anv,turnip,radv,clover,glspirv: Run nir_copy_prop before nir_opt_deref
[mesa.git] / src / freedreno / vulkan / tu_private.h
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #ifndef TU_PRIVATE_H
29 #define TU_PRIVATE_H
30
31 #include <assert.h>
32 #include <pthread.h>
33 #include <stdbool.h>
34 #include <stdint.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #ifdef HAVE_VALGRIND
39 #include <memcheck.h>
40 #include <valgrind.h>
41 #define VG(x) x
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "c11/threads.h"
47 #include "main/macros.h"
48 #include "util/list.h"
49 #include "util/macros.h"
50 #include "util/u_atomic.h"
51 #include "vk_alloc.h"
52 #include "vk_object.h"
53 #include "vk_debug_report.h"
54 #include "wsi_common.h"
55
56 #include "drm-uapi/msm_drm.h"
57 #include "ir3/ir3_compiler.h"
58 #include "ir3/ir3_shader.h"
59
60 #include "adreno_common.xml.h"
61 #include "adreno_pm4.xml.h"
62 #include "a6xx.xml.h"
63 #include "fdl/freedreno_layout.h"
64
65 #include "tu_descriptor_set.h"
66 #include "tu_extensions.h"
67 #include "tu_util.h"
68
69 /* Pre-declarations needed for WSI entrypoints */
70 struct wl_surface;
71 struct wl_display;
72 typedef struct xcb_connection_t xcb_connection_t;
73 typedef uint32_t xcb_visualid_t;
74 typedef uint32_t xcb_window_t;
75
76 #include <vulkan/vk_android_native_buffer.h>
77 #include <vulkan/vk_icd.h>
78 #include <vulkan/vulkan.h>
79 #include <vulkan/vulkan_intel.h>
80
81 #include "tu_entrypoints.h"
82
83 #include "vk_format.h"
84
85 #define MAX_VBS 32
86 #define MAX_VERTEX_ATTRIBS 32
87 #define MAX_RTS 8
88 #define MAX_VSC_PIPES 32
89 #define MAX_VIEWPORTS 1
90 #define MAX_SCISSORS 16
91 #define MAX_DISCARD_RECTANGLES 4
92 #define MAX_PUSH_CONSTANTS_SIZE 128
93 #define MAX_PUSH_DESCRIPTORS 32
94 #define MAX_DYNAMIC_UNIFORM_BUFFERS 16
95 #define MAX_DYNAMIC_STORAGE_BUFFERS 8
96 #define MAX_DYNAMIC_BUFFERS \
97 (MAX_DYNAMIC_UNIFORM_BUFFERS + MAX_DYNAMIC_STORAGE_BUFFERS)
98 #define TU_MAX_DRM_DEVICES 8
99 #define MAX_VIEWS 8
100 #define MAX_BIND_POINTS 2 /* compute + graphics */
101 /* The Qualcomm driver exposes 0x20000058 */
102 #define MAX_STORAGE_BUFFER_RANGE 0x20000000
103 /* We use ldc for uniform buffer loads, just like the Qualcomm driver, so
104 * expose the same maximum range.
105 * TODO: The SIZE bitfield is 15 bits, and in 4-dword units, so the actual
106 * range might be higher.
107 */
108 #define MAX_UNIFORM_BUFFER_RANGE 0x10000
109
110 #define A6XX_TEX_CONST_DWORDS 16
111 #define A6XX_TEX_SAMP_DWORDS 4
112
113 #define tu_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
114
115 static inline uint32_t
116 tu_minify(uint32_t n, uint32_t levels)
117 {
118 if (unlikely(n == 0))
119 return 0;
120 else
121 return MAX2(n >> levels, 1);
122 }
123
124 #define for_each_bit(b, dword) \
125 for (uint32_t __dword = (dword); \
126 (b) = __builtin_ffs(__dword) - 1, __dword; __dword &= ~(1 << (b)))
127
128 #define typed_memcpy(dest, src, count) \
129 ({ \
130 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
131 memcpy((dest), (src), (count) * sizeof(*(src))); \
132 })
133
134 #define COND(bool, val) ((bool) ? (val) : 0)
135 #define BIT(bit) (1u << (bit))
136
137 /* Whenever we generate an error, pass it through this function. Useful for
138 * debugging, where we can break on it. Only call at error site, not when
139 * propagating errors. Might be useful to plug in a stack trace here.
140 */
141
142 struct tu_instance;
143
144 VkResult
145 __vk_errorf(struct tu_instance *instance,
146 VkResult error,
147 const char *file,
148 int line,
149 const char *format,
150 ...);
151
152 #define vk_error(instance, error) \
153 __vk_errorf(instance, error, __FILE__, __LINE__, NULL);
154 #define vk_errorf(instance, error, format, ...) \
155 __vk_errorf(instance, error, __FILE__, __LINE__, format, ##__VA_ARGS__);
156
157 void
158 __tu_finishme(const char *file, int line, const char *format, ...)
159 tu_printflike(3, 4);
160 void
161 tu_loge(const char *format, ...) tu_printflike(1, 2);
162 void
163 tu_logi(const char *format, ...) tu_printflike(1, 2);
164
165 /**
166 * Print a FINISHME message, including its source location.
167 */
168 #define tu_finishme(format, ...) \
169 do { \
170 static bool reported = false; \
171 if (!reported) { \
172 __tu_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
173 reported = true; \
174 } \
175 } while (0)
176
177 #define tu_stub() \
178 do { \
179 tu_finishme("stub %s", __func__); \
180 } while (0)
181
182 void *
183 tu_lookup_entrypoint_unchecked(const char *name);
184 void *
185 tu_lookup_entrypoint_checked(
186 const char *name,
187 uint32_t core_version,
188 const struct tu_instance_extension_table *instance,
189 const struct tu_device_extension_table *device);
190
191 struct tu_physical_device
192 {
193 struct vk_object_base base;
194
195 struct tu_instance *instance;
196
197 char path[20];
198 char name[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
199 uint8_t driver_uuid[VK_UUID_SIZE];
200 uint8_t device_uuid[VK_UUID_SIZE];
201 uint8_t cache_uuid[VK_UUID_SIZE];
202
203 struct wsi_device wsi_device;
204
205 int local_fd;
206 int master_fd;
207
208 unsigned gpu_id;
209 uint32_t gmem_size;
210 uint64_t gmem_base;
211 uint32_t ccu_offset_gmem;
212 uint32_t ccu_offset_bypass;
213 /* alignment for size of tiles */
214 uint32_t tile_align_w;
215 #define TILE_ALIGN_H 16
216 /* gmem store/load granularity */
217 #define GMEM_ALIGN_W 16
218 #define GMEM_ALIGN_H 4
219
220 struct {
221 uint32_t PC_UNKNOWN_9805;
222 uint32_t SP_UNKNOWN_A0F8;
223 } magic;
224
225 int msm_major_version;
226 int msm_minor_version;
227
228 /* This is the drivers on-disk cache used as a fallback as opposed to
229 * the pipeline cache defined by apps.
