turnip: move enum translation functions to a common header
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 #define OVERFLOW_FLAG_REG REG_A6XX_CP_SCRATCH_REG(0)
38
39 void
40 tu_bo_list_init(struct tu_bo_list *list)
41 {
42 list->count = list->capacity = 0;
43 list->bo_infos = NULL;
44 }
45
46 void
47 tu_bo_list_destroy(struct tu_bo_list *list)
48 {
49 free(list->bo_infos);
50 }
51
52 void
53 tu_bo_list_reset(struct tu_bo_list *list)
54 {
55 list->count = 0;
56 }
57
58 /**
59 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
60 */
61 static uint32_t
62 tu_bo_list_add_info(struct tu_bo_list *list,
63 const struct drm_msm_gem_submit_bo *bo_info)
64 {
65 assert(bo_info->handle != 0);
66
67 for (uint32_t i = 0; i < list->count; ++i) {
68 if (list->bo_infos[i].handle == bo_info->handle) {
69 assert(list->bo_infos[i].presumed == bo_info->presumed);
70 list->bo_infos[i].flags |= bo_info->flags;
71 return i;
72 }
73 }
74
75 /* grow list->bo_infos if needed */
76 if (list->count == list->capacity) {
77 uint32_t new_capacity = MAX2(2 * list->count, 16);
78 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
79 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
80 if (!new_bo_infos)
81 return TU_BO_LIST_FAILED;
82 list->bo_infos = new_bo_infos;
83 list->capacity = new_capacity;
84 }
85
86 list->bo_infos[list->count] = *bo_info;
87 return list->count++;
88 }
89
90 uint32_t
91 tu_bo_list_add(struct tu_bo_list *list,
92 const struct tu_bo *bo,
93 uint32_t flags)
94 {
95 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
96 .flags = flags,
97 .handle = bo->gem_handle,
98 .presumed = bo->iova,
99 });
100 }
101
102 VkResult
103 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
104 {
105 for (uint32_t i = 0; i < other->count; i++) {
106 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
107 return VK_ERROR_OUT_OF_HOST_MEMORY;
108 }
109
110 return VK_SUCCESS;
111 }
112
113 static void
114 tu_tiling_config_update_tile_layout(struct tu_tiling_config *tiling,
115 const struct tu_device *dev,
116 const struct tu_render_pass *pass)
117 {
118 const uint32_t tile_align_w = pass->tile_align_w;
119 const uint32_t max_tile_width = 1024;
120
121 /* note: don't offset the tiling config by render_area.offset,
122 * because binning pass can't deal with it
123 * this means we might end up with more tiles than necessary,
124 * but load/store/etc are still scissored to the render_area
125 */
126 tiling->tile0.offset = (VkOffset2D) {};
127
128 const uint32_t ra_width =
129 tiling->render_area.extent.width +
130 (tiling->render_area.offset.x - tiling->tile0.offset.x);
131 const uint32_t ra_height =
132 tiling->render_area.extent.height +
133 (tiling->render_area.offset.y - tiling->tile0.offset.y);
134
135 /* start from 1 tile */
136 tiling->tile_count = (VkExtent2D) {
137 .width = 1,
138 .height = 1,
139 };
140 tiling->tile0.extent = (VkExtent2D) {
141 .width = util_align_npot(ra_width, tile_align_w),
142 .height = align(ra_height, TILE_ALIGN_H),
143 };
144
145 if (unlikely(dev->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN)) {
146 /* start with 2x2 tiles */
147 tiling->tile_count.width = 2;
148 tiling->tile_count.height = 2;
149 tiling->tile0.extent.width = util_align_npot(DIV_ROUND_UP(ra_width, 2), tile_align_w);
150 tiling->tile0.extent.height = align(DIV_ROUND_UP(ra_height, 2), TILE_ALIGN_H);
151 }
152
153 /* do not exceed max tile width */
154 while (tiling->tile0.extent.width > max_tile_width) {
155 tiling->tile_count.width++;
156 tiling->tile0.extent.width =
157 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
158 }
159
160 /* will force to sysmem, don't bother trying to have a valid tile config
161 * TODO: just skip all GMEM stuff when sysmem is forced?
162 */
163 if (!pass->gmem_pixels)
164 return;
165
166 /* do not exceed gmem size */
167 while (tiling->tile0.extent.width * tiling->tile0.extent.height > pass->gmem_pixels) {
168 if (tiling->tile0.extent.width > MAX2(tile_align_w, tiling->tile0.extent.height)) {
169 tiling->tile_count.width++;
170 tiling->tile0.extent.width =
171 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
172 } else {
173 /* if this assert fails then layout is impossible.. */
174 assert(tiling->tile0.extent.height > TILE_ALIGN_H);
175 tiling->tile_count.height++;
176 tiling->tile0.extent.height =
177 align(DIV_ROUND_UP(ra_height, tiling->tile_count.height), TILE_ALIGN_H);
178 }
179 }
180 }
181
182 static void
183 tu_tiling_config_update_pipe_layout(struct tu_tiling_config *tiling,
184 const struct tu_device *dev)
185 {
186 const uint32_t max_pipe_count = 32; /* A6xx */
187
188 /* start from 1 tile per pipe */
189 tiling->pipe0 = (VkExtent2D) {
190 .width = 1,
191 .height = 1,
192 };
193 tiling->pipe_count = tiling->tile_count;
194
195 while (tiling->pipe_count.width * tiling->pipe_count.height > max_pipe_count) {
196 if (tiling->pipe0.width < tiling->pipe0.height) {
197 tiling->pipe0.width += 1;
198 tiling->pipe_count.width =
199 DIV_ROUND_UP(tiling->tile_count.width, tiling->pipe0.width);
200 } else {
201 tiling->pipe0.height += 1;
202 tiling->pipe_count.height =
203 DIV_ROUND_UP(tiling->tile_count.height, tiling->pipe0.height);
204 }
205 }
206 }
207
208 static void
209 tu_tiling_config_update_pipes(struct tu_tiling_config *tiling,
210 const struct tu_device *dev)
211 {
212 const uint32_t max_pipe_count = 32; /* A6xx */
213 const uint32_t used_pipe_count =
214 tiling->pipe_count.width * tiling->pipe_count.height;
215 const VkExtent2D last_pipe = {
216 .width = (tiling->tile_count.width - 1) % tiling->pipe0.width + 1,
217 .height = (tiling->tile_count.height - 1) % tiling->pipe0.height + 1,
218 };
219
220 assert(used_pipe_count <= max_pipe_count);
221 assert(max_pipe_count <= ARRAY_SIZE(tiling->pipe_config));
222
223 for (uint32_t y = 0; y < tiling->pipe_count.height; y++) {
224 for (uint32_t x = 0; x < tiling->pipe_count.width; x++) {
225 const uint32_t pipe_x = tiling->pipe0.width * x;
226 const uint32_t pipe_y = tiling->pipe0.height * y;
227 const uint32_t pipe_w = (x == tiling->pipe_count.width - 1)
228 ? last_pipe.width
229 : tiling->pipe0.width;
230 const uint32_t pipe_h = (y == tiling->pipe_count.height - 1)
231 ? last_pipe.height
232 : tiling->pipe0.height;
233 const uint32_t n = tiling->pipe_count.width * y + x;
234
235 tiling->pipe_config[n] = A6XX_VSC_PIPE_CONFIG_REG_X(pipe_x) |
236 A6XX_VSC_PIPE_CONFIG_REG_Y(pipe_y) |
237 A6XX_VSC_PIPE_CONFIG_REG_W(pipe_w) |
238 A6XX_VSC_PIPE_CONFIG_REG_H(pipe_h);
239 tiling->pipe_sizes[n] = CP_SET_BIN_DATA5_0_VSC_SIZE(pipe_w * pipe_h);
240 }
241 }
242
243 memset(tiling->pipe_config + used_pipe_count, 0,
244 sizeof(uint32_t) * (max_pipe_count - used_pipe_count));
245 }
246
247 static void
248 tu_tiling_config_get_tile(const struct tu_tiling_config *tiling,
249 const struct tu_device *dev,
250 uint32_t tx,
251 uint32_t ty,
252 struct tu_tile *tile)
253 {
254 /* find the pipe and the slot for tile (tx, ty) */
255 const uint32_t px = tx / tiling->pipe0.width;
256 const uint32_t py = ty / tiling->pipe0.height;
257 const uint32_t sx = tx - tiling->pipe0.width * px;
258 const uint32_t sy = ty - tiling->pipe0.height * py;
259 /* last pipe has different width */
260 const uint32_t pipe_width =
261 MIN2(tiling->pipe0.width,
262 tiling->tile_count.width - px * tiling->pipe0.width);
263
264 assert(tx < tiling->tile_count.width && ty < tiling->tile_count.height);
265 assert(px < tiling->pipe_count.width && py < tiling->pipe_count.height);
266 assert(sx < tiling->pipe0.width && sy < tiling->pipe0.height);
267
268 /* convert to 1D indices */
269 tile->pipe = tiling->pipe_count.width * py + px;
270 tile->slot = pipe_width * sy + sx;
271
272 /* get the blit area for the tile */
273 tile->begin = (VkOffset2D) {
274 .x = tiling->tile0.offset.x + tiling->tile0.extent.width * tx,
275 .y = tiling->tile0.offset.y + tiling->tile0.extent.height * ty,
276 };
277 tile->end.x =
278 (tx == tiling->tile_count.width - 1)
279 ? tiling->render_area.offset.x + tiling->render_area.extent.width
280 : tile->begin.x + tiling->tile0.extent.width;
281 tile->end.y =
282 (ty == tiling->tile_count.height - 1)
283 ? tiling->render_area.offset.y + tiling->render_area.extent.height
284 : tile->begin.y + tiling->tile0.extent.height;
285 }
286
287 void
288 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
289 struct tu_cs *cs,
290 enum vgt_event_type event)
291 {
292 bool need_seqno = false;
293 switch (event) {
294 case CACHE_FLUSH_TS:
295 case WT_DONE_TS:
296 case RB_DONE_TS:
297 case PC_CCU_FLUSH_DEPTH_TS:
298 case PC_CCU_FLUSH_COLOR_TS:
299 case PC_CCU_RESOLVE_TS:
300 need_seqno = true;
301 break;
302 default:
303 break;
304 }
305
306 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
307 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
308 if (need_seqno) {
309 tu_cs_emit_qw(cs, cmd->scratch_bo.iova);
310 tu_cs_emit(cs, 0);
311 }
312 }
313
314 static void
315 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
316 struct tu_cs *cs,
317 enum tu_cmd_flush_bits flushes)
318 {
319 /* Experiments show that invalidating CCU while it still has data in it
320 * doesn't work, so make sure to always flush before invalidating in case
321 * any data remains that hasn't yet been made available through a barrier.
322 * However it does seem to work for UCHE.
323 */
324 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
325 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
326 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
327 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
328 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
329 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
330 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
331 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
332 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
333 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
334 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
335 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
336 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
337 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
338 if (flushes & TU_CMD_FLAG_WFI)
339 tu_cs_emit_wfi(cs);
340 }
341
342 /* "Normal" cache flushes, that don't require any special handling */
343
344 static void
345 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
346 struct tu_cs *cs)
347 {
348 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
349 cmd_buffer->state.cache.flush_bits = 0;
350 }
351
352 /* Renderpass cache flushes */
353
354 void
355 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
356 struct tu_cs *cs)
357 {
358 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
359 cmd_buffer->state.renderpass_cache.flush_bits = 0;
360 }
361
362 /* Cache flushes for things that use the color/depth read/write path (i.e.
363 * blits and draws). This deals with changing CCU state as well as the usual
364 * cache flushing.
365 */
366
367 void
368 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
369 struct tu_cs *cs,
370 enum tu_cmd_ccu_state ccu_state)
371 {
372 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
373
374 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
375
376 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
377 * the CCU may also contain data that we haven't flushed out yet, so we
378 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
379 * emit a WFI as it isn't pipelined.
380 */
381 if (ccu_state != cmd_buffer->state.ccu_state) {
382 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
383 flushes |=
384 TU_CMD_FLAG_CCU_FLUSH_COLOR |
385 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
386 cmd_buffer->state.cache.pending_flush_bits &= ~(
387 TU_CMD_FLAG_CCU_FLUSH_COLOR |
388 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
389 }
390 flushes |=
391 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
392 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
393 TU_CMD_FLAG_WFI;
394 cmd_buffer->state.cache.pending_flush_bits &= ~(
395 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
396 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
397 }
398
399 tu6_emit_flushes(cmd_buffer, cs, flushes);
400 cmd_buffer->state.cache.flush_bits = 0;
401
402 if (ccu_state != cmd_buffer->state.ccu_state) {
403 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
404 tu_cs_emit_regs(cs,
405 A6XX_RB_CCU_CNTL(.offset =
406 ccu_state == TU_CMD_CCU_GMEM ?
