llvmpipe: export the tgsi translation code to a common layer
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_arit.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 /**
30 * @file
31 * Helper
32 *
33 * LLVM IR doesn't support all basic arithmetic operations we care about (most
34 * notably min/max and saturated operations), and it is often necessary to
35 * resort machine-specific intrinsics directly. The functions here hide all
36 * these implementation details from the other modules.
37 *
38 * We also do simple expressions simplification here. Reasons are:
39 * - it is very easy given we have all necessary information readily available
40 * - LLVM optimization passes fail to simplify several vector expressions
41 * - We often know value constraints which the optimization passes have no way
42 * of knowing, such as when source arguments are known to be in [0, 1] range.
43 *
44 * @author Jose Fonseca <jfonseca@vmware.com>
45 */
46
47
48 #include "util/u_memory.h"
49 #include "util/u_debug.h"
50 #include "util/u_math.h"
51 #include "util/u_string.h"
52 #include "util/u_cpu_detect.h"
53
54 #include "lp_bld_type.h"
55 #include "lp_bld_const.h"
56 #include "lp_bld_intr.h"
57 #include "lp_bld_logic.h"
58 #include "lp_bld_pack.h"
59 #include "lp_bld_debug.h"
60 #include "lp_bld_arit.h"
61
62
63 /**
64 * Generate min(a, b)
65 * No checks for special case values of a or b = 1 or 0 are done.
66 */
67 static LLVMValueRef
68 lp_build_min_simple(struct lp_build_context *bld,
69 LLVMValueRef a,
70 LLVMValueRef b)
71 {
72 const struct lp_type type = bld->type;
73 const char *intrinsic = NULL;
74 LLVMValueRef cond;
75
76 /* TODO: optimize the constant case */
77
78 if(type.width * type.length == 128) {
79 if(type.floating) {
80 if(type.width == 32 && util_cpu_caps.has_sse)
81 intrinsic = "llvm.x86.sse.min.ps";
82 if(type.width == 64 && util_cpu_caps.has_sse2)
83 intrinsic = "llvm.x86.sse2.min.pd";
84 }
85 else {
86 if(type.width == 8 && !type.sign && util_cpu_caps.has_sse2)
87 intrinsic = "llvm.x86.sse2.pminu.b";
88 if(type.width == 8 && type.sign && util_cpu_caps.has_sse4_1)
89 intrinsic = "llvm.x86.sse41.pminsb";
90 if(type.width == 16 && !type.sign && util_cpu_caps.has_sse4_1)
91 intrinsic = "llvm.x86.sse41.pminuw";
92 if(type.width == 16 && type.sign && util_cpu_caps.has_sse2)
93 intrinsic = "llvm.x86.sse2.pmins.w";
94 if(type.width == 32 && !type.sign && util_cpu_caps.has_sse4_1)
95 intrinsic = "llvm.x86.sse41.pminud";
96 if(type.width == 32 && type.sign && util_cpu_caps.has_sse4_1)
97 intrinsic = "llvm.x86.sse41.pminsd";
98 }
99 }
100
101 if(intrinsic)
102 return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
103
104 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
105 return lp_build_select(bld, cond, a, b);
106 }
107
108
109 /**
110 * Generate max(a, b)
111 * No checks for special case values of a or b = 1 or 0 are done.
112 */
113 static LLVMValueRef
114 lp_build_max_simple(struct lp_build_context *bld,
115 LLVMValueRef a,
116 LLVMValueRef b)
117 {
118 const struct lp_type type = bld->type;
119 const char *intrinsic = NULL;
120 LLVMValueRef cond;
121
122 /* TODO: optimize the constant case */
123
124 if(type.width * type.length == 128) {
125 if(type.floating) {
126 if(type.width == 32 && util_cpu_caps.has_sse)
127 intrinsic = "llvm.x86.sse.max.ps";
128 if(type.width == 64 && util_cpu_caps.has_sse2)
129 intrinsic = "llvm.x86.sse2.max.pd";
130 }
131 else {
132 if(type.width == 8 && !type.sign && util_cpu_caps.has_sse2)
133 intrinsic = "llvm.x86.sse2.pmaxu.b";
134 if(type.width == 8 && type.sign && util_cpu_caps.has_sse4_1)
135 intrinsic = "llvm.x86.sse41.pmaxsb";
136 if(type.width == 16 && !type.sign && util_cpu_caps.has_sse4_1)
137 intrinsic = "llvm.x86.sse41.pmaxuw";
138 if(type.width == 16 && type.sign && util_cpu_caps.has_sse2)
139 intrinsic = "llvm.x86.sse2.pmaxs.w";
140 if(type.width == 32 && !type.sign && util_cpu_caps.has_sse4_1)
141 intrinsic = "llvm.x86.sse41.pmaxud";
142 if(type.width == 32 && type.sign && util_cpu_caps.has_sse4_1)
143 intrinsic = "llvm.x86.sse41.pmaxsd";
144 }
145 }
146
147 if(intrinsic)
148 return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
149
150 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
151 return lp_build_select(bld, cond, a, b);
152 }
153
154
155 /**
156 * Generate 1 - a, or ~a depending on bld->type.
