Introduce .editorconfig
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_pack.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 /**
30 * @file
31 * Helper functions for packing/unpacking.
32 *
33 * Pack/unpacking is necessary for conversion between types of different
34 * bit width.
35 *
36 * They are also commonly used when an computation needs higher
37 * precision for the intermediate values. For example, if one needs the
38 * function:
39 *
40 * c = compute(a, b);
41 *
42 * to use more precision for intermediate results then one should implement it
43 * as:
44 *
45 * LLVMValueRef
46 * compute(LLVMBuilderRef builder struct lp_type type, LLVMValueRef a, LLVMValueRef b)
47 * {
48 * struct lp_type wide_type = lp_wider_type(type);
49 * LLVMValueRef al, ah, bl, bh, cl, ch, c;
50 *
51 * lp_build_unpack2(builder, type, wide_type, a, &al, &ah);
52 * lp_build_unpack2(builder, type, wide_type, b, &bl, &bh);
53 *
54 * cl = compute_half(al, bl);
55 * ch = compute_half(ah, bh);
56 *
57 * c = lp_build_pack2(bld->builder, wide_type, type, cl, ch);
58 *
59 * return c;
60 * }
61 *
62 * where compute_half() would do the computation for half the elements with
63 * twice the precision.
64 *
65 * @author Jose Fonseca <jfonseca@vmware.com>
66 */
67
68
69 #include "util/u_debug.h"
70 #include "util/u_math.h"
71 #include "util/u_cpu_detect.h"
72 #include "util/u_memory.h"
73
74 #include "lp_bld_type.h"
75 #include "lp_bld_const.h"
76 #include "lp_bld_init.h"
77 #include "lp_bld_intr.h"
78 #include "lp_bld_arit.h"
79 #include "lp_bld_pack.h"
80 #include "lp_bld_swizzle.h"
81
82
83 /**
84 * Build shuffle vectors that match PUNPCKLxx and PUNPCKHxx instructions.
85 */
86 static LLVMValueRef
87 lp_build_const_unpack_shuffle(struct gallivm_state *gallivm,
88 unsigned n, unsigned lo_hi)
89 {
90 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
91 unsigned i, j;
92
93 assert(n <= LP_MAX_VECTOR_LENGTH);
94 assert(lo_hi < 2);
95
96 /* TODO: cache results in a static table */
97
98 for(i = 0, j = lo_hi*n/2; i < n; i += 2, ++j) {
99 elems[i + 0] = lp_build_const_int32(gallivm, 0 + j);
100 elems[i + 1] = lp_build_const_int32(gallivm, n + j);
101 }
102
103 return LLVMConstVector(elems, n);
104 }
105
106 /**
107 * Similar to lp_build_const_unpack_shuffle but for special AVX 256bit unpack.
108 * See comment above lp_build_interleave2_half for more details.
109 */
110 static LLVMValueRef
111 lp_build_const_unpack_shuffle_half(struct gallivm_state *gallivm,
112 unsigned n, unsigned lo_hi)
113 {
114 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
115 unsigned i, j;
116
117 assert(n <= LP_MAX_VECTOR_LENGTH);
118 assert(lo_hi < 2);
119
120 for (i = 0, j = lo_hi*(n/4); i < n; i += 2, ++j) {
121 if (i == (n / 2))
122 j += n / 4;
123
124 elems[i + 0] = lp_build_const_int32(gallivm, 0 + j);
125 elems[i + 1] = lp_build_const_int32(gallivm, n + j);
126 }
127
128 return LLVMConstVector(elems, n);
129 }
130
131 /**
132 * Build shuffle vectors that match PACKxx (SSE) instructions or
133 * VPERM (Altivec).
134 */
135 static LLVMValueRef
136 lp_build_const_pack_shuffle(struct gallivm_state *gallivm, unsigned n)
137 {
138 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
139 unsigned i;
140
141 assert(n <= LP_MAX_VECTOR_LENGTH);
142
143 for(i = 0; i < n; ++i)
144 #ifdef PIPE_ARCH_LITTLE_ENDIAN
145 elems[i] = lp_build_const_int32(gallivm, 2*i);
146 #else
147 elems[i] = lp_build_const_int32(gallivm, 2*i+1);
148 #endif
149
150 return LLVMConstVector(elems, n);
151 }
152
153 /**
154 * Return a vector with elements src[start:start+size]
155 * Most useful for getting half the values out of a 256bit sized vector,
156 * otherwise may cause data rearrangement to happen.