407 phys_dev->ccu_offset_gmem :
408 phys_dev->ccu_offset_bypass,
409 .gmem = ccu_state == TU_CMD_CCU_GMEM));
410 cmd_buffer->state.ccu_state = ccu_state;
411 }
412 }
413
414 static void
415 tu6_emit_zs(struct tu_cmd_buffer *cmd,
416 const struct tu_subpass *subpass,
417 struct tu_cs *cs)
418 {
419 const struct tu_framebuffer *fb = cmd->state.framebuffer;
420
421 const uint32_t a = subpass->depth_stencil_attachment.attachment;
422 if (a == VK_ATTACHMENT_UNUSED) {
423 tu_cs_emit_regs(cs,
424 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
425 A6XX_RB_DEPTH_BUFFER_PITCH(0),
426 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
427 A6XX_RB_DEPTH_BUFFER_BASE(0),
428 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
429
430 tu_cs_emit_regs(cs,
431 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
432
433 tu_cs_emit_regs(cs,
434 A6XX_GRAS_LRZ_BUFFER_BASE(0),
435 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
436 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
437
438 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
439
440 return;
441 }
442
443 const struct tu_image_view *iview = fb->attachments[a].attachment;
444 const struct tu_render_pass_attachment *attachment =
445 &cmd->state.pass->attachments[a];
446 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
447
448 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
449 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
450 tu_cs_image_ref(cs, iview, 0);
451 tu_cs_emit(cs, attachment->gmem_offset);
452
453 tu_cs_emit_regs(cs,
454 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
455
456 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
457 tu_cs_image_flag_ref(cs, iview, 0);
458
459 tu_cs_emit_regs(cs,
460 A6XX_GRAS_LRZ_BUFFER_BASE(0),
461 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
462 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
463
464 if (attachment->format == VK_FORMAT_S8_UINT) {
465 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
466 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
467 tu_cs_image_ref(cs, iview, 0);
468 tu_cs_emit(cs, attachment->gmem_offset);
469 } else {
470 tu_cs_emit_regs(cs,
471 A6XX_RB_STENCIL_INFO(0));
472 }
473 }
474
475 static void
476 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
477 const struct tu_subpass *subpass,
478 struct tu_cs *cs)
479 {
480 const struct tu_framebuffer *fb = cmd->state.framebuffer;
481
482 for (uint32_t i = 0; i < subpass->color_count; ++i) {
483 uint32_t a = subpass->color_attachments[i].attachment;
484 if (a == VK_ATTACHMENT_UNUSED)
485 continue;
486
487 const struct tu_image_view *iview = fb->attachments[a].attachment;
488
489 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
490 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
491 tu_cs_image_ref(cs, iview, 0);
492 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
493
494 tu_cs_emit_regs(cs,
495 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
496
497 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
498 tu_cs_image_flag_ref(cs, iview, 0);
499 }
500
501 tu_cs_emit_regs(cs,
502 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
503 tu_cs_emit_regs(cs,
504 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
505
506 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
507 }
508
509 void
510 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
511 {
512 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
513 bool msaa_disable = samples == MSAA_ONE;
514
515 tu_cs_emit_regs(cs,
516 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
517 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
518 .msaa_disable = msaa_disable));
519
520 tu_cs_emit_regs(cs,
521 A6XX_GRAS_RAS_MSAA_CNTL(samples),
522 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
523 .msaa_disable = msaa_disable));
524
525 tu_cs_emit_regs(cs,
526 A6XX_RB_RAS_MSAA_CNTL(samples),
527 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
528 .msaa_disable = msaa_disable));
529
530 tu_cs_emit_regs(cs,
531 A6XX_RB_MSAA_CNTL(samples));
532 }
533
534 static void
535 tu6_emit_bin_size(struct tu_cs *cs,
536 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
537 {
538 tu_cs_emit_regs(cs,
539 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
540 .binh = bin_h,
541 .dword = flags));
542
543 tu_cs_emit_regs(cs,
544 A6XX_RB_BIN_CONTROL(.binw = bin_w,
545 .binh = bin_h,
546 .dword = flags));
547
548 /* no flag for RB_BIN_CONTROL2... */
549 tu_cs_emit_regs(cs,
550 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
551 .binh = bin_h));
552 }
553
554 static void
555 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
556 const struct tu_subpass *subpass,
557 struct tu_cs *cs,
558 bool binning)
559 {
560 const struct tu_framebuffer *fb = cmd->state.framebuffer;
561 uint32_t cntl = 0;
562 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
563 if (binning) {
564 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
565 } else {
566 uint32_t mrts_ubwc_enable = 0;
567 for (uint32_t i = 0; i < subpass->color_count; ++i) {
568 uint32_t a = subpass->color_attachments[i].attachment;
569 if (a == VK_ATTACHMENT_UNUSED)
570 continue;
571
572 const struct tu_image_view *iview = fb->attachments[a].attachment;
573 if (iview->ubwc_enabled)
574 mrts_ubwc_enable |= 1 << i;
575 }
576
577 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
578
579 const uint32_t a = subpass->depth_stencil_attachment.attachment;
580 if (a != VK_ATTACHMENT_UNUSED) {
581 const struct tu_image_view *iview = fb->attachments[a].attachment;
582 if (iview->ubwc_enabled)
583 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
584 }
585
586 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
587 * in order to set it correctly for the different subpasses. However,
588 * that means the packets we're emitting also happen during binning. So
589 * we need to guard the write on !BINNING at CP execution time.
590 */
591 tu_cs_reserve(cs, 3 + 4);
592 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
593 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
594 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
595 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
596 }
597
598 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
599 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
600 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
601 tu_cs_emit(cs, cntl);
602 }
603
604 static void
605 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
606 {
607 const VkRect2D *render_area = &cmd->state.tiling_config.render_area;
608 uint32_t x1 = render_area->offset.x;
609 uint32_t y1 = render_area->offset.y;
610 uint32_t x2 = x1 + render_area->extent.width - 1;
611 uint32_t y2 = y1 + render_area->extent.height - 1;
612
613 if (align) {
614 x1 = x1 & ~(GMEM_ALIGN_W - 1);
615 y1 = y1 & ~(GMEM_ALIGN_H - 1);
616 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
617 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
618 }
619
620 tu_cs_emit_regs(cs,
621 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
622 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
623 }
624
625 void
626 tu6_emit_window_scissor(struct tu_cs *cs,
627 uint32_t x1,
628 uint32_t y1,
629 uint32_t x2,
630 uint32_t y2)
631 {
632 tu_cs_emit_regs(cs,
633 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
634 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
635
636 tu_cs_emit_regs(cs,
637 A6XX_GRAS_RESOLVE_CNTL_1(.x = x1, .y = y1),
638 A6XX_GRAS_RESOLVE_CNTL_2(.x = x2, .y = y2));
639 }
640
641 void
642 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
643 {
644 tu_cs_emit_regs(cs,
645 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
646
647 tu_cs_emit_regs(cs,
648 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
649
650 tu_cs_emit_regs(cs,
651 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
652
653 tu_cs_emit_regs(cs,
654 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
655 }
656
657 static void
658 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
659 {
660 uint32_t enable_mask;
661 switch (id) {
662 case TU_DRAW_STATE_PROGRAM:
663 case TU_DRAW_STATE_VI:
664 case TU_DRAW_STATE_FS_CONST:
665 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
666 * when resources would actually be used in the binning shader.
667 * Presumably the overhead of prefetching the resources isn't
668 * worth it.
669 */
670 case TU_DRAW_STATE_DESC_SETS_LOAD:
671 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
672 CP_SET_DRAW_STATE__0_SYSMEM;
673 break;
674 case TU_DRAW_STATE_PROGRAM_BINNING:
675 case TU_DRAW_STATE_VI_BINNING:
676 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
677 break;
678 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
679 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
680 break;
681 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
682 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
683 break;
684 default:
685 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
686 CP_SET_DRAW_STATE__0_SYSMEM |
687 CP_SET_DRAW_STATE__0_BINNING;
688 break;
689 }
690
691 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
692 enable_mask |
693 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
694 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
695 tu_cs_emit_qw(cs, state.iova);
696 }
697
698 /* note: get rid of this eventually */
699 static void
700 tu_cs_emit_sds_ib(struct tu_cs *cs, uint32_t id, struct tu_cs_entry entry)
701 {
702 tu_cs_emit_draw_state(cs, id, (struct tu_draw_state) {
703 .iova = entry.size ? entry.bo->iova + entry.offset : 0,
704 .size = entry.size / 4,
705 });
706 }
707
708 static bool
709 use_hw_binning(struct tu_cmd_buffer *cmd)
710 {
711 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
712
713 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
714 return false;
715
716 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
717 return true;
718
719 return (tiling->tile_count.width * tiling->tile_count.height) > 2;
720 }
721
722 static bool
723 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
724 {
725 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
726 return true;
727
728 /* can't fit attachments into gmem */
729 if (!cmd->state.pass->gmem_pixels)
730 return true;
731
732 if (cmd->state.framebuffer->layers > 1)
733 return true;
734
735 return cmd->state.tiling_config.force_sysmem;
736 }
737
738 static void
739 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
740 struct tu_cs *cs,
741 const struct tu_tile *tile)
742 {
743 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
744 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
745
746 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
747 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
748
749 const uint32_t x1 = tile->begin.x;
750 const uint32_t y1 = tile->begin.y;
751 const uint32_t x2 = tile->end.x - 1;
752 const uint32_t y2 = tile->end.y - 1;
753 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
754 tu6_emit_window_offset(cs, x1, y1);
755
756 tu_cs_emit_regs(cs,
757 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
758
759 if (use_hw_binning(cmd)) {
760 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
761
762 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
763 tu_cs_emit(cs, 0x0);
764
765 tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
766 tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(OVERFLOW_FLAG_REG) |
767 A6XX_CP_REG_TEST_0_BIT(0) |
768 A6XX_CP_REG_TEST_0_WAIT_FOR_ME);
769
770 tu_cs_reserve(cs, 3 + 11);
771 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
772 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(PRED_TEST));
773 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(11));
774
775 /* if (no overflow) */ {
776 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5, 7);
777 tu_cs_emit(cs, cmd->state.tiling_config.pipe_sizes[tile->pipe] |
778 CP_SET_BIN_DATA5_0_VSC_N(tile->slot));
779 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + tile->pipe * cmd->vsc_draw_strm_pitch);
780 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + (tile->pipe * 4) + (32 * cmd->vsc_draw_strm_pitch));
781 tu_cs_emit_qw(cs, cmd->vsc_prim_strm.iova + (tile->pipe * cmd->vsc_prim_strm_pitch));
782
783 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
784 tu_cs_emit(cs, 0x0);
785
786 /* use a NOP packet to skip over the 'else' side: */
787 tu_cs_emit_pkt7(cs, CP_NOP, 2);
788 } /* else */ {
789 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
790 tu_cs_emit(cs, 0x1);
791 }
792
793 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
794 tu_cs_emit(cs, 0x0);
795 } else {
796 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
797 tu_cs_emit(cs, 0x1);
798
799 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
800 tu_cs_emit(cs, 0x0);
801 }
802 }
803
804 static void
805 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
806 struct tu_cs *cs,
807 uint32_t a,
808 uint32_t gmem_a)
809 {
810 const struct tu_framebuffer *fb = cmd->state.framebuffer;
811 struct tu_image_view *dst = fb->attachments[a].attachment;
812 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
813
814 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.tiling_config.render_area);
815 }
816
817 static void
818 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
819 struct tu_cs *cs,
820 const struct tu_subpass *subpass)
821 {
822 if (subpass->resolve_attachments) {
823 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
824 * Commands":
825 *
826 * End-of-subpass multisample resolves are treated as color
827 * attachment writes for the purposes of synchronization. That is,
828 * they are considered to execute in the
829 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
830 * their writes are synchronized with
831 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
832 * rendering within a subpass and any resolve operations at the end
833 * of the subpass occurs automatically, without need for explicit
834 * dependencies or pipeline barriers. However, if the resolve
835 * attachment is also used in a different subpass, an explicit
836 * dependency is needed.
837 *
838 * We use the CP_BLIT path for sysmem resolves, which is really a
839 * transfer command, so we have to manually flush similar to the gmem
840 * resolve case. However, a flush afterwards isn't needed because of the
841 * last sentence and the fact that we're in sysmem mode.