157 */
158 LLVMValueRef
159 lp_build_comp(struct lp_build_context *bld,
160 LLVMValueRef a)
161 {
162 const struct lp_type type = bld->type;
163
164 if(a == bld->one)
165 return bld->zero;
166 if(a == bld->zero)
167 return bld->one;
168
169 if(type.norm && !type.floating && !type.fixed && !type.sign) {
170 if(LLVMIsConstant(a))
171 return LLVMConstNot(a);
172 else
173 return LLVMBuildNot(bld->builder, a, "");
174 }
175
176 if(LLVMIsConstant(a))
177 return LLVMConstSub(bld->one, a);
178 else
179 return LLVMBuildSub(bld->builder, bld->one, a, "");
180 }
181
182
183 /**
184 * Generate a + b
185 */
186 LLVMValueRef
187 lp_build_add(struct lp_build_context *bld,
188 LLVMValueRef a,
189 LLVMValueRef b)
190 {
191 const struct lp_type type = bld->type;
192 LLVMValueRef res;
193
194 if(a == bld->zero)
195 return b;
196 if(b == bld->zero)
197 return a;
198 if(a == bld->undef || b == bld->undef)
199 return bld->undef;
200
201 if(bld->type.norm) {
202 const char *intrinsic = NULL;
203
204 if(a == bld->one || b == bld->one)
205 return bld->one;
206
207 if(util_cpu_caps.has_sse2 &&
208 type.width * type.length == 128 &&
209 !type.floating && !type.fixed) {
210 if(type.width == 8)
211 intrinsic = type.sign ? "llvm.x86.sse2.padds.b" : "llvm.x86.sse2.paddus.b";
212 if(type.width == 16)
213 intrinsic = type.sign ? "llvm.x86.sse2.padds.w" : "llvm.x86.sse2.paddus.w";
214 }
215
216 if(intrinsic)
217 return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
218 }
219
220 if(LLVMIsConstant(a) && LLVMIsConstant(b))
221 res = LLVMConstAdd(a, b);
222 else
223 res = LLVMBuildAdd(bld->builder, a, b, "");
224
225 /* clamp to ceiling of 1.0 */
226 if(bld->type.norm && (bld->type.floating || bld->type.fixed))
227 res = lp_build_min_simple(bld, res, bld->one);
228
229 /* XXX clamp to floor of -1 or 0??? */
230
231 return res;
232 }
233
234
235 /**
236 * Generate a - b
237 */
238 LLVMValueRef
239 lp_build_sub(struct lp_build_context *bld,
240 LLVMValueRef a,
241 LLVMValueRef b)
242 {
243 const struct lp_type type = bld->type;
244 LLVMValueRef res;
245
246 if(b == bld->zero)
247 return a;
248 if(a == bld->undef || b == bld->undef)
249 return bld->undef;
250 if(a == b)
251 return bld->zero;
252
253 if(bld->type.norm) {
254 const char *intrinsic = NULL;
255
256 if(b == bld->one)
257 return bld->zero;
258
259 if(util_cpu_caps.has_sse2 &&
260 type.width * type.length == 128 &&
261 !type.floating && !type.fixed) {
262 if(type.width == 8)
263 intrinsic = type.sign ? "llvm.x86.sse2.psubs.b" : "llvm.x86.sse2.psubus.b";
264 if(type.width == 16)
265 intrinsic = type.sign ? "llvm.x86.sse2.psubs.w" : "llvm.x86.sse2.psubus.w";
266 }
267
268 if(intrinsic)
269 return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
270 }
271
272 if(LLVMIsConstant(a) && LLVMIsConstant(b))
273 res = LLVMConstSub(a, b);
274 else
275 res = LLVMBuildSub(bld->builder, a, b, "");
276
277 if(bld->type.norm && (bld->type.floating || bld->type.fixed))
278 res = lp_build_max_simple(bld, res, bld->zero);
279
280 return res;
281 }
282
283
284 /**
285 * Normalized 8bit multiplication.
286 *
287 * - alpha plus one
288 *
289 * makes the following approximation to the division (Sree)
290 *
291 * a*b/255 ~= (a*(b + 1)) >> 256
292 *
293 * which is the fastest method that satisfies the following OpenGL criteria
294 *
295 * 0*0 = 0 and 255*255 = 255
296 *
297 * - geometric series
298 *
299 * takes the geometric series approximation to the division
300 *
301 * t/255 = (t >> 8) + (t >> 16) + (t >> 24) ..
302 *
303 * in this case just the first two terms to fit in 16bit arithmetic
304 *
305 * t/255 ~= (t + (t >> 8)) >> 8
306 *
307 * note that just by itself it doesn't satisfies the OpenGL criteria, as
308 * 255*255 = 254, so the special case b = 255 must be accounted or roundoff
309 * must be used
310 *
311 * - geometric series plus rounding
312 *
313 * when using a geometric series division instead of truncating the result
314 * use roundoff in the approximation (Jim Blinn)
315 *
316 * t/255 ~= (t + (t >> 8) + 0x80) >> 8
317 *
318 * achieving the exact results
319 *
320 * @sa Alvy Ray Smith, Image Compositing Fundamentals, Tech Memo 4, Aug 15, 1995,
321 * ftp://ftp.alvyray.com/Acrobat/4_Comp.pdf
322 * @sa Michael Herf, The "double blend trick", May 2000,
323 * http://www.stereopsis.com/doubleblend.html
324 */
325 static LLVMValueRef
326 lp_build_mul_u8n(LLVMBuilderRef builder,
327 struct lp_type i16_type,
328 LLVMValueRef a, LLVMValueRef b)
329 {
330 LLVMValueRef c8;
331 LLVMValueRef ab;
