gallivm: Prevent disassembly debug output from being truncated.
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_sample.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * @file
30 * Texture sampling -- common code.
31 *
32 * @author Jose Fonseca <jfonseca@vmware.com>
33 */
34
35 #include "pipe/p_defines.h"
36 #include "pipe/p_state.h"
37 #include "util/u_format.h"
38 #include "util/u_math.h"
39 #include "util/u_cpu_detect.h"
40 #include "lp_bld_arit.h"
41 #include "lp_bld_const.h"
42 #include "lp_bld_debug.h"
43 #include "lp_bld_printf.h"
44 #include "lp_bld_flow.h"
45 #include "lp_bld_sample.h"
46 #include "lp_bld_swizzle.h"
47 #include "lp_bld_type.h"
48 #include "lp_bld_logic.h"
49 #include "lp_bld_pack.h"
50 #include "lp_bld_quad.h"
51 #include "lp_bld_bitarit.h"
52
53
54 /*
55 * Bri-linear factor. Should be greater than one.
56 */
57 #define BRILINEAR_FACTOR 2
58
59 /**
60 * Does the given texture wrap mode allow sampling the texture border color?
61 * XXX maybe move this into gallium util code.
62 */
63 boolean
64 lp_sampler_wrap_mode_uses_border_color(unsigned mode,
65 unsigned min_img_filter,
66 unsigned mag_img_filter)
67 {
68 switch (mode) {
69 case PIPE_TEX_WRAP_REPEAT:
70 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
71 case PIPE_TEX_WRAP_MIRROR_REPEAT:
72 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
73 return FALSE;
74 case PIPE_TEX_WRAP_CLAMP:
75 case PIPE_TEX_WRAP_MIRROR_CLAMP:
76 if (min_img_filter == PIPE_TEX_FILTER_NEAREST &&
77 mag_img_filter == PIPE_TEX_FILTER_NEAREST) {
78 return FALSE;
79 } else {
80 return TRUE;
81 }
82 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
83 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
84 return TRUE;
85 default:
86 assert(0 && "unexpected wrap mode");
87 return FALSE;
88 }
89 }
90
91
92 /**
93 * Initialize lp_sampler_static_texture_state object with the gallium
94 * texture/sampler_view state (this contains the parts which are
95 * considered static).
96 */
97 void
98 lp_sampler_static_texture_state(struct lp_static_texture_state *state,
99 const struct pipe_sampler_view *view)
100 {
101 const struct pipe_resource *texture;
102
103 memset(state, 0, sizeof *state);
104
105 if (!view || !view->texture)
106 return;
107
108 texture = view->texture;
109
110 state->format = view->format;
111 state->swizzle_r = view->swizzle_r;
112 state->swizzle_g = view->swizzle_g;
113 state->swizzle_b = view->swizzle_b;
114 state->swizzle_a = view->swizzle_a;
115
116 state->target = view->target;
117 state->pot_width = util_is_power_of_two(texture->width0);
118 state->pot_height = util_is_power_of_two(texture->height0);
119 state->pot_depth = util_is_power_of_two(texture->depth0);
120 state->level_zero_only = !view->u.tex.last_level;
121
122 /*
123 * the layer / element / level parameters are all either dynamic
124 * state or handled transparently wrt execution.
125 */
126 }
127
128
129 /**
130 * Initialize lp_sampler_static_sampler_state object with the gallium sampler
131 * state (this contains the parts which are considered static).
132 */
133 void
134 lp_sampler_static_sampler_state(struct lp_static_sampler_state *state,
135 const struct pipe_sampler_state *sampler)
136 {
137 memset(state, 0, sizeof *state);
138
139 if (!sampler)
140 return;
141
142 /*
143 * We don't copy sampler state over unless it is actually enabled, to avoid
144 * spurious recompiles, as the sampler static state is part of the shader
145 * key.
146 *
147 * Ideally the state tracker or cso_cache module would make all state
148 * canonical, but until that happens it's better to be safe than sorry here.
149 *
150 * XXX: Actually there's much more than can be done here, especially
151 * regarding 1D/2D/3D/CUBE textures, wrap modes, etc.
