turnip: create a less dummy pipeline
[mesa.git] / src / freedreno / vulkan / tu_device.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include <fcntl.h>
31 #include <libsync.h>
32 #include <stdbool.h>
33 #include <string.h>
34 #include <sys/mman.h>
35 #include <sys/sysinfo.h>
36 #include <unistd.h>
37 #include <xf86drm.h>
38
39 #include "util/debug.h"
40 #include "util/disk_cache.h"
41 #include "util/strtod.h"
42 #include "vk_format.h"
43 #include "vk_util.h"
44
45 #include "drm/msm_drm.h"
46
47 static int
48 tu_device_get_cache_uuid(uint16_t family, void *uuid)
49 {
50 uint32_t mesa_timestamp;
51 uint16_t f = family;
52 memset(uuid, 0, VK_UUID_SIZE);
53 if (!disk_cache_get_function_timestamp(tu_device_get_cache_uuid,
54 &mesa_timestamp))
55 return -1;
56
57 memcpy(uuid, &mesa_timestamp, 4);
58 memcpy((char *) uuid + 4, &f, 2);
59 snprintf((char *) uuid + 6, VK_UUID_SIZE - 10, "tu");
60 return 0;
61 }
62
63 static void
64 tu_get_driver_uuid(void *uuid)
65 {
66 memset(uuid, 0, VK_UUID_SIZE);
67 snprintf(uuid, VK_UUID_SIZE, "freedreno");
68 }
69
70 static void
71 tu_get_device_uuid(void *uuid)
72 {
73 memset(uuid, 0, VK_UUID_SIZE);
74 }
75
76 static VkResult
77 tu_bo_init(struct tu_device *dev,
78 struct tu_bo *bo,
79 uint32_t gem_handle,
80 uint64_t size)
81 {
82 uint64_t iova = tu_gem_info_iova(dev, gem_handle);
83 if (!iova)
84 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
85
86 *bo = (struct tu_bo) {
87 .gem_handle = gem_handle,
88 .size = size,
89 .iova = iova,
90 };
91
92 return VK_SUCCESS;
93 }
94
95 VkResult
96 tu_bo_init_new(struct tu_device *dev, struct tu_bo *bo, uint64_t size)
97 {
98 /* TODO: Choose better flags. As of 2018-11-12, freedreno/drm/msm_bo.c
99 * always sets `flags = MSM_BO_WC`, and we copy that behavior here.
100 */
101 uint32_t gem_handle = tu_gem_new(dev, size, MSM_BO_WC);
102 if (!gem_handle)
103 return vk_error(dev->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
104
105 VkResult result = tu_bo_init(dev, bo, gem_handle, size);
106 if (result != VK_SUCCESS) {
107 tu_gem_close(dev, gem_handle);
108 return vk_error(dev->instance, result);
109 }
110
111 return VK_SUCCESS;
112 }
113
114 VkResult
115 tu_bo_init_dmabuf(struct tu_device *dev,
116 struct tu_bo *bo,
117 uint64_t size,
118 int fd)
119 {
120 uint32_t gem_handle = tu_gem_import_dmabuf(dev, fd, size);
121 if (!gem_handle)
122 return vk_error(dev->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
123
124 VkResult result = tu_bo_init(dev, bo, gem_handle, size);
125 if (result != VK_SUCCESS) {
126 tu_gem_close(dev, gem_handle);
127 return vk_error(dev->instance, result);
128 }
129
130 return VK_SUCCESS;
131 }
132
133 int
134 tu_bo_export_dmabuf(struct tu_device *dev, struct tu_bo *bo)
135 {
136 return tu_gem_export_dmabuf(dev, bo->gem_handle);
137 }
138
139 VkResult
140 tu_bo_map(struct tu_device *dev, struct tu_bo *bo)
141 {
142 if (bo->map)
143 return VK_SUCCESS;
144
145 uint64_t offset = tu_gem_info_offset(dev, bo->gem_handle);
146 if (!offset)
147 return vk_error(dev->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
148
149 /* TODO: Should we use the wrapper os_mmap() like Freedreno does? */
150 void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED,
151 dev->physical_device->local_fd, offset);
152 if (map == MAP_FAILED)
153 return vk_error(dev->instance, VK_ERROR_MEMORY_MAP_FAILED);
154
155 bo->map = map;
156 return VK_SUCCESS;
157 }
158
159 void
160 tu_bo_finish(struct tu_device *dev, struct tu_bo *bo)
161 {
162 assert(bo->gem_handle);
163
164 if (bo->map)
165 munmap(bo->map, bo->size);
166
167 tu_gem_close(dev, bo->gem_handle);
168 }
169
170 static VkResult
171 tu_physical_device_init(struct tu_physical_device *device,
172 struct tu_instance *instance,
173 drmDevicePtr drm_device)
174 {
175 const char *path = drm_device->nodes[DRM_NODE_RENDER];
176 VkResult result = VK_SUCCESS;
177 drmVersionPtr version;
178 int fd;
179 int master_fd = -1;
180
181 fd = open(path, O_RDWR | O_CLOEXEC);
182 if (fd < 0) {
183 return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
184 "failed to open device %s", path);
185 }
186
187 /* Version 1.3 added MSM_INFO_IOVA. */
188 const int min_version_major = 1;
189 const int min_version_minor = 3;
190
191 version = drmGetVersion(fd);
192 if (!version) {
193 close(fd);
194 return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
195 "failed to query kernel driver version for device %s",
196 path);
197 }
198
199 if (strcmp(version->name, "msm")) {
200 drmFreeVersion(version);
201 if (master_fd != -1)
202 close(master_fd);
203 close(fd);
204 return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
205 "device %s does not use the msm kernel driver", path);
206 }
207
208 if (version->version_major != min_version_major ||
209 version->version_minor < min_version_minor) {
210 result = vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
211 "kernel driver for device %s has version %d.%d, "
212 "but Vulkan requires version >= %d.%d",
213 path, version->version_major, version->version_minor,
214 min_version_major, min_version_minor);
215 drmFreeVersion(version);
216 close(fd);
217 return result;
218 }
219
220 drmFreeVersion(version);
221
222 if (instance->debug_flags & TU_DEBUG_STARTUP)
223 tu_logi("Found compatible device '%s'.", path);
224
225 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
226 device->instance = instance;
227 assert(strlen(path) < ARRAY_SIZE(device->path));
228 strncpy(device->path, path, ARRAY_SIZE(device->path));
229
230 if (instance->enabled_extensions.KHR_display) {
231 master_fd =
232 open(drm_device->nodes[DRM_NODE_PRIMARY], O_RDWR | O_CLOEXEC);
233 if (master_fd >= 0) {
234 /* TODO: free master_fd is accel is not working? */
235 }
236 }
237
238 device->master_fd = master_fd;
239 device->local_fd = fd;
240
241 if (tu_drm_get_gpu_id(device, &device->gpu_id)) {
242 if (instance->debug_flags & TU_DEBUG_STARTUP)
243 tu_logi("Could not query the GPU ID");
244 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
245 "could not get GPU ID");
246 goto fail;
247 }
248
249 if (tu_drm_get_gmem_size(device, &device->gmem_size)) {
250 if (instance->debug_flags & TU_DEBUG_STARTUP)
251 tu_logi("Could not query the GMEM size");
252 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
253 "could not get GMEM size");
254 goto fail;
255 }
256
257 memset(device->name, 0, sizeof(device->name));
258 sprintf(device->name, "FD%d", device->gpu_id);
259
260 switch (device->gpu_id) {
261 case 630:
262 device->tile_align_w = 32;
263 device->tile_align_h = 32;
264 break;
265 default:
266 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
267 "device %s is unsupported", device->name);
268 goto fail;
269 }
270 if (tu_device_get_cache_uuid(device->gpu_id, device->cache_uuid)) {
271 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
272 "cannot generate UUID");
273 goto fail;
274 }
275
276 /* The gpu id is already embedded in the uuid so we just pass "tu"
277 * when creating the cache.