332
333 c8 = lp_build_int_const_scalar(i16_type, 8);
334
335 #if 0
336
337 /* a*b/255 ~= (a*(b + 1)) >> 256 */
338 b = LLVMBuildAdd(builder, b, lp_build_int_const_scalar(i16_type, 1), "");
339 ab = LLVMBuildMul(builder, a, b, "");
340
341 #else
342
343 /* ab/255 ~= (ab + (ab >> 8) + 0x80) >> 8 */
344 ab = LLVMBuildMul(builder, a, b, "");
345 ab = LLVMBuildAdd(builder, ab, LLVMBuildLShr(builder, ab, c8, ""), "");
346 ab = LLVMBuildAdd(builder, ab, lp_build_int_const_scalar(i16_type, 0x80), "");
347
348 #endif
349
350 ab = LLVMBuildLShr(builder, ab, c8, "");
351
352 return ab;
353 }
354
355
356 /**
357 * Generate a * b
358 */
359 LLVMValueRef
360 lp_build_mul(struct lp_build_context *bld,
361 LLVMValueRef a,
362 LLVMValueRef b)
363 {
364 const struct lp_type type = bld->type;
365 LLVMValueRef shift;
366 LLVMValueRef res;
367
368 if(a == bld->zero)
369 return bld->zero;
370 if(a == bld->one)
371 return b;
372 if(b == bld->zero)
373 return bld->zero;
374 if(b == bld->one)
375 return a;
376 if(a == bld->undef || b == bld->undef)
377 return bld->undef;
378
379 if(!type.floating && !type.fixed && type.norm) {
380 if(type.width == 8) {
381 struct lp_type i16_type = lp_wider_type(type);
382 LLVMValueRef al, ah, bl, bh, abl, abh, ab;
383
384 lp_build_unpack2(bld->builder, type, i16_type, a, &al, &ah);
385 lp_build_unpack2(bld->builder, type, i16_type, b, &bl, &bh);
386
387 /* PMULLW, PSRLW, PADDW */
388 abl = lp_build_mul_u8n(bld->builder, i16_type, al, bl);
389 abh = lp_build_mul_u8n(bld->builder, i16_type, ah, bh);
390
391 ab = lp_build_pack2(bld->builder, i16_type, type, abl, abh);
392
393 return ab;
394 }
395
396 /* FIXME */
397 assert(0);
398 }
399
400 if(type.fixed)
401 shift = lp_build_int_const_scalar(type, type.width/2);
402 else
403 shift = NULL;
404
405 if(LLVMIsConstant(a) && LLVMIsConstant(b)) {
406 res = LLVMConstMul(a, b);
407 if(shift) {
408 if(type.sign)
409 res = LLVMConstAShr(res, shift);
410 else
411 res = LLVMConstLShr(res, shift);
412 }
413 }
414 else {
415 res = LLVMBuildMul(bld->builder, a, b, "");
416 if(shift) {
417 if(type.sign)
418 res = LLVMBuildAShr(bld->builder, res, shift, "");
419 else
420 res = LLVMBuildLShr(bld->builder, res, shift, "");
421 }
422 }
423
424 return res;
425 }
426
427
428 /**
429 * Small vector x scale multiplication optimization.
430 */
431 LLVMValueRef
432 lp_build_mul_imm(struct lp_build_context *bld,
433 LLVMValueRef a,
434 int b)
435 {
436 LLVMValueRef factor;
437
438 if(b == 0)
439 return bld->zero;
440
441 if(b == 1)
442 return a;
443
444 if(b == -1)
445 return LLVMBuildNeg(bld->builder, a, "");
446
447 if(b == 2 && bld->type.floating)
448 return lp_build_add(bld, a, a);
449
450 if(util_is_pot(b)) {
451 unsigned shift = ffs(b) - 1;
452
453 if(bld->type.floating) {
454 #if 0
455 /*
456 * Power of two multiplication by directly manipulating the mantissa.
457 *
458 * XXX: This might not be always faster, it will introduce a small error
459 * for multiplication by zero, and it will produce wrong results
460 * for Inf and NaN.
461 */
462 unsigned mantissa = lp_mantissa(bld->type);
463 factor = lp_build_int_const_scalar(bld->type, (unsigned long long)shift << mantissa);
464 a = LLVMBuildBitCast(bld->builder, a, lp_build_int_vec_type(bld->type), "");
465 a = LLVMBuildAdd(bld->builder, a, factor, "");
466 a = LLVMBuildBitCast(bld->builder, a, lp_build_vec_type(bld->type), "");
467 return a;
468 #endif
469 }
470 else {
471 factor = lp_build_const_scalar(bld->type, shift);
472 return LLVMBuildShl(bld->builder, a, factor, "");
473 }
474 }
475
476 factor = lp_build_const_scalar(bld->type, (double)b);
477 return lp_build_mul(bld, a, factor);
478 }
479
480
481 /**
482 * Generate a / b
483 */
484 LLVMValueRef
485 lp_build_div(struct lp_build_context *bld,
486 LLVMValueRef a,
487 LLVMValueRef b)
488 {
489 const struct lp_type type = bld->type;
490
491 if(a == bld->zero)
492 return bld->zero;
493 if(a == bld->one)
494 return lp_build_rcp(bld, b);
495 if(b == bld->zero)
496 return bld->undef;
497 if(b == bld->one)
498 return a;
499 if(a == bld->undef || b == bld->undef)
500 return bld->undef;
501
502 if(LLVMIsConstant(a) && LLVMIsConstant(b))
503 return LLVMConstFDiv(a, b);
504
505 if(util_cpu_caps.has_sse && type.width == 32 && type.length == 4)
506 return lp_build_mul(bld, a, lp_build_rcp(bld, b));
507
508 return LLVMBuildFDiv(bld->builder, a, b, "");
509 }
510
511
512 /**
513 * Linear interpolation.
514 *
515 * This also works for integer values with a few caveats.
