gallivm/nir: support passing image index into image code.
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_flow.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * LLVM control flow build helpers.
30 *
31 * @author Jose Fonseca <jfonseca@vmware.com>
32 */
33
34 #include "util/u_debug.h"
35 #include "util/u_memory.h"
36
37 #include "lp_bld_init.h"
38 #include "lp_bld_type.h"
39 #include "lp_bld_flow.h"
40
41
42 /**
43 * Insert a new block, right where builder is pointing to.
44 *
45 * This is useful important not only for aesthetic reasons, but also for
46 * performance reasons, as frequently run blocks should be laid out next to
47 * each other and fall-throughs maximized.
48 *
49 * See also llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp.
50 *
51 * Note: this function has no dependencies on the flow code and could
52 * be used elsewhere.
53 */
54 LLVMBasicBlockRef
55 lp_build_insert_new_block(struct gallivm_state *gallivm, const char *name)
56 {
57 LLVMBasicBlockRef current_block;
58 LLVMBasicBlockRef next_block;
59 LLVMBasicBlockRef new_block;
60
61 /* get current basic block */
62 current_block = LLVMGetInsertBlock(gallivm->builder);
63
64 /* check if there's another block after this one */
65 next_block = LLVMGetNextBasicBlock(current_block);
66 if (next_block) {
67 /* insert the new block before the next block */
68 new_block = LLVMInsertBasicBlockInContext(gallivm->context, next_block, name);
69 }
70 else {
71 /* append new block after current block */
72 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
73 new_block = LLVMAppendBasicBlockInContext(gallivm->context, function, name);
74 }
75
76 return new_block;
77 }
78
79
80 /**
81 * Begin a "skip" block. Inside this block we can test a condition and
82 * skip to the end of the block if the condition is false.
83 */
84 void
85 lp_build_flow_skip_begin(struct lp_build_skip_context *skip,
86 struct gallivm_state *gallivm)
87 {
88 skip->gallivm = gallivm;
89 /* create new basic block */
90 skip->block = lp_build_insert_new_block(gallivm, "skip");
91 }
92
93
94 /**
95 * Insert code to test a condition and branch to the end of the current
96 * skip block if the condition is true.
97 */
98 void
99 lp_build_flow_skip_cond_break(struct lp_build_skip_context *skip,
100 LLVMValueRef cond)
101 {
102 LLVMBasicBlockRef new_block;
103
104 new_block = lp_build_insert_new_block(skip->gallivm, "");
105
106 /* if cond is true, goto skip->block, else goto new_block */
107 LLVMBuildCondBr(skip->gallivm->builder, cond, skip->block, new_block);
108
109 LLVMPositionBuilderAtEnd(skip->gallivm->builder, new_block);
110 }
111
112
113 void
114 lp_build_flow_skip_end(struct lp_build_skip_context *skip)
115 {
116 /* goto block */
117 LLVMBuildBr(skip->gallivm->builder, skip->block);
118 LLVMPositionBuilderAtEnd(skip->gallivm->builder, skip->block);
119 }
120
121
122 /**
123 * Check if the mask predicate is zero. If so, jump to the end of the block.
124 */
125 void
126 lp_build_mask_check(struct lp_build_mask_context *mask)
127 {
128 LLVMBuilderRef builder = mask->skip.gallivm->builder;
129 LLVMValueRef value;
130 LLVMValueRef cond;
131
132 value = lp_build_mask_value(mask);
133
134 /*
135 * XXX this doesn't quite generate the most efficient code possible, if
136 * the masks are vectors which have all bits set to the same value
137 * in each element.
138 * movmskps/pmovmskb would be more efficient to get the required value
139 * into ordinary reg (certainly with 8 floats).
140 * Not sure if llvm could figure that out on its own.
141 */
142
143 /* cond = (mask == 0) */
144 cond = LLVMBuildICmp(builder,
145 LLVMIntEQ,
146 LLVMBuildBitCast(builder, value, mask->reg_type, ""),
147 LLVMConstNull(mask->reg_type),
148 "");
149
150 /* if cond, goto end of block */
151 lp_build_flow_skip_cond_break(&mask->skip, cond);
152 }
153
154
155 /**
156 * Begin a section of code which is predicated on a mask.
