st/vdpau: remove vlCreateHTAB from surface functions
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_format_float.c
1 /**************************************************************************
2 *
3 * Copyright 2013 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 /**
30 * @file
31 * Format conversion code for "special" float formats.
32 *
33 * @author Roland Scheidegger <sroland@vmware.com>
34 */
35
36
37 #include "util/u_debug.h"
38
39 #include "lp_bld_type.h"
40 #include "lp_bld_const.h"
41 #include "lp_bld_arit.h"
42 #include "lp_bld_bitarit.h"
43 #include "lp_bld_logic.h"
44 #include "lp_bld_format.h"
45
46
47 /**
48 * Convert float32 to a float-like value with less exponent and mantissa
49 * bits. The mantissa is still biased, and the mantissa still has an implied 1,
50 * and there may be a sign bit.
51 *
52 * @param src (vector) float value to convert
53 * @param mantissa_bits the number of mantissa bits
54 * @param exponent_bits the number of exponent bits
55 * @param mantissa_start the start position of the small float in result value
56 * @param has_sign if the small float has a sign bit
57 *
58 * This implements round-towards-zero (trunc) hence too large numbers get
59 * converted to largest representable number, not infinity.
60 * Small numbers may get converted to denorms, depending on normal
61 * float denorm handling of the cpu.
62 * Note that compared to the references, below, we skip any rounding bias
63 * since we do rounding towards zero - OpenGL allows rounding towards zero
64 * (though not preferred) and DX10 even seems to require it.
65 * Note that this will pack mantissa, exponent and sign bit (if any) together,
66 * and shift the result to mantissa_start.
67 *
68 * ref http://fgiesen.wordpress.com/2012/03/28/half-to-float-done-quic/
69 * ref https://gist.github.com/rygorous/2156668
70 */
71 LLVMValueRef
72 lp_build_float_to_smallfloat(struct gallivm_state *gallivm,
73 struct lp_type i32_type,
74 LLVMValueRef src,
75 unsigned mantissa_bits,
76 unsigned exponent_bits,
77 unsigned mantissa_start,
78 boolean has_sign)
79 {
80 LLVMBuilderRef builder = gallivm->builder;
81 LLVMValueRef i32_floatexpmask, i32_smallexpmask, magic, normal;
82 LLVMValueRef rescale_src, i32_roundmask, small_max;
83 LLVMValueRef i32_qnanbit, shift, res;
84 LLVMValueRef is_nan_or_inf, nan_or_inf, mask, i32_src;
85 struct lp_type f32_type = lp_type_float_vec(32, 32 * i32_type.length);
86 struct lp_build_context f32_bld, i32_bld;
87 LLVMValueRef zero = lp_build_const_vec(gallivm, f32_type, 0.0f);
88 unsigned exponent_start = mantissa_start + mantissa_bits;
89 boolean always_preserve_nans = true;
90 boolean maybe_correct_denorm_rounding = true;
91
92 lp_build_context_init(&f32_bld, gallivm, f32_type);
93 lp_build_context_init(&i32_bld, gallivm, i32_type);
94
95 i32_smallexpmask = lp_build_const_int_vec(gallivm, i32_type,
96 ((1 << exponent_bits) - 1) << 23);
97 i32_floatexpmask = lp_build_const_int_vec(gallivm, i32_type, 0xff << 23);
98
99 i32_src = LLVMBuildBitCast(builder, src, i32_bld.vec_type, "");
100
101 if (has_sign) {
102 rescale_src = src;
103 }
104 else {
105 /* clamp to pos range (can still have sign bit if NaN or negative zero) */
106 rescale_src = lp_build_max(&f32_bld, zero, src);
107 }
108 rescale_src = LLVMBuildBitCast(builder, rescale_src, i32_bld.vec_type, "");
109
110 /* "ordinary" number */
111 /*
112 * get rid of excess mantissa bits and sign bit
113 * This is only really needed for correct rounding of denorms I think
114 * but only if we use the preserve NaN path does using
115 * src_abs instead save us any instruction.