230 */
231 struct disk_cache *disk_cache;
232
233 struct tu_device_extension_table supported_extensions;
234 };
235
236 enum tu_debug_flags
237 {
238 TU_DEBUG_STARTUP = 1 << 0,
239 TU_DEBUG_NIR = 1 << 1,
240 TU_DEBUG_IR3 = 1 << 2,
241 TU_DEBUG_NOBIN = 1 << 3,
242 TU_DEBUG_SYSMEM = 1 << 4,
243 TU_DEBUG_FORCEBIN = 1 << 5,
244 TU_DEBUG_NOUBWC = 1 << 6,
245 };
246
247 struct tu_instance
248 {
249 struct vk_object_base base;
250
251 VkAllocationCallbacks alloc;
252
253 uint32_t api_version;
254 int physical_device_count;
255 struct tu_physical_device physical_devices[TU_MAX_DRM_DEVICES];
256
257 enum tu_debug_flags debug_flags;
258
259 struct vk_debug_report_instance debug_report_callbacks;
260
261 struct tu_instance_extension_table enabled_extensions;
262 };
263
264 VkResult
265 tu_wsi_init(struct tu_physical_device *physical_device);
266 void
267 tu_wsi_finish(struct tu_physical_device *physical_device);
268
269 bool
270 tu_instance_extension_supported(const char *name);
271 uint32_t
272 tu_physical_device_api_version(struct tu_physical_device *dev);
273 bool
274 tu_physical_device_extension_supported(struct tu_physical_device *dev,
275 const char *name);
276
277 struct cache_entry;
278
279 struct tu_pipeline_cache
280 {
281 struct vk_object_base base;
282
283 struct tu_device *device;
284 pthread_mutex_t mutex;
285
286 uint32_t total_size;
287 uint32_t table_size;
288 uint32_t kernel_count;
289 struct cache_entry **hash_table;
290 bool modified;
291
292 VkAllocationCallbacks alloc;
293 };
294
295 struct tu_pipeline_key
296 {
297 };
298
299
300 /* queue types */
301 #define TU_QUEUE_GENERAL 0
302
303 #define TU_MAX_QUEUE_FAMILIES 1
304
305 struct tu_fence
306 {
307 struct vk_object_base base;
308 struct wsi_fence *fence_wsi;
309 bool signaled;
310 int fd;
311 };
312
313 void
314 tu_fence_init(struct tu_fence *fence, bool signaled);
315 void
316 tu_fence_finish(struct tu_fence *fence);
317 void
318 tu_fence_update_fd(struct tu_fence *fence, int fd);
319 void
320 tu_fence_copy(struct tu_fence *fence, const struct tu_fence *src);
321 void
322 tu_fence_signal(struct tu_fence *fence);
323 void
324 tu_fence_wait_idle(struct tu_fence *fence);
325
326 struct tu_queue
327 {
328 struct vk_object_base base;
329
330 struct tu_device *device;
331 uint32_t queue_family_index;
332 int queue_idx;
333 VkDeviceQueueCreateFlags flags;
334
335 uint32_t msm_queue_id;
336 struct tu_fence submit_fence;
337 };
338
339 struct tu_bo
340 {
341 uint32_t gem_handle;
342 uint64_t size;
343 uint64_t iova;
344 void *map;
345 };
346
347 enum global_shader {
348 GLOBAL_SH_VS,
349 GLOBAL_SH_FS_BLIT,
350 GLOBAL_SH_FS_CLEAR0,
351 GLOBAL_SH_FS_CLEAR_MAX = GLOBAL_SH_FS_CLEAR0 + MAX_RTS,
352 GLOBAL_SH_COUNT,
353 };
354
355 /* This struct defines the layout of the global_bo */
356 struct tu6_global
357 {
358 /* 6 bcolor_entry entries, one for each VK_BORDER_COLOR */
359 uint8_t border_color[128 * 6];
360
361 /* clear/blit shaders, all <= 16 instrs (16 instr = 1 instrlen unit) */
362 instr_t shaders[GLOBAL_SH_COUNT][16];
363
364 uint32_t seqno_dummy; /* dummy seqno for CP_EVENT_WRITE */
365 uint32_t _pad0;
366 volatile uint32_t vsc_draw_overflow;
367 uint32_t _pad1;
368 volatile uint32_t vsc_prim_overflow;
369 uint32_t _pad2[3];
370
371 /* scratch space for VPC_SO[i].FLUSH_BASE_LO/HI, start on 32 byte boundary. */
372 struct {
373 uint32_t offset;
374 uint32_t pad[7];
375 } flush_base[4];
376 };
377 #define gb_offset(member) offsetof(struct tu6_global, member)
378 #define global_iova(cmd, member) ((cmd)->device->global_bo.iova + gb_offset(member))
379
380 void tu_init_clear_blit_shaders(struct tu6_global *global);
381
382 /* extra space in vsc draw/prim streams */
383 #define VSC_PAD 0x40
384
385 struct tu_device
386 {
387 struct vk_device vk;
388 struct tu_instance *instance;
389
390 struct tu_queue *queues[TU_MAX_QUEUE_FAMILIES];
391 int queue_count[TU_MAX_QUEUE_FAMILIES];
392
393 struct tu_physical_device *physical_device;
394 int _lost;
395
396 struct ir3_compiler *compiler;
397
398 /* Backup in-memory cache to be used if the app doesn't provide one */
399 struct tu_pipeline_cache *mem_cache;
400
401 #define MIN_SCRATCH_BO_SIZE_LOG2 12 /* A page */
402
403 /* Currently the kernel driver uses a 32-bit GPU address space, but it
404 * should be impossible to go beyond 48 bits.
405 */
406 struct {
407 struct tu_bo bo;
408 mtx_t construct_mtx;
409 bool initialized;
410 } scratch_bos[48 - MIN_SCRATCH_BO_SIZE_LOG2];
411
412 struct tu_bo global_bo;
413
414 struct tu_device_extension_table enabled_extensions;
415
416 uint32_t vsc_draw_strm_pitch;
417 uint32_t vsc_prim_strm_pitch;
418 mtx_t vsc_pitch_mtx;
419 };
420
421 VkResult _tu_device_set_lost(struct tu_device *device,
422 const char *file, int line,
423 const char *msg, ...) PRINTFLIKE(4, 5);
424 #define tu_device_set_lost(dev, ...) \
425 _tu_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
426
427 static inline bool
428 tu_device_is_lost(struct tu_device *device)
429 {
430 return unlikely(p_atomic_read(&device->_lost));
431 }
432
433 VkResult
434 tu_bo_init_new(struct tu_device *dev, struct tu_bo *bo, uint64_t size);
435 VkResult
436 tu_bo_init_dmabuf(struct tu_device *dev,
437 struct tu_bo *bo,
438 uint64_t size,
439 int fd);
440 int
441 tu_bo_export_dmabuf(struct tu_device *dev, struct tu_bo *bo);
442 void
443 tu_bo_finish(struct tu_device *dev, struct tu_bo *bo);
444 VkResult
445 tu_bo_map(struct tu_device *dev, struct tu_bo *bo);
446
447 /* Get a scratch bo for use inside a command buffer. This will always return
448 * the same bo given the same size or similar sizes, so only one scratch bo
449 * can be used at the same time. It's meant for short-lived things where we
450 * need to write to some piece of memory, read from it, and then immediately
451 * discard it.