842 */
843 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
844 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
845
846 /* Wait for the flushes to land before using the 2D engine */
847 tu_cs_emit_wfi(cs);
848
849 for (unsigned i = 0; i < subpass->color_count; i++) {
850 uint32_t a = subpass->resolve_attachments[i].attachment;
851 if (a == VK_ATTACHMENT_UNUSED)
852 continue;
853
854 tu6_emit_sysmem_resolve(cmd, cs, a,
855 subpass->color_attachments[i].attachment);
856 }
857 }
858 }
859
860 static void
861 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
862 {
863 const struct tu_render_pass *pass = cmd->state.pass;
864 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
865
866 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
867 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
868 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
869 CP_SET_DRAW_STATE__0_GROUP_ID(0));
870 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
871 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
872
873 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
874 tu_cs_emit(cs, 0x0);
875
876 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
877 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
878
879 tu6_emit_blit_scissor(cmd, cs, true);
880
881 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
882 if (pass->attachments[a].gmem_offset >= 0)
883 tu_store_gmem_attachment(cmd, cs, a, a);
884 }
885
886 if (subpass->resolve_attachments) {
887 for (unsigned i = 0; i < subpass->color_count; i++) {
888 uint32_t a = subpass->resolve_attachments[i].attachment;
889 if (a != VK_ATTACHMENT_UNUSED)
890 tu_store_gmem_attachment(cmd, cs, a,
891 subpass->color_attachments[i].attachment);
892 }
893 }
894 }
895
896 static void
897 tu6_emit_restart_index(struct tu_cs *cs, uint32_t restart_index)
898 {
899 tu_cs_emit_regs(cs,
900 A6XX_PC_RESTART_INDEX(restart_index));
901 }
902
903 static void
904 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
905 {
906 const struct tu_physical_device *phys_dev = cmd->device->physical_device;
907
908 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
909
910 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 0xfffff);
911
912 tu_cs_emit_regs(cs,
913 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
914 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
915 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
916 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
917 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
918 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
919 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
920 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
921 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
922 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
923
924 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
925 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
926 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
927 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
928 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
929 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
930 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BB11, 0);
931 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
932 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
933 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
934 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
935 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
936 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
937 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_GS_SIV_CNTL, 0x0000ffff);
938
939 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
940 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
941 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
942
943 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
944
945 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
946
947 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
948 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
949 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
950 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
951 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
952 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
953 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
954 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
955 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
956 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
957 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
958
959 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9101, 0xffff00);
960 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
961
962 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9236,
963 A6XX_VPC_UNKNOWN_9236_POINT_COORD_INVERT(0));
964 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
965
966 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_SO_OVERRIDE,
967 A6XX_VPC_SO_OVERRIDE_SO_DISABLE);
968
969 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
970 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
971 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9990, 0);
972
973 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
974 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
975
976 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
977
978 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
979
980 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
981 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_809B, 0);
982 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
983 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
984 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
985 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
986 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
987 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9981, 0x3);
988 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
989 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9108, 0x3);
990 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
991 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8878, 0);
992 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8879, 0);
993 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
994
995 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
996
997 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
998
999 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
1000
1001 /* we don't use this yet.. probably best to disable.. */
1002 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1003 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1004 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1005 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1006 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1007 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1008
1009 /* Set not to use streamout by default, */
1010 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 4);
1011 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
1012 tu_cs_emit(cs, 0);
1013 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
1014 tu_cs_emit(cs, 0);
1015
1016 tu_cs_emit_regs(cs,
1017 A6XX_SP_HS_CTRL_REG0(0));
1018
1019 tu_cs_emit_regs(cs,
1020 A6XX_SP_GS_CTRL_REG0(0));
1021
1022 tu_cs_emit_regs(cs,
1023 A6XX_GRAS_LRZ_CNTL(0));
1024
1025 tu_cs_emit_regs(cs,
1026 A6XX_RB_LRZ_CNTL(0));
1027
1028 tu_cs_emit_regs(cs,
1029 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1030 tu_cs_emit_regs(cs,
1031 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1032
1033 tu_cs_sanity_check(cs);
1034 }
1035
1036 static void
1037 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1038 {
1039 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1040
1041 tu_cs_emit_regs(cs,
1042 A6XX_VSC_BIN_SIZE(.width = tiling->tile0.extent.width,
1043 .height = tiling->tile0.extent.height),
1044 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = &cmd->vsc_draw_strm,
1045 .bo_offset = 32 * cmd->vsc_draw_strm_pitch));
1046
1047 tu_cs_emit_regs(cs,
1048 A6XX_VSC_BIN_COUNT(.nx = tiling->tile_count.width,
1049 .ny = tiling->tile_count.height));
1050
1051 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
1052 for (unsigned i = 0; i < 32; i++)
1053 tu_cs_emit(cs, tiling->pipe_config[i]);
1054
1055 tu_cs_emit_regs(cs,
1056 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = &cmd->vsc_prim_strm),
1057 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
1058 A6XX_VSC_PRIM_STRM_ARRAY_PITCH(cmd->vsc_prim_strm.size));
1059
1060 tu_cs_emit_regs(cs,
1061 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = &cmd->vsc_draw_strm),
1062 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
1063 A6XX_VSC_DRAW_STRM_ARRAY_PITCH(cmd->vsc_draw_strm.size));
1064 }
1065
1066 static void
1067 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1068 {
1069 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1070 const uint32_t used_pipe_count =
1071 tiling->pipe_count.width * tiling->pipe_count.height;
1072
1073 /* Clear vsc_scratch: */
1074 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
1075 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1076 tu_cs_emit(cs, 0x0);
1077
1078 /* Check for overflow, write vsc_scratch if detected: */
1079 for (int i = 0; i < used_pipe_count; i++) {
1080 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1081 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1082 CP_COND_WRITE5_0_WRITE_MEMORY);
1083 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
1084 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1085 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch));
1086 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1087 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1088 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(1 + cmd->vsc_draw_strm_pitch));
1089
1090 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1091 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1092 CP_COND_WRITE5_0_WRITE_MEMORY);
1093 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
1094 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1095 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch));
1096 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1097 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1098 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(3 + cmd->vsc_prim_strm_pitch));
1099 }
1100
1101 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1102
1103 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1104
1105 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1106 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(OVERFLOW_FLAG_REG) |
1107 CP_MEM_TO_REG_0_CNT(1 - 1));
1108 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1109
1110 /*
1111 * This is a bit awkward, we really want a way to invert the
1112 * CP_REG_TEST/CP_COND_REG_EXEC logic, so that we can conditionally
1113 * execute cmds to use hwbinning when a bit is *not* set. This
1114 * dance is to invert OVERFLOW_FLAG_REG
1115 *
1116 * A CP_NOP packet is used to skip executing the 'else' clause
1117 * if (b0 set)..
1118 */
1119
1120 /* b0 will be set if VSC_DRAW_STRM or VSC_PRIM_STRM overflow: */
1121 tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
1122 tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(OVERFLOW_FLAG_REG) |
1123 A6XX_CP_REG_TEST_0_BIT(0) |
1124 A6XX_CP_REG_TEST_0_WAIT_FOR_ME);
1125
1126 tu_cs_reserve(cs, 3 + 7);
1127 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
1128 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(PRED_TEST));
1129 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(7));
1130
1131 /* if (b0 set) */ {
1132 /*
1133 * On overflow, mirror the value to control->vsc_overflow
1134 * which CPU is checking to detect overflow (see
1135 * check_vsc_overflow())
1136 */
1137 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
1138 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(OVERFLOW_FLAG_REG) |
1139 CP_REG_TO_MEM_0_CNT(0));
1140 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_overflow));
1141
1142 tu_cs_emit_pkt4(cs, OVERFLOW_FLAG_REG, 1);
1143 tu_cs_emit(cs, 0x0);
1144
1145 tu_cs_emit_pkt7(cs, CP_NOP, 2); /* skip 'else' when 'if' is taken */
1146 } /* else */ {
1147 tu_cs_emit_pkt4(cs, OVERFLOW_FLAG_REG, 1);
1148 tu_cs_emit(cs, 0x1);
1149 }
1150 }
1151
1152 static void
1153 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1154 {
1155 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1156 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1157
1158 uint32_t x1 = tiling->tile0.offset.x;
1159 uint32_t y1 = tiling->tile0.offset.y;
1160 uint32_t x2 = tiling->render_area.offset.x + tiling->render_area.extent.width - 1;
1161 uint32_t y2 = tiling->render_area.offset.y + tiling->render_area.extent.height - 1;
1162
1163 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
1164
1165 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1166 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
1167
1168 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1169 tu_cs_emit(cs, 0x1);
1170
1171 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1172 tu_cs_emit(cs, 0x1);
1173
1174 tu_cs_emit_wfi(cs);
1175
1176 tu_cs_emit_regs(cs,
1177 A6XX_VFD_MODE_CNTL(.binning_pass = true));
1178
1179 update_vsc_pipe(cmd, cs);
1180
1181 tu_cs_emit_regs(cs,
1182 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1183
1184 tu_cs_emit_regs(cs,
1185 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1186
1187 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1188 tu_cs_emit(cs, UNK_2C);
1189
1190 tu_cs_emit_regs(cs,
1191 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1192
1193 tu_cs_emit_regs(cs,
1194 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1195
1196 /* emit IB to binning drawcmds: */
1197 tu_cs_emit_call(cs, &cmd->draw_cs);
1198
1199 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1200 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1201 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1202 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1203 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1204 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1205
1206 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1207 tu_cs_emit(cs, UNK_2D);
1208
1209 /* This flush is probably required because the VSC, which produces the
1210 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1211 * visibility stream (without caching) to do draw skipping. The
1212 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1213 * submitted are finished before reading the VSC regs (in
1214 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1215 * part of draws).
1216 */
1217 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1218
1219 tu_cs_emit_wfi(cs);
1220
1221 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1222
1223 emit_vsc_overflow_test(cmd, cs);
1224
1225 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1226 tu_cs_emit(cs, 0x0);
1227
1228 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1229 tu_cs_emit(cs, 0x0);
1230 }
1231
1232 static void
1233 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1234 const struct tu_subpass *subpass,
1235 struct tu_cs_entry *ib,
1236 bool gmem)
1237 {
1238 /* note: we can probably emit input attachments just once for the whole
1239 * renderpass, this would avoid emitting both sysmem/gmem versions
1240 *
1241 * emit two texture descriptors for each input, as a workaround for
1242 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1243 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1244 * in the pair
1245 * TODO: a smarter workaround
1246 */
1247
1248 if (!subpass->input_count)
1249 return;
1250
1251 struct ts_cs_memory texture;
1252 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1253 A6XX_TEX_CONST_DWORDS, &texture);
1254 assert(result == VK_SUCCESS);
1255
1256 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1257 uint32_t a = subpass->input_attachments[i / 2].attachment;
1258 if (a == VK_ATTACHMENT_UNUSED)
1259 continue;
1260
1261 struct tu_image_view *iview =
1262 cmd->state.framebuffer->attachments[a].attachment;
1263 const struct tu_render_pass_attachment *att =
1264 &cmd->state.pass->attachments[a];
1265 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1266
1267 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1268
1269 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1270 /* note this works because spec says fb and input attachments
1271 * must use identity swizzle
1272 */
1273 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1274 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1275 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1276 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1277 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1278 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1279 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1280 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1281 }
1282
1283 if (!gmem)
1284 continue;
1285
1286 /* patched for gmem */
1287 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1288 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1289 dst[2] =
1290 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1291 A6XX_TEX_CONST_2_PITCH(cmd->state.tiling_config.tile0.extent.width * att->cpp);
1292 dst[3] = 0;
1293 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1294 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1295 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1296 dst[i] = 0;
1297 }
1298
1299 struct tu_cs cs;
1300 tu_cs_begin_sub_stream(&cmd->sub_cs, 9, &cs);
1301
1302 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1303 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1304 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1305 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1306 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1307 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1308 tu_cs_emit_qw(&cs, texture.iova);
1309
1310 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1311 tu_cs_emit_qw(&cs, texture.iova);
1312
1313 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1314
1315 *ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1316 }
1317
1318 static void
1319 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1320 {
1321 struct tu_cs *cs = &cmd->draw_cs;
1322
1323 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_gmem_ib, true);
1324 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_sysmem_ib, false);
1325
1326 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1327 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM, cmd->state.ia_gmem_ib);
1328 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM, cmd->state.ia_sysmem_ib);
1329 }
1330
1331 static void
1332 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1333 const VkRenderPassBeginInfo *info)
1334 {
1335 struct tu_cs *cs = &cmd->draw_cs;
1336
1337 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1338
1339 tu6_emit_blit_scissor(cmd, cs, true);
1340
1341 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1342 tu_load_gmem_attachment(cmd, cs, i, false);
1343
1344 tu6_emit_blit_scissor(cmd, cs, false);
1345
1346 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1347 tu_clear_gmem_attachment(cmd, cs, i, info);
1348
1349 tu_cond_exec_end(cs);
1350
1351 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1352
1353 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1354 tu_clear_sysmem_attachment(cmd, cs, i, info);
1355
1356 tu_cond_exec_end(cs);
1357 }
1358
1359 static void
1360 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1361 const struct VkRect2D *renderArea)
1362 {
1363 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1364
1365 assert(fb->width > 0 && fb->height > 0);
1366 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1367 tu6_emit_window_offset(cs, 0, 0);
1368
1369 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1370
1371 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1372
1373 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1374 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1375
1376 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1377 tu_cs_emit(cs, 0x0);
1378
1379 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1380
1381 /* enable stream-out, with sysmem there is only one pass: */
1382 tu_cs_emit_regs(cs,
1383 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
1384
1385 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1386 tu_cs_emit(cs, 0x1);
1387
1388 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1389 tu_cs_emit(cs, 0x0);
1390
1391 tu_cs_sanity_check(cs);
1392 }
1393
1394 static void
1395 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1396 {
1397 /* Do any resolves of the last subpass. These are handled in the
1398 * tile_store_ib in the gmem path.