516 *
517 * @sa http://www.stereopsis.com/doubleblend.html
518 */
519 LLVMValueRef
520 lp_build_lerp(struct lp_build_context *bld,
521 LLVMValueRef x,
522 LLVMValueRef v0,
523 LLVMValueRef v1)
524 {
525 LLVMValueRef delta;
526 LLVMValueRef res;
527
528 delta = lp_build_sub(bld, v1, v0);
529
530 res = lp_build_mul(bld, x, delta);
531
532 res = lp_build_add(bld, v0, res);
533
534 if(bld->type.fixed)
535 /* XXX: This step is necessary for lerping 8bit colors stored on 16bits,
536 * but it will be wrong for other uses. Basically we need a more
537 * powerful lp_type, capable of further distinguishing the values
538 * interpretation from the value storage. */
539 res = LLVMBuildAnd(bld->builder, res, lp_build_int_const_scalar(bld->type, (1 << bld->type.width/2) - 1), "");
540
541 return res;
542 }
543
544
545 LLVMValueRef
546 lp_build_lerp_2d(struct lp_build_context *bld,
547 LLVMValueRef x,
548 LLVMValueRef y,
549 LLVMValueRef v00,
550 LLVMValueRef v01,
551 LLVMValueRef v10,
552 LLVMValueRef v11)
553 {
554 LLVMValueRef v0 = lp_build_lerp(bld, x, v00, v01);
555 LLVMValueRef v1 = lp_build_lerp(bld, x, v10, v11);
556 return lp_build_lerp(bld, y, v0, v1);
557 }
558
559
560 /**
561 * Generate min(a, b)
562 * Do checks for special cases.
563 */
564 LLVMValueRef
565 lp_build_min(struct lp_build_context *bld,
566 LLVMValueRef a,
567 LLVMValueRef b)
568 {
569 if(a == bld->undef || b == bld->undef)
570 return bld->undef;
571
572 if(a == b)
573 return a;
574
575 if(bld->type.norm) {
576 if(a == bld->zero || b == bld->zero)
577 return bld->zero;
578 if(a == bld->one)
579 return b;
580 if(b == bld->one)
581 return a;
582 }
583
584 return lp_build_min_simple(bld, a, b);
585 }
586
587
588 /**
589 * Generate max(a, b)
590 * Do checks for special cases.
591 */
592 LLVMValueRef
593 lp_build_max(struct lp_build_context *bld,
594 LLVMValueRef a,
595 LLVMValueRef b)
596 {
597 if(a == bld->undef || b == bld->undef)
598 return bld->undef;
599
600 if(a == b)
601 return a;
602
603 if(bld->type.norm) {
604 if(a == bld->one || b == bld->one)
605 return bld->one;
606 if(a == bld->zero)
607 return b;
608 if(b == bld->zero)
609 return a;
610 }
611
612 return lp_build_max_simple(bld, a, b);
613 }
614
615
616 /**
617 * Generate abs(a)
618 */
619 LLVMValueRef
620 lp_build_abs(struct lp_build_context *bld,
621 LLVMValueRef a)
622 {
623 const struct lp_type type = bld->type;
624 LLVMTypeRef vec_type = lp_build_vec_type(type);
625
626 if(!type.sign)
627 return a;
628
629 if(type.floating) {
630 /* Mask out the sign bit */
631 LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
632 unsigned long long absMask = ~(1ULL << (type.width - 1));
633 LLVMValueRef mask = lp_build_int_const_scalar(type, ((unsigned long long) absMask));
634 a = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
635 a = LLVMBuildAnd(bld->builder, a, mask, "");
636 a = LLVMBuildBitCast(bld->builder, a, vec_type, "");
637 return a;
638 }
639
640 if(type.width*type.length == 128 && util_cpu_caps.has_ssse3) {
641 switch(type.width) {
642 case 8:
643 return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.b.128", vec_type, a);
644 case 16:
645 return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.w.128", vec_type, a);
646 case 32:
647 return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.d.128", vec_type, a);
648 }
649 }
650
651 return lp_build_max(bld, a, LLVMBuildNeg(bld->builder, a, ""));
652 }
653
654
655 LLVMValueRef
656 lp_build_sgn(struct lp_build_context *bld,
657 LLVMValueRef a)
658 {
659 const struct lp_type type = bld->type;
660 LLVMTypeRef vec_type = lp_build_vec_type(type);
661 LLVMValueRef cond;
662 LLVMValueRef res;
663
664 /* Handle non-zero case */
665 if(!type.sign) {
666 /* if not zero then sign must be positive */
667 res = bld->one;
668 }
669 else if(type.floating) {
670 /* Take the sign bit and add it to 1 constant */
671 LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
672 LLVMValueRef mask = lp_build_int_const_scalar(type, (unsigned long long)1 << (type.width - 1));
673 LLVMValueRef sign;
674 LLVMValueRef one;
675 sign = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
676 sign = LLVMBuildAnd(bld->builder, sign, mask, "");
677 one = LLVMConstBitCast(bld->one, int_vec_type);
678 res = LLVMBuildOr(bld->builder, sign, one, "");
679 res = LLVMBuildBitCast(bld->builder, res, vec_type, "");
680 }
681 else
682 {
683 LLVMValueRef minus_one = lp_build_const_scalar(type, -1.0);
684 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, bld->zero);
685 res = lp_build_select(bld, cond, bld->one, minus_one);
686 }
687
688 /* Handle zero */
689 cond = lp_build_cmp(bld, PIPE_FUNC_EQUAL, a, bld->zero);
690 res = lp_build_select(bld, cond, bld->zero, bld->one);
691
692 return res;
693 }
694
695
696 enum lp_build_round_sse41_mode
697 {