157 */
158 LLVMValueRef
159 lp_build_extract_range(struct gallivm_state *gallivm,
160 LLVMValueRef src,
161 unsigned start,
162 unsigned size)
163 {
164 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
165 unsigned i;
166
167 assert(size <= ARRAY_SIZE(elems));
168
169 for (i = 0; i < size; ++i)
170 elems[i] = lp_build_const_int32(gallivm, i + start);
171
172 if (size == 1) {
173 return LLVMBuildExtractElement(gallivm->builder, src, elems[0], "");
174 }
175 else {
176 return LLVMBuildShuffleVector(gallivm->builder, src, src,
177 LLVMConstVector(elems, size), "");
178 }
179 }
180
181 /**
182 * Concatenates several (must be a power of 2) vectors (of same type)
183 * into a larger one.
184 * Most useful for building up a 256bit sized vector out of two 128bit ones.
185 */
186 LLVMValueRef
187 lp_build_concat(struct gallivm_state *gallivm,
188 LLVMValueRef src[],
189 struct lp_type src_type,
190 unsigned num_vectors)
191 {
192 unsigned new_length, i;
193 LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH/2];
194 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
195
196 assert(src_type.length * num_vectors <= ARRAY_SIZE(shuffles));
197 assert(util_is_power_of_two(num_vectors));
198
199 new_length = src_type.length;
200
201 for (i = 0; i < num_vectors; i++)
202 tmp[i] = src[i];
203
204 while (num_vectors > 1) {
205 num_vectors >>= 1;
206 new_length <<= 1;
207 for (i = 0; i < new_length; i++) {
208 shuffles[i] = lp_build_const_int32(gallivm, i);
209 }
210 for (i = 0; i < num_vectors; i++) {
211 tmp[i] = LLVMBuildShuffleVector(gallivm->builder, tmp[i*2], tmp[i*2 + 1],
212 LLVMConstVector(shuffles, new_length), "");
213 }
214 }
215
216 return tmp[0];
217 }
218
219
220 /**
221 * Combines vectors to reduce from num_srcs to num_dsts.
222 * Returns the number of src vectors concatenated in a single dst.
223 *
224 * num_srcs must be exactly divisible by num_dsts.
225 *
226 * e.g. For num_srcs = 4 and src = [x, y, z, w]
227 * num_dsts = 1 dst = [xyzw] return = 4
228 * num_dsts = 2 dst = [xy, zw] return = 2
229 */
230 int
231 lp_build_concat_n(struct gallivm_state *gallivm,
232 struct lp_type src_type,
233 LLVMValueRef *src,
234 unsigned num_srcs,
235 LLVMValueRef *dst,
236 unsigned num_dsts)
237 {
238 int size = num_srcs / num_dsts;
239 unsigned i;
240
241 assert(num_srcs >= num_dsts);
242 assert((num_srcs % size) == 0);
243
244 if (num_srcs == num_dsts) {
245 for (i = 0; i < num_dsts; ++i) {
246 dst[i] = src[i];
247 }
248 return 1;
249 }
250
251 for (i = 0; i < num_dsts; ++i) {
252 dst[i] = lp_build_concat(gallivm, &src[i * size], src_type, size);
253 }
254
255 return size;
256 }
257
258
259 /**
260 * Un-interleave vector.
261 * This will return a vector consisting of every second element
262 * (depending on lo_hi, beginning at 0 or 1).
263 * The returned vector size (elems and width) will only be half
264 * that of the source vector.