1399 */
1400 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1401
1402 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1403
1404 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1405 tu_cs_emit(cs, 0x0);
1406
1407 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1408
1409 tu_cs_sanity_check(cs);
1410 }
1411
1412 static void
1413 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1414 {
1415 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1416
1417 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1418
1419 /* lrz clear? */
1420
1421 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1422 tu_cs_emit(cs, 0x0);
1423
1424 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1425
1426 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1427 if (use_hw_binning(cmd)) {
1428 /* enable stream-out during binning pass: */
1429 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1430
1431 tu6_emit_bin_size(cs,
1432 tiling->tile0.extent.width,
1433 tiling->tile0.extent.height,
1434 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1435
1436 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1437
1438 tu6_emit_binning_pass(cmd, cs);
1439
1440 /* and disable stream-out for draw pass: */
1441 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=true));
1442
1443 tu6_emit_bin_size(cs,
1444 tiling->tile0.extent.width,
1445 tiling->tile0.extent.height,
1446 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1447
1448 tu_cs_emit_regs(cs,
1449 A6XX_VFD_MODE_CNTL(0));
1450
1451 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1452
1453 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1454
1455 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1456 tu_cs_emit(cs, 0x1);
1457 } else {
1458 /* no binning pass, so enable stream-out for draw pass:: */
1459 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1460
1461 tu6_emit_bin_size(cs,
1462 tiling->tile0.extent.width,
1463 tiling->tile0.extent.height,
1464 0x6000000);
1465 }
1466
1467 tu_cs_sanity_check(cs);
1468 }
1469
1470 static void
1471 tu6_render_tile(struct tu_cmd_buffer *cmd,
1472 struct tu_cs *cs,
1473 const struct tu_tile *tile)
1474 {
1475 tu6_emit_tile_select(cmd, cs, tile);
1476
1477 tu_cs_emit_call(cs, &cmd->draw_cs);
1478
1479 if (use_hw_binning(cmd)) {
1480 tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
1481 tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(OVERFLOW_FLAG_REG) |
1482 A6XX_CP_REG_TEST_0_BIT(0) |
1483 A6XX_CP_REG_TEST_0_WAIT_FOR_ME);
1484
1485 tu_cs_reserve(cs, 3 + 2);
1486 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
1487 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(PRED_TEST));
1488 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(2));
1489
1490 /* if (no overflow) */ {
1491 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1492 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1493 }
1494 }
1495
1496 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1497
1498 tu_cs_sanity_check(cs);
1499 }
1500
1501 static void
1502 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1503 {
1504 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1505
1506 tu_cs_emit_regs(cs,
1507 A6XX_GRAS_LRZ_CNTL(0));
1508
1509 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1510
1511 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1512
1513 tu_cs_sanity_check(cs);
1514 }
1515
1516 static void
1517 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1518 {
1519 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1520
1521 tu6_tile_render_begin(cmd, &cmd->cs);
1522
1523 for (uint32_t y = 0; y < tiling->tile_count.height; y++) {
1524 for (uint32_t x = 0; x < tiling->tile_count.width; x++) {
1525 struct tu_tile tile;
1526 tu_tiling_config_get_tile(tiling, cmd->device, x, y, &tile);
1527 tu6_render_tile(cmd, &cmd->cs, &tile);
1528 }
1529 }
1530
1531 tu6_tile_render_end(cmd, &cmd->cs);
1532 }
1533
1534 static void
1535 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1536 {
1537 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1538
1539 tu6_sysmem_render_begin(cmd, &cmd->cs, &tiling->render_area);
1540
1541 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1542
1543 tu6_sysmem_render_end(cmd, &cmd->cs);
1544 }
1545
1546 static void
1547 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1548 {
1549 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1550 struct tu_cs sub_cs;
1551
1552 VkResult result =
1553 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1554 if (result != VK_SUCCESS) {
1555 cmd->record_result = result;
1556 return;
1557 }
1558
1559 /* emit to tile-store sub_cs */
1560 tu6_emit_tile_store(cmd, &sub_cs);
1561
1562 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1563 }
1564
1565 static void
1566 tu_cmd_update_tiling_config(struct tu_cmd_buffer *cmd,
1567 const VkRect2D *render_area)
1568 {
1569 const struct tu_device *dev = cmd->device;
1570 struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1571
1572 tiling->render_area = *render_area;
1573 tiling->force_sysmem = false;
1574
1575 tu_tiling_config_update_tile_layout(tiling, dev, cmd->state.pass);
1576 tu_tiling_config_update_pipe_layout(tiling, dev);
1577 tu_tiling_config_update_pipes(tiling, dev);
1578 }
1579
1580 static VkResult
1581 tu_create_cmd_buffer(struct tu_device *device,
1582 struct tu_cmd_pool *pool,
1583 VkCommandBufferLevel level,
1584 VkCommandBuffer *pCommandBuffer)
1585 {
1586 struct tu_cmd_buffer *cmd_buffer;
1587 cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8,
1588 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1589 if (cmd_buffer == NULL)
1590 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1591
1592 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1593 cmd_buffer->device = device;
1594 cmd_buffer->pool = pool;
1595 cmd_buffer->level = level;
1596
1597 if (pool) {
1598 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1599 cmd_buffer->queue_family_index = pool->queue_family_index;
1600
1601 } else {
1602 /* Init the pool_link so we can safely call list_del when we destroy
1603 * the command buffer
1604 */
1605 list_inithead(&cmd_buffer->pool_link);
1606 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1607 }
1608
1609 tu_bo_list_init(&cmd_buffer->bo_list);
1610 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1611 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1612 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1613 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1614
1615 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1616
1617 list_inithead(&cmd_buffer->upload.list);
1618
1619 VkResult result = tu_bo_init_new(device, &cmd_buffer->scratch_bo, 0x1000);
1620 if (result != VK_SUCCESS)
1621 goto fail_scratch_bo;
1622
1623 /* TODO: resize on overflow */
1624 cmd_buffer->vsc_draw_strm_pitch = device->vsc_draw_strm_pitch;
1625 cmd_buffer->vsc_prim_strm_pitch = device->vsc_prim_strm_pitch;
1626 cmd_buffer->vsc_draw_strm = device->vsc_draw_strm;
1627 cmd_buffer->vsc_prim_strm = device->vsc_prim_strm;
1628
1629 return VK_SUCCESS;
1630
1631 fail_scratch_bo:
1632 list_del(&cmd_buffer->pool_link);
1633 return result;
1634 }
1635
1636 static void
1637 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1638 {
1639 tu_bo_finish(cmd_buffer->device, &cmd_buffer->scratch_bo);
1640
1641 list_del(&cmd_buffer->pool_link);
1642
1643 tu_cs_finish(&cmd_buffer->cs);
1644 tu_cs_finish(&cmd_buffer->draw_cs);
1645 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1646 tu_cs_finish(&cmd_buffer->sub_cs);
1647
1648 tu_bo_list_destroy(&cmd_buffer->bo_list);
1649 vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
1650 }
1651
1652 static VkResult
1653 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1654 {
1655 cmd_buffer->record_result = VK_SUCCESS;
1656
1657 tu_bo_list_reset(&cmd_buffer->bo_list);
1658 tu_cs_reset(&cmd_buffer->cs);
1659 tu_cs_reset(&cmd_buffer->draw_cs);
1660 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1661 tu_cs_reset(&cmd_buffer->sub_cs);
1662
1663 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1664 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1665
1666 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1667
1668 return cmd_buffer->record_result;
1669 }
1670
1671 VkResult
1672 tu_AllocateCommandBuffers(VkDevice _device,
1673 const VkCommandBufferAllocateInfo *pAllocateInfo,
1674 VkCommandBuffer *pCommandBuffers)
1675 {
1676 TU_FROM_HANDLE(tu_device, device, _device);
1677 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1678
1679 VkResult result = VK_SUCCESS;
1680 uint32_t i;
1681
1682 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1683
1684 if (!list_is_empty(&pool->free_cmd_buffers)) {
1685 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1686 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1687
1688 list_del(&cmd_buffer->pool_link);
1689 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1690
1691 result = tu_reset_cmd_buffer(cmd_buffer);
1692 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1693 cmd_buffer->level = pAllocateInfo->level;
1694
1695 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1696 } else {
1697 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1698 &pCommandBuffers[i]);
1699 }
1700 if (result != VK_SUCCESS)
1701 break;
1702 }
1703
1704 if (result != VK_SUCCESS) {
1705 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1706 pCommandBuffers);
1707
1708 /* From the Vulkan 1.0.66 spec:
1709 *
1710 * "vkAllocateCommandBuffers can be used to create multiple
1711 * command buffers. If the creation of any of those command
1712 * buffers fails, the implementation must destroy all
1713 * successfully created command buffer objects from this
1714 * command, set all entries of the pCommandBuffers array to
1715 * NULL and return the error."
1716 */
1717 memset(pCommandBuffers, 0,
1718 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1719 }
1720
1721 return result;
1722 }
1723
1724 void
1725 tu_FreeCommandBuffers(VkDevice device,
1726 VkCommandPool commandPool,
1727 uint32_t commandBufferCount,
1728 const VkCommandBuffer *pCommandBuffers)
1729 {
1730 for (uint32_t i = 0; i < commandBufferCount; i++) {
1731 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1732
1733 if (cmd_buffer) {
1734 if (cmd_buffer->pool) {
1735 list_del(&cmd_buffer->pool_link);
1736 list_addtail(&cmd_buffer->pool_link,
1737 &cmd_buffer->pool->free_cmd_buffers);
1738 } else
1739 tu_cmd_buffer_destroy(cmd_buffer);
1740 }
1741 }
1742 }
1743
1744 VkResult
1745 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1746 VkCommandBufferResetFlags flags)
1747 {
1748 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1749 return tu_reset_cmd_buffer(cmd_buffer);
1750 }
1751
1752 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1753 * invalidations.
1754 */
1755 static void
1756 tu_cache_init(struct tu_cache_state *cache)
1757 {
1758 cache->flush_bits = 0;
1759 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1760 }
1761
1762 VkResult
1763 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1764 const VkCommandBufferBeginInfo *pBeginInfo)
1765 {
1766 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1767 VkResult result = VK_SUCCESS;
1768
1769 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1770 /* If the command buffer has already been resetted with
1771 * vkResetCommandBuffer, no need to do it again.
1772 */
1773 result = tu_reset_cmd_buffer(cmd_buffer);
1774 if (result != VK_SUCCESS)
1775 return result;
1776 }
1777
1778 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1779 tu_cache_init(&cmd_buffer->state.cache);
1780 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1781 cmd_buffer->usage_flags = pBeginInfo->flags;
1782
1783 tu_cs_begin(&cmd_buffer->cs);
1784 tu_cs_begin(&cmd_buffer->draw_cs);
1785 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1786
1787 /* setup initial configuration into command buffer */
1788 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1789 switch (cmd_buffer->queue_family_index) {
1790 case TU_QUEUE_GENERAL:
1791 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1792 break;
1793 default:
1794 break;
1795 }
1796 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1797 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1798 assert(pBeginInfo->pInheritanceInfo);
1799 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1800 cmd_buffer->state.subpass =
1801 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1802 } else {
1803 /* When executing in the middle of another command buffer, the CCU
1804 * state is unknown.
1805 */
1806 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1807 }
1808 }
1809
1810 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1811
1812 return VK_SUCCESS;
1813 }
1814
1815 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1816 * rendering can skip over unused state), so we need to collect all the
1817 * bindings together into a single state emit at draw time.
1818 */
1819 void
1820 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1821 uint32_t firstBinding,
1822 uint32_t bindingCount,
1823 const VkBuffer *pBuffers,
1824 const VkDeviceSize *pOffsets)
1825 {
1826 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1827
1828 assert(firstBinding + bindingCount <= MAX_VBS);
1829
1830 for (uint32_t i = 0; i < bindingCount; i++) {
1831 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1832
1833 cmd->state.vb.buffers[firstBinding + i] = buf;
1834 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1835
1836 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1837 }
1838
1839 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1840 }
1841
1842 void
1843 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1844 VkBuffer buffer,
1845 VkDeviceSize offset,
1846 VkIndexType indexType)
1847 {
1848 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1849 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1850
1851 /* initialize/update the restart index */
1852 if (!cmd->state.index_buffer || cmd->state.index_type != indexType) {
1853 struct tu_cs *draw_cs = &cmd->draw_cs;
1854
1855 tu6_emit_restart_index(
1856 draw_cs, indexType == VK_INDEX_TYPE_UINT32 ? 0xffffffff : 0xffff);
1857
1858 tu_cs_sanity_check(draw_cs);
1859 }
1860
1861 /* track the BO */
1862 if (cmd->state.index_buffer != buf)
1863 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1864
1865 cmd->state.index_buffer = buf;
1866 cmd->state.index_offset = offset;
1867 cmd->state.index_type = indexType;
1868 }
1869
1870 void
1871 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1872 VkPipelineBindPoint pipelineBindPoint,
1873 VkPipelineLayout _layout,
1874 uint32_t firstSet,
1875 uint32_t descriptorSetCount,
1876 const VkDescriptorSet *pDescriptorSets,
1877 uint32_t dynamicOffsetCount,
1878 const uint32_t *pDynamicOffsets)
1879 {
1880 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1881 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1882 unsigned dyn_idx = 0;
1883
1884 struct tu_descriptor_state *descriptors_state =
1885 tu_get_descriptors_state(cmd, pipelineBindPoint);
1886
1887 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1888 unsigned idx = i + firstSet;
1889 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1890
1891 descriptors_state->sets[idx] = set;
1892
1893 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1894 /* update the contents of the dynamic descriptor set */
1895 unsigned src_idx = j;
1896 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1897 assert(dyn_idx < dynamicOffsetCount);
1898
1899 uint32_t *dst =
1900 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1901 uint32_t *src =
1902 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1903 uint32_t offset = pDynamicOffsets[dyn_idx];
1904
1905 /* Patch the storage/uniform descriptors right away. */
1906 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1907 /* Note: we can assume here that the addition won't roll over and
1908 * change the SIZE field.
