_offset +
3359 index_bytes * draw->first_index;
3360 const uint32_t size = index_bytes * draw->count;
3361
3362 const uint32_t cp_draw_indx =
3363 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3364 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_DMA) |
3365 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(index_size) |
3366 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3367 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
3368
3369 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3370 tu_cs_emit(cs, cp_draw_indx);
3371 tu_cs_emit(cs, draw->instance_count);
3372 tu_cs_emit(cs, draw->count);
3373 tu_cs_emit(cs, 0x0); /* XXX */
3374 tu_cs_emit_qw(cs, buf->bo->iova + offset);
3375 tu_cs_emit(cs, size);
3376 } else {
3377 const uint32_t cp_draw_indx =
3378 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3379 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_AUTO_INDEX) |
3380 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3381 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
3382
3383 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3384 tu_cs_emit(cs, cp_draw_indx);
3385 tu_cs_emit(cs, draw->instance_count);
3386 tu_cs_emit(cs, draw->count);
3387 }
3388 }
3389
3390 static void
3391 tu_draw(struct tu_cmd_buffer *cmd, const struct tu_draw_info *draw)
3392 {
3393 struct tu_cs *cs = &cmd->draw_cs;
3394 VkResult result;
3395
3396 tu_emit_cache_flush_renderpass(cmd, cs);
3397
3398 result = tu6_bind_draw_states(cmd, cs, draw);
3399 if (result != VK_SUCCESS) {
3400 cmd->record_result = result;
3401 return;
3402 }
3403
3404 if (draw->indirect)
3405 tu6_emit_draw_indirect(cmd, cs, draw);
3406 else
3407 tu6_emit_draw_direct(cmd, cs, draw);
3408
3409 if (cmd->state.streamout_enabled) {
3410 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
3411 if (cmd->state.streamout_enabled & (1 << i))
3412 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
3413 }
3414 }
3415
3416 tu_cs_sanity_check(cs);
3417 }
3418
3419 void
3420 tu_CmdDraw(VkCommandBuffer commandBuffer,
3421 uint32_t vertexCount,
3422 uint32_t instanceCount,
3423 uint32_t firstVertex,
3424 uint32_t firstInstance)
3425 {
3426 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3427 struct tu_draw_info info = {};
3428
3429 info.count = vertexCount;
3430 info.instance_count = instanceCount;
3431 info.first_instance = firstInstance;
3432 info.vertex_offset = firstVertex;
3433
3434 tu_draw(cmd_buffer, &info);
3435 }
3436
3437 void
3438 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3439 uint32_t indexCount,
3440 uint32_t instanceCount,
3441 uint32_t firstIndex,
3442 int32_t vertexOffset,
3443 uint32_t firstInstance)
3444 {
3445 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3446 struct tu_draw_info info = {};
3447
3448 info.indexed = true;
3449 info.count = indexCount;
3450 info.instance_count = instanceCount;
3451 info.first_index = firstIndex;
3452 info.vertex_offset = vertexOffset;
3453 info.first_instance = firstInstance;
3454
3455 tu_draw(cmd_buffer, &info);
3456 }
3457
3458 void
3459 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3460 VkBuffer _buffer,
3461 VkDeviceSize offset,
3462 uint32_t drawCount,
3463 uint32_t stride)
3464 {
3465 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3466 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3467 struct tu_draw_info info = {};
3468
3469 info.count = drawCount;
3470 info.indirect = buffer;
3471 info.indirect_offset = offset;
3472 info.stride = stride;
3473
3474 tu_draw(cmd_buffer, &info);
3475 }
3476
3477 void
3478 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3479 VkBuffer _buffer,
3480 VkDeviceSize offset,
3481 uint32_t drawCount,
3482 uint32_t stride)
3483 {
3484 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3485 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3486 struct tu_draw_info info = {};
3487
3488 info.indexed = true;
3489 info.count = drawCount;
3490 info.indirect = buffer;
3491 info.indirect_offset = offset;
3492 info.stride = stride;
3493
3494 tu_draw(cmd_buffer, &info);
3495 }
3496
3497 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3498 uint32_t instanceCount,
3499 uint32_t firstInstance,
3500 VkBuffer _counterBuffer,
3501 VkDeviceSize counterBufferOffset,
3502 uint32_t counterOffset,
3503 uint32_t vertexStride)
3504 {
3505 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3506 TU_FROM_HANDLE(tu_buffer, buffer, _counterBuffer);
3507
3508 struct tu_draw_info info = {};
3509
3510 info.instance_count = instanceCount;
3511 info.first_instance = firstInstance;
3512 info.streamout_buffer = buffer;
3513 info.streamout_buffer_offset = counterBufferOffset;
3514 info.stride = vertexStride;
3515
3516 tu_draw(cmd_buffer, &info);
3517 }
3518
3519 struct tu_dispatch_info
3520 {
3521 /**
3522 * Determine the layout of the grid (in block units) to be used.