698 LP_BUILD_ROUND_SSE41_NEAREST = 0,
699 LP_BUILD_ROUND_SSE41_FLOOR = 1,
700 LP_BUILD_ROUND_SSE41_CEIL = 2,
701 LP_BUILD_ROUND_SSE41_TRUNCATE = 3
702 };
703
704
705 static INLINE LLVMValueRef
706 lp_build_round_sse41(struct lp_build_context *bld,
707 LLVMValueRef a,
708 enum lp_build_round_sse41_mode mode)
709 {
710 const struct lp_type type = bld->type;
711 LLVMTypeRef vec_type = lp_build_vec_type(type);
712 const char *intrinsic;
713
714 assert(type.floating);
715 assert(type.width*type.length == 128);
716 assert(lp_check_value(type, a));
717 assert(util_cpu_caps.has_sse4_1);
718
719 switch(type.width) {
720 case 32:
721 intrinsic = "llvm.x86.sse41.round.ps";
722 break;
723 case 64:
724 intrinsic = "llvm.x86.sse41.round.pd";
725 break;
726 default:
727 assert(0);
728 return bld->undef;
729 }
730
731 return lp_build_intrinsic_binary(bld->builder, intrinsic, vec_type, a,
732 LLVMConstInt(LLVMInt32Type(), mode, 0));
733 }
734
735
736 LLVMValueRef
737 lp_build_trunc(struct lp_build_context *bld,
738 LLVMValueRef a)
739 {
740 const struct lp_type type = bld->type;
741
742 assert(type.floating);
743 assert(lp_check_value(type, a));
744
745 if(util_cpu_caps.has_sse4_1)
746 return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_TRUNCATE);
747 else {
748 LLVMTypeRef vec_type = lp_build_vec_type(type);
749 LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
750 LLVMValueRef res;
751 res = LLVMBuildFPToSI(bld->builder, a, int_vec_type, "");
752 res = LLVMBuildSIToFP(bld->builder, res, vec_type, "");
753 return res;
754 }
755 }
756
757
758 LLVMValueRef
759 lp_build_round(struct lp_build_context *bld,
760 LLVMValueRef a)
761 {
762 const struct lp_type type = bld->type;
763
764 assert(type.floating);
765 assert(lp_check_value(type, a));
766
767 if(util_cpu_caps.has_sse4_1)
768 return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_NEAREST);
769 else {
770 LLVMTypeRef vec_type = lp_build_vec_type(type);
771 LLVMValueRef res;
772 res = lp_build_iround(bld, a);
773 res = LLVMBuildSIToFP(bld->builder, res, vec_type, "");
774 return res;
775 }
776 }
777
778
779 LLVMValueRef
780 lp_build_floor(struct lp_build_context *bld,
781 LLVMValueRef a)
782 {
783 const struct lp_type type = bld->type;
784
785 assert(type.floating);
786
787 if(util_cpu_caps.has_sse4_1)
788 return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_FLOOR);
789 else {
790 LLVMTypeRef vec_type = lp_build_vec_type(type);
791 LLVMValueRef res;
792 res = lp_build_ifloor(bld, a);
793 res = LLVMBuildSIToFP(bld->builder, res, vec_type, "");
794 return res;
795 }
796 }
797
798
799 LLVMValueRef
800 lp_build_ceil(struct lp_build_context *bld,
801 LLVMValueRef a)
802 {
803 const struct lp_type type = bld->type;
804
805 assert(type.floating);
806 assert(lp_check_value(type, a));
807
808 if(util_cpu_caps.has_sse4_1)
809 return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_CEIL);
810 else {
811 LLVMTypeRef vec_type = lp_build_vec_type(type);
812 LLVMValueRef res;
813 res = lp_build_iceil(bld, a);
814 res = LLVMBuildSIToFP(bld->builder, res, vec_type, "");
815 return res;
816 }
817 }
818
819
820 /**
821 * Convert to integer, through whichever rounding method that's fastest,
822 * typically truncating to zero.
823 */
824 LLVMValueRef
825 lp_build_itrunc(struct lp_build_context *bld,
826 LLVMValueRef a)
827 {
828 const struct lp_type type = bld->type;
829 LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
830
831 assert(type.floating);
832 assert(lp_check_value(type, a));
833
834 return LLVMBuildFPToSI(bld->builder, a, int_vec_type, "");
835 }
836
837
838 LLVMValueRef
839 lp_build_iround(struct lp_build_context *bld,
840 LLVMValueRef a)
841 {
842 const struct lp_type type = bld->type;
843 LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
844 LLVMValueRef res;
845
846 assert(type.floating);
847 assert(lp_check_value(type, a));
848
849 if(util_cpu_caps.has_sse4_1) {
850 res = lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_NEAREST);
851 }
852 else {
853 LLVMTypeRef vec_type = lp_build_vec_type(type);
854 LLVMValueRef mask = lp_build_int_const_scalar(type, (unsigned long long)1 << (type.width - 1));
855 LLVMValueRef sign;
856 LLVMValueRef half;
857
858 /* get sign bit */
859 sign = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
860 sign = LLVMBuildAnd(bld->builder, sign, mask, "");
861
862 /* sign * 0.5 */
863 half = lp_build_const_scalar(type, 0.5);
864 half = LLVMBuildBitCast(bld->builder, half, int_vec_type, "");
865 half = LLVMBuildOr(bld->builder, sign, half, "");
866 half = LLVMBuildBitCast(bld->builder, half, vec_type, "");
867
868 res = LLVMBuildAdd(bld->builder, a, half, "");
869 }
870
871 res = LLVMBuildFPToSI(bld->builder, res, int_vec_type, "");
872
873 return res;
874 }
875
876
877 /**
878 * Convert float[] to int[] with floor().