116 */
117 if (maybe_correct_denorm_rounding || !always_preserve_nans) {
118 i32_roundmask = lp_build_const_int_vec(gallivm, i32_type,
119 ~((1 << (23 - mantissa_bits)) - 1) &
120 0x7fffffff);
121 rescale_src = LLVMBuildBitCast(builder, rescale_src, i32_bld.vec_type, "");
122 rescale_src = lp_build_and(&i32_bld, rescale_src, i32_roundmask);
123 rescale_src = LLVMBuildBitCast(builder, rescale_src, f32_bld.vec_type, "");
124 }
125 else {
126 rescale_src = lp_build_abs(&f32_bld, src);
127 }
128
129 /* bias exponent (and denormalize if necessary) */
130 magic = lp_build_const_int_vec(gallivm, i32_type,
131 ((1 << (exponent_bits - 1)) - 1) << 23);
132 magic = LLVMBuildBitCast(builder, magic, f32_bld.vec_type, "");
133 normal = lp_build_mul(&f32_bld, rescale_src, magic);
134
135 /* clamp to max value - largest non-infinity number */
136 small_max = lp_build_const_int_vec(gallivm, i32_type,
137 (((1 << exponent_bits) - 2) << 23) |
138 (((1 << mantissa_bits) - 1) << (23 - mantissa_bits)));
139 small_max = LLVMBuildBitCast(builder, small_max, f32_bld.vec_type, "");
140 normal = lp_build_min(&f32_bld, normal, small_max);
141 normal = LLVMBuildBitCast(builder, normal, i32_bld.vec_type, "");
142
143 /*
144 * handle nan/inf cases
145 * a little bit tricky since -Inf -> 0, +Inf -> +Inf, +-Nan -> +Nan
146 * (for no sign) else ->Inf -> ->Inf too.
147 * could use explicit "unordered" comparison checking for NaNs
148 * which might save us from calculating src_abs too.
149 * (Cannot actually save the comparison since we need to distinguish
150 * Inf and NaN cases anyway, but it would be better for AVX.)
151 */
152 if (always_preserve_nans) {
153 LLVMValueRef infcheck_src, is_inf, is_nan;
154 LLVMValueRef src_abs = lp_build_abs(&f32_bld, src);
155 src_abs = LLVMBuildBitCast(builder, src_abs, i32_bld.vec_type, "");
156
157 if (has_sign) {
158 infcheck_src = src_abs;
159 }
160 else {
161 infcheck_src = i32_src;
162 }
163 is_nan = lp_build_compare(gallivm, i32_type, PIPE_FUNC_GREATER,
164 src_abs, i32_floatexpmask);
165 is_inf = lp_build_compare(gallivm, i32_type, PIPE_FUNC_EQUAL,
166 infcheck_src, i32_floatexpmask);
167 is_nan_or_inf = lp_build_or(&i32_bld, is_nan, is_inf);
168 /* could also set more mantissa bits but need at least the highest mantissa bit */
169 i32_qnanbit = lp_build_const_vec(gallivm, i32_type, 1 << 22);
170 /* combine maxexp with qnanbit */
171 nan_or_inf = lp_build_or(&i32_bld, i32_smallexpmask,
172 lp_build_and(&i32_bld, is_nan, i32_qnanbit));
173 }
174 else {
175 /*
176 * A couple simplifications, with mostly 2 drawbacks (so disabled):
177 * - it will promote some SNaNs (those which only had bits set
178 * in the mantissa part which got chopped off) to +-Infinity.
179 * (Those bits get chopped off anyway later so can as well use
180 * rescale_src instead of src_abs here saving the calculation of that.)
181 * - for no sign case, it relies on the max() being used for rescale_src
182 * to give back the NaN (which is NOT ieee754r behavior, but should work
183 * with sse2 on a full moon (rather if I got the operand order right) -
184 * we _don't_ have well-defined behavior specified with min/max wrt NaNs,
185 * however, and if it gets converted to cmp/select it may not work (we
186 * don't really have specified behavior for cmp wrt NaNs neither).