278 */
279 char buf[VK_UUID_SIZE * 2 + 1];
280 disk_cache_format_hex_id(buf, device->cache_uuid, VK_UUID_SIZE * 2);
281 device->disk_cache = disk_cache_create(device->name, buf, 0);
282
283 fprintf(stderr, "WARNING: tu is not a conformant vulkan implementation, "
284 "testing use only.\n");
285
286 tu_get_driver_uuid(&device->device_uuid);
287 tu_get_device_uuid(&device->device_uuid);
288
289 tu_fill_device_extension_table(device, &device->supported_extensions);
290
291 if (result != VK_SUCCESS) {
292 vk_error(instance, result);
293 goto fail;
294 }
295
296 return VK_SUCCESS;
297
298 fail:
299 close(fd);
300 if (master_fd != -1)
301 close(master_fd);
302 return result;
303 }
304
305 static void
306 tu_physical_device_finish(struct tu_physical_device *device)
307 {
308 disk_cache_destroy(device->disk_cache);
309 close(device->local_fd);
310 if (device->master_fd != -1)
311 close(device->master_fd);
312 }
313
314 static void *
315 default_alloc_func(void *pUserData,
316 size_t size,
317 size_t align,
318 VkSystemAllocationScope allocationScope)
319 {
320 return malloc(size);
321 }
322
323 static void *
324 default_realloc_func(void *pUserData,
325 void *pOriginal,
326 size_t size,
327 size_t align,
328 VkSystemAllocationScope allocationScope)
329 {
330 return realloc(pOriginal, size);
331 }
332
333 static void
334 default_free_func(void *pUserData, void *pMemory)
335 {
336 free(pMemory);
337 }
338
339 static const VkAllocationCallbacks default_alloc = {
340 .pUserData = NULL,
341 .pfnAllocation = default_alloc_func,
342 .pfnReallocation = default_realloc_func,
343 .pfnFree = default_free_func,
344 };
345
346 static const struct debug_control tu_debug_options[] = {
347 { "startup", TU_DEBUG_STARTUP }, { NULL, 0 }
348 };
349
350 const char *
351 tu_get_debug_option_name(int id)
352 {
353 assert(id < ARRAY_SIZE(tu_debug_options) - 1);
354 return tu_debug_options[id].string;
355 }
356
357 static int
358 tu_get_instance_extension_index(const char *name)
359 {
360 for (unsigned i = 0; i < TU_INSTANCE_EXTENSION_COUNT; ++i) {
361 if (strcmp(name, tu_instance_extensions[i].extensionName) == 0)
362 return i;
363 }
364 return -1;
365 }
366
367 VkResult
368 tu_CreateInstance(const VkInstanceCreateInfo *pCreateInfo,
369 const VkAllocationCallbacks *pAllocator,
370 VkInstance *pInstance)
371 {
372 struct tu_instance *instance;
373 VkResult result;
374
375 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
376
377 uint32_t client_version;
378 if (pCreateInfo->pApplicationInfo &&
379 pCreateInfo->pApplicationInfo->apiVersion != 0) {
380 client_version = pCreateInfo->pApplicationInfo->apiVersion;
381 } else {
382 tu_EnumerateInstanceVersion(&client_version);
383 }
384
385 instance = vk_zalloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
386 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
387 if (!instance)
388 return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
389
390 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
391
392 if (pAllocator)
393 instance->alloc = *pAllocator;
394 else
395 instance->alloc = default_alloc;
396
397 instance->api_version = client_version;
398 instance->physical_device_count = -1;
399
400 instance->debug_flags =
401 parse_debug_string(getenv("TU_DEBUG"), tu_debug_options);
402
403 if (instance->debug_flags & TU_DEBUG_STARTUP)
404 tu_logi("Created an instance");
405
406 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
407 const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
408 int index = tu_get_instance_extension_index(ext_name);
409
410 if (index < 0 || !tu_supported_instance_extensions.extensions[index]) {
411 vk_free2(&default_alloc, pAllocator, instance);
412 return vk_error(instance, VK_ERROR_EXTENSION_NOT_PRESENT);
413 }
414
415 instance->enabled_extensions.extensions[index] = true;
416 }
417
418 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
419 if (result != VK_SUCCESS) {
420 vk_free2(&default_alloc, pAllocator, instance);
421 return vk_error(instance, result);
422 }
423
424 _mesa_locale_init();
425
426 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
427
428 *pInstance = tu_instance_to_handle(instance);
429
430 return VK_SUCCESS;
431 }
432
433 void
434 tu_DestroyInstance(VkInstance _instance,
435 const VkAllocationCallbacks *pAllocator)
436 {
437 TU_FROM_HANDLE(tu_instance, instance, _instance);
438
439 if (!instance)
440 return;
441
442 for (int i = 0; i < instance->physical_device_count; ++i) {
443 tu_physical_device_finish(instance->physical_devices + i);
444 }
445
446 VG(VALGRIND_DESTROY_MEMPOOL(instance));
447
448 _mesa_locale_fini();
449
450 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
451
452 vk_free(&instance->alloc, instance);
453 }
454
455 static VkResult
456 tu_enumerate_devices(struct tu_instance *instance)
457 {
458 /* TODO: Check for more devices ? */
459 drmDevicePtr devices[8];
460 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
461 int max_devices;
462
463 instance->physical_device_count = 0;
464
465 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
466
467 if (instance->debug_flags & TU_DEBUG_STARTUP)
468 tu_logi("Found %d drm nodes", max_devices);
469
470 if (max_devices < 1)
471 return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
472
473 for (unsigned i = 0; i < (unsigned) max_devices; i++) {
474 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
475 devices[i]->bustype == DRM_BUS_PLATFORM) {
476
477 result = tu_physical_device_init(
478 instance->physical_devices + instance->physical_device_count,
479 instance, devices[i]);
480 if (result == VK_SUCCESS)
481 ++instance->physical_device_count;
482 else if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
483 break;
484 }
485 }
486 drmFreeDevices(devices, max_devices);
487
488 return result;
489 }
490
491 VkResult
492 tu_EnumeratePhysicalDevices(VkInstance _instance,
493 uint32_t *pPhysicalDeviceCount,
494 VkPhysicalDevice *pPhysicalDevices)
495 {
496 TU_FROM_HANDLE(tu_instance, instance, _instance);
497 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
498
499 VkResult result;
500
501 if (instance->physical_device_count < 0) {
502 result = tu_enumerate_devices(instance);
503 if (result != VK_SUCCESS && result != VK_ERROR_INCOMPATIBLE_DRIVER)
504 return result;
505 }
506
507 for (uint32_t i = 0; i < instance->physical_device_count; ++i) {
508 vk_outarray_append(&out, p)
509 {
510 *p = tu_physical_device_to_handle(instance->physical_devices + i);
511 }
512 }
513
514 return vk_outarray_status(&out);
515 }
516
517 VkResult
518 tu_EnumeratePhysicalDeviceGroups(
519 VkInstance _instance,
520 uint32_t *pPhysicalDeviceGroupCount,
521 VkPhysicalDeviceGroupProperties *pPhysicalDeviceGroupProperties)
522 {
523 TU_FROM_HANDLE(tu_instance, instance, _instance);
524 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
525 pPhysicalDeviceGroupCount);
526 VkResult result;
527
528 if (instance->physical_device_count < 0) {
529 result = tu_enumerate_devices(instance);
530 if (result != VK_SUCCESS && result != VK_ERROR_INCOMPATIBLE_DRIVER)
531 return result;
532 }
533
534 for (uint32_t i = 0; i < instance->physical_device_count; ++i) {
535 vk_outarray_append(&out, p)
536 {
537 p->physicalDeviceCount = 1;
538 p->physicalDevices[0] =
539 tu_physical_device_to_handle(instance->physical_devices + i);
540 p->subsetAllocation = false;
541 }
542 }
543
544 return vk_outarray_status(&out);
545 }
546
547 void
548 tu_GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice,
549 VkPhysicalDeviceFeatures *pFeatures)
550 {
551 memset(pFeatures, 0, sizeof(*pFeatures));
552
553 *pFeatures = (VkPhysicalDeviceFeatures) {
554 .robustBufferAccess = false,
555 .fullDrawIndexUint32 = false,
556 .imageCubeArray = false,
557 .independentBlend = false,
558 .geometryShader = false,
559 .tessellationShader = false,
560 .sampleRateShading = false,
561 .dualSrcBlend = false,
562 .logicOp = false,
563 .multiDrawIndirect = false,
564 .drawIndirectFirstInstance = false,
565 .depthClamp = false,
566 .depthBiasClamp = false,
567 .fillModeNonSolid = false,
568 .depthBounds = false,
569 .wideLines = false,
570 .largePoints = false,
571 .alphaToOne = false,
572 .multiViewport = false,
573 .samplerAnisotropy = false,
574 .textureCompressionETC2 = false,
575 .textureCompressionASTC_LDR = false,
576 .textureCompressionBC = false,
577 .occlusionQueryPrecise = false,
578 .pipelineStatisticsQuery = false,
579 .vertexPipelineStoresAndAtomics = false,
580 .fragmentStoresAndAtomics = false,
581 .shaderTessellationAndGeometryPointSize = false,
582 .shaderImageGatherExtended = false,
583 .shaderStorageImageExtendedFormats = false,
584 .shaderStorageImageMultisample = false,
585 .shaderUniformBufferArrayDynamicIndexing = false,
586 .shaderSampledImageArrayDynamicIndexing = false,
587 .shaderStorageBufferArrayDynamicIndexing = false,
588 .shaderStorageImageArrayDynamicIndexing = false,
589 .shaderStorageImageReadWithoutFormat = false,