157 * \param mask the mask context, initialized here
158 * \param flow the flow context
159 * \param type the type of the mask
160 * \param value storage for the mask
161 */
162 void
163 lp_build_mask_begin(struct lp_build_mask_context *mask,
164 struct gallivm_state *gallivm,
165 struct lp_type type,
166 LLVMValueRef value)
167 {
168 memset(mask, 0, sizeof *mask);
169
170 mask->reg_type = LLVMIntTypeInContext(gallivm->context, type.width * type.length);
171 mask->var = lp_build_alloca(gallivm,
172 lp_build_int_vec_type(gallivm, type),
173 "execution_mask");
174
175 LLVMBuildStore(gallivm->builder, value, mask->var);
176
177 lp_build_flow_skip_begin(&mask->skip, gallivm);
178 }
179
180
181 LLVMValueRef
182 lp_build_mask_value(struct lp_build_mask_context *mask)
183 {
184 return LLVMBuildLoad(mask->skip.gallivm->builder, mask->var, "");
185 }
186
187
188 /**
189 * Update boolean mask with given value (bitwise AND).
190 * Typically used to update the quad's pixel alive/killed mask
191 * after depth testing, alpha testing, TGSI_OPCODE_KILL_IF, etc.
192 */
193 void
194 lp_build_mask_update(struct lp_build_mask_context *mask,
195 LLVMValueRef value)
196 {
197 value = LLVMBuildAnd(mask->skip.gallivm->builder,
198 lp_build_mask_value(mask),
199 value, "");
200 LLVMBuildStore(mask->skip.gallivm->builder, value, mask->var);
201 }
202
203 /*
204 * Update boolean mask with given value.
205 * Used for per-sample shading to force per-sample execution masks.
206 */
207 void
208 lp_build_mask_force(struct lp_build_mask_context *mask,
209 LLVMValueRef value)
210 {
211 LLVMBuildStore(mask->skip.gallivm->builder, value, mask->var);
212 }
213
214 /**
215 * End section of code which is predicated on a mask.
216 */
217 LLVMValueRef
218 lp_build_mask_end(struct lp_build_mask_context *mask)
219 {
220 lp_build_flow_skip_end(&mask->skip);
221 return lp_build_mask_value(mask);
222 }
223
224
225
226 void
227 lp_build_loop_begin(struct lp_build_loop_state *state,
228 struct gallivm_state *gallivm,
229 LLVMValueRef start)
230
231 {
232 LLVMBuilderRef builder = gallivm->builder;
233
234 state->block = lp_build_insert_new_block(gallivm, "loop_begin");
235
236 state->counter_var = lp_build_alloca(gallivm, LLVMTypeOf(start), "loop_counter");
237 state->gallivm = gallivm;
238
239 LLVMBuildStore(builder, start, state->counter_var);
240
241 LLVMBuildBr(builder, state->block);
242
243 LLVMPositionBuilderAtEnd(builder, state->block);
244
245 state->counter = LLVMBuildLoad(builder, state->counter_var, "");
246 }
247
248
249 void
250 lp_build_loop_end_cond(struct lp_build_loop_state *state,
251 LLVMValueRef end,
252 LLVMValueRef step,
253 LLVMIntPredicate llvm_cond)
254 {
255 LLVMBuilderRef builder = state->gallivm->builder;
256 LLVMValueRef next;
257 LLVMValueRef cond;
258 LLVMBasicBlockRef after_block;
259
260 if (!step)
261 step = LLVMConstInt(LLVMTypeOf(end), 1, 0);
262
263 next = LLVMBuildAdd(builder, state->counter, step, "");
264
265 LLVMBuildStore(builder, next, state->counter_var);
266
267 cond = LLVMBuildICmp(builder, llvm_cond, next, end, "");
268
269 after_block = lp_build_insert_new_block(state->gallivm, "loop_end");
270
271 LLVMBuildCondBr(builder, cond, after_block, state->block);
272
273 LLVMPositionBuilderAtEnd(builder, after_block);
274
275 state->counter = LLVMBuildLoad(builder, state->counter_var, "");
276 }
277
278 void
279 lp_build_loop_force_set_counter(struct lp_build_loop_state *state,
280 LLVMValueRef end)
281 {
282 LLVMBuilderRef builder = state->gallivm->builder;
283 LLVMBuildStore(builder, end, state->counter_var);
284 }
285
286 void
287 lp_build_loop_force_reload_counter(struct lp_build_loop_state *state)
288 {
289 LLVMBuilderRef builder = state->gallivm->builder;
290 state->counter = LLVMBuildLoad(builder, state->counter_var, "");
291 }
292
293 void
294 lp_build_loop_end(struct lp_build_loop_state *state,
295 LLVMValueRef end,
296 LLVMValueRef step)
297 {
298 lp_build_loop_end_cond(state, end, step, LLVMIntNE);
299 }
300
301 /**
302 * Creates a c-style for loop,
303 * contrasts lp_build_loop as this checks condition on entry
304 * e.g. for(i = start; i cmp_op end; i += step)
305 * \param state the for loop state, initialized here