452 */
453 VkResult
454 tu_get_scratch_bo(struct tu_device *dev, uint64_t size, struct tu_bo **bo);
455
456 struct tu_cs_entry
457 {
458 /* No ownership */
459 const struct tu_bo *bo;
460
461 uint32_t size;
462 uint32_t offset;
463 };
464
465 struct tu_cs_memory {
466 uint32_t *map;
467 uint64_t iova;
468 };
469
470 struct tu_draw_state {
471 uint64_t iova : 48;
472 uint32_t size : 16;
473 };
474
475 enum tu_dynamic_state
476 {
477 /* re-use VK_DYNAMIC_STATE_ enums for non-extended dynamic states */
478 TU_DYNAMIC_STATE_SAMPLE_LOCATIONS = VK_DYNAMIC_STATE_STENCIL_REFERENCE + 1,
479 TU_DYNAMIC_STATE_COUNT,
480 };
481
482 enum tu_draw_state_group_id
483 {
484 TU_DRAW_STATE_PROGRAM,
485 TU_DRAW_STATE_PROGRAM_BINNING,
486 TU_DRAW_STATE_TESS,
487 TU_DRAW_STATE_VB,
488 TU_DRAW_STATE_VI,
489 TU_DRAW_STATE_VI_BINNING,
490 TU_DRAW_STATE_RAST,
491 TU_DRAW_STATE_DS,
492 TU_DRAW_STATE_BLEND,
493 TU_DRAW_STATE_VS_CONST,
494 TU_DRAW_STATE_HS_CONST,
495 TU_DRAW_STATE_DS_CONST,
496 TU_DRAW_STATE_GS_CONST,
497 TU_DRAW_STATE_FS_CONST,
498 TU_DRAW_STATE_DESC_SETS,
499 TU_DRAW_STATE_DESC_SETS_LOAD,
500 TU_DRAW_STATE_VS_PARAMS,
501 TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
502 TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
503
504 /* dynamic state related draw states */
505 TU_DRAW_STATE_DYNAMIC,
506 TU_DRAW_STATE_COUNT = TU_DRAW_STATE_DYNAMIC + TU_DYNAMIC_STATE_COUNT,
507 };
508
509 enum tu_cs_mode
510 {
511
512 /*
513 * A command stream in TU_CS_MODE_GROW mode grows automatically whenever it
514 * is full. tu_cs_begin must be called before command packet emission and
515 * tu_cs_end must be called after.
516 *
517 * This mode may create multiple entries internally. The entries must be
518 * submitted together.
519 */
520 TU_CS_MODE_GROW,
521
522 /*
523 * A command stream in TU_CS_MODE_EXTERNAL mode wraps an external,
524 * fixed-size buffer. tu_cs_begin and tu_cs_end are optional and have no
525 * effect on it.
526 *
527 * This mode does not create any entry or any BO.
528 */
529 TU_CS_MODE_EXTERNAL,
530
531 /*
532 * A command stream in TU_CS_MODE_SUB_STREAM mode does not support direct
533 * command packet emission. tu_cs_begin_sub_stream must be called to get a
534 * sub-stream to emit comamnd packets to. When done with the sub-stream,
535 * tu_cs_end_sub_stream must be called.
536 *
537 * This mode does not create any entry internally.
538 */
539 TU_CS_MODE_SUB_STREAM,
540 };
541
542 struct tu_cs
543 {
544 uint32_t *start;
545 uint32_t *cur;
546 uint32_t *reserved_end;
547 uint32_t *end;
548
549 struct tu_device *device;
550 enum tu_cs_mode mode;
551 uint32_t next_bo_size;
552
553 struct tu_cs_entry *entries;
554 uint32_t entry_count;
555 uint32_t entry_capacity;
556
557 struct tu_bo **bos;
558 uint32_t bo_count;
559 uint32_t bo_capacity;
560
561 /* state for cond_exec_start/cond_exec_end */
562 uint32_t cond_flags;
563 uint32_t *cond_dwords;
564 };
565
566 struct tu_device_memory
567 {
568 struct vk_object_base base;
569
570 struct tu_bo bo;
571 VkDeviceSize size;
572
573 /* for dedicated allocations */
574 struct tu_image *image;
575 struct tu_buffer *buffer;
576
577 uint32_t type_index;
578 void *map;
579 void *user_ptr;
580 };
581
582 struct tu_descriptor_range
583 {
584 uint64_t va;
585 uint32_t size;
586 };
587
588 struct tu_descriptor_set
589 {
590 struct vk_object_base base;
591
592 const struct tu_descriptor_set_layout *layout;
593 struct tu_descriptor_pool *pool;
594 uint32_t size;
595
596 uint64_t va;
597 uint32_t *mapped_ptr;
598
599 uint32_t *dynamic_descriptors;
600
601 struct tu_bo *buffers[0];
602 };
603
604 struct tu_push_descriptor_set
605 {
606 struct tu_descriptor_set set;
607 uint32_t capacity;
608 };
609
610 struct tu_descriptor_pool_entry
611 {
612 uint32_t offset;
613 uint32_t size;
614 struct tu_descriptor_set *set;
615 };
616
617 struct tu_descriptor_pool
618 {
619 struct vk_object_base base;
620
621 struct tu_bo bo;
622 uint64_t current_offset;
623 uint64_t size;
624
625 uint8_t *host_memory_base;
626 uint8_t *host_memory_ptr;
627 uint8_t *host_memory_end;
628
629 uint32_t entry_count;
630 uint32_t max_entry_count;
631 struct tu_descriptor_pool_entry entries[0];
632 };
633
634 struct tu_descriptor_update_template_entry
635 {
636 VkDescriptorType descriptor_type;
637
638 /* The number of descriptors to update */
639 uint32_t descriptor_count;
640
641 /* Into mapped_ptr or dynamic_descriptors, in units of the respective array
642 */
643 uint32_t dst_offset;
644
645 /* In dwords. Not valid/used for dynamic descriptors */
646 uint32_t dst_stride;
647
648 uint32_t buffer_offset;
649
650 /* Only valid for combined image samplers and samplers */
651 uint16_t has_sampler;
652
653 /* In bytes */
654 size_t src_offset;
655 size_t src_stride;
656
657 /* For push descriptors */
658 const uint32_t *immutable_samplers;
659 };
660
661 struct tu_descriptor_update_template
662 {