152 */
153
154 state->wrap_s = sampler->wrap_s;
155 state->wrap_t = sampler->wrap_t;
156 state->wrap_r = sampler->wrap_r;
157 state->min_img_filter = sampler->min_img_filter;
158 state->mag_img_filter = sampler->mag_img_filter;
159 state->seamless_cube_map = sampler->seamless_cube_map;
160
161 if (sampler->max_lod > 0.0f) {
162 state->min_mip_filter = sampler->min_mip_filter;
163 } else {
164 state->min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
165 }
166
167 if (state->min_mip_filter != PIPE_TEX_MIPFILTER_NONE ||
168 state->min_img_filter != state->mag_img_filter) {
169 if (sampler->lod_bias != 0.0f) {
170 state->lod_bias_non_zero = 1;
171 }
172
173 /* If min_lod == max_lod we can greatly simplify mipmap selection.
174 * This is a case that occurs during automatic mipmap generation.
175 */
176 if (sampler->min_lod == sampler->max_lod) {
177 state->min_max_lod_equal = 1;
178 } else {
179 if (sampler->min_lod > 0.0f) {
180 state->apply_min_lod = 1;
181 }
182
183 /*
184 * XXX this won't do anything with the mesa state tracker which always
185 * sets max_lod to not more than actually present mip maps...
186 */
187 if (sampler->max_lod < (PIPE_MAX_TEXTURE_LEVELS - 1)) {
188 state->apply_max_lod = 1;
189 }
190 }
191 }
192
193 state->compare_mode = sampler->compare_mode;
194 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE) {
195 state->compare_func = sampler->compare_func;
196 }
197
198 state->normalized_coords = sampler->normalized_coords;
199 }
200
201
202 /**
203 * Generate code to compute coordinate gradient (rho).
204 * \param derivs partial derivatives of (s, t, r, q) with respect to X and Y
205 *
206 * The resulting rho has bld->levelf format (per quad or per element).
207 */
208 static LLVMValueRef
209 lp_build_rho(struct lp_build_sample_context *bld,
210 unsigned texture_unit,
211 LLVMValueRef s,
212 LLVMValueRef t,
213 LLVMValueRef r,
214 LLVMValueRef cube_rho,
215 const struct lp_derivatives *derivs)
216 {
217 struct gallivm_state *gallivm = bld->gallivm;
218 struct lp_build_context *int_size_bld = &bld->int_size_in_bld;
219 struct lp_build_context *float_size_bld = &bld->float_size_in_bld;
220 struct lp_build_context *float_bld = &bld->float_bld;
221 struct lp_build_context *coord_bld = &bld->coord_bld;
222 struct lp_build_context *rho_bld = &bld->lodf_bld;
223 const unsigned dims = bld->dims;
224 LLVMValueRef ddx_ddy[2] = {NULL};
225 LLVMBuilderRef builder = bld->gallivm->builder;
226 LLVMTypeRef i32t = LLVMInt32TypeInContext(bld->gallivm->context);
227 LLVMValueRef index0 = LLVMConstInt(i32t, 0, 0);
228 LLVMValueRef index1 = LLVMConstInt(i32t, 1, 0);
229 LLVMValueRef index2 = LLVMConstInt(i32t, 2, 0);
230 LLVMValueRef rho_vec;
231 LLVMValueRef int_size, float_size;
232 LLVMValueRef rho;
233 LLVMValueRef first_level, first_level_vec;
234 unsigned length = coord_bld->type.length;
235 unsigned num_quads = length / 4;
236 boolean rho_per_quad = rho_bld->type.length != length;
237 boolean no_rho_opt = (gallivm_debug & GALLIVM_DEBUG_NO_RHO_APPROX) && (dims > 1);
238 unsigned i;
239 LLVMValueRef i32undef = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
240 LLVMValueRef rho_xvec, rho_yvec;
241
242 /* Note that all simplified calculations will only work for isotropic filtering */
243
244 /*
245 * rho calcs are always per quad except for explicit derivs (excluding
246 * the messy cube maps for now) when requested.