590 .shaderStorageImageWriteWithoutFormat = false,
591 .shaderClipDistance = false,
592 .shaderCullDistance = false,
593 .shaderFloat64 = false,
594 .shaderInt64 = false,
595 .shaderInt16 = false,
596 .sparseBinding = false,
597 .variableMultisampleRate = false,
598 .inheritedQueries = false,
599 };
600 }
601
602 void
603 tu_GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,
604 VkPhysicalDeviceFeatures2KHR *pFeatures)
605 {
606 vk_foreach_struct(ext, pFeatures->pNext)
607 {
608 switch (ext->sType) {
609 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES_KHR: {
610 VkPhysicalDeviceVariablePointerFeaturesKHR *features = (void *) ext;
611 features->variablePointersStorageBuffer = false;
612 features->variablePointers = false;
613 break;
614 }
615 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHR: {
616 VkPhysicalDeviceMultiviewFeaturesKHR *features =
617 (VkPhysicalDeviceMultiviewFeaturesKHR *) ext;
618 features->multiview = false;
619 features->multiviewGeometryShader = false;
620 features->multiviewTessellationShader = false;
621 break;
622 }
623 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES: {
624 VkPhysicalDeviceShaderDrawParameterFeatures *features =
625 (VkPhysicalDeviceShaderDrawParameterFeatures *) ext;
626 features->shaderDrawParameters = false;
627 break;
628 }
629 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
630 VkPhysicalDeviceProtectedMemoryFeatures *features =
631 (VkPhysicalDeviceProtectedMemoryFeatures *) ext;
632 features->protectedMemory = false;
633 break;
634 }
635 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
636 VkPhysicalDevice16BitStorageFeatures *features =
637 (VkPhysicalDevice16BitStorageFeatures *) ext;
638 features->storageBuffer16BitAccess = false;
639 features->uniformAndStorageBuffer16BitAccess = false;
640 features->storagePushConstant16 = false;
641 features->storageInputOutput16 = false;
642 break;
643 }
644 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
645 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
646 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
647 features->samplerYcbcrConversion = false;
648 break;
649 }
650 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
651 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
652 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *) ext;
653 features->shaderInputAttachmentArrayDynamicIndexing = false;
654 features->shaderUniformTexelBufferArrayDynamicIndexing = false;
655 features->shaderStorageTexelBufferArrayDynamicIndexing = false;
656 features->shaderUniformBufferArrayNonUniformIndexing = false;
657 features->shaderSampledImageArrayNonUniformIndexing = false;
658 features->shaderStorageBufferArrayNonUniformIndexing = false;
659 features->shaderStorageImageArrayNonUniformIndexing = false;
660 features->shaderInputAttachmentArrayNonUniformIndexing = false;
661 features->shaderUniformTexelBufferArrayNonUniformIndexing = false;
662 features->shaderStorageTexelBufferArrayNonUniformIndexing = false;
663 features->descriptorBindingUniformBufferUpdateAfterBind = false;
664 features->descriptorBindingSampledImageUpdateAfterBind = false;
665 features->descriptorBindingStorageImageUpdateAfterBind = false;
666 features->descriptorBindingStorageBufferUpdateAfterBind = false;
667 features->descriptorBindingUniformTexelBufferUpdateAfterBind = false;
668 features->descriptorBindingStorageTexelBufferUpdateAfterBind = false;
669 features->descriptorBindingUpdateUnusedWhilePending = false;
670 features->descriptorBindingPartiallyBound = false;
671 features->descriptorBindingVariableDescriptorCount = false;
672 features->runtimeDescriptorArray = false;
673 break;
674 }
675 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
676 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
677 (VkPhysicalDeviceConditionalRenderingFeaturesEXT *) ext;
678 features->conditionalRendering = false;
679 features->inheritedConditionalRendering = false;
680 break;
681 }
682 default:
683 break;
684 }
685 }
686 return tu_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
687 }
688
689 void
690 tu_GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
691 VkPhysicalDeviceProperties *pProperties)
692 {
693 TU_FROM_HANDLE(tu_physical_device, pdevice, physicalDevice);
694 VkSampleCountFlags sample_counts = 0xf;
695
696 /* make sure that the entire descriptor set is addressable with a signed
697 * 32-bit int. So the sum of all limits scaled by descriptor size has to
698 * be at most 2 GiB. the combined image & samples object count as one of
699 * both. This limit is for the pipeline layout, not for the set layout, but
700 * there is no set limit, so we just set a pipeline limit. I don't think
701 * any app is going to hit this soon. */
702 size_t max_descriptor_set_size =
703 ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS) /
704 (32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
705 32 /* storage buffer, 32 due to potential space wasted on alignment */ +
706 32 /* sampler, largest when combined with image */ +
707 64 /* sampled image */ + 64 /* storage image */);
708
709 VkPhysicalDeviceLimits limits = {
710 .maxImageDimension1D = (1 << 14),
711 .maxImageDimension2D = (1 << 14),
712 .maxImageDimension3D = (1 << 11),
713 .maxImageDimensionCube = (1 << 14),
714 .maxImageArrayLayers = (1 << 11),
715 .maxTexelBufferElements = 128 * 1024 * 1024,
716 .maxUniformBufferRange = UINT32_MAX,
717 .maxStorageBufferRange = UINT32_MAX,
718 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
719 .maxMemoryAllocationCount = UINT32_MAX,
720 .maxSamplerAllocationCount = 64 * 1024,
721 .bufferImageGranularity = 64, /* A cache line */
722 .sparseAddressSpaceSize = 0xffffffffu, /* buffer max size */
723 .maxBoundDescriptorSets = MAX_SETS,
724 .maxPerStageDescriptorSamplers = max_descriptor_set_size,
725 .maxPerStageDescriptorUniformBuffers = max_descriptor_set_size,
726 .maxPerStageDescriptorStorageBuffers = max_descriptor_set_size,
727 .maxPerStageDescriptorSampledImages = max_descriptor_set_size,
728 .maxPerStageDescriptorStorageImages = max_descriptor_set_size,
729 .maxPerStageDescriptorInputAttachments = max_descriptor_set_size,
730 .maxPerStageResources = max_descriptor_set_size,
731 .maxDescriptorSetSamplers = max_descriptor_set_size,
732 .maxDescriptorSetUniformBuffers = max_descriptor_set_size,
733 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS,
734 .maxDescriptorSetStorageBuffers = max_descriptor_set_size,
735 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS,
736 .maxDescriptorSetSampledImages = max_descriptor_set_size,
737 .maxDescriptorSetStorageImages = max_descriptor_set_size,
738 .maxDescriptorSetInputAttachments = max_descriptor_set_size,
739 .maxVertexInputAttributes = 32,
740 .maxVertexInputBindings = 32,
741 .maxVertexInputAttributeOffset = 2047,
742 .maxVertexInputBindingStride = 2048,
743 .maxVertexOutputComponents = 128,
744 .maxTessellationGenerationLevel = 64,
745 .maxTessellationPatchSize = 32,
746 .maxTessellationControlPerVertexInputComponents = 128,
747 .maxTessellationControlPerVertexOutputComponents = 128,
748 .maxTessellationControlPerPatchOutputComponents = 120,
749 .maxTessellationControlTotalOutputComponents = 4096,
750 .maxTessellationEvaluationInputComponents = 128,
751 .maxTessellationEvaluationOutputComponents = 128,
752 .maxGeometryShaderInvocations = 127,
753 .maxGeometryInputComponents = 64,
754 .maxGeometryOutputComponents = 128,
755 .maxGeometryOutputVertices = 256,
756 .maxGeometryTotalOutputComponents = 1024,
757 .maxFragmentInputComponents = 128,
758 .maxFragmentOutputAttachments = 8,
759 .maxFragmentDualSrcAttachments = 1,
760 .maxFragmentCombinedOutputResources = 8,
761 .maxComputeSharedMemorySize = 32768,
762 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
763 .maxComputeWorkGroupInvocations = 2048,
764 .maxComputeWorkGroupSize = { 2048, 2048, 2048 },
765 .subPixelPrecisionBits = 4 /* FIXME */,
766 .subTexelPrecisionBits = 4 /* FIXME */,
767 .mipmapPrecisionBits = 4 /* FIXME */,
768 .maxDrawIndexedIndexValue = UINT32_MAX,
769 .maxDrawIndirectCount = UINT32_MAX,
770 .maxSamplerLodBias = 16,
771 .maxSamplerAnisotropy = 16,
772 .maxViewports = MAX_VIEWPORTS,
773 .maxViewportDimensions = { (1 << 14), (1 << 14) },
774 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
775 .viewportSubPixelBits = 8,
776 .minMemoryMapAlignment = 4096, /* A page */
777 .minTexelBufferOffsetAlignment = 1,
778 .minUniformBufferOffsetAlignment = 4,
779 .minStorageBufferOffsetAlignment = 4,
780 .minTexelOffset = -32,
781 .maxTexelOffset = 31,
782 .minTexelGatherOffset = -32,
783 .maxTexelGatherOffset = 31,
784 .minInterpolationOffset = -2,
785 .maxInterpolationOffset = 2,
786 .subPixelInterpolationOffsetBits = 8,
787 .maxFramebufferWidth = (1 << 14),
788 .maxFramebufferHeight = (1 << 14),
789 .maxFramebufferLayers = (1 << 10),
790 .framebufferColorSampleCounts = sample_counts,