187 */
188 rescale_src = LLVMBuildBitCast(builder, rescale_src, i32_bld.vec_type, "");
189 is_nan_or_inf = lp_build_compare(gallivm, i32_type, PIPE_FUNC_GEQUAL,
190 rescale_src, i32_floatexpmask);
191 /* note this will introduce excess exponent bits */
192 nan_or_inf = rescale_src;
193 }
194 res = lp_build_select(&i32_bld, is_nan_or_inf, nan_or_inf, normal);
195
196 if (mantissa_start > 0 || !always_preserve_nans) {
197 /* mask off excess bits */
198 unsigned maskbits = (1 << (mantissa_bits + exponent_bits)) - 1;
199 mask = lp_build_const_int_vec(gallivm, i32_type,
200 maskbits << (23 - mantissa_bits));
201 res = lp_build_and(&i32_bld, res, mask);
202 }
203
204 /* add back sign bit at right position */
205 if (has_sign) {
206 LLVMValueRef sign;
207 struct lp_type u32_type = lp_type_uint_vec(32, 32 * i32_type.length);
208 struct lp_build_context u32_bld;
209 lp_build_context_init(&u32_bld, gallivm, u32_type);
210
211 mask = lp_build_const_int_vec(gallivm, i32_type, 0x80000000);
212 shift = lp_build_const_int_vec(gallivm, i32_type, 8 - exponent_bits);
213 sign = lp_build_and(&i32_bld, mask, i32_src);
214 sign = lp_build_shr(&u32_bld, sign, shift);
215 res = lp_build_or(&i32_bld, sign, res);
216 }
217
218 /* shift to final position */
219 if (exponent_start < 23) {
220 shift = lp_build_const_int_vec(gallivm, i32_type, 23 - exponent_start);
221 res = lp_build_shr(&i32_bld, res, shift);
222 }
223 else {
224 shift = lp_build_const_int_vec(gallivm, i32_type, exponent_start - 23);
225 res = lp_build_shl(&i32_bld, res, shift);
226 }
227 return res;
228 }
229
230
231 /**
232 * Convert rgba float SoA values to packed r11g11b10 values.
233 *
234 * @param src SoA float (vector) values to convert.
235 */
236 LLVMValueRef
237 lp_build_float_to_r11g11b10(struct gallivm_state *gallivm,
238 LLVMValueRef *src)
239 {
240 LLVMValueRef dst, rcomp, bcomp, gcomp;
241 struct lp_build_context i32_bld;
242 LLVMTypeRef src_type = LLVMTypeOf(*src);
243 unsigned src_length = LLVMGetTypeKind(src_type) == LLVMVectorTypeKind ?
244 LLVMGetVectorSize(src_type) : 1;
245 struct lp_type i32_type = lp_type_int_vec(32, 32 * src_length);
246
247 lp_build_context_init(&i32_bld, gallivm, i32_type);
248
249 /* "rescale" and put in right position */
250 rcomp = lp_build_float_to_smallfloat(gallivm, i32_type, src[0], 6, 5, 0, false);
251 gcomp = lp_build_float_to_smallfloat(gallivm, i32_type, src[1], 6, 5, 11, false);
252 bcomp = lp_build_float_to_smallfloat(gallivm, i32_type, src[2], 5, 5, 22, false);
253
254 /* combine the values */
255 dst = lp_build_or(&i32_bld, rcomp, gcomp);
256 return lp_build_or(&i32_bld, dst, bcomp);
257 }
258
259
260 /**
261 * Convert a float-like value with less exponent and mantissa
262 * bits than a normal float32 to a float32. The mantissa of
263 * the source value is assumed to have an implied 1, and the exponent
264 * is biased. There may be a sign bit.
265 * The source value to extract must be in a 32bit int (bits not part of
266 * the value to convert will be masked off).
267 * This works for things like 11-bit floats or half-floats,
268 * mantissa, exponent (and sign if present) must be packed
269 * the same as they are in a ordinary float.