663 struct vk_object_base base;
664
665 uint32_t entry_count;
666 struct tu_descriptor_update_template_entry entry[0];
667 };
668
669 struct tu_buffer
670 {
671 struct vk_object_base base;
672
673 VkDeviceSize size;
674
675 VkBufferUsageFlags usage;
676 VkBufferCreateFlags flags;
677
678 struct tu_bo *bo;
679 VkDeviceSize bo_offset;
680 };
681
682 static inline uint64_t
683 tu_buffer_iova(struct tu_buffer *buffer)
684 {
685 return buffer->bo->iova + buffer->bo_offset;
686 }
687
688 struct tu_vertex_binding
689 {
690 struct tu_buffer *buffer;
691 VkDeviceSize offset;
692 };
693
694 const char *
695 tu_get_debug_option_name(int id);
696
697 const char *
698 tu_get_perftest_option_name(int id);
699
700 struct tu_descriptor_state
701 {
702 struct tu_descriptor_set *sets[MAX_SETS];
703 uint32_t dynamic_descriptors[MAX_DYNAMIC_BUFFERS * A6XX_TEX_CONST_DWORDS];
704 };
705
706 enum tu_cmd_dirty_bits
707 {
708 TU_CMD_DIRTY_VERTEX_BUFFERS = 1 << 2,
709 TU_CMD_DIRTY_DESC_SETS_LOAD = 1 << 3,
710 TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD = 1 << 4,
711 TU_CMD_DIRTY_SHADER_CONSTS = 1 << 5,
712 /* all draw states were disabled and need to be re-enabled: */
713 TU_CMD_DIRTY_DRAW_STATE = 1 << 7,
714 };
715
716 /* There are only three cache domains we have to care about: the CCU, or
717 * color cache unit, which is used for color and depth/stencil attachments
718 * and copy/blit destinations, and is split conceptually into color and depth,
719 * and the universal cache or UCHE which is used for pretty much everything
720 * else, except for the CP (uncached) and host. We need to flush whenever data
721 * crosses these boundaries.
722 */
723
724 enum tu_cmd_access_mask {
725 TU_ACCESS_UCHE_READ = 1 << 0,
726 TU_ACCESS_UCHE_WRITE = 1 << 1,
727 TU_ACCESS_CCU_COLOR_READ = 1 << 2,
728 TU_ACCESS_CCU_COLOR_WRITE = 1 << 3,
729 TU_ACCESS_CCU_DEPTH_READ = 1 << 4,
730 TU_ACCESS_CCU_DEPTH_WRITE = 1 << 5,
731
732 /* Experiments have shown that while it's safe to avoid flushing the CCU
733 * after each blit/renderpass, it's not safe to assume that subsequent
734 * lookups with a different attachment state will hit unflushed cache
735 * entries. That is, the CCU needs to be flushed and possibly invalidated
736 * when accessing memory with a different attachment state. Writing to an
737 * attachment under the following conditions after clearing using the
738 * normal 2d engine path is known to have issues:
739 *
740 * - It isn't the 0'th layer.
741 * - There are more than one attachment, and this isn't the 0'th attachment
742 * (this seems to also depend on the cpp of the attachments).
743 *
744 * Our best guess is that the layer/MRT state is used when computing
745 * the location of a cache entry in CCU, to avoid conflicts. We assume that
746 * any access in a renderpass after or before an access by a transfer needs
747 * a flush/invalidate, and use the _INCOHERENT variants to represent access
748 * by a transfer.
749 */
750 TU_ACCESS_CCU_COLOR_INCOHERENT_READ = 1 << 6,
751 TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE = 1 << 7,
752 TU_ACCESS_CCU_DEPTH_INCOHERENT_READ = 1 << 8,
753 TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE = 1 << 9,
754
755 TU_ACCESS_SYSMEM_READ = 1 << 10,
756 TU_ACCESS_SYSMEM_WRITE = 1 << 11,
757
758 /* Set if a WFI is required due to data being read by the CP or the 2D
759 * engine.
760 */
761 TU_ACCESS_WFI_READ = 1 << 12,
762
763 TU_ACCESS_READ =
764 TU_ACCESS_UCHE_READ |
765 TU_ACCESS_CCU_COLOR_READ |
766 TU_ACCESS_CCU_DEPTH_READ |
767 TU_ACCESS_CCU_COLOR_INCOHERENT_READ |
768 TU_ACCESS_CCU_DEPTH_INCOHERENT_READ |
769 TU_ACCESS_SYSMEM_READ,
770
771 TU_ACCESS_WRITE =
772 TU_ACCESS_UCHE_WRITE |
773 TU_ACCESS_CCU_COLOR_WRITE |
774 TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE |
775 TU_ACCESS_CCU_DEPTH_WRITE |
776 TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE |
777 TU_ACCESS_SYSMEM_WRITE,
778
779 TU_ACCESS_ALL =
780 TU_ACCESS_READ |
781 TU_ACCESS_WRITE,
782 };
783
784 enum tu_cmd_flush_bits {
785 TU_CMD_FLAG_CCU_FLUSH_DEPTH = 1 << 0,
786 TU_CMD_FLAG_CCU_FLUSH_COLOR = 1 << 1,
787 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH = 1 << 2,
788 TU_CMD_FLAG_CCU_INVALIDATE_COLOR = 1 << 3,
789 TU_CMD_FLAG_CACHE_FLUSH = 1 << 4,
790 TU_CMD_FLAG_CACHE_INVALIDATE = 1 << 5,
791
792 TU_CMD_FLAG_ALL_FLUSH =
793 TU_CMD_FLAG_CCU_FLUSH_DEPTH |
794 TU_CMD_FLAG_CCU_FLUSH_COLOR |
795 TU_CMD_FLAG_CACHE_FLUSH,
796
797 TU_CMD_FLAG_ALL_INVALIDATE =
798 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
799 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
800 TU_CMD_FLAG_CACHE_INVALIDATE,
801
802 TU_CMD_FLAG_WFI = 1 << 6,
803 };
804
805 /* Changing the CCU from sysmem mode to gmem mode or vice-versa is pretty
806 * heavy, involving a CCU cache flush/invalidate and a WFI in order to change
807 * which part of the gmem is used by the CCU. Here we keep track of what the
808 * state of the CCU.