306 * \param gallivm the gallivm state
307 * \param start starting value of iterator
308 * \param cmp_op comparison operator used for comparing current value with end value
309 * \param end value used to compare against iterator
310 * \param step value added to iterator at end of each loop
311 */
312 void
313 lp_build_for_loop_begin(struct lp_build_for_loop_state *state,
314 struct gallivm_state *gallivm,
315 LLVMValueRef start,
316 LLVMIntPredicate cmp_op,
317 LLVMValueRef end,
318 LLVMValueRef step)
319 {
320 LLVMBuilderRef builder = gallivm->builder;
321
322 assert(LLVMTypeOf(start) == LLVMTypeOf(end));
323 assert(LLVMTypeOf(start) == LLVMTypeOf(step));
324
325 state->begin = lp_build_insert_new_block(gallivm, "loop_begin");
326 state->step = step;
327 state->counter_var = lp_build_alloca(gallivm, LLVMTypeOf(start), "loop_counter");
328 state->gallivm = gallivm;
329 state->cond = cmp_op;
330 state->end = end;
331
332 LLVMBuildStore(builder, start, state->counter_var);
333 LLVMBuildBr(builder, state->begin);
334
335 LLVMPositionBuilderAtEnd(builder, state->begin);
336 state->counter = LLVMBuildLoad(builder, state->counter_var, "");
337
338 state->body = lp_build_insert_new_block(gallivm, "loop_body");
339 LLVMPositionBuilderAtEnd(builder, state->body);
340 }
341
342 /**
343 * End the for loop.
344 */
345 void
346 lp_build_for_loop_end(struct lp_build_for_loop_state *state)
347 {
348 LLVMValueRef next, cond;
349 LLVMBuilderRef builder = state->gallivm->builder;
350
351 next = LLVMBuildAdd(builder, state->counter, state->step, "");
352 LLVMBuildStore(builder, next, state->counter_var);
353 LLVMBuildBr(builder, state->begin);
354
355 state->exit = lp_build_insert_new_block(state->gallivm, "loop_exit");
356
357 /*
358 * We build the comparison for the begin block here,
359 * if we build it earlier the output llvm ir is not human readable
360 * as the code produced is not in the standard begin -> body -> end order.
361 */
362 LLVMPositionBuilderAtEnd(builder, state->begin);
363 cond = LLVMBuildICmp(builder, state->cond, state->counter, state->end, "");
364 LLVMBuildCondBr(builder, cond, state->body, state->exit);
365
366 LLVMPositionBuilderAtEnd(builder, state->exit);
367 }
368
369
370 /*
371 Example of if/then/else building:
372
373 int x;
374 if (cond) {
375 x = 1 + 2;
376 }
377 else {
378 x = 2 + 3;
379 }
380
381 Is built with:
382
383 // x needs an alloca variable
384 x = lp_build_alloca(builder, type, "x");
385
386
387 lp_build_if(ctx, builder, cond);
388 LLVMBuildStore(LLVMBuildAdd(1, 2), x);
389 lp_build_else(ctx);
390 LLVMBuildStore(LLVMBuildAdd(2, 3). x);
391 lp_build_endif(ctx);
392
393 */
394
395
396
397 /**
398 * Begin an if/else/endif construct.
399 */
400 void
401 lp_build_if(struct lp_build_if_state *ifthen,
402 struct gallivm_state *gallivm,
403 LLVMValueRef condition)
404 {
405 LLVMBasicBlockRef block = LLVMGetInsertBlock(gallivm->builder);
406
407 memset(ifthen, 0, sizeof *ifthen);
408 ifthen->gallivm = gallivm;
409 ifthen->condition = condition;
410 ifthen->entry_block = block;
411
412 /* create endif/merge basic block for the phi functions */
413 ifthen->merge_block = lp_build_insert_new_block(gallivm, "endif-block");
414
415 /* create/insert true_block before merge_block */
416 ifthen->true_block =
417 LLVMInsertBasicBlockInContext(gallivm->context,
418 ifthen->merge_block,
419 "if-true-block");
420
421 /* successive code goes into the true block */
422 LLVMPositionBuilderAtEnd(gallivm->builder, ifthen->true_block);
423 }
424
425
426 /**
427 * Begin else-part of a conditional
428 */
429 void
430 lp_build_else(struct lp_build_if_state *ifthen)
431 {
432 LLVMBuilderRef builder = ifthen->gallivm->builder;
433
434 /* Append an unconditional Br(anch) instruction on the true_block */
435 LLVMBuildBr(builder, ifthen->merge_block);
436
437 /* create/insert false_block before the merge block */
438 ifthen->false_block =
439 LLVMInsertBasicBlockInContext(ifthen->gallivm->context,
440 ifthen->merge_block,
441 "if-false-block");
442
443 /* successive code goes into the else block */
444 LLVMPositionBuilderAtEnd(builder, ifthen->false_block);
445 }
446
447
448 /**
449 * End a conditional.