247 */
248
249 first_level = bld->dynamic_state->first_level(bld->dynamic_state, bld->gallivm,
250 bld->context_ptr, texture_unit);
251 first_level_vec = lp_build_broadcast_scalar(int_size_bld, first_level);
252 int_size = lp_build_minify(int_size_bld, bld->int_size, first_level_vec, TRUE);
253 float_size = lp_build_int_to_float(float_size_bld, int_size);
254
255 if (cube_rho) {
256 LLVMValueRef cubesize;
257 LLVMValueRef index0 = lp_build_const_int32(gallivm, 0);
258
259 /*
260 * Cube map code did already everything except size mul and per-quad extraction.
261 * Luckily cube maps are always quadratic!
262 */
263 if (rho_per_quad) {
264 rho = lp_build_pack_aos_scalars(bld->gallivm, coord_bld->type,
265 rho_bld->type, cube_rho, 0);
266 }
267 else {
268 rho = lp_build_swizzle_scalar_aos(coord_bld, cube_rho, 0, 4);
269 }
270 /* Could optimize this for single quad just skip the broadcast */
271 cubesize = lp_build_extract_broadcast(gallivm, bld->float_size_in_type,
272 rho_bld->type, float_size, index0);
273 /* skipping sqrt hence returning rho squared */
274 cubesize = lp_build_mul(rho_bld, cubesize, cubesize);
275 rho = lp_build_mul(rho_bld, cubesize, rho);
276 }
277 else if (derivs) {
278 LLVMValueRef ddmax[3], ddx[3], ddy[3];
279 for (i = 0; i < dims; i++) {
280 LLVMValueRef floatdim;
281 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
282
283 floatdim = lp_build_extract_broadcast(gallivm, bld->float_size_in_type,
284 coord_bld->type, float_size, indexi);
285
286 /*
287 * note that for rho_per_quad case could reduce math (at some shuffle
288 * cost), but for now use same code to per-pixel lod case.
289 */
290 if (no_rho_opt) {
291 ddx[i] = lp_build_mul(coord_bld, floatdim, derivs->ddx[i]);
292 ddy[i] = lp_build_mul(coord_bld, floatdim, derivs->ddy[i]);
293 ddx[i] = lp_build_mul(coord_bld, ddx[i], ddx[i]);
294 ddy[i] = lp_build_mul(coord_bld, ddy[i], ddy[i]);
295 }
296 else {
297 LLVMValueRef tmpx, tmpy;
298 tmpx = lp_build_abs(coord_bld, derivs->ddx[i]);
299 tmpy = lp_build_abs(coord_bld, derivs->ddy[i]);
300 ddmax[i] = lp_build_max(coord_bld, tmpx, tmpy);
301 ddmax[i] = lp_build_mul(coord_bld, floatdim, ddmax[i]);
302 }
303 }
304 if (no_rho_opt) {
305 rho_xvec = lp_build_add(coord_bld, ddx[0], ddx[1]);
306 rho_yvec = lp_build_add(coord_bld, ddy[0], ddy[1]);
307 if (dims > 2) {
308 rho_xvec = lp_build_add(coord_bld, rho_xvec, ddx[2]);
309 rho_yvec = lp_build_add(coord_bld, rho_yvec, ddy[2]);
310 }
311 rho = lp_build_max(coord_bld, rho_xvec, rho_yvec);
312 /* skipping sqrt hence returning rho squared */
313 }
314 else {
315 rho = ddmax[0];
316 if (dims > 1) {
317 rho = lp_build_max(coord_bld, rho, ddmax[1]);
318 if (dims > 2) {
319 rho = lp_build_max(coord_bld, rho, ddmax[2]);
320 }
321 }
322 }
323 if (rho_per_quad) {
324 /*
325 * rho_vec contains per-pixel rho, convert to scalar per quad.
326 */
327 rho = lp_build_pack_aos_scalars(bld->gallivm, coord_bld->type,
328 rho_bld->type, rho, 0);
329 }
330 }
331 else {
332 /*
333 * This looks all a bit complex, but it's not that bad
334 * (the shuffle code makes it look worse than it is).
335 * Still, might not be ideal for all cases.