265 */
266 LLVMValueRef
267 lp_build_uninterleave1(struct gallivm_state *gallivm,
268 unsigned num_elems,
269 LLVMValueRef a,
270 unsigned lo_hi)
271 {
272 LLVMValueRef shuffle, elems[LP_MAX_VECTOR_LENGTH];
273 unsigned i;
274 assert(num_elems <= LP_MAX_VECTOR_LENGTH);
275
276 for (i = 0; i < num_elems / 2; ++i)
277 elems[i] = lp_build_const_int32(gallivm, 2*i + lo_hi);
278
279 shuffle = LLVMConstVector(elems, num_elems / 2);
280
281 return LLVMBuildShuffleVector(gallivm->builder, a, a, shuffle, "");
282 }
283
284
285 /**
286 * Interleave vector elements.
287 *
288 * Matches the PUNPCKLxx and PUNPCKHxx SSE instructions
289 * (but not for 256bit AVX vectors).
290 */
291 LLVMValueRef
292 lp_build_interleave2(struct gallivm_state *gallivm,
293 struct lp_type type,
294 LLVMValueRef a,
295 LLVMValueRef b,
296 unsigned lo_hi)
297 {
298 LLVMValueRef shuffle;
299
300 if (type.length == 2 && type.width == 128 && util_cpu_caps.has_avx) {
301 /*
302 * XXX: This is a workaround for llvm code generation deficiency. Strangely
303 * enough, while this needs vinsertf128/vextractf128 instructions (hence
304 * a natural match when using 2x128bit vectors) the "normal" unpack shuffle
305 * generates code ranging from atrocious (llvm 3.1) to terrible (llvm 3.2, 3.3).
306 * So use some different shuffles instead (the exact shuffles don't seem to
307 * matter, as long as not using 128bit wide vectors, works with 8x32 or 4x64).
308 */
309 struct lp_type tmp_type = type;
310 LLVMValueRef srchalf[2], tmpdst;
311 tmp_type.length = 4;
312 tmp_type.width = 64;
313 a = LLVMBuildBitCast(gallivm->builder, a, lp_build_vec_type(gallivm, tmp_type), "");
314 b = LLVMBuildBitCast(gallivm->builder, b, lp_build_vec_type(gallivm, tmp_type), "");
315 srchalf[0] = lp_build_extract_range(gallivm, a, lo_hi * 2, 2);
316 srchalf[1] = lp_build_extract_range(gallivm, b, lo_hi * 2, 2);
317 tmp_type.length = 2;
318 tmpdst = lp_build_concat(gallivm, srchalf, tmp_type, 2);
319 return LLVMBuildBitCast(gallivm->builder, tmpdst, lp_build_vec_type(gallivm, type), "");
320 }
321
322 shuffle = lp_build_const_unpack_shuffle(gallivm, type.length, lo_hi);
323
324 return LLVMBuildShuffleVector(gallivm->builder, a, b, shuffle, "");
325 }
326
327 /**
328 * Interleave vector elements but with 256 bit,
329 * treats it as interleave with 2 concatenated 128 bit vectors.
330 *
331 * This differs to lp_build_interleave2 as that function would do the following (for lo):
332 * a0 b0 a1 b1 a2 b2 a3 b3, and this does not compile into an AVX unpack instruction.
333 *
334 *
335 * An example interleave 8x float with 8x float on AVX 256bit unpack:
336 * a0 a1 a2 a3 a4 a5 a6 a7 <-> b0 b1 b2 b3 b4 b5 b6 b7
337 *
338 * Equivalent to interleaving 2x 128 bit vectors
339 * a0 a1 a2 a3 <-> b0 b1 b2 b3 concatenated with a4 a5 a6 a7 <-> b4 b5 b6 b7
340 *
341 * So interleave-lo would result in:
342 * a0 b0 a1 b1 a4 b4 a5 b5
343 *
344 * And interleave-hi would result in:
345 * a2 b2 a3 b3 a6 b6 a7 b7
346 */
347 LLVMValueRef
348 lp_build_interleave2_half(struct gallivm_state *gallivm,
349 struct lp_type type,
350 LLVMValueRef a,
351 LLVMValueRef b,
352 unsigned lo_hi)
353 {
354 if (type.length * type.width == 256) {
355 LLVMValueRef shuffle = lp_build_const_unpack_shuffle_half(gallivm, type.length, lo_hi);
356 return LLVMBuildShuffleVector(gallivm->builder, a, b, shuffle, "");
357 } else {
358 return lp_build_interleave2(gallivm, type, a, b, lo_hi);
359 }
360 }
361
362 /**
363 * Double the bit width.