791 .framebufferDepthSampleCounts = sample_counts,
792 .framebufferStencilSampleCounts = sample_counts,
793 .framebufferNoAttachmentsSampleCounts = sample_counts,
794 .maxColorAttachments = MAX_RTS,
795 .sampledImageColorSampleCounts = sample_counts,
796 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
797 .sampledImageDepthSampleCounts = sample_counts,
798 .sampledImageStencilSampleCounts = sample_counts,
799 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
800 .maxSampleMaskWords = 1,
801 .timestampComputeAndGraphics = true,
802 .timestampPeriod = 1,
803 .maxClipDistances = 8,
804 .maxCullDistances = 8,
805 .maxCombinedClipAndCullDistances = 8,
806 .discreteQueuePriorities = 1,
807 .pointSizeRange = { 0.125, 255.875 },
808 .lineWidthRange = { 0.0, 7.9921875 },
809 .pointSizeGranularity = (1.0 / 8.0),
810 .lineWidthGranularity = (1.0 / 128.0),
811 .strictLines = false, /* FINISHME */
812 .standardSampleLocations = true,
813 .optimalBufferCopyOffsetAlignment = 128,
814 .optimalBufferCopyRowPitchAlignment = 128,
815 .nonCoherentAtomSize = 64,
816 };
817
818 *pProperties = (VkPhysicalDeviceProperties) {
819 .apiVersion = tu_physical_device_api_version(pdevice),
820 .driverVersion = vk_get_driver_version(),
821 .vendorID = 0, /* TODO */
822 .deviceID = 0,
823 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
824 .limits = limits,
825 .sparseProperties = { 0 },
826 };
827
828 strcpy(pProperties->deviceName, pdevice->name);
829 memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE);
830 }
831
832 void
833 tu_GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,
834 VkPhysicalDeviceProperties2KHR *pProperties)
835 {
836 TU_FROM_HANDLE(tu_physical_device, pdevice, physicalDevice);
837 tu_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
838
839 vk_foreach_struct(ext, pProperties->pNext)
840 {
841 switch (ext->sType) {
842 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
843 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
844 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
845 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
846 break;
847 }
848 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR: {
849 VkPhysicalDeviceIDPropertiesKHR *properties =
850 (VkPhysicalDeviceIDPropertiesKHR *) ext;
851 memcpy(properties->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
852 memcpy(properties->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
853 properties->deviceLUIDValid = false;
854 break;
855 }
856 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHR: {
857 VkPhysicalDeviceMultiviewPropertiesKHR *properties =
858 (VkPhysicalDeviceMultiviewPropertiesKHR *) ext;
859 properties->maxMultiviewViewCount = MAX_VIEWS;
860 properties->maxMultiviewInstanceIndex = INT_MAX;
861 break;
862 }
863 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES_KHR: {
864 VkPhysicalDevicePointClippingPropertiesKHR *properties =
865 (VkPhysicalDevicePointClippingPropertiesKHR *) ext;
866 properties->pointClippingBehavior =
867 VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES_KHR;
868 break;
869 }
870 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
871 VkPhysicalDeviceMaintenance3Properties *properties =
872 (VkPhysicalDeviceMaintenance3Properties *) ext;
873 /* Make sure everything is addressable by a signed 32-bit int, and
874 * our largest descriptors are 96 bytes. */
875 properties->maxPerSetDescriptors = (1ull << 31) / 96;
876 /* Our buffer size fields allow only this much */
877 properties->maxMemoryAllocationSize = 0xFFFFFFFFull;
878 break;
879 }
880 default:
881 break;
882 }
883 }
884 }
885
886 static const VkQueueFamilyProperties tu_queue_family_properties = {
887 .queueFlags =
888 VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT,
889 .queueCount = 1,
890 .timestampValidBits = 64,
891 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
892 };
893
894 void
895 tu_GetPhysicalDeviceQueueFamilyProperties(
896 VkPhysicalDevice physicalDevice,
897 uint32_t *pQueueFamilyPropertyCount,
898 VkQueueFamilyProperties *pQueueFamilyProperties)
899 {
900 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
901
902 vk_outarray_append(&out, p) { *p = tu_queue_family_properties; }
903 }
904
905 void
906 tu_GetPhysicalDeviceQueueFamilyProperties2(
907 VkPhysicalDevice physicalDevice,
908 uint32_t *pQueueFamilyPropertyCount,
909 VkQueueFamilyProperties2KHR *pQueueFamilyProperties)
910 {
911 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
912
913 vk_outarray_append(&out, p)
914 {
915 p->queueFamilyProperties = tu_queue_family_properties;
916 }
917 }
918
919 static uint64_t
920 tu_get_system_heap_size()
921 {
922 struct sysinfo info;
923 sysinfo(&info);
924
925 uint64_t total_ram = (uint64_t) info.totalram * (uint64_t) info.mem_unit;
926
927 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
928 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
929 */
930 uint64_t available_ram;
931 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
932 available_ram = total_ram / 2;
933 else
934 available_ram = total_ram * 3 / 4;
935
936 return available_ram;
937 }
938
939 void
940 tu_GetPhysicalDeviceMemoryProperties(
941 VkPhysicalDevice physicalDevice,
942 VkPhysicalDeviceMemoryProperties *pMemoryProperties)
943 {
944 pMemoryProperties->memoryHeapCount = 1;
945 pMemoryProperties->memoryHeaps[0].size = tu_get_system_heap_size();
946 pMemoryProperties->memoryHeaps[0].flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT;
947
948 pMemoryProperties->memoryTypeCount = 1;
949 pMemoryProperties->memoryTypes[0].propertyFlags =
950 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
951 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
952 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
953 pMemoryProperties->memoryTypes[0].heapIndex = 0;
954 }
955
956 void
957 tu_GetPhysicalDeviceMemoryProperties2(
958 VkPhysicalDevice physicalDevice,
959 VkPhysicalDeviceMemoryProperties2KHR *pMemoryProperties)
960 {
961 return tu_GetPhysicalDeviceMemoryProperties(
962 physicalDevice, &pMemoryProperties->memoryProperties);
963 }
964
965 static VkResult
966 tu_queue_init(struct tu_device *device,
967 struct tu_queue *queue,
968 uint32_t queue_family_index,
969 int idx,
970 VkDeviceQueueCreateFlags flags)
971 {
972 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
973 queue->device = device;
974 queue->queue_family_index = queue_family_index;
975 queue->queue_idx = idx;
976 queue->flags = flags;
977
978 int ret = tu_drm_submitqueue_new(device, 0, &queue->msm_queue_id);
979 if (ret)
980 return VK_ERROR_INITIALIZATION_FAILED;
981
982 tu_fence_init(&queue->submit_fence, false);
983
984 return VK_SUCCESS;
985 }
986
987 static void
988 tu_queue_finish(struct tu_queue *queue)
989 {
990 tu_fence_finish(&queue->submit_fence);
991 tu_drm_submitqueue_close(queue->device, queue->msm_queue_id);
992 }
993
994 static int
995 tu_get_device_extension_index(const char *name)
996 {
997 for (unsigned i = 0; i < TU_DEVICE_EXTENSION_COUNT; ++i) {
998 if (strcmp(name, tu_device_extensions[i].extensionName) == 0)
999 return i;
1000 }
1001 return -1;
1002 }
1003
1004 VkResult
1005 tu_CreateDevice(VkPhysicalDevice physicalDevice,
1006 const VkDeviceCreateInfo *pCreateInfo,
1007 const VkAllocationCallbacks *pAllocator,
1008 VkDevice *pDevice)
1009 {
1010 TU_FROM_HANDLE(tu_physical_device, physical_device, physicalDevice);
1011 VkResult result;
1012 struct tu_device *device;
1013
1014 /* Check enabled features */
1015 if (pCreateInfo->pEnabledFeatures) {
1016 VkPhysicalDeviceFeatures supported_features;
1017 tu_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1018 VkBool32 *supported_feature = (VkBool32 *) &supported_features;
1019 VkBool32 *enabled_feature = (VkBool32 *) pCreateInfo->pEnabledFeatures;
1020 unsigned num_features =
1021 sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1022 for (uint32_t i = 0; i < num_features; i++) {
1023 if (enabled_feature[i] && !supported_feature[i])
1024 return vk_error(physical_device->instance,
1025 VK_ERROR_FEATURE_NOT_PRESENT);
1026 }
1027 }
1028
1029 device = vk_zalloc2(&physical_device->instance->alloc, pAllocator,
1030 sizeof(*device), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1031 if (!device)
1032 return vk_error(physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1033
1034 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1035 device->instance = physical_device->instance;
1036 device->physical_device = physical_device;
1037
1038 if (pAllocator)
1039 device->alloc = *pAllocator;
1040 else
1041 device->alloc = physical_device->instance->alloc;
1042
1043 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1044 const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
1045 int index = tu_get_device_extension_index(ext_name);
1046 if (index < 0 ||
1047 !physical_device->supported_extensions.extensions[index]) {
1048 vk_free(&device->alloc, device);