809 */
810 enum tu_cmd_ccu_state {
811 TU_CMD_CCU_SYSMEM,
812 TU_CMD_CCU_GMEM,
813 TU_CMD_CCU_UNKNOWN,
814 };
815
816 struct tu_cache_state {
817 /* Caches which must be made available (flushed) eventually if there are
818 * any users outside that cache domain, and caches which must be
819 * invalidated eventually if there are any reads.
820 */
821 enum tu_cmd_flush_bits pending_flush_bits;
822 /* Pending flushes */
823 enum tu_cmd_flush_bits flush_bits;
824 };
825
826 struct tu_cmd_state
827 {
828 uint32_t dirty;
829
830 struct tu_pipeline *pipeline;
831 struct tu_pipeline *compute_pipeline;
832
833 /* Vertex buffers */
834 struct
835 {
836 struct tu_buffer *buffers[MAX_VBS];
837 VkDeviceSize offsets[MAX_VBS];
838 } vb;
839
840 /* for dynamic states that can't be emitted directly */
841 uint32_t dynamic_stencil_mask;
842 uint32_t dynamic_stencil_wrmask;
843 uint32_t dynamic_stencil_ref;
844 uint32_t dynamic_gras_su_cntl;
845
846 /* saved states to re-emit in TU_CMD_DIRTY_DRAW_STATE case */
847 struct tu_draw_state dynamic_state[TU_DYNAMIC_STATE_COUNT];
848 struct tu_draw_state vertex_buffers;
849 struct tu_draw_state shader_const[MESA_SHADER_STAGES];
850 struct tu_draw_state desc_sets;
851
852 struct tu_draw_state vs_params;
853
854 /* Index buffer */
855 uint64_t index_va;
856 uint32_t max_index_count;
857 uint8_t index_size;
858
859 /* because streamout base has to be 32-byte aligned
860 * there is an extra offset to deal with when it is
861 * unaligned
862 */
863 uint8_t streamout_offset[IR3_MAX_SO_BUFFERS];
864
865 /* Renderpasses are tricky, because we may need to flush differently if
866 * using sysmem vs. gmem and therefore we have to delay any flushing that
867 * happens before a renderpass. So we have to have two copies of the flush
868 * state, one for intra-renderpass flushes (i.e. renderpass dependencies)
869 * and one for outside a renderpass.
870 */
871 struct tu_cache_state cache;
872 struct tu_cache_state renderpass_cache;
873
874 enum tu_cmd_ccu_state ccu_state;
875
876 const struct tu_render_pass *pass;
877 const struct tu_subpass *subpass;
878 const struct tu_framebuffer *framebuffer;
879 VkRect2D render_area;
880
881 struct tu_cs_entry tile_store_ib;
882
883 bool xfb_used;
884 };
885
886 struct tu_cmd_pool
887 {
888 struct vk_object_base base;
889
890 VkAllocationCallbacks alloc;
891 struct list_head cmd_buffers;
892 struct list_head free_cmd_buffers;
893 uint32_t queue_family_index;
894 };
895
896 struct tu_cmd_buffer_upload
897 {
898 uint8_t *map;
899 unsigned offset;
900 uint64_t size;
901 struct list_head list;
902 };
903
904 enum tu_cmd_buffer_status
905 {
906 TU_CMD_BUFFER_STATUS_INVALID,
907 TU_CMD_BUFFER_STATUS_INITIAL,
908 TU_CMD_BUFFER_STATUS_RECORDING,
909 TU_CMD_BUFFER_STATUS_EXECUTABLE,
910 TU_CMD_BUFFER_STATUS_PENDING,
911 };
912
913 struct tu_bo_list
914 {
915 uint32_t count;
916 uint32_t capacity;
917 struct drm_msm_gem_submit_bo *bo_infos;
918 };
919
920 #define TU_BO_LIST_FAILED (~0)
921
922 void
923 tu_bo_list_init(struct tu_bo_list *list);
924 void
925 tu_bo_list_destroy(struct tu_bo_list *list);
926 void
927 tu_bo_list_reset(struct tu_bo_list *list);
928 uint32_t
929 tu_bo_list_add(struct tu_bo_list *list,
930 const struct tu_bo *bo,
931 uint32_t flags);
932 VkResult
933 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other);
934
935 struct tu_cmd_buffer
936 {
937 struct vk_object_base base;
938
939 struct tu_device *device;
940
941 struct tu_cmd_pool *pool;
942 struct list_head pool_link;
943
944 VkCommandBufferUsageFlags usage_flags;
945 VkCommandBufferLevel level;
946 enum tu_cmd_buffer_status status;
947
948 struct tu_cmd_state state;
949 struct tu_vertex_binding vertex_bindings[MAX_VBS];
950 uint32_t vertex_bindings_set;
951 uint32_t queue_family_index;
952
953 uint32_t push_constants[MAX_PUSH_CONSTANTS_SIZE / 4];
954 VkShaderStageFlags push_constant_stages;
955 struct tu_descriptor_set meta_push_descriptors;
956
957 struct tu_descriptor_state descriptors[MAX_BIND_POINTS];
958
959 struct tu_cmd_buffer_upload upload;
960
961 VkResult record_result;
962
963 struct tu_bo_list bo_list;
964 struct tu_cs cs;
965 struct tu_cs draw_cs;
966 struct tu_cs draw_epilogue_cs;
967 struct tu_cs sub_cs;
968
969 bool has_tess;
970
971 uint32_t vsc_draw_strm_pitch;
972 uint32_t vsc_prim_strm_pitch;
973 };
974
975 /* Temporary struct for tracking a register state to be written, used by
976 * a6xx-pack.h and tu_cs_emit_regs()
977 */
978 struct tu_reg_value {
979 uint32_t reg;
980 uint64_t value;
981 bool is_address;
982 struct tu_bo *bo;
983 bool bo_write;
984 uint32_t bo_offset;
985 uint32_t bo_shift;
986 };
987
988
989 void tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
990 struct tu_cs *cs);
991
992 void tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
993 struct tu_cs *cs,
994 enum tu_cmd_ccu_state ccu_state);
995
996 void
997 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
998 struct tu_cs *cs,
999 enum vgt_event_type event);
1000
1001 static inline struct tu_descriptor_state *
1002 tu_get_descriptors_state(struct tu_cmd_buffer *cmd_buffer,
1003 VkPipelineBindPoint bind_point)
1004 {
1005 return &cmd_buffer->descriptors[bind_point];
1006 }
1007
1008 struct tu_event
1009 {
1010 struct vk_object_base base;
1011 struct tu_bo bo;
1012 };
1013
1014 struct tu_shader_module
1015 {
1016 struct vk_object_base base;
1017
1018 unsigned char sha1[20];
1019
1020 uint32_t code_size;