3523 */
3524 uint32_t blocks[3];
3525
3526 /**
3527 * A starting offset for the grid. If unaligned is set, the offset
3528 * must still be aligned.
3529 */
3530 uint32_t offsets[3];
3531 /**
3532 * Whether it's an unaligned compute dispatch.
3533 */
3534 bool unaligned;
3535
3536 /**
3537 * Indirect compute parameters resource.
3538 */
3539 struct tu_buffer *indirect;
3540 uint64_t indirect_offset;
3541 };
3542
3543 static void
3544 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3545 const struct tu_dispatch_info *info)
3546 {
3547 gl_shader_stage type = MESA_SHADER_COMPUTE;
3548 const struct tu_program_descriptor_linkage *link =
3549 &pipeline->program.link[type];
3550 const struct ir3_const_state *const_state = &link->const_state;
3551 uint32_t offset = const_state->offsets.driver_param;
3552
3553 if (link->constlen <= offset)
3554 return;
3555
3556 if (!info->indirect) {
3557 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3558 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3559 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3560 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3561 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3562 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3563 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3564 };
3565
3566 uint32_t num_consts = MIN2(const_state->num_driver_params,
3567 (link->constlen - offset) * 4);
3568 /* push constants */
3569 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3570 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3571 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3572 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3573 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3574 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3575 tu_cs_emit(cs, 0);
3576 tu_cs_emit(cs, 0);
3577 uint32_t i;
3578 for (i = 0; i < num_consts; i++)
3579 tu_cs_emit(cs, driver_params[i]);
3580 } else {
3581 tu_finishme("Indirect driver params");
3582 }
3583 }
3584
3585 static void
3586 tu_dispatch(struct tu_cmd_buffer *cmd,
3587 const struct tu_dispatch_info *info)
3588 {
3589 struct tu_cs *cs = &cmd->cs;
3590 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3591 struct tu_descriptor_state *descriptors_state =
3592 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3593
3594 /* TODO: We could probably flush less if we add a compute_flush_bits
3595 * bitfield.