1049 return vk_error(physical_device->instance,
1050 VK_ERROR_EXTENSION_NOT_PRESENT);
1051 }
1052
1053 device->enabled_extensions.extensions[index] = true;
1054 }
1055
1056 for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
1057 const VkDeviceQueueCreateInfo *queue_create =
1058 &pCreateInfo->pQueueCreateInfos[i];
1059 uint32_t qfi = queue_create->queueFamilyIndex;
1060 device->queues[qfi] = vk_alloc(
1061 &device->alloc, queue_create->queueCount * sizeof(struct tu_queue),
1062 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1063 if (!device->queues[qfi]) {
1064 result = VK_ERROR_OUT_OF_HOST_MEMORY;
1065 goto fail;
1066 }
1067
1068 memset(device->queues[qfi], 0,
1069 queue_create->queueCount * sizeof(struct tu_queue));
1070
1071 device->queue_count[qfi] = queue_create->queueCount;
1072
1073 for (unsigned q = 0; q < queue_create->queueCount; q++) {
1074 result = tu_queue_init(device, &device->queues[qfi][q], qfi, q,
1075 queue_create->flags);
1076 if (result != VK_SUCCESS)
1077 goto fail;
1078 }
1079 }
1080
1081 VkPipelineCacheCreateInfo ci;
1082 ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
1083 ci.pNext = NULL;
1084 ci.flags = 0;
1085 ci.pInitialData = NULL;
1086 ci.initialDataSize = 0;
1087 VkPipelineCache pc;
1088 result =
1089 tu_CreatePipelineCache(tu_device_to_handle(device), &ci, NULL, &pc);
1090 if (result != VK_SUCCESS)
1091 goto fail;
1092
1093 device->mem_cache = tu_pipeline_cache_from_handle(pc);
1094
1095 *pDevice = tu_device_to_handle(device);
1096 return VK_SUCCESS;
1097
1098 fail:
1099 for (unsigned i = 0; i < TU_MAX_QUEUE_FAMILIES; i++) {
1100 for (unsigned q = 0; q < device->queue_count[i]; q++)
1101 tu_queue_finish(&device->queues[i][q]);
1102 if (device->queue_count[i])
1103 vk_free(&device->alloc, device->queues[i]);
1104 }
1105
1106 vk_free(&device->alloc, device);
1107 return result;
1108 }
1109
1110 void
1111 tu_DestroyDevice(VkDevice _device, const VkAllocationCallbacks *pAllocator)
1112 {
1113 TU_FROM_HANDLE(tu_device, device, _device);
1114
1115 if (!device)
1116 return;
1117
1118 for (unsigned i = 0; i < TU_MAX_QUEUE_FAMILIES; i++) {
1119 for (unsigned q = 0; q < device->queue_count[i]; q++)
1120 tu_queue_finish(&device->queues[i][q]);
1121 if (device->queue_count[i])
1122 vk_free(&device->alloc, device->queues[i]);
1123 }
1124
1125 VkPipelineCache pc = tu_pipeline_cache_to_handle(device->mem_cache);
1126 tu_DestroyPipelineCache(tu_device_to_handle(device), pc, NULL);
1127
1128 vk_free(&device->alloc, device);
1129 }
1130
1131 VkResult
1132 tu_EnumerateInstanceLayerProperties(uint32_t *pPropertyCount,
1133 VkLayerProperties *pProperties)
1134 {
1135 *pPropertyCount = 0;
1136 return VK_SUCCESS;
1137 }
1138
1139 VkResult
1140 tu_EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice,
1141 uint32_t *pPropertyCount,
1142 VkLayerProperties *pProperties)
1143 {
1144 *pPropertyCount = 0;
1145 return VK_SUCCESS;
1146 }
1147
1148 void
1149 tu_GetDeviceQueue2(VkDevice _device,
1150 const VkDeviceQueueInfo2 *pQueueInfo,
1151 VkQueue *pQueue)
1152 {
1153 TU_FROM_HANDLE(tu_device, device, _device);
1154 struct tu_queue *queue;
1155
1156 queue =
1157 &device->queues[pQueueInfo->queueFamilyIndex][pQueueInfo->queueIndex];
1158 if (pQueueInfo->flags != queue->flags) {
1159 /* From the Vulkan 1.1.70 spec:
1160 *
1161 * "The queue returned by vkGetDeviceQueue2 must have the same
1162 * flags value from this structure as that used at device
1163 * creation time in a VkDeviceQueueCreateInfo instance. If no
1164 * matching flags were specified at device creation time then
1165 * pQueue will return VK_NULL_HANDLE."
1166 */
1167 *pQueue = VK_NULL_HANDLE;
1168 return;
1169 }
1170
1171 *pQueue = tu_queue_to_handle(queue);
1172 }
1173
1174 void
1175 tu_GetDeviceQueue(VkDevice _device,
1176 uint32_t queueFamilyIndex,
1177 uint32_t queueIndex,
1178 VkQueue *pQueue)
1179 {
1180 const VkDeviceQueueInfo2 info =
1181 (VkDeviceQueueInfo2) { .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
1182 .queueFamilyIndex = queueFamilyIndex,
1183 .queueIndex = queueIndex };
1184
1185 tu_GetDeviceQueue2(_device, &info, pQueue);
1186 }
1187
1188 VkResult
1189 tu_QueueSubmit(VkQueue _queue,
1190 uint32_t submitCount,
1191 const VkSubmitInfo *pSubmits,
1192 VkFence _fence)
1193 {
1194 TU_FROM_HANDLE(tu_queue, queue, _queue);
1195
1196 for (uint32_t i = 0; i < submitCount; ++i) {
1197 const VkSubmitInfo *submit = pSubmits + i;
1198 const bool last_submit = (i == submitCount - 1);
1199 struct tu_bo_list bo_list;
1200 tu_bo_list_init(&bo_list);
1201
1202 uint32_t entry_count = 0;
1203 for (uint32_t j = 0; j < submit->commandBufferCount; ++j) {
1204 TU_FROM_HANDLE(tu_cmd_buffer, cmdbuf, submit->pCommandBuffers[j]);
1205 entry_count += cmdbuf->cs.entry_count;
1206 }
1207
1208 struct drm_msm_gem_submit_cmd cmds[entry_count];
1209 uint32_t entry_idx = 0;
1210 for (uint32_t j = 0; j < submit->commandBufferCount; ++j) {
1211 TU_FROM_HANDLE(tu_cmd_buffer, cmdbuf, submit->pCommandBuffers[j]);
1212 struct tu_cs *cs = &cmdbuf->cs;
1213 for (unsigned i = 0; i < cs->entry_count; ++i, ++entry_idx) {
1214 cmds[entry_idx].type = MSM_SUBMIT_CMD_BUF;
1215 cmds[entry_idx].submit_idx =
1216 tu_bo_list_add(&bo_list, cs->entries[i].bo,
1217 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1218 cmds[entry_idx].submit_offset = cs->entries[i].offset;
1219 cmds[entry_idx].size = cs->entries[i].size;
1220 cmds[entry_idx].pad = 0;
1221 cmds[entry_idx].nr_relocs = 0;
1222 cmds[entry_idx].relocs = 0;
1223 }
1224
1225 tu_bo_list_merge(&bo_list, &cmdbuf->bo_list);
1226 }
1227
1228 uint32_t flags = MSM_PIPE_3D0;
1229 if (last_submit) {
1230 flags |= MSM_SUBMIT_FENCE_FD_OUT;
1231 }
1232
1233 struct drm_msm_gem_submit req = {
1234 .flags = flags,
1235 .queueid = queue->msm_queue_id,
1236 .bos = (uint64_t)(uintptr_t) bo_list.bo_infos,
1237 .nr_bos = bo_list.count,
1238 .cmds = (uint64_t)(uintptr_t)cmds,
1239 .nr_cmds = entry_count,
1240 };
1241
1242 int ret = drmCommandWriteRead(queue->device->physical_device->local_fd,
1243 DRM_MSM_GEM_SUBMIT,
1244 &req, sizeof(req));
1245 if (ret) {
1246 fprintf(stderr, "submit failed: %s\n", strerror(errno));
1247 abort();
1248 }
1249
1250 tu_bo_list_destroy(&bo_list);
1251
1252 if (last_submit) {
1253 /* no need to merge fences as queue execution is serialized */
1254 tu_fence_update_fd(&queue->submit_fence, req.fence_fd);
1255 }
1256 }
1257
1258 if (_fence != VK_NULL_HANDLE) {
1259 TU_FROM_HANDLE(tu_fence, fence, _fence);
1260 tu_fence_copy(fence, &queue->submit_fence);
1261 }
1262
1263 return VK_SUCCESS;
1264 }
1265
1266 VkResult
1267 tu_QueueWaitIdle(VkQueue _queue)
1268 {
1269 TU_FROM_HANDLE(tu_queue, queue, _queue);
1270
1271 tu_fence_wait_idle(&queue->submit_fence);
1272
1273 return VK_SUCCESS;
1274 }
1275
1276 VkResult
1277 tu_DeviceWaitIdle(VkDevice _device)
1278 {
1279 TU_FROM_HANDLE(tu_device, device, _device);
1280
1281 for (unsigned i = 0; i < TU_MAX_QUEUE_FAMILIES; i++) {
1282 for (unsigned q = 0; q < device->queue_count[i]; q++) {
1283 tu_QueueWaitIdle(tu_queue_to_handle(&device->queues[i][q]));
1284 }
1285 }
1286 return VK_SUCCESS;
1287 }
1288
1289 VkResult
1290 tu_EnumerateInstanceExtensionProperties(const char *pLayerName,
1291 uint32_t *pPropertyCount,
1292 VkExtensionProperties *pProperties)
1293 {
1294 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1295
1296 /* We spport no lyaers */
1297 if (pLayerName)
1298 return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
1299
1300 for (int i = 0; i < TU_INSTANCE_EXTENSION_COUNT; i++) {
1301 if (tu_supported_instance_extensions.extensions[i]) {
1302 vk_outarray_append(&out, prop) { *prop = tu_instance_extensions[i]; }
1303 }
1304 }
1305
1306 return vk_outarray_status(&out);
1307 }
1308
1309 VkResult
1310 tu_EnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice,
1311 const char *pLayerName,
1312 uint32_t *pPropertyCount,
1313 VkExtensionProperties *pProperties)
1314 {
1315 /* We spport no lyaers */
1316 TU_FROM_HANDLE(tu_physical_device, device, physicalDevice);
1317 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1318
1319 /* We spport no lyaers */
1320 if (pLayerName)
1321 return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
1322
1323 for (int i = 0; i < TU_DEVICE_EXTENSION_COUNT; i++) {
1324 if (device->supported_extensions.extensions[i]) {
1325 vk_outarray_append(&out, prop) { *prop = tu_device_extensions[i]; }
1326 }
1327 }
1328
1329 return vk_outarray_status(&out);
1330 }
1331
1332 PFN_vkVoidFunction
1333 tu_GetInstanceProcAddr(VkInstance _instance, const char *pName)
1334 {
1335 TU_FROM_HANDLE(tu_instance, instance, _instance);
1336
1337 return tu_lookup_entrypoint_checked(
1338 pName, instance ? instance->api_version : 0,
1339 instance ? &instance->enabled_extensions : NULL, NULL);
1340 }
1341
1342 /* The loader wants us to expose a second GetInstanceProcAddr function
1343 * to work around certain LD_PRELOAD issues seen in apps.