1909 */
1910 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1911 va += offset;
1912 dst[0] = va;
1913 dst[1] = va >> 32;
1914 } else {
1915 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1916 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1917 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1918 va += offset;
1919 dst[4] = va;
1920 dst[5] = va >> 32;
1921 }
1922 }
1923
1924 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1925 if (set->buffers[j]) {
1926 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1927 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1928 }
1929 }
1930
1931 if (set->size > 0) {
1932 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1933 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1934 }
1935 }
1936 assert(dyn_idx == dynamicOffsetCount);
1937
1938 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_update_value;
1939 uint64_t addr[MAX_SETS + 1] = {};
1940 struct tu_cs cs;
1941
1942 for (uint32_t i = 0; i < MAX_SETS; i++) {
1943 struct tu_descriptor_set *set = descriptors_state->sets[i];
1944 if (set)
1945 addr[i] = set->va | 3;
1946 }
1947
1948 if (layout->dynamic_offset_count) {
1949 /* allocate and fill out dynamic descriptor set */
1950 struct ts_cs_memory dynamic_desc_set;
1951 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1952 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1953 assert(result == VK_SUCCESS);
1954
1955 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1956 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1957 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1958 }
1959
1960 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1961 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1962 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1963 hlsq_update_value = 0x7c000;
1964
1965 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS | TU_CMD_DIRTY_SHADER_CONSTS;
1966 } else {
1967 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1968
1969 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1970 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1971 hlsq_update_value = 0x3e00;
1972
1973 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS;
1974 }
1975
1976 tu_cs_begin_sub_stream(&cmd->sub_cs, 24, &cs);
1977
1978 tu_cs_emit_pkt4(&cs, sp_bindless_base_reg, 10);
1979 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1980 tu_cs_emit_pkt4(&cs, hlsq_bindless_base_reg, 10);
1981 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1982 tu_cs_emit_regs(&cs, A6XX_HLSQ_UPDATE_CNTL(.dword = hlsq_update_value));
1983
1984 struct tu_cs_entry ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1985 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1986 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1987 tu_cs_emit_sds_ib(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, ib);
1988 cmd->state.desc_sets_ib = ib;
1989 } else {
1990 /* note: for compute we could emit directly, instead of a CP_INDIRECT
1991 * however, the blob uses draw states for compute
1992 */
1993 tu_cs_emit_ib(&cmd->cs, &ib);
1994 }
1995 }
1996
1997 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1998 uint32_t firstBinding,
1999 uint32_t bindingCount,
2000 const VkBuffer *pBuffers,
2001 const VkDeviceSize *pOffsets,
2002 const VkDeviceSize *pSizes)
2003 {
2004 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2005 assert(firstBinding + bindingCount <= IR3_MAX_SO_BUFFERS);
2006
2007 for (uint32_t i = 0; i < bindingCount; i++) {
2008 uint32_t idx = firstBinding + i;
2009 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
2010
2011 if (pOffsets[i] != 0)
2012 cmd->state.streamout_reset |= 1 << idx;
2013
2014 cmd->state.streamout_buf.buffers[idx] = buf;
2015 cmd->state.streamout_buf.offsets[idx] = pOffsets[i];
2016 cmd->state.streamout_buf.sizes[idx] = pSizes[i];
2017
2018 cmd->state.streamout_enabled |= 1 << idx;
2019 }
2020
2021 cmd->state.dirty |= TU_CMD_DIRTY_STREAMOUT_BUFFERS;
2022 }
2023
2024 void tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
2025 uint32_t firstCounterBuffer,
2026 uint32_t counterBufferCount,
2027 const VkBuffer *pCounterBuffers,
2028 const VkDeviceSize *pCounterBufferOffsets)
2029 {
2030 assert(firstCounterBuffer + counterBufferCount <= IR3_MAX_SO_BUFFERS);
2031 /* TODO do something with counter buffer? */
2032 }
2033
2034 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
2035 uint32_t firstCounterBuffer,
2036 uint32_t counterBufferCount,
2037 const VkBuffer *pCounterBuffers,
2038 const VkDeviceSize *pCounterBufferOffsets)
2039 {
2040 assert(firstCounterBuffer + counterBufferCount <= IR3_MAX_SO_BUFFERS);
2041 /* TODO do something with counter buffer? */
2042
2043 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2044 cmd->state.streamout_enabled = 0;
2045 }
2046
2047 void
2048 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
2049 VkPipelineLayout layout,
2050 VkShaderStageFlags stageFlags,
2051 uint32_t offset,
2052 uint32_t size,
2053 const void *pValues)
2054 {
2055 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2056 memcpy((void*) cmd->push_constants + offset, pValues, size);
2057 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2058 }
2059
2060 /* Flush everything which has been made available but we haven't actually
2061 * flushed yet.
2062 */
2063 static void
2064 tu_flush_all_pending(struct tu_cache_state *cache)
2065 {
2066 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2067 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
2068 }
2069
2070 VkResult
2071 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
2072 {
2073 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
2074
2075 /* We currently flush CCU at the end of the command buffer, like
2076 * what the blob does. There's implicit synchronization around every
2077 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
2078 * know yet if this command buffer will be the last in the submit so we
2079 * have to defensively flush everything else.
2080 *
2081 * TODO: We could definitely do better than this, since these flushes
2082 * aren't required by Vulkan, but we'd need kernel support to do that.
2083 * Ideally, we'd like the kernel to flush everything afterwards, so that we
2084 * wouldn't have to do any flushes here, and when submitting multiple
2085 * command buffers there wouldn't be any unnecessary flushes in between.
2086 */
2087 if (cmd_buffer->state.pass) {
2088 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
2089 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
2090 } else {
2091 tu_flush_all_pending(&cmd_buffer->state.cache);
2092 cmd_buffer->state.cache.flush_bits |=
2093 TU_CMD_FLAG_CCU_FLUSH_COLOR |
2094 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
2095 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
2096 }
2097
2098 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->scratch_bo,
2099 MSM_SUBMIT_BO_WRITE);
2100
2101 if (cmd_buffer->use_vsc_data) {
2102 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_draw_strm,
2103 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2104 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_prim_strm,
2105 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2106 }
2107
2108 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->border_color,
2109 MSM_SUBMIT_BO_READ);
2110
2111 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
2112 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
2113 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2114 }
2115
2116 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
2117 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
2118 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2119 }
2120
2121 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
2122 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
2123 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2124 }
2125
2126 tu_cs_end(&cmd_buffer->cs);
2127 tu_cs_end(&cmd_buffer->draw_cs);
2128 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
2129
2130 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
2131
2132 return cmd_buffer->record_result;
2133 }
2134
2135 static struct tu_cs
2136 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2137 {
2138 struct ts_cs_memory memory;
2139 struct tu_cs cs;
2140
2141 /* TODO: share this logic with tu_pipeline_static_state */
2142 tu_cs_alloc(&cmd->sub_cs, size, 1, &memory);
2143 tu_cs_init_external(&cs, memory.map, memory.map + size);
2144 tu_cs_begin(&cs);
2145 tu_cs_reserve_space(&cs, size);
2146
2147 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2148 cmd->state.dynamic_state[id].iova = memory.iova;
2149 cmd->state.dynamic_state[id].size = size;
2150
2151 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2152 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2153
2154 return cs;
2155 }
2156
2157 void
2158 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2159 VkPipelineBindPoint pipelineBindPoint,
2160 VkPipeline _pipeline)
2161 {
2162 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2163 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2164
2165 tu_bo_list_add(&cmd->bo_list, &pipeline->program.binary_bo,
2166 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2167 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2168 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2169 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2170 }
2171
2172 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2173 cmd->state.compute_pipeline = pipeline;
2174 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_PIPELINE;
2175 return;
2176 }
2177
2178 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2179
2180 cmd->state.pipeline = pipeline;
2181 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2182
2183 struct tu_cs *cs = &cmd->draw_cs;
2184 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2185 uint32_t i;
2186
2187 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2188 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
2189 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
2190 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
2191 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
2192 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
2193 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
2194 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
2195
2196 for_each_bit(i, mask)
2197 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2198
2199 /* If the new pipeline requires more VBs than we had previously set up, we
2200 * need to re-emit them in SDS. If it requires the same set or fewer, we
2201 * can just re-use the old SDS.
2202 */
2203 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2204 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2205
2206 /* If the pipeline needs a dynamic descriptor, re-emit descriptor sets */
2207 if (pipeline->layout->dynamic_offset_count)
2208 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS;
2209
2210 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2211 * so the dynamic state ib must be updated when pipeline changes
2212 */
2213 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2214 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2215
2216 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2217 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2218
2219 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2220 }
2221 }
2222
2223 void
2224 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2225 uint32_t firstViewport,
2226 uint32_t viewportCount,
2227 const VkViewport *pViewports)
2228 {
2229 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2230 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2231
2232 assert(firstViewport == 0 && viewportCount == 1);
2233
2234 tu6_emit_viewport(&cs, pViewports);
2235 }
2236
2237 void
2238 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2239 uint32_t firstScissor,
2240 uint32_t scissorCount,
2241 const VkRect2D *pScissors)
2242 {
2243 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2244 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2245
2246 assert(firstScissor == 0 && scissorCount == 1);
2247
2248 tu6_emit_scissor(&cs, pScissors);
2249 }
2250
2251 void
2252 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2253 {
2254 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2255 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2256
2257 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2258 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2259
2260 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2261 }
2262
2263 void
2264 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2265 float depthBiasConstantFactor,
2266 float depthBiasClamp,
2267 float depthBiasSlopeFactor)
2268 {
2269 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2270 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2271
2272 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2273 }
2274
2275 void
2276 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2277 const float blendConstants[4])
2278 {
2279 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2280 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2281
2282 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2283 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2284 }
2285
2286 void
2287 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2288 float minDepthBounds,
2289 float maxDepthBounds)
2290 {
2291 }
2292
2293 static void
2294 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2295 {
2296 if (face & VK_STENCIL_FACE_FRONT_BIT)
2297 *value |= A6XX_RB_STENCILMASK_MASK(mask);
2298 if (face & VK_STENCIL_FACE_BACK_BIT)
2299 *value |= A6XX_RB_STENCILMASK_BFMASK(mask);
2300 }
2301
2302 void
2303 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2304 VkStencilFaceFlags faceMask,
2305 uint32_t compareMask)
2306 {
2307 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2308 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2309
2310 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2311
2312 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2313 }
2314
2315 void
2316 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2317 VkStencilFaceFlags faceMask,
2318 uint32_t writeMask)
2319 {
2320 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2321 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2322
2323 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2324
2325 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2326 }
2327
2328 void
2329 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2330 VkStencilFaceFlags faceMask,
2331 uint32_t reference)
2332 {
2333 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2334 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2335
2336 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2337
2338 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2339 }
2340
2341 void
2342 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2343 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2344 {
2345 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2346 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2347
2348 assert(pSampleLocationsInfo);
2349
2350 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2351 }
2352
2353 static void
2354 tu_flush_for_access(struct tu_cache_state *cache,
2355 enum tu_cmd_access_mask src_mask,
2356 enum tu_cmd_access_mask dst_mask)
2357 {
2358 enum tu_cmd_flush_bits flush_bits = 0;
2359
2360 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2361 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2362 }
2363
2364 #define SRC_FLUSH(domain, flush, invalidate) \
2365 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2366 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2367 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2368 }
2369
2370 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2371 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2372 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2373
2374 #undef SRC_FLUSH
2375
2376 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2377 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2378 flush_bits |= TU_CMD_FLAG_##flush; \
2379 cache->pending_flush_bits |= \
2380 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2381 }
2382
2383 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2384 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2385
2386 #undef SRC_INCOHERENT_FLUSH
2387
2388 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
2389 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2390 }
2391
2392 #define DST_FLUSH(domain, flush, invalidate) \
2393 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2394 TU_ACCESS_##domain##_WRITE)) { \
2395 flush_bits |= cache->pending_flush_bits & \
2396 (TU_CMD_FLAG_##invalidate | \
2397 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2398 }
2399
2400 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2401 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2402 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2403
2404 #undef DST_FLUSH
2405
2406 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2407 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2408 TU_ACCESS_##domain##_WRITE)) { \
2409 flush_bits |= TU_CMD_FLAG_##invalidate | \
2410 (cache->pending_flush_bits & \
2411 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2412 }
2413
2414 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2415 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2416
2417 #undef DST_INCOHERENT_FLUSH
2418
2419 if (dst_mask & TU_ACCESS_WFI_READ) {
2420 flush_bits |= TU_CMD_FLAG_WFI;
2421 }
2422
2423 cache->flush_bits |= flush_bits;
2424 cache->pending_flush_bits &= ~flush_bits;
2425 }
2426
2427 static enum tu_cmd_access_mask
2428 vk2tu_access(VkAccessFlags flags, bool gmem)
2429 {
2430 enum tu_cmd_access_mask mask = 0;
2431
2432 /* If the GPU writes a buffer that is then read by an indirect draw
2433 * command, we theoretically need a WFI + WAIT_FOR_ME combination to
2434 * wait for the writes to complete. The WAIT_FOR_ME is performed as part
2435 * of the draw by the firmware, so we just need to execute a WFI.
2436 */
2437 if (flags &
2438 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2439 VK_ACCESS_MEMORY_READ_BIT)) {
2440 mask |= TU_ACCESS_WFI_READ;
2441 }
2442
2443 if (flags &
2444 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2445 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
2446 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2447 VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
2448 VK_ACCESS_MEMORY_READ_BIT)) {
2449 mask |= TU_ACCESS_SYSMEM_READ;
2450 }
2451
2452 if (flags &
2453 (VK_ACCESS_HOST_WRITE_BIT |
2454 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
2455 VK_ACCESS_MEMORY_WRITE_BIT)) {
2456 mask |= TU_ACCESS_SYSMEM_WRITE;
2457 }
2458
2459 if (flags &
2460 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2461 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2462 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2463 /* TODO: Is there a no-cache bit for textures so that we can ignore
2464 * these?
2465 */
2466 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2467 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2468 VK_ACCESS_MEMORY_READ_BIT)) {
2469 mask |= TU_ACCESS_UCHE_READ;
2470 }
2471
2472 if (flags &
2473 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2474 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2475 VK_ACCESS_MEMORY_WRITE_BIT)) {
2476 mask |= TU_ACCESS_UCHE_WRITE;
2477 }
2478
2479 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2480 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2481 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2482 * can ignore CCU and pretend that color attachments and transfers use
2483 * sysmem directly.