3596 */
3597 tu_emit_cache_flush(cmd, cs);
3598
3599 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_PIPELINE)
3600 tu_cs_emit_ib(cs, &pipeline->program.state_ib);
3601
3602 struct tu_cs_entry ib;
3603
3604 ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE);
3605 if (ib.size)
3606 tu_cs_emit_ib(cs, &ib);
3607
3608 tu_emit_compute_driver_params(cs, pipeline, info);
3609
3610 if ((cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS) &&
3611 pipeline->load_state.state_ib.size > 0) {
3612 tu_cs_emit_ib(cs, &pipeline->load_state.state_ib);
3613 }
3614
3615 cmd->state.dirty &=
3616 ~(TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3617
3618 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3619 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3620
3621 const uint32_t *local_size = pipeline->compute.local_size;
3622 const uint32_t *num_groups = info->blocks;
3623 tu_cs_emit_regs(cs,
3624 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3625 .localsizex = local_size[0] - 1,
3626 .localsizey = local_size[1] - 1,
3627 .localsizez = local_size[2] - 1),
3628 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3629 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3630 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3631 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3632 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3633 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3634
3635 tu_cs_emit_regs(cs,
3636 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3637 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3638 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3639
3640 if (info->indirect) {
3641 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3642
3643 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3644 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3645
3646 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3647 tu_cs_emit(cs, 0x00000000);
3648 tu_cs_emit_qw(cs, iova);
3649 tu_cs_emit(cs,
3650 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3651 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3652 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3653 } else {
3654 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3655 tu_cs_emit(cs, 0x00000000);
3656 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3657 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3658 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3659 }
3660
3661 tu_cs_emit_wfi(cs);
3662 }
3663
3664 void
3665 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3666 uint32_t base_x,
3667 uint32_t base_y,
3668 uint32_t base_z,
3669 uint32_t x,
3670 uint32_t y,
3671 uint32_t z)
3672 {
3673 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3674 struct tu_dispatch_info info = {};
3675
3676 info.blocks[0] = x;
3677 info.blocks[1] = y;
3678 info.blocks[2] = z;
3679
3680 info.offsets[0] = base_x;
3681 info.offsets[1] = base_y;
3682 info.offsets[2] = base_z;
3683 tu_dispatch(cmd_buffer, &info);
3684 }
3685
3686 void
3687 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3688 uint32_t x,
3689 uint32_t y,
3690 uint32_t z)
3691 {
3692 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3693 }
3694
3695 void
3696 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3697 VkBuffer _buffer,
3698 VkDeviceSize offset)
3699 {
3700 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3701 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3702 struct tu_dispatch_info info = {};
3703
3704 info.indirect = buffer;
3705 info.indirect_offset = offset;
3706
3707 tu_dispatch(cmd_buffer, &info);
3708 }
3709
3710 void
3711 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3712 {
3713 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3714
3715 tu_cs_end(&cmd_buffer->draw_cs);
3716 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3717
3718 if (use_sysmem_rendering(cmd_buffer))
3719 tu_cmd_render_sysmem(cmd_buffer);
3720 else
3721 tu_cmd_render_tiles(cmd_buffer);
3722
3723 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3724 rendered */
3725 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3726 tu_cs_begin(&cmd_buffer->draw_cs);
3727 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3728 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3729
3730 cmd_buffer->state.cache.pending_flush_bits |=
3731 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3732 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3733
3734 cmd_buffer->state.pass = NULL;
3735 cmd_buffer->state.subpass = NULL;
3736 cmd_buffer->state.framebuffer = NULL;
3737 }
3738
3739 void
3740 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3741 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3742 {
3743 tu_CmdEndRenderPass(commandBuffer);
3744 }
3745
3746 struct tu_barrier_info
3747 {
3748 uint32_t eventCount;
3749 const VkEvent *pEvents;
3750 VkPipelineStageFlags srcStageMask;
3751 };
3752
3753 static void
3754 tu_barrier(struct tu_cmd_buffer *cmd,
3755 uint32_t memoryBarrierCount,
3756 const VkMemoryBarrier *pMemoryBarriers,
3757 uint32_t bufferMemoryBarrierCount,
3758 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3759 uint32_t imageMemoryBarrierCount,
3760 const VkImageMemoryBarrier *pImageMemoryBarriers,
3761 const struct tu_barrier_info *info)
3762 {
3763 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3764 VkAccessFlags srcAccessMask = 0;
3765 VkAccessFlags dstAccessMask = 0;
3766
3767 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3768 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3769 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3770 }
3771
3772 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3773 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3774 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3775 }
3776
3777 enum tu_cmd_access_mask src_flags = 0;
3778 enum tu_cmd_access_mask dst_flags = 0;
3779
3780 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3781 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3782 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3783 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3784 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3785 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3786 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3787 /* The underlying memory for this image may have been used earlier
3788 * within the same queue submission for a different image, which
3789 * means that there may be old, stale cache entries which are in the
3790 * "wrong" location, which could cause problems later after writing
3791 * to the image. We don't want these entries being flushed later and
3792 * overwriting the actual image, so we need to flush the CCU.