1344 */
1345 PUBLIC
1346 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
1347 vk_icdGetInstanceProcAddr(VkInstance instance, const char *pName);
1348
1349 PUBLIC
1350 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
1351 vk_icdGetInstanceProcAddr(VkInstance instance, const char *pName)
1352 {
1353 return tu_GetInstanceProcAddr(instance, pName);
1354 }
1355
1356 PFN_vkVoidFunction
1357 tu_GetDeviceProcAddr(VkDevice _device, const char *pName)
1358 {
1359 TU_FROM_HANDLE(tu_device, device, _device);
1360
1361 return tu_lookup_entrypoint_checked(pName, device->instance->api_version,
1362 &device->instance->enabled_extensions,
1363 &device->enabled_extensions);
1364 }
1365
1366 static VkResult
1367 tu_alloc_memory(struct tu_device *device,
1368 const VkMemoryAllocateInfo *pAllocateInfo,
1369 const VkAllocationCallbacks *pAllocator,
1370 VkDeviceMemory *pMem)
1371 {
1372 struct tu_device_memory *mem;
1373 VkResult result;
1374
1375 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1376
1377 if (pAllocateInfo->allocationSize == 0) {
1378 /* Apparently, this is allowed */
1379 *pMem = VK_NULL_HANDLE;
1380 return VK_SUCCESS;
1381 }
1382
1383 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1384 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1385 if (mem == NULL)
1386 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1387
1388 const VkImportMemoryFdInfoKHR *fd_info =
1389 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
1390 if (fd_info && !fd_info->handleType)
1391 fd_info = NULL;
1392
1393 if (fd_info) {
1394 assert(fd_info->handleType ==
1395 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
1396 fd_info->handleType ==
1397 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
1398
1399 /*
1400 * TODO Importing the same fd twice gives us the same handle without
1401 * reference counting. We need to maintain a per-instance handle-to-bo
1402 * table and add reference count to tu_bo.
1403 */
1404 result = tu_bo_init_dmabuf(device, &mem->bo,
1405 pAllocateInfo->allocationSize, fd_info->fd);
1406 if (result == VK_SUCCESS) {
1407 /* take ownership and close the fd */
1408 close(fd_info->fd);
1409 }
1410 } else {
1411 result =
1412 tu_bo_init_new(device, &mem->bo, pAllocateInfo->allocationSize);
1413 }
1414
1415 if (result != VK_SUCCESS) {
1416 vk_free2(&device->alloc, pAllocator, mem);
1417 return result;
1418 }
1419
1420 mem->size = pAllocateInfo->allocationSize;
1421 mem->type_index = pAllocateInfo->memoryTypeIndex;
1422
1423 mem->map = NULL;
1424 mem->user_ptr = NULL;
1425
1426 *pMem = tu_device_memory_to_handle(mem);
1427
1428 return VK_SUCCESS;
1429 }
1430
1431 VkResult
1432 tu_AllocateMemory(VkDevice _device,
1433 const VkMemoryAllocateInfo *pAllocateInfo,
1434 const VkAllocationCallbacks *pAllocator,
1435 VkDeviceMemory *pMem)
1436 {
1437 TU_FROM_HANDLE(tu_device, device, _device);
1438 return tu_alloc_memory(device, pAllocateInfo, pAllocator, pMem);
1439 }
1440
1441 void
1442 tu_FreeMemory(VkDevice _device,
1443 VkDeviceMemory _mem,
1444 const VkAllocationCallbacks *pAllocator)
1445 {
1446 TU_FROM_HANDLE(tu_device, device, _device);
1447 TU_FROM_HANDLE(tu_device_memory, mem, _mem);
1448
1449 if (mem == NULL)
1450 return;
1451
1452 tu_bo_finish(device, &mem->bo);
1453 vk_free2(&device->alloc, pAllocator, mem);
1454 }
1455
1456 VkResult
1457 tu_MapMemory(VkDevice _device,
1458 VkDeviceMemory _memory,
1459 VkDeviceSize offset,
1460 VkDeviceSize size,
1461 VkMemoryMapFlags flags,
1462 void **ppData)
1463 {
1464 TU_FROM_HANDLE(tu_device, device, _device);
1465 TU_FROM_HANDLE(tu_device_memory, mem, _memory);
1466 VkResult result;
1467
1468 if (mem == NULL) {
1469 *ppData = NULL;
1470 return VK_SUCCESS;
1471 }
1472
1473 if (mem->user_ptr) {
1474 *ppData = mem->user_ptr;
1475 } else if (!mem->map) {
1476 result = tu_bo_map(device, &mem->bo);
1477 if (result != VK_SUCCESS)
1478 return result;
1479 *ppData = mem->map = mem->bo.map;
1480 } else
1481 *ppData = mem->map;
1482
1483 if (*ppData) {
1484 *ppData += offset;
1485 return VK_SUCCESS;
1486 }
1487
1488 return vk_error(device->instance, VK_ERROR_MEMORY_MAP_FAILED);
1489 }
1490
1491 void
1492 tu_UnmapMemory(VkDevice _device, VkDeviceMemory _memory)
1493 {
1494 /* I do not see any unmapping done by the freedreno Gallium driver. */
1495 }
1496
1497 VkResult
1498 tu_FlushMappedMemoryRanges(VkDevice _device,
1499 uint32_t memoryRangeCount,
1500 const VkMappedMemoryRange *pMemoryRanges)
1501 {
1502 return VK_SUCCESS;
1503 }
1504
1505 VkResult
1506 tu_InvalidateMappedMemoryRanges(VkDevice _device,
1507 uint32_t memoryRangeCount,
1508 const VkMappedMemoryRange *pMemoryRanges)
1509 {
1510 return VK_SUCCESS;
1511 }
1512
1513 void
1514 tu_GetBufferMemoryRequirements(VkDevice _device,
1515 VkBuffer _buffer,
1516 VkMemoryRequirements *pMemoryRequirements)
1517 {
1518 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
1519
1520 pMemoryRequirements->memoryTypeBits = 1;
1521 pMemoryRequirements->alignment = 16;
1522 pMemoryRequirements->size =
1523 align64(buffer->size, pMemoryRequirements->alignment);
1524 }
1525
1526 void
1527 tu_GetBufferMemoryRequirements2(
1528 VkDevice device,
1529 const VkBufferMemoryRequirementsInfo2KHR *pInfo,
1530 VkMemoryRequirements2KHR *pMemoryRequirements)
1531 {
1532 tu_GetBufferMemoryRequirements(device, pInfo->buffer,
1533 &pMemoryRequirements->memoryRequirements);
1534 }
1535
1536 void
1537 tu_GetImageMemoryRequirements(VkDevice _device,
1538 VkImage _image,
1539 VkMemoryRequirements *pMemoryRequirements)
1540 {
1541 TU_FROM_HANDLE(tu_image, image, _image);
1542
1543 pMemoryRequirements->memoryTypeBits = 1;
1544 pMemoryRequirements->size = image->size;
1545 pMemoryRequirements->alignment = image->alignment;
1546 }
1547
1548 void
1549 tu_GetImageMemoryRequirements2(VkDevice device,
1550 const VkImageMemoryRequirementsInfo2KHR *pInfo,
1551 VkMemoryRequirements2KHR *pMemoryRequirements)
1552 {
1553 tu_GetImageMemoryRequirements(device, pInfo->image,
1554 &pMemoryRequirements->memoryRequirements);
1555 }
1556
1557 void
1558 tu_GetImageSparseMemoryRequirements(
1559 VkDevice device,
1560 VkImage image,
1561 uint32_t *pSparseMemoryRequirementCount,
1562 VkSparseImageMemoryRequirements *pSparseMemoryRequirements)
1563 {
1564 tu_stub();
1565 }
1566
1567 void
1568 tu_GetImageSparseMemoryRequirements2(
1569 VkDevice device,
1570 const VkImageSparseMemoryRequirementsInfo2KHR *pInfo,
1571 uint32_t *pSparseMemoryRequirementCount,
1572 VkSparseImageMemoryRequirements2KHR *pSparseMemoryRequirements)
1573 {
1574 tu_stub();
1575 }
1576
1577 void
1578 tu_GetDeviceMemoryCommitment(VkDevice device,
1579 VkDeviceMemory memory,
1580 VkDeviceSize *pCommittedMemoryInBytes)
1581 {
1582 *pCommittedMemoryInBytes = 0;
1583 }
1584
1585 VkResult
1586 tu_BindBufferMemory2(VkDevice device,
1587 uint32_t bindInfoCount,
1588 const VkBindBufferMemoryInfoKHR *pBindInfos)
1589 {
1590 for (uint32_t i = 0; i < bindInfoCount; ++i) {
1591 TU_FROM_HANDLE(tu_device_memory, mem, pBindInfos[i].memory);
1592 TU_FROM_HANDLE(tu_buffer, buffer, pBindInfos[i].buffer);