336 */
337 static const unsigned char swizzle0[] = { /* no-op swizzle */
338 0, LP_BLD_SWIZZLE_DONTCARE,
339 LP_BLD_SWIZZLE_DONTCARE, LP_BLD_SWIZZLE_DONTCARE
340 };
341 static const unsigned char swizzle1[] = {
342 1, LP_BLD_SWIZZLE_DONTCARE,
343 LP_BLD_SWIZZLE_DONTCARE, LP_BLD_SWIZZLE_DONTCARE
344 };
345 static const unsigned char swizzle2[] = {
346 2, LP_BLD_SWIZZLE_DONTCARE,
347 LP_BLD_SWIZZLE_DONTCARE, LP_BLD_SWIZZLE_DONTCARE
348 };
349
350 if (dims < 2) {
351 ddx_ddy[0] = lp_build_packed_ddx_ddy_onecoord(coord_bld, s);
352 }
353 else if (dims >= 2) {
354 ddx_ddy[0] = lp_build_packed_ddx_ddy_twocoord(coord_bld, s, t);
355 if (dims > 2) {
356 ddx_ddy[1] = lp_build_packed_ddx_ddy_onecoord(coord_bld, r);
357 }
358 }
359
360 if (no_rho_opt) {
361 static const unsigned char swizzle01[] = { /* no-op swizzle */
362 0, 1,
363 LP_BLD_SWIZZLE_DONTCARE, LP_BLD_SWIZZLE_DONTCARE
364 };
365 static const unsigned char swizzle23[] = {
366 2, 3,
367 LP_BLD_SWIZZLE_DONTCARE, LP_BLD_SWIZZLE_DONTCARE
368 };
369 LLVMValueRef ddx_ddys, ddx_ddyt, floatdim, shuffles[LP_MAX_VECTOR_LENGTH / 4];
370
371 for (i = 0; i < num_quads; i++) {
372 shuffles[i*4+0] = shuffles[i*4+1] = index0;
373 shuffles[i*4+2] = shuffles[i*4+3] = index1;
374 }
375 floatdim = LLVMBuildShuffleVector(builder, float_size, float_size,
376 LLVMConstVector(shuffles, length), "");
377 ddx_ddy[0] = lp_build_mul(coord_bld, ddx_ddy[0], floatdim);
378 ddx_ddy[0] = lp_build_mul(coord_bld, ddx_ddy[0], ddx_ddy[0]);
379 ddx_ddys = lp_build_swizzle_aos(coord_bld, ddx_ddy[0], swizzle01);
380 ddx_ddyt = lp_build_swizzle_aos(coord_bld, ddx_ddy[0], swizzle23);
381 rho_vec = lp_build_add(coord_bld, ddx_ddys, ddx_ddyt);
382
383 if (dims > 2) {
384 static const unsigned char swizzle02[] = {
385 0, 2,
386 LP_BLD_SWIZZLE_DONTCARE, LP_BLD_SWIZZLE_DONTCARE
387 };
388 floatdim = lp_build_extract_broadcast(gallivm, bld->float_size_in_type,
389 coord_bld->type, float_size, index2);
390 ddx_ddy[1] = lp_build_mul(coord_bld, ddx_ddy[1], floatdim);
391 ddx_ddy[1] = lp_build_mul(coord_bld, ddx_ddy[1], ddx_ddy[1]);
392 ddx_ddy[1] = lp_build_swizzle_aos(coord_bld, ddx_ddy[1], swizzle02);
393 rho_vec = lp_build_add(coord_bld, rho_vec, ddx_ddy[1]);
394 }
395
396 rho_xvec = lp_build_swizzle_aos(coord_bld, rho_vec, swizzle0);
397 rho_yvec = lp_build_swizzle_aos(coord_bld, rho_vec, swizzle1);
398 rho = lp_build_max(coord_bld, rho_xvec, rho_yvec);
399
400 if (rho_per_quad) {
401 rho = lp_build_pack_aos_scalars(bld->gallivm, coord_bld->type,
402 rho_bld->type, rho, 0);
403 }
404 else {
405 rho = lp_build_swizzle_scalar_aos(coord_bld, rho, 0, 4);
406 }
407 /* skipping sqrt hence returning rho squared */
408 }
409 else {
410 ddx_ddy[0] = lp_build_abs(coord_bld, ddx_ddy[0]);
411 if (dims > 2) {