3793 */
3794 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3795 }
3796 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3797 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3798 }
3799
3800 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3801 * so we have to use the sysmem flushes.
3802 */
3803 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3804 !cmd->state.pass;
3805 src_flags |= vk2tu_access(srcAccessMask, gmem);
3806 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3807
3808 struct tu_cache_state *cache =
3809 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3810 tu_flush_for_access(cache, src_flags, dst_flags);
3811
3812 for (uint32_t i = 0; i < info->eventCount; i++) {
3813 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3814
3815 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3816
3817 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3818 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3819 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3820 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3821 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3822 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3823 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3824 }
3825 }
3826
3827 void
3828 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3829 VkPipelineStageFlags srcStageMask,
3830 VkPipelineStageFlags dstStageMask,
3831 VkDependencyFlags dependencyFlags,
3832 uint32_t memoryBarrierCount,
3833 const VkMemoryBarrier *pMemoryBarriers,
3834 uint32_t bufferMemoryBarrierCount,
3835 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3836 uint32_t imageMemoryBarrierCount,
3837 const VkImageMemoryBarrier *pImageMemoryBarriers)
3838 {
3839 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3840 struct tu_barrier_info info;
3841
3842 info.eventCount = 0;
3843 info.pEvents = NULL;
3844 info.srcStageMask = srcStageMask;
3845
3846 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3847 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3848 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3849 }
3850
3851 static void
3852 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3853 VkPipelineStageFlags stageMask, unsigned value)
3854 {
3855 struct tu_cs *cs = &cmd->cs;
3856
3857 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3858 assert(!cmd->state.pass);
3859
3860 tu_emit_cache_flush(cmd, cs);
3861
3862 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3863
3864 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3865 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3866 */
3867 VkPipelineStageFlags top_of_pipe_flags =
3868 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3869 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3870
3871 if (!(stageMask & ~top_of_pipe_flags)) {
3872 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3873 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3874 tu_cs_emit(cs, value);
3875 } else {
3876 /* Use a RB_DONE_TS event to wait for everything to complete. */
3877 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3878 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3879 tu_cs_emit_qw(cs, event->bo.iova);
3880 tu_cs_emit(cs, value);
3881 }
3882 }
3883
3884 void
3885 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3886 VkEvent _event,
3887 VkPipelineStageFlags stageMask)
3888 {
3889 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3890 TU_FROM_HANDLE(tu_event, event, _event);
3891
3892 write_event(cmd, event, stageMask, 1);
3893 }
3894
3895 void
3896 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3897 VkEvent _event,
3898 VkPipelineStageFlags stageMask)
3899 {
3900 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3901 TU_FROM_HANDLE(tu_event, event, _event);
3902
3903 write_event(cmd, event, stageMask, 0);
3904 }
3905
3906 void
3907 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3908 uint32_t eventCount,
3909 const VkEvent *pEvents,
3910 VkPipelineStageFlags srcStageMask,
3911 VkPipelineStageFlags dstStageMask,
3912 uint32_t memoryBarrierCount,
3913 const VkMemoryBarrier *pMemoryBarriers,
3914 uint32_t bufferMemoryBarrierCount,
3915 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3916 uint32_t imageMemoryBarrierCount,
3917 const VkImageMemoryBarrier *pImageMemoryBarriers)
3918 {
3919 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3920 struct tu_barrier_info info;
3921
3922 info.eventCount = eventCount;
3923 info.pEvents = pEvents;
3924 info.srcStageMask = 0;
3925
3926 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3927 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3928 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3929 }
3930
3931 void
3932 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3933 {
3934 /* No-op */
3935 }