450 */
451 void
452 lp_build_endif(struct lp_build_if_state *ifthen)
453 {
454 LLVMBuilderRef builder = ifthen->gallivm->builder;
455
456 /* Insert branch to the merge block from current block */
457 LLVMBuildBr(builder, ifthen->merge_block);
458
459 /*
460 * Now patch in the various branch instructions.
461 */
462
463 /* Insert the conditional branch instruction at the end of entry_block */
464 LLVMPositionBuilderAtEnd(builder, ifthen->entry_block);
465 if (ifthen->false_block) {
466 /* we have an else clause */
467 LLVMBuildCondBr(builder, ifthen->condition,
468 ifthen->true_block, ifthen->false_block);
469 }
470 else {
471 /* no else clause */
472 LLVMBuildCondBr(builder, ifthen->condition,
473 ifthen->true_block, ifthen->merge_block);
474 }
475
476 /* Resume building code at end of the ifthen->merge_block */
477 LLVMPositionBuilderAtEnd(builder, ifthen->merge_block);
478 }
479
480
481 static LLVMBuilderRef
482 create_builder_at_entry(struct gallivm_state *gallivm)
483 {
484 LLVMBuilderRef builder = gallivm->builder;
485 LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
486 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
487 LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
488 LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
489 LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(gallivm->context);
490
491 if (first_instr) {
492 LLVMPositionBuilderBefore(first_builder, first_instr);
493 } else {
494 LLVMPositionBuilderAtEnd(first_builder, first_block);
495 }
496
497 return first_builder;
498 }
499
500
501 /**
502 * Allocate a scalar (or vector) variable.
503 *
504 * Although not strictly part of control flow, control flow has deep impact in
505 * how variables should be allocated.
506 *
507 * The mem2reg optimization pass is the recommended way to dealing with mutable
508 * variables, and SSA. It looks for allocas and if it can handle them, it
509 * promotes them, but only looks for alloca instructions in the entry block of
510 * the function. Being in the entry block guarantees that the alloca is only
511 * executed once, which makes analysis simpler.
512 *
513 * See also:
514 * - http://www.llvm.org/docs/tutorial/OCamlLangImpl7.html#memory
515 */
516 LLVMValueRef
517 lp_build_alloca(struct gallivm_state *gallivm,
518 LLVMTypeRef type,
519 const char *name)
520 {
521 LLVMBuilderRef builder = gallivm->builder;
522 LLVMBuilderRef first_builder = create_builder_at_entry(gallivm);
523 LLVMValueRef res;
524
525 res = LLVMBuildAlloca(first_builder, type, name);
526 LLVMBuildStore(builder, LLVMConstNull(type), res);
527
528 LLVMDisposeBuilder(first_builder);
529
530 return res;
531 }
532
533
534 /**
535 * Like lp_build_alloca, but do not zero-initialize the variable.
536 */
537 LLVMValueRef
538 lp_build_alloca_undef(struct gallivm_state *gallivm,
539 LLVMTypeRef type,
540 const char *name)
541 {
542 LLVMBuilderRef first_builder = create_builder_at_entry(gallivm);
543 LLVMValueRef res;
544
545 res = LLVMBuildAlloca(first_builder, type, name);
546
547 LLVMDisposeBuilder(first_builder);
548
549 return res;
550 }
551
552
553 /**
554 * Allocate an array of scalars/vectors.
555 *
556 * mem2reg pass is not capable of promoting structs or arrays to registers, but
557 * we still put it in the first block anyway as failure to put allocas in the
558 * first block may prevent the X86 backend from successfully align the stack as
559 * required.
560 *
561 * Also the scalarrepl pass is supposedly more powerful and can promote
562 * arrays in many cases.
563 *
564 * See also:
565 * - http://www.llvm.org/docs/tutorial/OCamlLangImpl7.html#memory
566 */
567 LLVMValueRef
568 lp_build_array_alloca(struct gallivm_state *gallivm,
569 LLVMTypeRef type,
570 LLVMValueRef count,
571 const char *name)
572 {
573 LLVMBuilderRef first_builder = create_builder_at_entry(gallivm);
574 LLVMValueRef res;
575
576 res = LLVMBuildArrayAlloca(first_builder, type, count, name);
577
578 LLVMDisposeBuilder(first_builder);
579
580 return res;
581 }