364 *
365 * This will only change the number of bits the values are represented, not the
366 * values themselves.
367 */
368 void
369 lp_build_unpack2(struct gallivm_state *gallivm,
370 struct lp_type src_type,
371 struct lp_type dst_type,
372 LLVMValueRef src,
373 LLVMValueRef *dst_lo,
374 LLVMValueRef *dst_hi)
375 {
376 LLVMBuilderRef builder = gallivm->builder;
377 LLVMValueRef msb;
378 LLVMTypeRef dst_vec_type;
379
380 assert(!src_type.floating);
381 assert(!dst_type.floating);
382 assert(dst_type.width == src_type.width * 2);
383 assert(dst_type.length * 2 == src_type.length);
384
385 if(dst_type.sign && src_type.sign) {
386 /* Replicate the sign bit in the most significant bits */
387 msb = LLVMBuildAShr(builder, src, lp_build_const_int_vec(gallivm, src_type, src_type.width - 1), "");
388 }
389 else
390 /* Most significant bits always zero */
391 msb = lp_build_zero(gallivm, src_type);
392
393 /* Interleave bits */
394 #ifdef PIPE_ARCH_LITTLE_ENDIAN
395 *dst_lo = lp_build_interleave2(gallivm, src_type, src, msb, 0);
396 *dst_hi = lp_build_interleave2(gallivm, src_type, src, msb, 1);
397 #else
398 *dst_lo = lp_build_interleave2(gallivm, src_type, msb, src, 0);
399 *dst_hi = lp_build_interleave2(gallivm, src_type, msb, src, 1);
400 #endif
401
402 /* Cast the result into the new type (twice as wide) */
403
404 dst_vec_type = lp_build_vec_type(gallivm, dst_type);
405
406 *dst_lo = LLVMBuildBitCast(builder, *dst_lo, dst_vec_type, "");
407 *dst_hi = LLVMBuildBitCast(builder, *dst_hi, dst_vec_type, "");
408 }
409
410
411 /**
412 * Expand the bit width.
413 *
414 * This will only change the number of bits the values are represented, not the
415 * values themselves.
416 */
417 void
418 lp_build_unpack(struct gallivm_state *gallivm,
419 struct lp_type src_type,
420 struct lp_type dst_type,
421 LLVMValueRef src,
422 LLVMValueRef *dst, unsigned num_dsts)
423 {
424 unsigned num_tmps;
425 unsigned i;
426
427 /* Register width must remain constant */
428 assert(src_type.width * src_type.length == dst_type.width * dst_type.length);
429
430 /* We must not loose or gain channels. Only precision */
431 assert(src_type.length == dst_type.length * num_dsts);
432
433 num_tmps = 1;
434 dst[0] = src;
435
436 while(src_type.width < dst_type.width) {
437 struct lp_type tmp_type = src_type;
438
439 tmp_type.width *= 2;
440 tmp_type.length /= 2;
441
442 for(i = num_tmps; i--; ) {
443 lp_build_unpack2(gallivm, src_type, tmp_type, dst[i], &dst[2*i + 0], &dst[2*i + 1]);
444 }
445
446 src_type = tmp_type;
447
448 num_tmps *= 2;
449 }
450
451 assert(num_tmps == num_dsts);
452 }
453
454
455 /**
456 * Non-interleaved pack.
457 *
458 * This will move values as
459 * (LSB) (MSB)
460 * lo = l0 __ l1 __ l2 __.. __ ln __
461 * hi = h0 __ h1 __ h2 __.. __ hn __
462 * res = l0 l1 l2 .. ln h0 h1 h2 .. hn
463 *
464 * This will only change the number of bits the values are represented, not the
465 * values themselves.
466 *
467 * It is assumed the values are already clamped into the destination type range.
468 * Values outside that range will produce undefined results. Use
469 * lp_build_packs2 instead.