1593
1594 if (mem) {
1595 buffer->bo = &mem->bo;
1596 buffer->bo_offset = pBindInfos[i].memoryOffset;
1597 } else {
1598 buffer->bo = NULL;
1599 }
1600 }
1601 return VK_SUCCESS;
1602 }
1603
1604 VkResult
1605 tu_BindBufferMemory(VkDevice device,
1606 VkBuffer buffer,
1607 VkDeviceMemory memory,
1608 VkDeviceSize memoryOffset)
1609 {
1610 const VkBindBufferMemoryInfoKHR info = {
1611 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR,
1612 .buffer = buffer,
1613 .memory = memory,
1614 .memoryOffset = memoryOffset
1615 };
1616
1617 return tu_BindBufferMemory2(device, 1, &info);
1618 }
1619
1620 VkResult
1621 tu_BindImageMemory2(VkDevice device,
1622 uint32_t bindInfoCount,
1623 const VkBindImageMemoryInfo *pBindInfos)
1624 {
1625 for (uint32_t i = 0; i < bindInfoCount; ++i) {
1626 TU_FROM_HANDLE(tu_image, image, pBindInfos[i].image);
1627 TU_FROM_HANDLE(tu_device_memory, mem, pBindInfos[i].memory);
1628
1629 if (mem) {
1630 image->bo = &mem->bo;
1631 image->bo_offset = pBindInfos[i].memoryOffset;
1632 } else {
1633 image->bo = NULL;
1634 image->bo_offset = 0;
1635 }
1636 }
1637
1638 return VK_SUCCESS;
1639 }
1640
1641 VkResult
1642 tu_BindImageMemory(VkDevice device,
1643 VkImage image,
1644 VkDeviceMemory memory,
1645 VkDeviceSize memoryOffset)
1646 {
1647 const VkBindImageMemoryInfo info = {
1648 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR,
1649 .image = image,
1650 .memory = memory,
1651 .memoryOffset = memoryOffset
1652 };
1653
1654 return tu_BindImageMemory2(device, 1, &info);
1655 }
1656
1657 VkResult
1658 tu_QueueBindSparse(VkQueue _queue,
1659 uint32_t bindInfoCount,
1660 const VkBindSparseInfo *pBindInfo,
1661 VkFence _fence)
1662 {
1663 return VK_SUCCESS;
1664 }
1665
1666 // Queue semaphore functions
1667
1668 VkResult
1669 tu_CreateSemaphore(VkDevice _device,
1670 const VkSemaphoreCreateInfo *pCreateInfo,
1671 const VkAllocationCallbacks *pAllocator,
1672 VkSemaphore *pSemaphore)
1673 {
1674 TU_FROM_HANDLE(tu_device, device, _device);
1675
1676 struct tu_semaphore *sem =
1677 vk_alloc2(&device->alloc, pAllocator, sizeof(*sem), 8,
1678 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1679 if (!sem)
1680 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1681
1682 *pSemaphore = tu_semaphore_to_handle(sem);
1683 return VK_SUCCESS;
1684 }
1685
1686 void
1687 tu_DestroySemaphore(VkDevice _device,
1688 VkSemaphore _semaphore,
1689 const VkAllocationCallbacks *pAllocator)
1690 {
1691 TU_FROM_HANDLE(tu_device, device, _device);
1692 TU_FROM_HANDLE(tu_semaphore, sem, _semaphore);
1693 if (!_semaphore)
1694 return;
1695
1696 vk_free2(&device->alloc, pAllocator, sem);
1697 }
1698
1699 VkResult
1700 tu_CreateEvent(VkDevice _device,
1701 const VkEventCreateInfo *pCreateInfo,
1702 const VkAllocationCallbacks *pAllocator,
1703 VkEvent *pEvent)
1704 {
1705 TU_FROM_HANDLE(tu_device, device, _device);
1706 struct tu_event *event =
1707 vk_alloc2(&device->alloc, pAllocator, sizeof(*event), 8,
1708 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1709
1710 if (!event)
1711 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1712
1713 *pEvent = tu_event_to_handle(event);
1714
1715 return VK_SUCCESS;
1716 }
1717
1718 void
1719 tu_DestroyEvent(VkDevice _device,
1720 VkEvent _event,
1721 const VkAllocationCallbacks *pAllocator)
1722 {
1723 TU_FROM_HANDLE(tu_device, device, _device);
1724 TU_FROM_HANDLE(tu_event, event, _event);
1725
1726 if (!event)
1727 return;
1728 vk_free2(&device->alloc, pAllocator, event);
1729 }
1730
1731 VkResult
1732 tu_GetEventStatus(VkDevice _device, VkEvent _event)
1733 {
1734 TU_FROM_HANDLE(tu_event, event, _event);
1735
1736 if (*event->map == 1)
1737 return VK_EVENT_SET;
1738 return VK_EVENT_RESET;
1739 }
1740
1741 VkResult
1742 tu_SetEvent(VkDevice _device, VkEvent _event)
1743 {
1744 TU_FROM_HANDLE(tu_event, event, _event);
1745 *event->map = 1;
1746
1747 return VK_SUCCESS;
1748 }
1749
1750 VkResult
1751 tu_ResetEvent(VkDevice _device, VkEvent _event)
1752 {
1753 TU_FROM_HANDLE(tu_event, event, _event);
1754 *event->map = 0;
1755
1756 return VK_SUCCESS;
1757 }
1758
1759 VkResult
1760 tu_CreateBuffer(VkDevice _device,
1761 const VkBufferCreateInfo *pCreateInfo,
1762 const VkAllocationCallbacks *pAllocator,
1763 VkBuffer *pBuffer)
1764 {
1765 TU_FROM_HANDLE(tu_device, device, _device);
1766 struct tu_buffer *buffer;
1767
1768 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
1769
1770 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
1771 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1772 if (buffer == NULL)
1773 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1774
1775 buffer->size = pCreateInfo->size;
1776 buffer->usage = pCreateInfo->usage;
1777 buffer->flags = pCreateInfo->flags;
1778
1779 *pBuffer = tu_buffer_to_handle(buffer);
1780
1781 return VK_SUCCESS;
1782 }
1783
1784 void
1785 tu_DestroyBuffer(VkDevice _device,
1786 VkBuffer _buffer,
1787 const VkAllocationCallbacks *pAllocator)
1788 {
1789 TU_FROM_HANDLE(tu_device, device, _device);
1790 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
1791
1792 if (!buffer)
1793 return;
1794
1795 vk_free2(&device->alloc, pAllocator, buffer);
1796 }
1797
1798 static uint32_t
1799 tu_surface_max_layer_count(struct tu_image_view *iview)
1800 {
1801 return iview->type == VK_IMAGE_VIEW_TYPE_3D
1802 ? iview->extent.depth
1803 : (iview->base_layer + iview->layer_count);
1804 }
1805
1806 VkResult
1807 tu_CreateFramebuffer(VkDevice _device,
1808 const VkFramebufferCreateInfo *pCreateInfo,
1809 const VkAllocationCallbacks *pAllocator,
1810 VkFramebuffer *pFramebuffer)
1811 {
1812 TU_FROM_HANDLE(tu_device, device, _device);
1813 struct tu_framebuffer *framebuffer;
1814
1815 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
1816
1817 size_t size = sizeof(*framebuffer) + sizeof(struct tu_attachment_info) *
1818 pCreateInfo->attachmentCount;
1819 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
1820 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1821 if (framebuffer == NULL)
1822 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1823
1824 framebuffer->attachment_count = pCreateInfo->attachmentCount;
1825 framebuffer->width = pCreateInfo->width;
1826 framebuffer->height = pCreateInfo->height;
1827 framebuffer->layers = pCreateInfo->layers;
1828 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
1829 VkImageView _iview = pCreateInfo->pAttachments[i];
1830 struct tu_image_view *iview = tu_image_view_from_handle(_iview);
1831 framebuffer->attachments[i].attachment = iview;
1832
1833 framebuffer->width = MIN2(framebuffer->width, iview->extent.width);
1834 framebuffer->height = MIN2(framebuffer->height, iview->extent.height);
1835 framebuffer->layers =
1836 MIN2(framebuffer->layers, tu_surface_max_layer_count(iview));
1837 }
1838
1839 *pFramebuffer = tu_framebuffer_to_handle(framebuffer);
1840 return VK_SUCCESS;
1841 }
1842
1843 void
1844 tu_DestroyFramebuffer(VkDevice _device,
1845 VkFramebuffer _fb,
1846 const VkAllocationCallbacks *pAllocator)