879 */
880 LLVMValueRef
881 lp_build_ifloor(struct lp_build_context *bld,
882 LLVMValueRef a)
883 {
884 const struct lp_type type = bld->type;
885 LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
886 LLVMValueRef res;
887
888 assert(type.floating);
889 assert(lp_check_value(type, a));
890
891 if(util_cpu_caps.has_sse4_1) {
892 res = lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_FLOOR);
893 }
894 else {
895 /* Take the sign bit and add it to 1 constant */
896 LLVMTypeRef vec_type = lp_build_vec_type(type);
897 unsigned mantissa = lp_mantissa(type);
898 LLVMValueRef mask = lp_build_int_const_scalar(type, (unsigned long long)1 << (type.width - 1));
899 LLVMValueRef sign;
900 LLVMValueRef offset;
901
902 /* sign = a < 0 ? ~0 : 0 */
903 sign = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
904 sign = LLVMBuildAnd(bld->builder, sign, mask, "");
905 sign = LLVMBuildAShr(bld->builder, sign, lp_build_int_const_scalar(type, type.width - 1), "");
906 lp_build_name(sign, "floor.sign");
907
908 /* offset = -0.99999(9)f */
909 offset = lp_build_const_scalar(type, -(double)(((unsigned long long)1 << mantissa) - 1)/((unsigned long long)1 << mantissa));
910 offset = LLVMConstBitCast(offset, int_vec_type);
911
912 /* offset = a < 0 ? -0.99999(9)f : 0.0f */
913 offset = LLVMBuildAnd(bld->builder, offset, sign, "");
914 offset = LLVMBuildBitCast(bld->builder, offset, vec_type, "");
915 lp_build_name(offset, "floor.offset");
916
917 res = LLVMBuildAdd(bld->builder, a, offset, "");
918 lp_build_name(res, "floor.res");
919 }
920
921 res = LLVMBuildFPToSI(bld->builder, res, int_vec_type, "");
922 lp_build_name(res, "floor");
923
924 return res;
925 }
926
927
928 LLVMValueRef
929 lp_build_iceil(struct lp_build_context *bld,
930 LLVMValueRef a)
931 {
932 const struct lp_type type = bld->type;
933 LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
934 LLVMValueRef res;
935
936 assert(type.floating);
937 assert(lp_check_value(type, a));
938
939 if(util_cpu_caps.has_sse4_1) {
940 res = lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_CEIL);
941 }
942 else {
943 assert(0);
944 res = bld->undef;
945 }
946
947 res = LLVMBuildFPToSI(bld->builder, res, int_vec_type, "");
948
949 return res;
950 }
951
952
953 LLVMValueRef
954 lp_build_sqrt(struct lp_build_context *bld,
955 LLVMValueRef a)
956 {
957 const struct lp_type type = bld->type;
958 LLVMTypeRef vec_type = lp_build_vec_type(type);
959 char intrinsic[32];
960
961 /* TODO: optimize the constant case */
962 /* TODO: optimize the constant case */
963
964 assert(type.floating);
965 util_snprintf(intrinsic, sizeof intrinsic, "llvm.sqrt.v%uf%u", type.length, type.width);
966
967 return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a);
968 }
969
970
971 LLVMValueRef
972 lp_build_rcp(struct lp_build_context *bld,
973 LLVMValueRef a)
974 {
975 const struct lp_type type = bld->type;
976
977 if(a == bld->zero)
978 return bld->undef;
979 if(a == bld->one)
980 return bld->one;
981 if(a == bld->undef)
982 return bld->undef;
983
984 assert(type.floating);
985
986 if(LLVMIsConstant(a))
987 return LLVMConstFDiv(bld->one, a);
988
989 if(util_cpu_caps.has_sse && type.width == 32 && type.length == 4)
990 /* FIXME: improve precision */
991 return lp_build_intrinsic_unary(bld->builder, "llvm.x86.sse.rcp.ps", lp_build_vec_type(type), a);
992
993 return LLVMBuildFDiv(bld->builder, bld->one, a, "");
994 }
995
996
997 /**
998 * Generate 1/sqrt(a)
999 */
1000 LLVMValueRef
1001 lp_build_rsqrt(struct lp_build_context *bld,
1002 LLVMValueRef a)
1003 {
1004 const struct lp_type type = bld->type;
1005
1006 assert(type.floating);
1007
1008 if(util_cpu_caps.has_sse && type.width == 32 && type.length == 4)
1009 return lp_build_intrinsic_unary(bld->builder, "llvm.x86.sse.rsqrt.ps", lp_build_vec_type(type), a);
1010
1011 return lp_build_rcp(bld, lp_build_sqrt(bld, a));
1012 }
1013
1014
1015 /**
1016 * Generate cos(a)
1017 */
1018 LLVMValueRef
1019 lp_build_cos(struct lp_build_context *bld,
1020 LLVMValueRef a)
1021 {
1022 const struct lp_type type = bld->type;
1023 LLVMTypeRef vec_type = lp_build_vec_type(type);
1024 char intrinsic[32];
1025
1026 /* TODO: optimize the constant case */
1027
1028 assert(type.floating);
1029 util_snprintf(intrinsic, sizeof intrinsic, "llvm.cos.v%uf%u", type.length, type.width);
1030
1031 return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a);