470 */
471 LLVMValueRef
472 lp_build_pack2(struct gallivm_state *gallivm,
473 struct lp_type src_type,
474 struct lp_type dst_type,
475 LLVMValueRef lo,
476 LLVMValueRef hi)
477 {
478 LLVMBuilderRef builder = gallivm->builder;
479 LLVMTypeRef dst_vec_type = lp_build_vec_type(gallivm, dst_type);
480 LLVMValueRef shuffle;
481 LLVMValueRef res = NULL;
482 struct lp_type intr_type = dst_type;
483
484 assert(!src_type.floating);
485 assert(!dst_type.floating);
486 assert(src_type.width == dst_type.width * 2);
487 assert(src_type.length * 2 == dst_type.length);
488
489 /* Check for special cases first */
490 if ((util_cpu_caps.has_sse2 || util_cpu_caps.has_altivec) &&
491 src_type.width * src_type.length >= 128) {
492 const char *intrinsic = NULL;
493 boolean swap_intrinsic_operands = FALSE;
494
495 switch(src_type.width) {
496 case 32:
497 if (util_cpu_caps.has_sse2) {
498 if (dst_type.sign) {
499 intrinsic = "llvm.x86.sse2.packssdw.128";
500 } else {
501 if (util_cpu_caps.has_sse4_1) {
502 intrinsic = "llvm.x86.sse41.packusdw";
503 }
504 }
505 } else if (util_cpu_caps.has_altivec) {
506 if (dst_type.sign) {
507 intrinsic = "llvm.ppc.altivec.vpkswss";
508 } else {
509 intrinsic = "llvm.ppc.altivec.vpkuwus";
510 }
511 #ifdef PIPE_ARCH_LITTLE_ENDIAN
512 swap_intrinsic_operands = TRUE;
513 #endif
514 }
515 break;
516 case 16:
517 if (dst_type.sign) {
518 if (util_cpu_caps.has_sse2) {
519 intrinsic = "llvm.x86.sse2.packsswb.128";
520 } else if (util_cpu_caps.has_altivec) {
521 intrinsic = "llvm.ppc.altivec.vpkshss";
522 #ifdef PIPE_ARCH_LITTLE_ENDIAN
523 swap_intrinsic_operands = TRUE;
524 #endif
525 }
526 } else {
527 if (util_cpu_caps.has_sse2) {
528 intrinsic = "llvm.x86.sse2.packuswb.128";
529 } else if (util_cpu_caps.has_altivec) {
530 intrinsic = "llvm.ppc.altivec.vpkshus";
531 #ifdef PIPE_ARCH_LITTLE_ENDIAN
532 swap_intrinsic_operands = TRUE;
533 #endif
534 }
535 }
536 break;
537 /* default uses generic shuffle below */
538 }
539 if (intrinsic) {
540 if (src_type.width * src_type.length == 128) {
541 LLVMTypeRef intr_vec_type = lp_build_vec_type(gallivm, intr_type);
542 if (swap_intrinsic_operands) {
543 res = lp_build_intrinsic_binary(builder, intrinsic, intr_vec_type, hi, lo);
544 } else {
545 res = lp_build_intrinsic_binary(builder, intrinsic, intr_vec_type, lo, hi);
546 }
547 if (dst_vec_type != intr_vec_type) {
548 res = LLVMBuildBitCast(builder, res, dst_vec_type, "");
549 }
550 }
551 else {
552 int num_split = src_type.width * src_type.length / 128;
553 int i;
554 int nlen = 128 / src_type.width;
555 int lo_off = swap_intrinsic_operands ? nlen : 0;
556 int hi_off = swap_intrinsic_operands ? 0 : nlen;
557 struct lp_type ndst_type = lp_type_unorm(dst_type.width, 128);
558 struct lp_type nintr_type = lp_type_unorm(intr_type.width, 128);
559 LLVMValueRef tmpres[LP_MAX_VECTOR_WIDTH / 128];
560 LLVMValueRef tmplo, tmphi;
561 LLVMTypeRef ndst_vec_type = lp_build_vec_type(gallivm, ndst_type);