270 *
271 * @param src (vector) value to convert
272 * @param mantissa_bits the number of mantissa bits
273 * @param exponent_bits the number of exponent bits
274 * @param mantissa_start the bit start position of the packed component
275 * @param has_sign if the small float has a sign bit
276 *
277 * ref http://fgiesen.wordpress.com/2012/03/28/half-to-float-done-quic/
278 * ref https://gist.github.com/rygorous/2156668
279 */
280 LLVMValueRef
281 lp_build_smallfloat_to_float(struct gallivm_state *gallivm,
282 struct lp_type f32_type,
283 LLVMValueRef src,
284 unsigned mantissa_bits,
285 unsigned exponent_bits,
286 unsigned mantissa_start,
287 boolean has_sign)
288 {
289 LLVMBuilderRef builder = gallivm->builder;
290 LLVMValueRef smallexpmask, i32_floatexpmask, magic;
291 LLVMValueRef wasinfnan, tmp, res, shift, maskabs, srcabs, sign;
292 unsigned exponent_start = mantissa_start + mantissa_bits;
293 struct lp_type i32_type = lp_type_int_vec(32, 32 * f32_type.length);
294 struct lp_build_context f32_bld, i32_bld;
295
296 lp_build_context_init(&f32_bld, gallivm, f32_type);
297 lp_build_context_init(&i32_bld, gallivm, i32_type);
298
299 /* extract the component to "float position" */
300 if (exponent_start < 23) {
301 shift = lp_build_const_int_vec(gallivm, i32_type, 23 - exponent_start);
302 src = lp_build_shl(&i32_bld, src, shift);
303 }
304 else {
305 shift = lp_build_const_int_vec(gallivm, i32_type, exponent_start - 23);
306 src = lp_build_shr(&i32_bld, src, shift);
307 }
308 maskabs = lp_build_const_int_vec(gallivm, i32_type,
309 ((1 << (mantissa_bits + exponent_bits)) - 1)
310 << (23 - mantissa_bits));
311 srcabs = lp_build_and(&i32_bld, src, maskabs);
312 srcabs = LLVMBuildBitCast(builder, srcabs, f32_bld.vec_type, "");
313
314 /* now do the actual scaling */
315 smallexpmask = lp_build_const_int_vec(gallivm, i32_type,
316 ((1 << exponent_bits) - 1) << 23);
317 i32_floatexpmask = lp_build_const_int_vec(gallivm, i32_type, 0xff << 23);
318 /*
319 * magic number has exponent new exp bias + (new exp bias - old exp bias),
320 * mantissa is 0.
321 */
322 magic = lp_build_const_int_vec(gallivm, i32_type,
323 (255 - (1 << (exponent_bits - 1))) << 23);
324 magic = LLVMBuildBitCast(builder, magic, f32_bld.vec_type, "");
325
326 /* adjust exponent and fix denorms */
327 res = lp_build_mul(&f32_bld, srcabs, magic);
328
329 /*
330 * if exp was max (== NaN or Inf) set new exp to max (keep mantissa),
331 * so a simple "or" will do (because exp adjust will leave mantissa intact)
332 */
333 /* use float compare (better for AVX 8-wide / no AVX2 but else should use int) */
334 smallexpmask = LLVMBuildBitCast(builder, smallexpmask, f32_bld.vec_type, "");
335 wasinfnan = lp_build_compare(gallivm, f32_type, PIPE_FUNC_GEQUAL, srcabs, smallexpmask);
336 res = LLVMBuildBitCast(builder, res, i32_bld.vec_type, "");
337 tmp = lp_build_and(&i32_bld, i32_floatexpmask, wasinfnan);
338 res = lp_build_or(&i32_bld, tmp, res);
339
340 if (has_sign) {
341 LLVMValueRef signmask = lp_build_const_int_vec(gallivm, i32_type, 0x80000000);
342 shift = lp_build_const_int_vec(gallivm, i32_type, 8 - exponent_bits);
343 sign = lp_build_shl(&i32_bld, src, shift);
344 sign = lp_build_and(&i32_bld, signmask, sign);
345 res = lp_build_or(&i32_bld, res, sign);
346 }
347
348 return LLVMBuildBitCast(builder, res, f32_bld.vec_type, "");
349 }
350
351
352 /**
353 * Convert packed float format (r11g11b10) value(s) to rgba float SoA values.
354 *
355 * @param src packed AoS r11g11b10 values (as (vector) int32)
356 * @param dst pointer to the SoA result values
357 */
358 void
359 lp_build_r11g11b10_to_float(struct gallivm_state *gallivm,
360 LLVMValueRef src,
361 LLVMValueRef *dst)
362 {
363 LLVMTypeRef src_type = LLVMTypeOf(src);
364 unsigned src_length = LLVMGetTypeKind(src_type) == LLVMVectorTypeKind ?