1021 const uint32_t *code[0];
1022 };
1023
1024 struct tu_push_constant_range
1025 {
1026 uint32_t lo;
1027 uint32_t count;
1028 };
1029
1030 struct tu_shader
1031 {
1032 struct ir3_shader *ir3_shader;
1033
1034 struct tu_push_constant_range push_consts;
1035 uint8_t active_desc_sets;
1036 };
1037
1038 struct tu_shader *
1039 tu_shader_create(struct tu_device *dev,
1040 gl_shader_stage stage,
1041 const VkPipelineShaderStageCreateInfo *stage_info,
1042 struct tu_pipeline_layout *layout,
1043 const VkAllocationCallbacks *alloc);
1044
1045 void
1046 tu_shader_destroy(struct tu_device *dev,
1047 struct tu_shader *shader,
1048 const VkAllocationCallbacks *alloc);
1049
1050 struct tu_program_descriptor_linkage
1051 {
1052 struct ir3_const_state const_state;
1053
1054 uint32_t constlen;
1055
1056 struct tu_push_constant_range push_consts;
1057 };
1058
1059 struct tu_pipeline
1060 {
1061 struct vk_object_base base;
1062
1063 struct tu_cs cs;
1064
1065 struct tu_pipeline_layout *layout;
1066
1067 bool need_indirect_descriptor_sets;
1068 VkShaderStageFlags active_stages;
1069 uint32_t active_desc_sets;
1070
1071 /* mask of enabled dynamic states
1072 * if BIT(i) is set, pipeline->dynamic_state[i] is *NOT* used
1073 */
1074 uint32_t dynamic_state_mask;
1075 struct tu_draw_state dynamic_state[TU_DYNAMIC_STATE_COUNT];
1076
1077 /* gras_su_cntl without line width, used for dynamic line width state */
1078 uint32_t gras_su_cntl;
1079
1080 /* draw states for the pipeline */
1081 struct tu_draw_state load_state, rast_state, ds_state, blend_state;
1082
1083 struct
1084 {
1085 struct tu_draw_state state;
1086 struct tu_draw_state binning_state;
1087
1088 struct tu_program_descriptor_linkage link[MESA_SHADER_STAGES];
1089 } program;
1090
1091 struct
1092 {
1093 struct tu_draw_state state;
1094 struct tu_draw_state binning_state;
1095 uint32_t bindings_used;
1096 } vi;
1097
1098 struct
1099 {
1100 enum pc_di_primtype primtype;
1101 bool primitive_restart;
1102 } ia;
1103
1104 struct
1105 {
1106 uint32_t patch_type;
1107 uint32_t param_stride;
1108 uint32_t hs_bo_regid;
1109 uint32_t ds_bo_regid;
1110 bool upper_left_domain_origin;
1111 } tess;
1112
1113 struct
1114 {
1115 uint32_t local_size[3];
1116 } compute;
1117 };
1118
1119 void
1120 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport);
1121
1122 void
1123 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor);
1124
1125 void
1126 tu6_emit_sample_locations(struct tu_cs *cs, const VkSampleLocationsInfoEXT *samp_loc);
1127
1128 void
1129 tu6_emit_depth_bias(struct tu_cs *cs,
1130 float constant_factor,
1131 float clamp,
1132 float slope_factor);
1133
1134 void tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits samples);
1135
1136 void tu6_emit_window_scissor(struct tu_cs *cs, uint32_t x1, uint32_t y1, uint32_t x2, uint32_t y2);
1137
1138 void tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1);
1139
1140 void
1141 tu6_emit_xs_config(struct tu_cs *cs,
1142 gl_shader_stage stage,
1143 const struct ir3_shader_variant *xs,
1144 uint64_t binary_iova);
1145
1146 void
1147 tu6_emit_vpc(struct tu_cs *cs,
1148 const struct ir3_shader_variant *vs,
1149 const struct ir3_shader_variant *hs,
1150 const struct ir3_shader_variant *ds,
1151 const struct ir3_shader_variant *gs,
1152 const struct ir3_shader_variant *fs);
1153
1154 void
1155 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs);
1156
1157 struct tu_image_view;
1158
1159 void
1160 tu_resolve_sysmem(struct tu_cmd_buffer *cmd,
1161 struct tu_cs *cs,
1162 struct tu_image_view *src,
1163 struct tu_image_view *dst,
1164 uint32_t layers,
1165 const VkRect2D *rect);
1166
1167 void
1168 tu_clear_sysmem_attachment(struct tu_cmd_buffer *cmd,
1169 struct tu_cs *cs,
1170 uint32_t a,
1171 const VkRenderPassBeginInfo *info);
1172
1173 void
1174 tu_clear_gmem_attachment(struct tu_cmd_buffer *cmd,
1175 struct tu_cs *cs,
1176 uint32_t a,
1177 const VkRenderPassBeginInfo *info);
1178
1179 void
1180 tu_load_gmem_attachment(struct tu_cmd_buffer *cmd,
1181 struct tu_cs *cs,
1182 uint32_t a,
1183 bool force_load);
1184
1185 /* expose this function to be able to emit load without checking LOAD_OP */
1186 void
1187 tu_emit_load_gmem_attachment(struct tu_cmd_buffer *cmd, struct tu_cs *cs, uint32_t a);
1188
1189 /* note: gmem store can also resolve */
1190 void
1191 tu_store_gmem_attachment(struct tu_cmd_buffer *cmd,
1192 struct tu_cs *cs,
1193 uint32_t a,
1194 uint32_t gmem_a);
1195
1196 enum tu_supported_formats {
1197 FMT_VERTEX = 1,
1198 FMT_TEXTURE = 2,
1199 FMT_COLOR = 4,
1200 };
1201
1202 struct tu_native_format
1203 {
1204 enum a6xx_format fmt : 8;
1205 enum a3xx_color_swap swap : 8;
1206 enum a6xx_tile_mode tile_mode : 8;
1207 enum tu_supported_formats supported : 8;
1208 };
1209
1210 struct tu_native_format tu6_format_vtx(VkFormat format);
1211 struct tu_native_format tu6_format_color(VkFormat format, enum a6xx_tile_mode tile_mode);
1212 struct tu_native_format tu6_format_texture(VkFormat format, enum a6xx_tile_mode tile_mode);
1213
1214 static inline enum a6xx_format
1215 tu6_base_format(VkFormat format)
1216 {
1217 /* note: tu6_format_color doesn't care about tiling for .fmt field */
1218 return tu6_format_color(format, TILE6_LINEAR).fmt;
1219 }
1220
1221 struct tu_image
1222 {
1223 struct vk_object_base base;
1224
1225 VkImageType type;
1226 /* The original VkFormat provided by the client. This may not match any
1227 * of the actual surface formats.