562 LLVMTypeRef nintr_vec_type = lp_build_vec_type(gallivm, nintr_type);
563
564 assert(num_split <= LP_MAX_VECTOR_WIDTH / 128);
565
566 for (i = 0; i < num_split / 2; i++) {
567 tmplo = lp_build_extract_range(gallivm,
568 lo, i*nlen*2 + lo_off, nlen);
569 tmphi = lp_build_extract_range(gallivm,
570 lo, i*nlen*2 + hi_off, nlen);
571 tmpres[i] = lp_build_intrinsic_binary(builder, intrinsic,
572 nintr_vec_type, tmplo, tmphi);
573 if (ndst_vec_type != nintr_vec_type) {
574 tmpres[i] = LLVMBuildBitCast(builder, tmpres[i], ndst_vec_type, "");
575 }
576 }
577 for (i = 0; i < num_split / 2; i++) {
578 tmplo = lp_build_extract_range(gallivm,
579 hi, i*nlen*2 + lo_off, nlen);
580 tmphi = lp_build_extract_range(gallivm,
581 hi, i*nlen*2 + hi_off, nlen);
582 tmpres[i+num_split/2] = lp_build_intrinsic_binary(builder, intrinsic,
583 nintr_vec_type,
584 tmplo, tmphi);
585 if (ndst_vec_type != nintr_vec_type) {
586 tmpres[i+num_split/2] = LLVMBuildBitCast(builder, tmpres[i+num_split/2],
587 ndst_vec_type, "");
588 }
589 }
590 res = lp_build_concat(gallivm, tmpres, ndst_type, num_split);
591 }
592 return res;
593 }
594 }
595
596 /* generic shuffle */
597 lo = LLVMBuildBitCast(builder, lo, dst_vec_type, "");
598 hi = LLVMBuildBitCast(builder, hi, dst_vec_type, "");
599
600 shuffle = lp_build_const_pack_shuffle(gallivm, dst_type.length);
601
602 res = LLVMBuildShuffleVector(builder, lo, hi, shuffle, "");
603
604 return res;
605 }
606
607
608
609 /**
610 * Non-interleaved pack and saturate.
611 *
612 * Same as lp_build_pack2 but will saturate values so that they fit into the
613 * destination type.
614 */
615 LLVMValueRef
616 lp_build_packs2(struct gallivm_state *gallivm,
617 struct lp_type src_type,
618 struct lp_type dst_type,
619 LLVMValueRef lo,
620 LLVMValueRef hi)
621 {
622 boolean clamp;
623
624 assert(!src_type.floating);
625 assert(!dst_type.floating);
626 assert(src_type.sign == dst_type.sign);
627 assert(src_type.width == dst_type.width * 2);
628 assert(src_type.length * 2 == dst_type.length);
629
630 clamp = TRUE;
631
632 /* All X86 SSE non-interleaved pack instructions take signed inputs and
633 * saturate them, so no need to clamp for those cases. */
634 if(util_cpu_caps.has_sse2 &&
635 src_type.width * src_type.length >= 128 &&
636 src_type.sign &&
637 (src_type.width == 32 || src_type.width == 16))
638 clamp = FALSE;
639
640 if(clamp) {
641 struct lp_build_context bld;
642 unsigned dst_bits = dst_type.sign ? dst_type.width - 1 : dst_type.width;
643 LLVMValueRef dst_max = lp_build_const_int_vec(gallivm, src_type, ((unsigned long long)1 << dst_bits) - 1);
644 lp_build_context_init(&bld, gallivm, src_type);
645 lo = lp_build_min(&bld, lo, dst_max);
646 hi = lp_build_min(&bld, hi, dst_max);
647 /* FIXME: What about lower bound? */
648 }
649
650 return lp_build_pack2(gallivm, src_type, dst_type, lo, hi);
651 }
652
653
654 /**
655 * Truncate the bit width.
656 *
657 * TODO: Handle saturation consistently.