1032 }
1033
1034
1035 /**
1036 * Generate sin(a)
1037 */
1038 LLVMValueRef
1039 lp_build_sin(struct lp_build_context *bld,
1040 LLVMValueRef a)
1041 {
1042 const struct lp_type type = bld->type;
1043 LLVMTypeRef vec_type = lp_build_vec_type(type);
1044 char intrinsic[32];
1045
1046 /* TODO: optimize the constant case */
1047
1048 assert(type.floating);
1049 util_snprintf(intrinsic, sizeof intrinsic, "llvm.sin.v%uf%u", type.length, type.width);
1050
1051 return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a);
1052 }
1053
1054
1055 /**
1056 * Generate pow(x, y)
1057 */
1058 LLVMValueRef
1059 lp_build_pow(struct lp_build_context *bld,
1060 LLVMValueRef x,
1061 LLVMValueRef y)
1062 {
1063 /* TODO: optimize the constant case */
1064 if(LLVMIsConstant(x) && LLVMIsConstant(y))
1065 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
1066 __FUNCTION__);
1067
1068 return lp_build_exp2(bld, lp_build_mul(bld, lp_build_log2(bld, x), y));
1069 }
1070
1071
1072 /**
1073 * Generate exp(x)
1074 */
1075 LLVMValueRef
1076 lp_build_exp(struct lp_build_context *bld,
1077 LLVMValueRef x)
1078 {
1079 /* log2(e) = 1/log(2) */
1080 LLVMValueRef log2e = lp_build_const_scalar(bld->type, 1.4426950408889634);
1081
1082 return lp_build_mul(bld, log2e, lp_build_exp2(bld, x));
1083 }
1084
1085
1086 /**
1087 * Generate log(x)
1088 */
1089 LLVMValueRef
1090 lp_build_log(struct lp_build_context *bld,
1091 LLVMValueRef x)
1092 {
1093 /* log(2) */
1094 LLVMValueRef log2 = lp_build_const_scalar(bld->type, 0.69314718055994529);
1095
1096 return lp_build_mul(bld, log2, lp_build_exp2(bld, x));
1097 }
1098
1099
1100 #define EXP_POLY_DEGREE 3
1101 #define LOG_POLY_DEGREE 5
1102
1103
1104 /**
1105 * Generate polynomial.
1106 * Ex: coeffs[0] + x * coeffs[1] + x^2 * coeffs[2].
1107 */
1108 static LLVMValueRef
1109 lp_build_polynomial(struct lp_build_context *bld,
1110 LLVMValueRef x,
1111 const double *coeffs,
1112 unsigned num_coeffs)
1113 {
1114 const struct lp_type type = bld->type;
1115 LLVMValueRef res = NULL;
1116 unsigned i;
1117
1118 /* TODO: optimize the constant case */
1119 if(LLVMIsConstant(x))
1120 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
1121 __FUNCTION__);
1122
1123 for (i = num_coeffs; i--; ) {
1124 LLVMValueRef coeff = lp_build_const_scalar(type, coeffs[i]);
1125 if(res)
1126 res = lp_build_add(bld, coeff, lp_build_mul(bld, x, res));
1127 else
1128 res = coeff;
1129 }
1130
1131 if(res)
1132 return res;
1133 else
1134 return bld->undef;
1135 }
1136
1137
1138 /**
1139 * Minimax polynomial fit of 2**x, in range [-0.5, 0.5[
1140 */
1141 const double lp_build_exp2_polynomial[] = {
1142 #if EXP_POLY_DEGREE == 5
1143 9.9999994e-1, 6.9315308e-1, 2.4015361e-1, 5.5826318e-2, 8.9893397e-3, 1.8775767e-3
1144 #elif EXP_POLY_DEGREE == 4
1145 1.0000026, 6.9300383e-1, 2.4144275e-1, 5.2011464e-2, 1.3534167e-2
1146 #elif EXP_POLY_DEGREE == 3
1147 9.9992520e-1, 6.9583356e-1, 2.2606716e-1, 7.8024521e-2
1148 #elif EXP_POLY_DEGREE == 2
1149 1.0017247, 6.5763628e-1, 3.3718944e-1
1150 #else
1151 #error
1152 #endif
1153 };
1154
1155
1156 void
1157 lp_build_exp2_approx(struct lp_build_context *bld,
1158 LLVMValueRef x,
1159 LLVMValueRef *p_exp2_int_part,
1160 LLVMValueRef *p_frac_part,
1161 LLVMValueRef *p_exp2)
1162 {
1163 const struct lp_type type = bld->type;
1164 LLVMTypeRef vec_type = lp_build_vec_type(type);
1165 LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
1166 LLVMValueRef ipart = NULL;
1167 LLVMValueRef fpart = NULL;
1168 LLVMValueRef expipart = NULL;
1169 LLVMValueRef expfpart = NULL;
1170 LLVMValueRef res = NULL;
1171
1172 if(p_exp2_int_part || p_frac_part || p_exp2) {
1173 /* TODO: optimize the constant case */
1174 if(LLVMIsConstant(x))
1175 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
1176 __FUNCTION__);
1177
1178 assert(type.floating && type.width == 32);
1179
1180 x = lp_build_min(bld, x, lp_build_const_scalar(type, 129.0));
1181 x = lp_build_max(bld, x, lp_build_const_scalar(type, -126.99999));
1182
1183 /* ipart = int(x - 0.5) */
1184 ipart = LLVMBuildSub(bld->builder, x, lp_build_const_scalar(type, 0.5f), "");
1185 ipart = LLVMBuildFPToSI(bld->builder, ipart, int_vec_type, "");
1186
1187 /* fpart = x - ipart */
1188 fpart = LLVMBuildSIToFP(bld->builder, ipart, vec_type, "");
1189 fpart = LLVMBuildSub(bld->builder, x, fpart, "");
1190 }
1191
1192 if(p_exp2_int_part || p_exp2) {