365 LLVMGetVectorSize(src_type) : 1;
366 struct lp_type f32_type = lp_type_float_vec(32, 32 * src_length);
367
368 dst[0] = lp_build_smallfloat_to_float(gallivm, f32_type, src, 6, 5, 0, false);
369 dst[1] = lp_build_smallfloat_to_float(gallivm, f32_type, src, 6, 5, 11, false);
370 dst[2] = lp_build_smallfloat_to_float(gallivm, f32_type, src, 5, 5, 22, false);
371
372 /* Just set alpha to one */
373 dst[3] = lp_build_one(gallivm, f32_type);
374 }
375
376
377 static LLVMValueRef
378 lp_build_rgb9_to_float_helper(struct gallivm_state *gallivm,
379 struct lp_type f32_type,
380 LLVMValueRef src,
381 LLVMValueRef scale,
382 unsigned mantissa_start)
383 {
384 LLVMValueRef shift, mask;
385
386 struct lp_type i32_type = lp_type_int_vec(32, 32 * f32_type.length);
387 struct lp_build_context i32_bld, f32_bld;
388
389 lp_build_context_init(&i32_bld, gallivm, i32_type);
390 lp_build_context_init(&f32_bld, gallivm, f32_type);
391
392 /*
393 * This is much easier as other weirdo float formats, since
394 * there's no sign, no Inf/NaN, and there's nothing special
395 * required for normals/denormals neither (as without the implied one
396 * for the mantissa for other formats, everything looks like a denormal).
397 * So just do (float)comp_bits * scale
398 */
399 shift = lp_build_const_int_vec(gallivm, i32_type, mantissa_start);
400 mask = lp_build_const_int_vec(gallivm, i32_type, 0x1ff);
401 src = lp_build_shr(&i32_bld, src, shift);
402 src = lp_build_and(&i32_bld, src, mask);
403 src = lp_build_int_to_float(&f32_bld, src);
404 return lp_build_mul(&f32_bld, src, scale);
405 }
406
407
408 /**
409 * Convert shared exponent format (rgb9e5) value(s) to rgba float SoA values.
410 *
411 * @param src packed AoS rgb9e5 values (as (vector) int32)
412 * @param dst pointer to the SoA result values
413 */
414 void
415 lp_build_rgb9e5_to_float(struct gallivm_state *gallivm,
416 LLVMValueRef src,
417 LLVMValueRef *dst)
418 {
419 LLVMBuilderRef builder = gallivm->builder;
420 LLVMTypeRef src_type = LLVMTypeOf(src);
421 LLVMValueRef shift, scale, bias, exp;
422 unsigned src_length = LLVMGetTypeKind(src_type) == LLVMVectorTypeKind ?
423 LLVMGetVectorSize(src_type) : 1;
424 struct lp_type i32_type = lp_type_int_vec(32, 32 * src_length);
425 struct lp_type u32_type = lp_type_uint_vec(32, 32 * src_length);
426 struct lp_type f32_type = lp_type_float_vec(32, 32 * src_length);
427 struct lp_build_context i32_bld, u32_bld, f32_bld;
428
429 lp_build_context_init(&i32_bld, gallivm, i32_type);
430 lp_build_context_init(&u32_bld, gallivm, u32_type);
431 lp_build_context_init(&f32_bld, gallivm, f32_type);
432
433 /* extract exponent */
434 shift = lp_build_const_int_vec(gallivm, i32_type, 27);
435 /* this shift needs to be unsigned otherwise need mask */
436 exp = lp_build_shr(&u32_bld, src, shift);
437
438 /*
439 * scale factor is 2 ^ (exp - bias)
440 * (and additionally corrected here for the mantissa bits)
441 * not using shift because
442 * a) don't have vector shift in a lot of cases
443 * b) shift direction changes hence need 2 shifts + conditional
444 * (or rotate instruction which is even more rare (for instance XOP))
445 * so use whacky float 2 ^ function instead manipulating exponent
446 * (saves us the float conversion at the end too)
447 */
448 bias = lp_build_const_int_vec(gallivm, i32_type, 127 - (15 + 9));
449 scale = lp_build_add(&i32_bld, exp, bias);
450 shift = lp_build_const_int_vec(gallivm, i32_type, 23);
451 scale = lp_build_shl(&i32_bld, scale, shift);
452 scale = LLVMBuildBitCast(builder, scale, f32_bld.vec_type, "");
453
454 dst[0] = lp_build_rgb9_to_float_helper(gallivm, f32_type, src, scale, 0);
455 dst[1] = lp_build_rgb9_to_float_helper(gallivm, f32_type, src, scale, 9);
456 dst[2] = lp_build_rgb9_to_float_helper(gallivm, f32_type, src, scale, 18);
457
458 /* Just set alpha to one */
459 dst[3] = f32_bld.one;
460 }