2484 */
2485
2486 if (flags &
2487 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2488 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2489 VK_ACCESS_MEMORY_READ_BIT)) {
2490 if (gmem)
2491 mask |= TU_ACCESS_SYSMEM_READ;
2492 else
2493 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2494 }
2495
2496 if (flags &
2497 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2498 VK_ACCESS_MEMORY_READ_BIT)) {
2499 if (gmem)
2500 mask |= TU_ACCESS_SYSMEM_READ;
2501 else
2502 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2503 }
2504
2505 if (flags &
2506 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2507 VK_ACCESS_MEMORY_WRITE_BIT)) {
2508 if (gmem) {
2509 mask |= TU_ACCESS_SYSMEM_WRITE;
2510 } else {
2511 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2512 }
2513 }
2514
2515 if (flags &
2516 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2517 VK_ACCESS_MEMORY_WRITE_BIT)) {
2518 if (gmem) {
2519 mask |= TU_ACCESS_SYSMEM_WRITE;
2520 } else {
2521 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2522 }
2523 }
2524
2525 /* When the dst access is a transfer read/write, it seems we sometimes need
2526 * to insert a WFI after any flushes, to guarantee that the flushes finish
2527 * before the 2D engine starts. However the opposite (i.e. a WFI after
2528 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2529 * the blob doesn't emit such a WFI.
2530 */
2531
2532 if (flags &
2533 (VK_ACCESS_TRANSFER_WRITE_BIT |
2534 VK_ACCESS_MEMORY_WRITE_BIT)) {
2535 if (gmem) {
2536 mask |= TU_ACCESS_SYSMEM_WRITE;
2537 } else {
2538 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2539 }
2540 mask |= TU_ACCESS_WFI_READ;
2541 }
2542
2543 if (flags &
2544 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2545 VK_ACCESS_MEMORY_READ_BIT)) {
2546 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2547 }
2548
2549 return mask;
2550 }
2551
2552
2553 void
2554 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2555 uint32_t commandBufferCount,
2556 const VkCommandBuffer *pCmdBuffers)
2557 {
2558 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2559 VkResult result;
2560
2561 assert(commandBufferCount > 0);
2562
2563 /* Emit any pending flushes. */
2564 if (cmd->state.pass) {
2565 tu_flush_all_pending(&cmd->state.renderpass_cache);
2566 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2567 } else {
2568 tu_flush_all_pending(&cmd->state.cache);
2569 tu_emit_cache_flush(cmd, &cmd->cs);
2570 }
2571
2572 for (uint32_t i = 0; i < commandBufferCount; i++) {
2573 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2574
2575 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2576 if (result != VK_SUCCESS) {
2577 cmd->record_result = result;
2578 break;
2579 }
2580
2581 if (secondary->usage_flags &
2582 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2583 assert(tu_cs_is_empty(&secondary->cs));
2584
2585 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2586 if (result != VK_SUCCESS) {
2587 cmd->record_result = result;
2588 break;
2589 }
2590
2591 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2592 &secondary->draw_epilogue_cs);
2593 if (result != VK_SUCCESS) {
2594 cmd->record_result = result;
2595 break;
2596 }
2597 } else {
2598 assert(tu_cs_is_empty(&secondary->draw_cs));
2599 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2600
2601 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2602 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2603 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2604 }
2605
2606 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2607 }
2608 }
2609 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2610
2611 /* After executing secondary command buffers, there may have been arbitrary
2612 * flushes executed, so when we encounter a pipeline barrier with a
2613 * srcMask, we have to assume that we need to invalidate. Therefore we need
2614 * to re-initialize the cache with all pending invalidate bits set.
2615 */
2616 if (cmd->state.pass) {
2617 tu_cache_init(&cmd->state.renderpass_cache);
2618 } else {
2619 tu_cache_init(&cmd->state.cache);
2620 }
2621 }
2622
2623 VkResult
2624 tu_CreateCommandPool(VkDevice _device,
2625 const VkCommandPoolCreateInfo *pCreateInfo,
2626 const VkAllocationCallbacks *pAllocator,
2627 VkCommandPool *pCmdPool)
2628 {
2629 TU_FROM_HANDLE(tu_device, device, _device);
2630 struct tu_cmd_pool *pool;
2631
2632 pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
2633 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2634 if (pool == NULL)
2635 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2636
2637 if (pAllocator)
2638 pool->alloc = *pAllocator;
2639 else
2640 pool->alloc = device->alloc;
2641
2642 list_inithead(&pool->cmd_buffers);
2643 list_inithead(&pool->free_cmd_buffers);
2644
2645 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2646
2647 *pCmdPool = tu_cmd_pool_to_handle(pool);
2648
2649 return VK_SUCCESS;
2650 }
2651
2652 void
2653 tu_DestroyCommandPool(VkDevice _device,
2654 VkCommandPool commandPool,
2655 const VkAllocationCallbacks *pAllocator)
2656 {
2657 TU_FROM_HANDLE(tu_device, device, _device);
2658 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2659
2660 if (!pool)
2661 return;
2662
2663 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2664 &pool->cmd_buffers, pool_link)
2665 {
2666 tu_cmd_buffer_destroy(cmd_buffer);
2667 }
2668
2669 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2670 &pool->free_cmd_buffers, pool_link)
2671 {
2672 tu_cmd_buffer_destroy(cmd_buffer);
2673 }
2674
2675 vk_free2(&device->alloc, pAllocator, pool);
2676 }
2677
2678 VkResult
2679 tu_ResetCommandPool(VkDevice device,
2680 VkCommandPool commandPool,
2681 VkCommandPoolResetFlags flags)
2682 {
2683 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2684 VkResult result;
2685
2686 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2687 pool_link)
2688 {
2689 result = tu_reset_cmd_buffer(cmd_buffer);
2690 if (result != VK_SUCCESS)
2691 return result;
2692 }
2693
2694 return VK_SUCCESS;
2695 }
2696
2697 void
2698 tu_TrimCommandPool(VkDevice device,
2699 VkCommandPool commandPool,
2700 VkCommandPoolTrimFlags flags)
2701 {
2702 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2703
2704 if (!pool)
2705 return;
2706
2707 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2708 &pool->free_cmd_buffers, pool_link)
2709 {
2710 tu_cmd_buffer_destroy(cmd_buffer);
2711 }
2712 }
2713
2714 static void
2715 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2716 const struct tu_subpass_barrier *barrier,
2717 bool external)
2718 {
2719 /* Note: we don't know until the end of the subpass whether we'll use
2720 * sysmem, so assume sysmem here to be safe.
2721 */
2722 struct tu_cache_state *cache =
2723 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2724 enum tu_cmd_access_mask src_flags =
2725 vk2tu_access(barrier->src_access_mask, false);
2726 enum tu_cmd_access_mask dst_flags =
2727 vk2tu_access(barrier->dst_access_mask, false);
2728
2729 if (barrier->incoherent_ccu_color)
2730 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2731 if (barrier->incoherent_ccu_depth)
2732 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2733
2734 tu_flush_for_access(cache, src_flags, dst_flags);
2735 }
2736
2737 void
2738 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2739 const VkRenderPassBeginInfo *pRenderPassBegin,
2740 VkSubpassContents contents)
2741 {
2742 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2743 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2744 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2745
2746 cmd->state.pass = pass;
2747 cmd->state.subpass = pass->subpasses;
2748 cmd->state.framebuffer = fb;
2749
2750 tu_cmd_update_tiling_config(cmd, &pRenderPassBegin->renderArea);
2751 tu_cmd_prepare_tile_store_ib(cmd);
2752
2753 /* Note: because this is external, any flushes will happen before draw_cs
2754 * gets called. However deferred flushes could have to happen later as part
2755 * of the subpass.
2756 */
2757 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2758 cmd->state.renderpass_cache.pending_flush_bits =
2759 cmd->state.cache.pending_flush_bits;
2760 cmd->state.renderpass_cache.flush_bits = 0;
2761
2762 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2763
2764 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2765 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2766 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2767 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2768
2769 tu_set_input_attachments(cmd, cmd->state.subpass);
2770
2771 /* note: use_hw_binning only checks tiling config */
2772 if (use_hw_binning(cmd))
2773 cmd->use_vsc_data = true;
2774
2775 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2776 const struct tu_image_view *iview = fb->attachments[i].attachment;
2777 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2778 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2779 }
2780
2781 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2782 }
2783
2784 void
2785 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2786 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2787 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2788 {
2789 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2790 pSubpassBeginInfo->contents);
2791 }
2792
2793 void
2794 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2795 {
2796 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2797 const struct tu_render_pass *pass = cmd->state.pass;
2798 struct tu_cs *cs = &cmd->draw_cs;
2799
2800 const struct tu_subpass *subpass = cmd->state.subpass++;
2801
2802 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2803
2804 if (subpass->resolve_attachments) {
2805 tu6_emit_blit_scissor(cmd, cs, true);
2806
2807 for (unsigned i = 0; i < subpass->color_count; i++) {
2808 uint32_t a = subpass->resolve_attachments[i].attachment;
2809 if (a == VK_ATTACHMENT_UNUSED)
2810 continue;
2811
2812 tu_store_gmem_attachment(cmd, cs, a,
2813 subpass->color_attachments[i].attachment);
2814
2815 if (pass->attachments[a].gmem_offset < 0)
2816 continue;
2817
2818 /* TODO:
2819 * check if the resolved attachment is needed by later subpasses,
2820 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2821 */
2822 tu_finishme("missing GMEM->GMEM resolve path\n");
2823 tu_load_gmem_attachment(cmd, cs, a, true);
2824 }
2825 }
2826
2827 tu_cond_exec_end(cs);
2828
2829 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2830
2831 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2832
2833 tu_cond_exec_end(cs);
2834
2835 /* Handle dependencies for the next subpass */
2836 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2837
2838 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2839 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2840 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2841 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2842 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2843
2844 tu_set_input_attachments(cmd, cmd->state.subpass);
2845 }
2846
2847 void
2848 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2849 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2850 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2851 {
2852 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2853 }
2854
2855 struct tu_draw_info
2856 {
2857 /**
2858 * Number of vertices.
2859 */
2860 uint32_t count;
2861
2862 /**
2863 * Index of the first vertex.
2864 */
2865 int32_t vertex_offset;
2866
2867 /**
2868 * First instance id.
2869 */
2870 uint32_t first_instance;
2871
2872 /**
2873 * Number of instances.
2874 */
2875 uint32_t instance_count;
2876
2877 /**
2878 * First index (indexed draws only).
2879 */
2880 uint32_t first_index;
2881
2882 /**
2883 * Whether it's an indexed draw.
2884 */
2885 bool indexed;
2886
2887 /**
2888 * Indirect draw parameters resource.
2889 */
2890 struct tu_buffer *indirect;
2891 uint64_t indirect_offset;
2892 uint32_t stride;
2893
2894 /**
2895 * Draw count parameters resource.
2896 */
2897 struct tu_buffer *count_buffer;
2898 uint64_t count_buffer_offset;
2899
2900 /**
2901 * Stream output parameters resource.
2902 */
2903 struct tu_buffer *streamout_buffer;
2904 uint64_t streamout_buffer_offset;
2905 };
2906
2907 static void
2908 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2909 struct tu_descriptor_state *descriptors_state,
2910 gl_shader_stage type,
2911 uint32_t *push_constants)
2912 {
2913 const struct tu_program_descriptor_linkage *link =
2914 &pipeline->program.link[type];
2915 const struct ir3_ubo_analysis_state *state = &link->ubo_state;
2916
2917 if (link->push_consts.count > 0) {
2918 unsigned num_units = link->push_consts.count;
2919 unsigned offset = link->push_consts.lo;
2920 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2921 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2922 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2923 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2924 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2925 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2926 tu_cs_emit(cs, 0);
2927 tu_cs_emit(cs, 0);
2928 for (unsigned i = 0; i < num_units * 4; i++)
2929 tu_cs_emit(cs, push_constants[i + offset * 4]);
2930 }
2931
2932 for (uint32_t i = 0; i < state->num_enabled; i++) {
2933 uint32_t size = state->range[i].end - state->range[i].start;
2934 uint32_t offset = state->range[i].start;
2935
2936 /* and even if the start of the const buffer is before
2937 * first_immediate, the end may not be:
2938 */
2939 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2940
2941 if (size == 0)
2942 continue;
2943
2944 /* things should be aligned to vec4: */
2945 debug_assert((state->range[i].offset % 16) == 0);
2946 debug_assert((size % 16) == 0);
2947 debug_assert((offset % 16) == 0);
2948
2949 /* Dig out the descriptor from the descriptor state and read the VA from
2950 * it.
2951 */
2952 assert(state->range[i].bindless);
2953 uint32_t *base = state->range[i].bindless_base == MAX_SETS ?