1228 */
1229 VkFormat vk_format;
1230 VkImageAspectFlags aspects;
1231 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1232 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1233 VkImageCreateFlags flags; /** VkImageCreateInfo::flags */
1234 VkExtent3D extent;
1235 uint32_t level_count;
1236 uint32_t layer_count;
1237 VkSampleCountFlagBits samples;
1238
1239 struct fdl_layout layout[3];
1240 uint32_t total_size;
1241
1242 unsigned queue_family_mask;
1243 bool exclusive;
1244 bool shareable;
1245
1246 /* For VK_ANDROID_native_buffer, the WSI image owns the memory, */
1247 VkDeviceMemory owned_memory;
1248
1249 /* Set when bound */
1250 struct tu_bo *bo;
1251 VkDeviceSize bo_offset;
1252 };
1253
1254 static inline uint32_t
1255 tu_get_layerCount(const struct tu_image *image,
1256 const VkImageSubresourceRange *range)
1257 {
1258 return range->layerCount == VK_REMAINING_ARRAY_LAYERS
1259 ? image->layer_count - range->baseArrayLayer
1260 : range->layerCount;
1261 }
1262
1263 static inline uint32_t
1264 tu_get_levelCount(const struct tu_image *image,
1265 const VkImageSubresourceRange *range)
1266 {
1267 return range->levelCount == VK_REMAINING_MIP_LEVELS
1268 ? image->level_count - range->baseMipLevel
1269 : range->levelCount;
1270 }
1271
1272 struct tu_image_view
1273 {
1274 struct vk_object_base base;
1275
1276 struct tu_image *image; /**< VkImageViewCreateInfo::image */
1277
1278 uint64_t base_addr;
1279 uint64_t ubwc_addr;
1280 uint32_t layer_size;
1281 uint32_t ubwc_layer_size;
1282
1283 /* used to determine if fast gmem store path can be used */
1284 VkExtent2D extent;
1285 bool need_y2_align;
1286
1287 bool ubwc_enabled;
1288
1289 uint32_t descriptor[A6XX_TEX_CONST_DWORDS];
1290
1291 /* Descriptor for use as a storage image as opposed to a sampled image.
1292 * This has a few differences for cube maps (e.g. type).
1293 */
1294 uint32_t storage_descriptor[A6XX_TEX_CONST_DWORDS];
1295
1296 /* pre-filled register values */
1297 uint32_t PITCH;
1298 uint32_t FLAG_BUFFER_PITCH;
1299
1300 uint32_t RB_MRT_BUF_INFO;
1301 uint32_t SP_FS_MRT_REG;
1302
1303 uint32_t SP_PS_2D_SRC_INFO;
1304 uint32_t SP_PS_2D_SRC_SIZE;
1305
1306 uint32_t RB_2D_DST_INFO;
1307
1308 uint32_t RB_BLIT_DST_INFO;
1309 };
1310
1311 struct tu_sampler_ycbcr_conversion {
1312 struct vk_object_base base;
1313
1314 VkFormat format;
1315 VkSamplerYcbcrModelConversion ycbcr_model;
1316 VkSamplerYcbcrRange ycbcr_range;
1317 VkComponentMapping components;
1318 VkChromaLocation chroma_offsets[2];
1319 VkFilter chroma_filter;
1320 };
1321
1322 struct tu_sampler {
1323 struct vk_object_base base;
1324
1325 uint32_t descriptor[A6XX_TEX_SAMP_DWORDS];
1326 struct tu_sampler_ycbcr_conversion *ycbcr_sampler;
1327 };
1328
1329 void
1330 tu_cs_image_ref(struct tu_cs *cs, const struct tu_image_view *iview, uint32_t layer);
1331
1332 void
1333 tu_cs_image_ref_2d(struct tu_cs *cs, const struct tu_image_view *iview, uint32_t layer, bool src);
1334
1335 void
1336 tu_cs_image_flag_ref(struct tu_cs *cs, const struct tu_image_view *iview, uint32_t layer);
1337
1338 VkResult
1339 tu_image_create(VkDevice _device,
1340 const VkImageCreateInfo *pCreateInfo,
1341 const VkAllocationCallbacks *alloc,
1342 VkImage *pImage,
1343 uint64_t modifier,
1344 const VkSubresourceLayout *plane_layouts);
1345
1346 VkResult
1347 tu_image_from_gralloc(VkDevice device_h,
1348 const VkImageCreateInfo *base_info,
1349 const VkNativeBufferANDROID *gralloc_info,
1350 const VkAllocationCallbacks *alloc,
1351 VkImage *out_image_h);
1352
1353 void
1354 tu_image_view_init(struct tu_image_view *view,
1355 const VkImageViewCreateInfo *pCreateInfo);
1356
1357 struct tu_buffer_view
1358 {
1359 struct vk_object_base base;
1360
1361 uint32_t descriptor[A6XX_TEX_CONST_DWORDS];
1362
1363 struct tu_buffer *buffer;
1364 };
1365 void
1366 tu_buffer_view_init(struct tu_buffer_view *view,
1367 struct tu_device *device,
1368 const VkBufferViewCreateInfo *pCreateInfo);
1369
1370 struct tu_attachment_info
1371 {
1372 struct tu_image_view *attachment;
1373 };
1374
1375 struct tu_framebuffer
1376 {
1377 struct vk_object_base base;
1378
1379 uint32_t width;
1380 uint32_t height;
1381 uint32_t layers;
1382
1383 /* size of the first tile */
1384 VkExtent2D tile0;
1385 /* number of tiles */
1386 VkExtent2D tile_count;
1387
1388 /* size of the first VSC pipe */
1389 VkExtent2D pipe0;
1390 /* number of VSC pipes */
1391 VkExtent2D pipe_count;
1392
1393 /* pipe register values */
1394 uint32_t pipe_config[MAX_VSC_PIPES];
1395 uint32_t pipe_sizes[MAX_VSC_PIPES];
1396
1397 uint32_t attachment_count;
1398 struct tu_attachment_info attachments[0];
1399 };
1400
1401 void
1402 tu_framebuffer_tiling_config(struct tu_framebuffer *fb,
1403 const struct tu_device *device,
1404 const struct tu_render_pass *pass);
1405
1406 struct tu_subpass_barrier {
1407 VkPipelineStageFlags src_stage_mask;
1408 VkAccessFlags src_access_mask;
1409 VkAccessFlags dst_access_mask;
1410 bool incoherent_ccu_color, incoherent_ccu_depth;
1411 };
1412
1413 struct tu_subpass_attachment
1414 {
1415 uint32_t attachment;
1416 };
1417
1418 struct tu_subpass
1419 {
1420 uint32_t input_count;
1421 uint32_t color_count;
1422 struct tu_subpass_attachment *input_attachments;
1423 struct tu_subpass_attachment *color_attachments;
1424 struct tu_subpass_attachment *resolve_attachments;
1425 struct tu_subpass_attachment depth_stencil_attachment;
1426
1427 VkSampleCountFlagBits samples;
1428
1429 uint32_t srgb_cntl;
1430
1431 struct tu_subpass_barrier start_barrier;
1432 };
1433
1434 struct tu_render_pass_attachment
1435 {
1436 VkFormat format;
1437 uint32_t samples;
1438 uint32_t cpp;
1439 VkImageAspectFlags clear_mask;
1440 bool load;
1441 bool store;
1442 int32_t gmem_offset;
1443 };
1444
1445 struct tu_render_pass
1446 {