1847 {
1848 TU_FROM_HANDLE(tu_device, device, _device);
1849 TU_FROM_HANDLE(tu_framebuffer, fb, _fb);
1850
1851 if (!fb)
1852 return;
1853 vk_free2(&device->alloc, pAllocator, fb);
1854 }
1855
1856 static void
1857 tu_init_sampler(struct tu_device *device,
1858 struct tu_sampler *sampler,
1859 const VkSamplerCreateInfo *pCreateInfo)
1860 {
1861 }
1862
1863 VkResult
1864 tu_CreateSampler(VkDevice _device,
1865 const VkSamplerCreateInfo *pCreateInfo,
1866 const VkAllocationCallbacks *pAllocator,
1867 VkSampler *pSampler)
1868 {
1869 TU_FROM_HANDLE(tu_device, device, _device);
1870 struct tu_sampler *sampler;
1871
1872 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
1873
1874 sampler = vk_alloc2(&device->alloc, pAllocator, sizeof(*sampler), 8,
1875 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1876 if (!sampler)
1877 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1878
1879 tu_init_sampler(device, sampler, pCreateInfo);
1880 *pSampler = tu_sampler_to_handle(sampler);
1881
1882 return VK_SUCCESS;
1883 }
1884
1885 void
1886 tu_DestroySampler(VkDevice _device,
1887 VkSampler _sampler,
1888 const VkAllocationCallbacks *pAllocator)
1889 {
1890 TU_FROM_HANDLE(tu_device, device, _device);
1891 TU_FROM_HANDLE(tu_sampler, sampler, _sampler);
1892
1893 if (!sampler)
1894 return;
1895 vk_free2(&device->alloc, pAllocator, sampler);
1896 }
1897
1898 /* vk_icd.h does not declare this function, so we declare it here to
1899 * suppress Wmissing-prototypes.
1900 */
1901 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
1902 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion);
1903
1904 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
1905 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion)
1906 {
1907 /* For the full details on loader interface versioning, see
1908 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
1909 * What follows is a condensed summary, to help you navigate the large and
1910 * confusing official doc.
1911 *
1912 * - Loader interface v0 is incompatible with later versions. We don't
1913 * support it.
1914 *
1915 * - In loader interface v1:
1916 * - The first ICD entrypoint called by the loader is
1917 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
1918 * entrypoint.
1919 * - The ICD must statically expose no other Vulkan symbol unless it
1920 * is linked with -Bsymbolic.
1921 * - Each dispatchable Vulkan handle created by the ICD must be
1922 * a pointer to a struct whose first member is VK_LOADER_DATA. The
1923 * ICD must initialize VK_LOADER_DATA.loadMagic to
1924 * ICD_LOADER_MAGIC.
1925 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
1926 * vkDestroySurfaceKHR(). The ICD must be capable of working with
1927 * such loader-managed surfaces.
1928 *
1929 * - Loader interface v2 differs from v1 in:
1930 * - The first ICD entrypoint called by the loader is
1931 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
1932 * statically expose this entrypoint.
1933 *
1934 * - Loader interface v3 differs from v2 in:
1935 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
1936 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
1937 * because the loader no longer does so.
1938 */
1939 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
1940 return VK_SUCCESS;
1941 }
1942
1943 VkResult
1944 tu_GetMemoryFdKHR(VkDevice _device,
1945 const VkMemoryGetFdInfoKHR *pGetFdInfo,
1946 int *pFd)
1947 {
1948 TU_FROM_HANDLE(tu_device, device, _device);
1949 TU_FROM_HANDLE(tu_device_memory, memory, pGetFdInfo->memory);
1950
1951 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
1952
1953 /* At the moment, we support only the below handle types. */
1954 assert(pGetFdInfo->handleType ==
1955 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
1956 pGetFdInfo->handleType ==
1957 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
1958
1959 int prime_fd = tu_bo_export_dmabuf(device, &memory->bo);
1960 if (prime_fd < 0)
1961 return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
1962
1963 *pFd = prime_fd;
1964 return VK_SUCCESS;
1965 }
1966
1967 VkResult
1968 tu_GetMemoryFdPropertiesKHR(VkDevice _device,
1969 VkExternalMemoryHandleTypeFlagBits handleType,
1970 int fd,
1971 VkMemoryFdPropertiesKHR *pMemoryFdProperties)
1972 {
1973 assert(handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
1974 pMemoryFdProperties->memoryTypeBits = 1;
1975 return VK_SUCCESS;
1976 }
1977
1978 void
1979 tu_GetPhysicalDeviceExternalSemaphoreProperties(
1980 VkPhysicalDevice physicalDevice,
1981 const VkPhysicalDeviceExternalSemaphoreInfoKHR *pExternalSemaphoreInfo,
1982 VkExternalSemaphorePropertiesKHR *pExternalSemaphoreProperties)
1983 {
1984 pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
1985 pExternalSemaphoreProperties->compatibleHandleTypes = 0;
1986 pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
1987 }
1988
1989 void
1990 tu_GetPhysicalDeviceExternalFenceProperties(
1991 VkPhysicalDevice physicalDevice,
1992 const VkPhysicalDeviceExternalFenceInfoKHR *pExternalFenceInfo,
1993 VkExternalFencePropertiesKHR *pExternalFenceProperties)
1994 {
1995 pExternalFenceProperties->exportFromImportedHandleTypes = 0;
1996 pExternalFenceProperties->compatibleHandleTypes = 0;
1997 pExternalFenceProperties->externalFenceFeatures = 0;
1998 }
1999
2000 VkResult
2001 tu_CreateDebugReportCallbackEXT(
2002 VkInstance _instance,
2003 const VkDebugReportCallbackCreateInfoEXT *pCreateInfo,
2004 const VkAllocationCallbacks *pAllocator,
2005 VkDebugReportCallbackEXT *pCallback)
2006 {
2007 TU_FROM_HANDLE(tu_instance, instance, _instance);
2008 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2009 pCreateInfo, pAllocator,
2010 &instance->alloc, pCallback);
2011 }
2012
2013 void
2014 tu_DestroyDebugReportCallbackEXT(VkInstance _instance,
2015 VkDebugReportCallbackEXT _callback,
2016 const VkAllocationCallbacks *pAllocator)
2017 {
2018 TU_FROM_HANDLE(tu_instance, instance, _instance);
2019 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2020 _callback, pAllocator, &instance->alloc);
2021 }
2022
2023 void
2024 tu_DebugReportMessageEXT(VkInstance _instance,
2025 VkDebugReportFlagsEXT flags,
2026 VkDebugReportObjectTypeEXT objectType,
2027 uint64_t object,
2028 size_t location,
2029 int32_t messageCode,
2030 const char *pLayerPrefix,
2031 const char *pMessage)
2032 {
2033 TU_FROM_HANDLE(tu_instance, instance, _instance);
2034 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2035 object, location, messageCode, pLayerPrefix, pMessage);
2036 }
2037
2038 void
2039 tu_GetDeviceGroupPeerMemoryFeatures(
2040 VkDevice device,
2041 uint32_t heapIndex,
2042 uint32_t localDeviceIndex,
2043 uint32_t remoteDeviceIndex,
2044 VkPeerMemoryFeatureFlags *pPeerMemoryFeatures)
2045 {
2046 assert(localDeviceIndex == remoteDeviceIndex);
2047
2048 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
2049 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
2050 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
2051 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
2052 }