2954 descriptors_state->dynamic_descriptors :
2955 descriptors_state->sets[state->range[i].bindless_base]->mapped_ptr;
2956 unsigned block = state->range[i].block;
2957 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2958 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2959 assert(va);
2960
2961 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2962 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2963 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2964 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2965 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2966 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2967 tu_cs_emit_qw(cs, va + offset);
2968 }
2969 }
2970
2971 static struct tu_cs_entry
2972 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2973 const struct tu_pipeline *pipeline,
2974 struct tu_descriptor_state *descriptors_state,
2975 gl_shader_stage type)
2976 {
2977 struct tu_cs cs;
2978 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2979
2980 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2981
2982 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2983 }
2984
2985 static VkResult
2986 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
2987 const struct tu_draw_info *draw,
2988 struct tu_cs_entry *entry)
2989 {
2990 /* TODO: fill out more than just base instance */
2991 const struct tu_program_descriptor_linkage *link =
2992 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
2993 const struct ir3_const_state *const_state = &link->const_state;
2994 struct tu_cs cs;
2995
2996 if (const_state->offsets.driver_param >= link->constlen) {
2997 *entry = (struct tu_cs_entry) {};
2998 return VK_SUCCESS;
2999 }
3000
3001 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 8, &cs);
3002 if (result != VK_SUCCESS)
3003 return result;
3004
3005 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3006 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(const_state->offsets.driver_param) |
3007 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3008 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3009 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3010 CP_LOAD_STATE6_0_NUM_UNIT(1));
3011 tu_cs_emit(&cs, 0);
3012 tu_cs_emit(&cs, 0);
3013
3014 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3015
3016 tu_cs_emit(&cs, 0);
3017 tu_cs_emit(&cs, 0);
3018 tu_cs_emit(&cs, draw->first_instance);
3019 tu_cs_emit(&cs, 0);
3020
3021 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3022 return VK_SUCCESS;
3023 }
3024
3025 static struct tu_cs_entry
3026 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
3027 const struct tu_pipeline *pipeline)
3028 {
3029 struct tu_cs cs;
3030 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
3031
3032 int binding;
3033 for_each_bit(binding, pipeline->vi.bindings_used) {
3034 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
3035 const VkDeviceSize offset = buf->bo_offset +
3036 cmd->state.vb.offsets[binding];
3037
3038 tu_cs_emit_regs(&cs,
3039 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
3040 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
3041
3042 }
3043
3044 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
3045
3046 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3047 }
3048
3049 static void
3050 tu6_emit_streamout(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
3051 {
3052 struct tu_streamout_state *tf = &cmd->state.pipeline->streamout;
3053
3054 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
3055 struct tu_buffer *buf = cmd->state.streamout_buf.buffers[i];
3056 if (!buf)
3057 continue;
3058
3059 uint32_t offset;
3060 offset = cmd->state.streamout_buf.offsets[i];
3061
3062 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_BASE(i, .bo = buf->bo,
3063 .bo_offset = buf->bo_offset));
3064 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_SIZE(i, buf->size));
3065
3066 if (cmd->state.streamout_reset & (1 << i)) {
3067 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, offset));
3068 cmd->state.streamout_reset &= ~(1 << i);
3069 } else {
3070 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
3071 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(i)) |
3072 CP_MEM_TO_REG_0_SHIFT_BY_2 | CP_MEM_TO_REG_0_UNK31 |
3073 CP_MEM_TO_REG_0_CNT(0));
3074 tu_cs_emit_qw(cs, cmd->scratch_bo.iova +
3075 ctrl_offset(flush_base[i].offset));
3076 }
3077
3078 tu_cs_emit_regs(cs, A6XX_VPC_SO_FLUSH_BASE(i, .bo = &cmd->scratch_bo,
3079 .bo_offset =
3080 ctrl_offset(flush_base[i])));
3081 }
3082
3083 if (cmd->state.streamout_enabled) {
3084 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 12 + (2 * tf->prog_count));
3085 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
3086 tu_cs_emit(cs, tf->vpc_so_buf_cntl);
3087 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(0));
3088 tu_cs_emit(cs, tf->ncomp[0]);
3089 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(1));
3090 tu_cs_emit(cs, tf->ncomp[1]);
3091 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(2));
3092 tu_cs_emit(cs, tf->ncomp[2]);
3093 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(3));
3094 tu_cs_emit(cs, tf->ncomp[3]);
3095 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
3096 tu_cs_emit(cs, A6XX_VPC_SO_CNTL_ENABLE);
3097 for (unsigned i = 0; i < tf->prog_count; i++) {
3098 tu_cs_emit(cs, REG_A6XX_VPC_SO_PROG);
3099 tu_cs_emit(cs, tf->prog[i]);
3100 }
3101 } else {
3102 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 4);
3103 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
3104 tu_cs_emit(cs, 0);
3105 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
3106 tu_cs_emit(cs, 0);
3107 }
3108 }
3109
3110 static VkResult
3111 tu6_bind_draw_states(struct tu_cmd_buffer *cmd,
3112 struct tu_cs *cs,
3113 const struct tu_draw_info *draw)
3114 {
3115 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3116 VkResult result;
3117
3118 struct tu_descriptor_state *descriptors_state =
3119 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
3120
3121 /* TODO lrz */
3122
3123 tu_cs_emit_regs(cs,
3124 A6XX_PC_PRIMITIVE_CNTL_0(.primitive_restart =
3125 pipeline->ia.primitive_restart && draw->indexed));
3126
3127 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3128 cmd->state.shader_const_ib[MESA_SHADER_VERTEX] =
3129 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
3130 cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY] =
3131 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
3132 cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT] =
3133 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
3134 }
3135
3136 if (cmd->state.dirty & TU_CMD_DIRTY_STREAMOUT_BUFFERS)
3137 tu6_emit_streamout(cmd, cs);
3138
3139 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) {
3140 /* We need to reload the descriptors every time the descriptor sets
3141 * change. However, the commands we send only depend on the pipeline
3142 * because the whole point is to cache descriptors which are used by the
3143 * pipeline. There's a problem here, in that the firmware has an
3144 * "optimization" which skips executing groups that are set to the same
3145 * value as the last draw. This means that if the descriptor sets change
3146 * but not the pipeline, we'd try to re-execute the same buffer which
3147 * the firmware would ignore and we wouldn't pre-load the new
3148 * descriptors. The blob seems to re-emit the LOAD_STATE group whenever
3149 * the descriptor sets change, which we emulate here by copying the
3150 * pre-prepared buffer.
3151 */
3152 const struct tu_cs_entry *load_entry = &pipeline->load_state.state_ib;
3153 if (load_entry->size > 0) {
3154 struct tu_cs load_cs;
3155 result = tu_cs_begin_sub_stream(&cmd->sub_cs, load_entry->size, &load_cs);
3156 if (result != VK_SUCCESS)
3157 return result;
3158 tu_cs_emit_array(&load_cs,
3159 (uint32_t *)((char *)load_entry->bo->map + load_entry->offset),
3160 load_entry->size / 4);
3161 cmd->state.desc_sets_load_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &load_cs);
3162 } else {
3163 cmd->state.desc_sets_load_ib.size = 0;
3164 }
3165 }
3166
3167 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3168 cmd->state.vertex_buffers_ib = tu6_emit_vertex_buffers(cmd, pipeline);
3169
3170 struct tu_cs_entry vs_params;
3171 result = tu6_emit_vs_params(cmd, draw, &vs_params);
3172 if (result != VK_SUCCESS)
3173 return result;
3174
3175 /* for the first draw in a renderpass, re-emit all the draw states
3176 *
3177 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3178 * used, then draw states must be re-emitted. note however this only happens
3179 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3180 *
3181 * the two input attachment states are excluded because secondary command
3182 * buffer doesn't have a state ib to restore it, and not re-emitting them
3183 * is OK since CmdClearAttachments won't disable/overwrite them
3184 */
3185 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3186 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3187
3188 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
3189 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
3190 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
3191 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
3192 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
3193 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
3194 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
3195 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3196 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3197 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3198 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets_ib);
3199 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3200 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3201 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_PARAMS, vs_params);
3202
3203 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3204 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3205 ((pipeline->dynamic_state_mask & BIT(i)) ?
3206 cmd->state.dynamic_state[i] :
3207 pipeline->dynamic_state[i]));
3208 }
3209 } else {
3210
3211 /* emit draw states that were just updated
3212 * note we eventually don't want to have to emit anything here
3213 */
3214 uint32_t draw_state_count =
3215 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 3 : 0) +
3216 ((cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) ? 1 : 0) +
3217 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3218 1; /* vs_params */
3219
3220 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3221
3222 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3223 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3224 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3225 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3226 }
3227 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS)
3228 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3229 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3230 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3231 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_PARAMS, vs_params);
3232 }
3233
3234 tu_cs_sanity_check(cs);
3235
3236 /* track BOs */
3237 if (cmd->state.dirty & TU_CMD_DIRTY_STREAMOUT_BUFFERS) {
3238 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
3239 const struct tu_buffer *buf = cmd->state.streamout_buf.buffers[i];
3240 if (buf) {
3241 tu_bo_list_add(&cmd->bo_list, buf->bo,
3242 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3243 }
3244 }
3245 }
3246
3247 /* There are too many graphics dirty bits to list here, so just list the
3248 * bits to preserve instead. The only things not emitted here are
3249 * compute-related state.
3250 */
3251 cmd->state.dirty &= (TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3252 return VK_SUCCESS;
3253 }
3254
3255 static void
3256 tu6_emit_draw_indirect(struct tu_cmd_buffer *cmd,
3257 struct tu_cs *cs,
3258 const struct tu_draw_info *draw)
3259 {
3260 const enum pc_di_primtype primtype = cmd->state.pipeline->ia.primtype;
3261 bool has_gs = cmd->state.pipeline->active_stages &
3262 VK_SHADER_STAGE_GEOMETRY_BIT;
3263
3264 tu_cs_emit_regs(cs,
3265 A6XX_VFD_INDEX_OFFSET(draw->vertex_offset),
3266 A6XX_VFD_INSTANCE_START_OFFSET(draw->first_instance));
3267
3268 if (draw->indexed) {
3269 const enum a4xx_index_size index_size =
3270 tu6_index_size(cmd->state.index_type);
3271 const uint32_t index_bytes =
3272 (cmd->state.index_type == VK_INDEX_TYPE_UINT32) ? 4 : 2;
3273 const struct tu_buffer *index_buf = cmd->state.index_buffer;
3274 unsigned max_indicies =
3275 (index_buf->size - cmd->state.index_offset) / index_bytes;
3276
3277 const uint32_t cp_draw_indx =
3278 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3279 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_DMA) |
3280 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(index_size) |
3281 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3282 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
3283
3284 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_INDIRECT, 6);
3285 tu_cs_emit(cs, cp_draw_indx);
3286 tu_cs_emit_qw(cs, index_buf->bo->iova + cmd->state.index_offset);
3287 tu_cs_emit(cs, A5XX_CP_DRAW_INDX_INDIRECT_3_MAX_INDICES(max_indicies));
3288 tu_cs_emit_qw(cs, draw->indirect->bo->iova + draw->indirect_offset);
3289 } else {
3290 const uint32_t cp_draw_indx =
3291 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3292 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_AUTO_INDEX) |
3293 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3294 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
3295
3296 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT, 3);
3297 tu_cs_emit(cs, cp_draw_indx);
3298 tu_cs_emit_qw(cs, draw->indirect->bo->iova + draw->indirect_offset);
3299 }
3300
3301 tu_bo_list_add(&cmd->bo_list, draw->indirect->bo, MSM_SUBMIT_BO_READ);
3302 }
3303
3304 static void
3305 tu6_emit_draw_direct(struct tu_cmd_buffer *cmd,
3306 struct tu_cs *cs,
3307 const struct tu_draw_info *draw)
3308 {
3309
3310 const enum pc_di_primtype primtype = cmd->state.pipeline->ia.primtype;
3311 bool has_gs = cmd->state.pipeline->active_stages &
3312 VK_SHADER_STAGE_GEOMETRY_BIT;
3313
3314 tu_cs_emit_regs(cs,
3315 A6XX_VFD_INDEX_OFFSET(draw->vertex_offset),
3316 A6XX_VFD_INSTANCE_START_OFFSET(draw->first_instance));
3317
3318 /* TODO hw binning */
3319 if (draw->indexed) {
3320 const enum a4xx_index_size index_size =
3321 tu6_index_size(cmd->state.index_type);
3322 const uint32_t index_bytes =
3323 (cmd->state.index_type == VK_INDEX_TYPE_UINT32) ? 4 : 2;
3324 const struct tu_buffer *buf = cmd->state.index_buffer;
3325 const VkDeviceSize offset = buf->bo_offset + cmd->state.index_offset +
3326 index_bytes * draw->first_index;
3327 const uint32_t size = index_bytes * draw->count;
3328
3329 const uint32_t cp_draw_indx =
3330 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3331 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_DMA) |
3332 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(index_size) |
3333 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3334 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
3335
3336 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3337 tu_cs_emit(cs, cp_draw_indx);
3338 tu_cs_emit(cs, draw->instance_count);
3339 tu_cs_emit(cs, draw->count);
3340 tu_cs_emit(cs, 0x0); /* XXX */
3341 tu_cs_emit_qw(cs, buf->bo->iova + offset);
3342 tu_cs_emit(cs, size);
3343 } else {
3344 const uint32_t cp_draw_indx =
3345 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
3346 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(DI_SRC_SEL_AUTO_INDEX) |
3347 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY) |
3348 COND(has_gs, CP_DRAW_INDX_OFFSET_0_GS_ENABLE) | 0x2000;
3349
3350 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3351 tu_cs_emit(cs, cp_draw_indx);
3352 tu_cs_emit(cs, draw->instance_count);
3353 tu_cs_emit(cs, draw->count);
3354 }
3355 }
3356
3357 static void
3358 tu_draw(struct tu_cmd_buffer *cmd, const struct tu_draw_info *draw)
3359 {
3360 struct tu_cs *cs = &cmd->draw_cs;
3361 VkResult result;
3362
3363 tu_emit_cache_flush_renderpass(cmd, cs);
3364
3365 result = tu6_bind_draw_states(cmd, cs, draw);
3366 if (result != VK_SUCCESS) {
3367 cmd->record_result = result;
3368 return;
3369 }
3370
3371 if (draw->indirect)
3372 tu6_emit_draw_indirect(cmd, cs, draw);
3373 else
3374 tu6_emit_draw_direct(cmd, cs, draw);
3375
3376 if (cmd->state.streamout_enabled) {
3377 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
3378 if (cmd->state.streamout_enabled & (1 << i))
3379 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
3380 }
3381 }
3382
3383 tu_cs_sanity_check(cs);
3384 }
3385
3386 void
3387 tu_CmdDraw(VkCommandBuffer commandBuffer,
3388 uint32_t vertexCount,
3389 uint32_t instanceCount,
3390 uint32_t firstVertex,
3391 uint32_t firstInstance)
3392 {
3393 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3394 struct tu_draw_info info = {};
3395
3396 info.count = vertexCount;
3397 info.instance_count = instanceCount;
3398 info.first_instance = firstInstance;
3399 info.vertex_offset = firstVertex;
3400
3401 tu_draw(cmd_buffer, &info);
3402 }
3403
3404 void
3405 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3406 uint32_t indexCount,
3407 uint32_t instanceCount,
3408 uint32_t firstIndex,
3409 int32_t vertexOffset,
3410 uint32_t firstInstance)
3411 {
3412 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3413 struct tu_draw_info info = {};
3414
3415 info.indexed = true;
3416 info.count = indexCount;
3417 info.instance_count = instanceCount;
3418 info.first_index = firstIndex;
3419 info.vertex_offset = vertexOffset;
3420 info.first_instance = firstInstance;
3421
3422 tu_draw(cmd_buffer, &info);
3423 }
3424
3425 void
3426 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3427 VkBuffer _buffer,
3428 VkDeviceSize offset,
3429 uint32_t drawCount,
3430 uint32_t stride)
3431 {
3432 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3433 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3434 struct tu_draw_info info = {};
3435
3436 info.count = drawCount;
3437 info.indirect = buffer;
3438 info.indirect_offset = offset;
3439 info.stride = stride;
3440
3441 tu_draw(cmd_buffer, &info);
3442 }
3443
3444 void
3445 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3446 VkBuffer _buffer,
3447 VkDeviceSize offset,
3448 uint32_t drawCount,
3449 uint32_t stride)
3450 {
3451 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3452 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3453 struct tu_draw_info info = {};
3454
3455 info.indexed = true;
3456 info.count = drawCount;
3457 info.indirect = buffer;
3458 info.indirect_offset = offset;
3459 info.stride = stride;
3460
3461 tu_draw(cmd_buffer, &info);
3462 }
3463
3464 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3465 uint32_t instanceCount,
3466 uint32_t firstInstance,
3467 VkBuffer _counterBuffer,
3468 VkDeviceSize counterBufferOffset,
3469 uint32_t counterOffset,
3470 uint32_t vertexStride)
3471 {
3472 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3473 TU_FROM_HANDLE(tu_buffer, buffer, _counterBuffer);
3474
3475 struct tu_draw_info info = {};
3476
3477 info.instance_count = instanceCount;
3478 info.first_instance = firstInstance;
3479 info.streamout_buffer = buffer;
3480 info.streamout_buffer_offset = counterBufferOffset;
3481 info.stride = vertexStride;
3482
3483 tu_draw(cmd_buffer, &info);
3484 }
3485
3486 struct tu_dispatch_info
3487 {
3488 /**
3489 * Determine the layout of the grid (in block units) to be used.