1447 struct vk_object_base base;
1448
1449 uint32_t attachment_count;
1450 uint32_t subpass_count;
1451 uint32_t gmem_pixels;
1452 uint32_t tile_align_w;
1453 struct tu_subpass_attachment *subpass_attachments;
1454 struct tu_render_pass_attachment *attachments;
1455 struct tu_subpass_barrier end_barrier;
1456 struct tu_subpass subpasses[0];
1457 };
1458
1459 struct tu_query_pool
1460 {
1461 struct vk_object_base base;
1462
1463 VkQueryType type;
1464 uint32_t stride;
1465 uint64_t size;
1466 uint32_t pipeline_statistics;
1467 struct tu_bo bo;
1468 };
1469
1470 enum tu_semaphore_kind
1471 {
1472 TU_SEMAPHORE_NONE,
1473 TU_SEMAPHORE_SYNCOBJ,
1474 };
1475
1476 struct tu_semaphore_part
1477 {
1478 enum tu_semaphore_kind kind;
1479 union {
1480 uint32_t syncobj;
1481 };
1482 };
1483
1484 struct tu_semaphore
1485 {
1486 struct vk_object_base base;
1487
1488 struct tu_semaphore_part permanent;
1489 struct tu_semaphore_part temporary;
1490 };
1491
1492 void
1493 tu_set_descriptor_set(struct tu_cmd_buffer *cmd_buffer,
1494 VkPipelineBindPoint bind_point,
1495 struct tu_descriptor_set *set,
1496 unsigned idx);
1497
1498 void
1499 tu_update_descriptor_sets(struct tu_device *device,
1500 struct tu_cmd_buffer *cmd_buffer,
1501 VkDescriptorSet overrideSet,
1502 uint32_t descriptorWriteCount,
1503 const VkWriteDescriptorSet *pDescriptorWrites,
1504 uint32_t descriptorCopyCount,
1505 const VkCopyDescriptorSet *pDescriptorCopies);
1506
1507 void
1508 tu_update_descriptor_set_with_template(
1509 struct tu_device *device,
1510 struct tu_cmd_buffer *cmd_buffer,
1511 struct tu_descriptor_set *set,
1512 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1513 const void *pData);
1514
1515 int
1516 tu_drm_get_gpu_id(const struct tu_physical_device *dev, uint32_t *id);
1517
1518 int
1519 tu_drm_get_gmem_size(const struct tu_physical_device *dev, uint32_t *size);
1520
1521 int
1522 tu_drm_get_gmem_base(const struct tu_physical_device *dev, uint64_t *base);
1523
1524 int
1525 tu_drm_submitqueue_new(const struct tu_device *dev,
1526 int priority,
1527 uint32_t *queue_id);
1528
1529 void
1530 tu_drm_submitqueue_close(const struct tu_device *dev, uint32_t queue_id);
1531
1532 uint32_t
1533 tu_gem_new(const struct tu_device *dev, uint64_t size, uint32_t flags);
1534 uint32_t
1535 tu_gem_import_dmabuf(const struct tu_device *dev,
1536 int prime_fd,
1537 uint64_t size);
1538 int
1539 tu_gem_export_dmabuf(const struct tu_device *dev, uint32_t gem_handle);
1540 void
1541 tu_gem_close(const struct tu_device *dev, uint32_t gem_handle);
1542 uint64_t
1543 tu_gem_info_offset(const struct tu_device *dev, uint32_t gem_handle);
1544 uint64_t
1545 tu_gem_info_iova(const struct tu_device *dev, uint32_t gem_handle);
1546
1547 #define TU_DEFINE_HANDLE_CASTS(__tu_type, __VkType) \
1548 \
1549 static inline struct __tu_type *__tu_type##_from_handle(__VkType _handle) \
1550 { \
1551 return (struct __tu_type *) _handle; \
1552 } \
1553 \
1554 static inline __VkType __tu_type##_to_handle(struct __tu_type *_obj) \
1555 { \
1556 return (__VkType) _obj; \
1557 }
1558
1559 #define TU_DEFINE_NONDISP_HANDLE_CASTS(__tu_type, __VkType) \
1560 \
1561 static inline struct __tu_type *__tu_type##_from_handle(__VkType _handle) \
1562 { \
1563 return (struct __tu_type *) (uintptr_t) _handle; \
1564 } \
1565 \
1566 static inline __VkType __tu_type##_to_handle(struct __tu_type *_obj) \
1567 { \
1568 return (__VkType)(uintptr_t) _obj; \
1569 }
1570
1571 #define TU_FROM_HANDLE(__tu_type, __name, __handle) \
1572 struct __tu_type *__name = __tu_type##_from_handle(__handle)
1573
1574 TU_DEFINE_HANDLE_CASTS(tu_cmd_buffer, VkCommandBuffer)
1575 TU_DEFINE_HANDLE_CASTS(tu_device, VkDevice)
1576 TU_DEFINE_HANDLE_CASTS(tu_instance, VkInstance)
1577 TU_DEFINE_HANDLE_CASTS(tu_physical_device, VkPhysicalDevice)
1578 TU_DEFINE_HANDLE_CASTS(tu_queue, VkQueue)
1579
1580 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_cmd_pool, VkCommandPool)
1581 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_buffer, VkBuffer)
1582 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_buffer_view, VkBufferView)
1583 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_pool, VkDescriptorPool)
1584 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_set, VkDescriptorSet)
1585 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_set_layout,
1586 VkDescriptorSetLayout)
1587 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_update_template,
1588 VkDescriptorUpdateTemplate)
1589 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_device_memory, VkDeviceMemory)
1590 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_fence, VkFence)
1591 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_event, VkEvent)
1592 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_framebuffer, VkFramebuffer)
1593 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_image, VkImage)
1594 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_image_view, VkImageView);
1595 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline_cache, VkPipelineCache)
1596 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline, VkPipeline)
1597 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline_layout, VkPipelineLayout)
1598 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_query_pool, VkQueryPool)
1599 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_render_pass, VkRenderPass)
1600 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_sampler, VkSampler)
1601 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_sampler_ycbcr_conversion, VkSamplerYcbcrConversion)
1602 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_shader_module, VkShaderModule)
1603 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_semaphore, VkSemaphore)
1604
1605 #endif /* TU_PRIVATE_H */