658 */
659 LLVMValueRef
660 lp_build_pack(struct gallivm_state *gallivm,
661 struct lp_type src_type,
662 struct lp_type dst_type,
663 boolean clamped,
664 const LLVMValueRef *src, unsigned num_srcs)
665 {
666 LLVMValueRef (*pack2)(struct gallivm_state *gallivm,
667 struct lp_type src_type,
668 struct lp_type dst_type,
669 LLVMValueRef lo,
670 LLVMValueRef hi);
671 LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
672 unsigned i;
673
674 /* Register width must remain constant */
675 assert(src_type.width * src_type.length == dst_type.width * dst_type.length);
676
677 /* We must not loose or gain channels. Only precision */
678 assert(src_type.length * num_srcs == dst_type.length);
679
680 if(clamped)
681 pack2 = &lp_build_pack2;
682 else
683 pack2 = &lp_build_packs2;
684
685 for(i = 0; i < num_srcs; ++i)
686 tmp[i] = src[i];
687
688 while(src_type.width > dst_type.width) {
689 struct lp_type tmp_type = src_type;
690
691 tmp_type.width /= 2;
692 tmp_type.length *= 2;
693
694 /* Take in consideration the sign changes only in the last step */
695 if(tmp_type.width == dst_type.width)
696 tmp_type.sign = dst_type.sign;
697
698 num_srcs /= 2;
699
700 for(i = 0; i < num_srcs; ++i)
701 tmp[i] = pack2(gallivm, src_type, tmp_type,
702 tmp[2*i + 0], tmp[2*i + 1]);
703
704 src_type = tmp_type;
705 }
706
707 assert(num_srcs == 1);
708
709 return tmp[0];
710 }
711
712
713 /**
714 * Truncate or expand the bitwidth.
715 *
716 * NOTE: Getting the right sign flags is crucial here, as we employ some
717 * intrinsics that do saturation.
718 */
719 void
720 lp_build_resize(struct gallivm_state *gallivm,
721 struct lp_type src_type,
722 struct lp_type dst_type,
723 const LLVMValueRef *src, unsigned num_srcs,
724 LLVMValueRef *dst, unsigned num_dsts)
725 {
726 LLVMBuilderRef builder = gallivm->builder;
727 LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
728 unsigned i;
729
730 /*
731 * We don't support float <-> int conversion here. That must be done
732 * before/after calling this function.
733 */
734 assert(src_type.floating == dst_type.floating);
735
736 /*
737 * We don't support double <-> float conversion yet, although it could be
738 * added with little effort.
739 */
740 assert((!src_type.floating && !dst_type.floating) ||
741 src_type.width == dst_type.width);
742
743 /* We must not loose or gain channels. Only precision */
744 assert(src_type.length * num_srcs == dst_type.length * num_dsts);
745
746 assert(src_type.length <= LP_MAX_VECTOR_LENGTH);
747 assert(dst_type.length <= LP_MAX_VECTOR_LENGTH);
748 assert(num_srcs <= LP_MAX_VECTOR_LENGTH);
749 assert(num_dsts <= LP_MAX_VECTOR_LENGTH);
750
751 if (src_type.width > dst_type.width) {
752 /*
753 * Truncate bit width.
754 */
755
756 /* Conversion must be M:1 */
757 assert(num_dsts == 1);
758
759 if (src_type.width * src_type.length == dst_type.width * dst_type.length) {
760 /*
761 * Register width remains constant -- use vector packing intrinsics
762 */
763 tmp[0] = lp_build_pack(gallivm, src_type, dst_type, TRUE, src, num_srcs);
764 }
765 else {
766 if (src_type.width / dst_type.width > num_srcs) {
767 /*
768 * First change src vectors size (with shuffle) so they have the
769 * same size as the destination vector, then pack normally.
770 * Note: cannot use cast/extract because llvm generates atrocious code.
771 */
772 unsigned size_ratio = (src_type.width * src_type.length) /
773 (dst_type.length * dst_type.width);
774 unsigned new_length = src_type.length / size_ratio;
775
776 for (i = 0; i < size_ratio * num_srcs; i++) {
777 unsigned start_index = (i % size_ratio) * new_length;
778 tmp[i] = lp_build_extract_range(gallivm, src[i / size_ratio],
779 start_index, new_length);
780 }
781 num_srcs *= size_ratio;
782 src_type.length = new_length;
783 tmp[0] = lp_build_pack(gallivm, src_type, dst_type, TRUE, tmp, num_srcs);
784 }
785 else {
786 /*
787 * Truncate bit width but expand vector size - first pack
788 * then expand simply because this should be more AVX-friendly
789 * for the cases we probably hit.