1193 /* expipart = (float) (1 << ipart) */
1194 expipart = LLVMBuildAdd(bld->builder, ipart, lp_build_int_const_scalar(type, 127), "");
1195 expipart = LLVMBuildShl(bld->builder, expipart, lp_build_int_const_scalar(type, 23), "");
1196 expipart = LLVMBuildBitCast(bld->builder, expipart, vec_type, "");
1197 }
1198
1199 if(p_exp2) {
1200 expfpart = lp_build_polynomial(bld, fpart, lp_build_exp2_polynomial,
1201 Elements(lp_build_exp2_polynomial));
1202
1203 res = LLVMBuildMul(bld->builder, expipart, expfpart, "");
1204 }
1205
1206 if(p_exp2_int_part)
1207 *p_exp2_int_part = expipart;
1208
1209 if(p_frac_part)
1210 *p_frac_part = fpart;
1211
1212 if(p_exp2)
1213 *p_exp2 = res;
1214 }
1215
1216
1217 LLVMValueRef
1218 lp_build_exp2(struct lp_build_context *bld,
1219 LLVMValueRef x)
1220 {
1221 LLVMValueRef res;
1222 lp_build_exp2_approx(bld, x, NULL, NULL, &res);
1223 return res;
1224 }
1225
1226
1227 /**
1228 * Minimax polynomial fit of log2(x)/(x - 1), for x in range [1, 2[
1229 * These coefficients can be generate with
1230 * http://www.boost.org/doc/libs/1_36_0/libs/math/doc/sf_and_dist/html/math_toolkit/toolkit/internals2/minimax.html
1231 */
1232 const double lp_build_log2_polynomial[] = {
1233 #if LOG_POLY_DEGREE == 6
1234 3.11578814719469302614, -3.32419399085241980044, 2.59883907202499966007, -1.23152682416275988241, 0.318212422185251071475, -0.0344359067839062357313
1235 #elif LOG_POLY_DEGREE == 5
1236 2.8882704548164776201, -2.52074962577807006663, 1.48116647521213171641, -0.465725644288844778798, 0.0596515482674574969533
1237 #elif LOG_POLY_DEGREE == 4
1238 2.61761038894603480148, -1.75647175389045657003, 0.688243882994381274313, -0.107254423828329604454
1239 #elif LOG_POLY_DEGREE == 3
1240 2.28330284476918490682, -1.04913055217340124191, 0.204446009836232697516
1241 #else
1242 #error
1243 #endif
1244 };
1245
1246
1247 /**
1248 * See http://www.devmaster.net/forums/showthread.php?p=43580
1249 */
1250 void
1251 lp_build_log2_approx(struct lp_build_context *bld,
1252 LLVMValueRef x,
1253 LLVMValueRef *p_exp,
1254 LLVMValueRef *p_floor_log2,
1255 LLVMValueRef *p_log2)
1256 {
1257 const struct lp_type type = bld->type;
1258 LLVMTypeRef vec_type = lp_build_vec_type(type);
1259 LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
1260
1261 LLVMValueRef expmask = lp_build_int_const_scalar(type, 0x7f800000);
1262 LLVMValueRef mantmask = lp_build_int_const_scalar(type, 0x007fffff);
1263 LLVMValueRef one = LLVMConstBitCast(bld->one, int_vec_type);
1264
1265 LLVMValueRef i = NULL;
1266 LLVMValueRef exp = NULL;
1267 LLVMValueRef mant = NULL;
1268 LLVMValueRef logexp = NULL;
1269 LLVMValueRef logmant = NULL;
1270 LLVMValueRef res = NULL;
1271
1272 if(p_exp || p_floor_log2 || p_log2) {
1273 /* TODO: optimize the constant case */
1274 if(LLVMIsConstant(x))
1275 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
1276 __FUNCTION__);
1277
1278 assert(type.floating && type.width == 32);
1279
1280 i = LLVMBuildBitCast(bld->builder, x, int_vec_type, "");
1281
1282 /* exp = (float) exponent(x) */
1283 exp = LLVMBuildAnd(bld->builder, i, expmask, "");
1284 }
1285
1286 if(p_floor_log2 || p_log2) {
1287 logexp = LLVMBuildLShr(bld->builder, exp, lp_build_int_const_scalar(type, 23), "");
1288 logexp = LLVMBuildSub(bld->builder, logexp, lp_build_int_const_scalar(type, 127), "");
1289 logexp = LLVMBuildSIToFP(bld->builder, logexp, vec_type, "");
1290 }
1291
1292 if(p_log2) {
1293 /* mant = (float) mantissa(x) */
1294 mant = LLVMBuildAnd(bld->builder, i, mantmask, "");
1295 mant = LLVMBuildOr(bld->builder, mant, one, "");
1296 mant = LLVMBuildBitCast(bld->builder, mant, vec_type, "");
1297
1298 logmant = lp_build_polynomial(bld, mant, lp_build_log2_polynomial,
1299 Elements(lp_build_log2_polynomial));
1300
1301 /* This effectively increases the polynomial degree by one, but ensures that log2(1) == 0*/
1302 logmant = LLVMBuildMul(bld->builder, logmant, LLVMBuildSub(bld->builder, mant, bld->one, ""), "");
1303
1304 res = LLVMBuildAdd(bld->builder, logmant, logexp, "");
1305 }
1306
1307 if(p_exp)
1308 *p_exp = exp;
1309
1310 if(p_floor_log2)
1311 *p_floor_log2 = logexp;
1312
1313 if(p_log2)
1314 *p_log2 = res;
1315 }
1316
1317
1318 LLVMValueRef
1319 lp_build_log2(struct lp_build_context *bld,
1320 LLVMValueRef x)
1321 {
1322 LLVMValueRef res;
1323 lp_build_log2_approx(bld, x, NULL, NULL, &res);
1324 return res;
1325 }