3490 */
3491 uint32_t blocks[3];
3492
3493 /**
3494 * A starting offset for the grid. If unaligned is set, the offset
3495 * must still be aligned.
3496 */
3497 uint32_t offsets[3];
3498 /**
3499 * Whether it's an unaligned compute dispatch.
3500 */
3501 bool unaligned;
3502
3503 /**
3504 * Indirect compute parameters resource.
3505 */
3506 struct tu_buffer *indirect;
3507 uint64_t indirect_offset;
3508 };
3509
3510 static void
3511 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3512 const struct tu_dispatch_info *info)
3513 {
3514 gl_shader_stage type = MESA_SHADER_COMPUTE;
3515 const struct tu_program_descriptor_linkage *link =
3516 &pipeline->program.link[type];
3517 const struct ir3_const_state *const_state = &link->const_state;
3518 uint32_t offset = const_state->offsets.driver_param;
3519
3520 if (link->constlen <= offset)
3521 return;
3522
3523 if (!info->indirect) {
3524 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3525 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3526 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3527 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3528 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3529 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3530 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3531 };
3532
3533 uint32_t num_consts = MIN2(const_state->num_driver_params,
3534 (link->constlen - offset) * 4);
3535 /* push constants */
3536 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3537 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3538 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3539 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3540 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3541 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3542 tu_cs_emit(cs, 0);
3543 tu_cs_emit(cs, 0);
3544 uint32_t i;
3545 for (i = 0; i < num_consts; i++)
3546 tu_cs_emit(cs, driver_params[i]);
3547 } else {
3548 tu_finishme("Indirect driver params");
3549 }
3550 }
3551
3552 static void
3553 tu_dispatch(struct tu_cmd_buffer *cmd,
3554 const struct tu_dispatch_info *info)
3555 {
3556 struct tu_cs *cs = &cmd->cs;
3557 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3558 struct tu_descriptor_state *descriptors_state =
3559 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3560
3561 /* TODO: We could probably flush less if we add a compute_flush_bits
3562 * bitfield.
3563 */
3564 tu_emit_cache_flush(cmd, cs);
3565
3566 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_PIPELINE)
3567 tu_cs_emit_ib(cs, &pipeline->program.state_ib);
3568
3569 struct tu_cs_entry ib;
3570
3571 ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE);
3572 if (ib.size)
3573 tu_cs_emit_ib(cs, &ib);
3574
3575 tu_emit_compute_driver_params(cs, pipeline, info);
3576
3577 if ((cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS) &&
3578 pipeline->load_state.state_ib.size > 0) {
3579 tu_cs_emit_ib(cs, &pipeline->load_state.state_ib);
3580 }
3581
3582 cmd->state.dirty &=
3583 ~(TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3584
3585 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3586 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3587
3588 const uint32_t *local_size = pipeline->compute.local_size;
3589 const uint32_t *num_groups = info->blocks;
3590 tu_cs_emit_regs(cs,
3591 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3592 .localsizex = local_size[0] - 1,
3593 .localsizey = local_size[1] - 1,
3594 .localsizez = local_size[2] - 1),
3595 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3596 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3597 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3598 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3599 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3600 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3601
3602 tu_cs_emit_regs(cs,
3603 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3604 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3605 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3606
3607 if (info->indirect) {
3608 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3609
3610 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3611 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3612
3613 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3614 tu_cs_emit(cs, 0x00000000);
3615 tu_cs_emit_qw(cs, iova);
3616 tu_cs_emit(cs,
3617 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3618 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3619 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3620 } else {
3621 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3622 tu_cs_emit(cs, 0x00000000);
3623 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3624 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3625 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3626 }
3627
3628 tu_cs_emit_wfi(cs);
3629 }
3630
3631 void
3632 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3633 uint32_t base_x,
3634 uint32_t base_y,
3635 uint32_t base_z,
3636 uint32_t x,
3637 uint32_t y,
3638 uint32_t z)
3639 {
3640 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3641 struct tu_dispatch_info info = {};
3642
3643 info.blocks[0] = x;
3644 info.blocks[1] = y;
3645 info.blocks[2] = z;
3646
3647 info.offsets[0] = base_x;
3648 info.offsets[1] = base_y;
3649 info.offsets[2] = base_z;
3650 tu_dispatch(cmd_buffer, &info);
3651 }
3652
3653 void
3654 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3655 uint32_t x,
3656 uint32_t y,
3657 uint32_t z)
3658 {
3659 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3660 }
3661
3662 void
3663 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3664 VkBuffer _buffer,
3665 VkDeviceSize offset)
3666 {
3667 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3668 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3669 struct tu_dispatch_info info = {};
3670
3671 info.indirect = buffer;
3672 info.indirect_offset = offset;
3673
3674 tu_dispatch(cmd_buffer, &info);
3675 }
3676
3677 void
3678 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3679 {
3680 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3681
3682 tu_cs_end(&cmd_buffer->draw_cs);
3683 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3684
3685 if (use_sysmem_rendering(cmd_buffer))
3686 tu_cmd_render_sysmem(cmd_buffer);
3687 else
3688 tu_cmd_render_tiles(cmd_buffer);
3689
3690 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3691 rendered */
3692 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3693 tu_cs_begin(&cmd_buffer->draw_cs);
3694 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3695 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3696
3697 cmd_buffer->state.cache.pending_flush_bits |=
3698 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3699 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3700
3701 cmd_buffer->state.pass = NULL;
3702 cmd_buffer->state.subpass = NULL;
3703 cmd_buffer->state.framebuffer = NULL;
3704 }
3705
3706 void
3707 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3708 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3709 {
3710 tu_CmdEndRenderPass(commandBuffer);
3711 }
3712
3713 struct tu_barrier_info
3714 {
3715 uint32_t eventCount;
3716 const VkEvent *pEvents;
3717 VkPipelineStageFlags srcStageMask;
3718 };
3719
3720 static void
3721 tu_barrier(struct tu_cmd_buffer *cmd,
3722 uint32_t memoryBarrierCount,
3723 const VkMemoryBarrier *pMemoryBarriers,
3724 uint32_t bufferMemoryBarrierCount,
3725 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3726 uint32_t imageMemoryBarrierCount,
3727 const VkImageMemoryBarrier *pImageMemoryBarriers,
3728 const struct tu_barrier_info *info)
3729 {
3730 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3731 VkAccessFlags srcAccessMask = 0;
3732 VkAccessFlags dstAccessMask = 0;
3733
3734 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3735 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3736 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3737 }
3738
3739 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3740 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3741 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3742 }
3743
3744 enum tu_cmd_access_mask src_flags = 0;
3745 enum tu_cmd_access_mask dst_flags = 0;
3746
3747 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3748 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3749 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3750 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3751 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3752 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3753 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3754 /* The underlying memory for this image may have been used earlier
3755 * within the same queue submission for a different image, which
3756 * means that there may be old, stale cache entries which are in the
3757 * "wrong" location, which could cause problems later after writing
3758 * to the image. We don't want these entries being flushed later and
3759 * overwriting the actual image, so we need to flush the CCU.
3760 */
3761 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3762 }
3763 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3764 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3765 }
3766
3767 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3768 * so we have to use the sysmem flushes.
3769 */
3770 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3771 !cmd->state.pass;
3772 src_flags |= vk2tu_access(srcAccessMask, gmem);
3773 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3774
3775 struct tu_cache_state *cache =
3776 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3777 tu_flush_for_access(cache, src_flags, dst_flags);
3778
3779 for (uint32_t i = 0; i < info->eventCount; i++) {
3780 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3781
3782 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3783
3784 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3785 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3786 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3787 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3788 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3789 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3790 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3791 }
3792 }
3793
3794 void
3795 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3796 VkPipelineStageFlags srcStageMask,
3797 VkPipelineStageFlags dstStageMask,
3798 VkDependencyFlags dependencyFlags,
3799 uint32_t memoryBarrierCount,
3800 const VkMemoryBarrier *pMemoryBarriers,
3801 uint32_t bufferMemoryBarrierCount,
3802 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3803 uint32_t imageMemoryBarrierCount,
3804 const VkImageMemoryBarrier *pImageMemoryBarriers)
3805 {
3806 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3807 struct tu_barrier_info info;
3808
3809 info.eventCount = 0;
3810 info.pEvents = NULL;
3811 info.srcStageMask = srcStageMask;
3812
3813 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3814 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3815 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3816 }
3817
3818 static void
3819 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3820 VkPipelineStageFlags stageMask, unsigned value)
3821 {
3822 struct tu_cs *cs = &cmd->cs;
3823
3824 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3825 assert(!cmd->state.pass);
3826
3827 tu_emit_cache_flush(cmd, cs);
3828
3829 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3830
3831 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3832 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3833 */
3834 VkPipelineStageFlags top_of_pipe_flags =
3835 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3836 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3837
3838 if (!(stageMask & ~top_of_pipe_flags)) {
3839 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3840 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3841 tu_cs_emit(cs, value);
3842 } else {
3843 /* Use a RB_DONE_TS event to wait for everything to complete. */
3844 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3845 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3846 tu_cs_emit_qw(cs, event->bo.iova);
3847 tu_cs_emit(cs, value);
3848 }
3849 }
3850
3851 void
3852 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3853 VkEvent _event,
3854 VkPipelineStageFlags stageMask)
3855 {
3856 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3857 TU_FROM_HANDLE(tu_event, event, _event);
3858
3859 write_event(cmd, event, stageMask, 1);
3860 }
3861
3862 void
3863 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3864 VkEvent _event,
3865 VkPipelineStageFlags stageMask)
3866 {
3867 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3868 TU_FROM_HANDLE(tu_event, event, _event);
3869
3870 write_event(cmd, event, stageMask, 0);
3871 }
3872
3873 void
3874 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3875 uint32_t eventCount,
3876 const VkEvent *pEvents,
3877 VkPipelineStageFlags srcStageMask,
3878 VkPipelineStageFlags dstStageMask,
3879 uint32_t memoryBarrierCount,
3880 const VkMemoryBarrier *pMemoryBarriers,
3881 uint32_t bufferMemoryBarrierCount,
3882 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3883 uint32_t imageMemoryBarrierCount,
3884 const VkImageMemoryBarrier *pImageMemoryBarriers)
3885 {
3886 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3887 struct tu_barrier_info info;
3888
3889 info.eventCount = eventCount;
3890 info.pEvents = pEvents;
3891 info.srcStageMask = 0;
3892
3893 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3894 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3895 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3896 }
3897
3898 void
3899 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3900 {
3901 /* No-op */
3902 }