790 */
791 unsigned size_ratio = (dst_type.width * dst_type.length) /
792 (src_type.length * src_type.width);
793 unsigned num_pack_srcs = num_srcs / size_ratio;
794 dst_type.length = dst_type.length / size_ratio;
795
796 for (i = 0; i < size_ratio; i++) {
797 tmp[i] = lp_build_pack(gallivm, src_type, dst_type, TRUE,
798 &src[i*num_pack_srcs], num_pack_srcs);
799 }
800 tmp[0] = lp_build_concat(gallivm, tmp, dst_type, size_ratio);
801 }
802 }
803 }
804 else if (src_type.width < dst_type.width) {
805 /*
806 * Expand bit width.
807 */
808
809 /* Conversion must be 1:N */
810 assert(num_srcs == 1);
811
812 if (src_type.width * src_type.length == dst_type.width * dst_type.length) {
813 /*
814 * Register width remains constant -- use vector unpack intrinsics
815 */
816 lp_build_unpack(gallivm, src_type, dst_type, src[0], tmp, num_dsts);
817 }
818 else {
819 /*
820 * Do it element-wise.
821 */
822 assert(src_type.length * num_srcs == dst_type.length * num_dsts);
823
824 for (i = 0; i < num_dsts; i++) {
825 tmp[i] = lp_build_undef(gallivm, dst_type);
826 }
827
828 for (i = 0; i < src_type.length; ++i) {
829 unsigned j = i / dst_type.length;
830 LLVMValueRef srcindex = lp_build_const_int32(gallivm, i);
831 LLVMValueRef dstindex = lp_build_const_int32(gallivm, i % dst_type.length);
832 LLVMValueRef val = LLVMBuildExtractElement(builder, src[0], srcindex, "");
833
834 if (src_type.sign && dst_type.sign) {
835 val = LLVMBuildSExt(builder, val, lp_build_elem_type(gallivm, dst_type), "");
836 } else {
837 val = LLVMBuildZExt(builder, val, lp_build_elem_type(gallivm, dst_type), "");
838 }
839 tmp[j] = LLVMBuildInsertElement(builder, tmp[j], val, dstindex, "");
840 }
841 }
842 }
843 else {
844 /*
845 * No-op
846 */
847
848 /* "Conversion" must be N:N */
849 assert(num_srcs == num_dsts);
850
851 for(i = 0; i < num_dsts; ++i)
852 tmp[i] = src[i];
853 }
854
855 for(i = 0; i < num_dsts; ++i)
856 dst[i] = tmp[i];
857 }
858
859
860 /**
861 * Expands src vector from src.length to dst_length
862 */
863 LLVMValueRef
864 lp_build_pad_vector(struct gallivm_state *gallivm,
865 LLVMValueRef src,
866 unsigned dst_length)
867 {
868 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
869 LLVMValueRef undef;
870 LLVMTypeRef type;
871 unsigned i, src_length;
872
873 type = LLVMTypeOf(src);
874
875 if (LLVMGetTypeKind(type) != LLVMVectorTypeKind) {
876 /* Can't use ShuffleVector on non-vector type */
877 undef = LLVMGetUndef(LLVMVectorType(type, dst_length));
878 return LLVMBuildInsertElement(gallivm->builder, undef, src, lp_build_const_int32(gallivm, 0), "");
879 }
880
881 undef = LLVMGetUndef(type);
882 src_length = LLVMGetVectorSize(type);
883
884 assert(dst_length <= ARRAY_SIZE(elems));
885 assert(dst_length >= src_length);
886
887 if (src_length == dst_length)
888 return src;
889
890 /* All elements from src vector */
891 for (i = 0; i < src_length; ++i)
892 elems[i] = lp_build_const_int32(gallivm, i);
893
894 /* Undef fill remaining space */
895 for (i = src_length; i < dst_length; ++i)
896 elems[i] = lp_build_const_int32(gallivm, src_length);
897
898 /* Combine the two vectors */
899 return LLVMBuildShuffleVector(gallivm->builder, src, undef, LLVMConstVector(elems, dst_length), "");
900 }