412 ddx_ddy[1] = lp_build_abs(coord_bld, ddx_ddy[1]);
413 }
414 else {
415 ddx_ddy[1] = NULL; /* silence compiler warning */
416 }
417
418 if (dims < 2) {
419 rho_xvec = lp_build_swizzle_aos(coord_bld, ddx_ddy[0], swizzle0);
420 rho_yvec = lp_build_swizzle_aos(coord_bld, ddx_ddy[0], swizzle2);
421 }
422 else if (dims == 2) {
423 static const unsigned char swizzle02[] = {
424 0, 2,
425 LP_BLD_SWIZZLE_DONTCARE, LP_BLD_SWIZZLE_DONTCARE
426 };
427 static const unsigned char swizzle13[] = {
428 1, 3,
429 LP_BLD_SWIZZLE_DONTCARE, LP_BLD_SWIZZLE_DONTCARE
430 };
431 rho_xvec = lp_build_swizzle_aos(coord_bld, ddx_ddy[0], swizzle02);
432 rho_yvec = lp_build_swizzle_aos(coord_bld, ddx_ddy[0], swizzle13);
433 }
434 else {
435 LLVMValueRef shuffles1[LP_MAX_VECTOR_LENGTH];
436 LLVMValueRef shuffles2[LP_MAX_VECTOR_LENGTH];
437 assert(dims == 3);
438 for (i = 0; i < num_quads; i++) {
439 shuffles1[4*i + 0] = lp_build_const_int32(gallivm, 4*i);
440 shuffles1[4*i + 1] = lp_build_const_int32(gallivm, 4*i + 2);
441 shuffles1[4*i + 2] = lp_build_const_int32(gallivm, length + 4*i);
442 shuffles1[4*i + 3] = i32undef;
443 shuffles2[4*i + 0] = lp_build_const_int32(gallivm, 4*i + 1);
444 shuffles2[4*i + 1] = lp_build_const_int32(gallivm, 4*i + 3);
445 shuffles2[4*i + 2] = lp_build_const_int32(gallivm, length + 4*i + 2);
446 shuffles2[4*i + 3] = i32undef;
447 }
448 rho_xvec = LLVMBuildShuffleVector(builder, ddx_ddy[0], ddx_ddy[1],
449 LLVMConstVector(shuffles1, length), "");
450 rho_yvec = LLVMBuildShuffleVector(builder, ddx_ddy[0], ddx_ddy[1],
451 LLVMConstVector(shuffles2, length), "");
452 }
453
454 rho_vec = lp_build_max(coord_bld, rho_xvec, rho_yvec);
455
456 if (bld->coord_type.length > 4) {
457 /* expand size to each quad */
458 if (dims > 1) {
459 /* could use some broadcast_vector helper for this? */
460 LLVMValueRef src[LP_MAX_VECTOR_LENGTH/4];
461 for (i = 0; i < num_quads; i++) {
462 src[i] = float_size;
463 }
464 float_size = lp_build_concat(bld->gallivm, src, float_size_bld->type, num_quads);
465 }
466 else {
467 float_size = lp_build_broadcast_scalar(coord_bld, float_size);
468 }
469 rho_vec = lp_build_mul(coord_bld, rho_vec, float_size);
470
471 if (dims <= 1) {
472 rho = rho_vec;
473 }
474 else {
475 if (dims >= 2) {
476 LLVMValueRef rho_s, rho_t, rho_r;
477
478 rho_s = lp_build_swizzle_aos(coord_bld, rho_vec, swizzle0);
479 rho_t = lp_build_swizzle_aos(coord_bld, rho_vec, swizzle1);
480
481 rho = lp_build_max(coord_bld, rho_s, rho_t);
482
483 if (dims >= 3) {
484 rho_r = lp_build_swizzle_aos(coord_bld, rho_vec, swizzle2);
485 rho = lp_build_max(coord_bld, rho, rho_r);
486 }
487 }
488 }
489 if (rho_per_quad) {
490 rho = lp_build_pack_aos_scalars(bld->gallivm, coord_bld->type,
491 rho_bld->type, rho, 0);
492 }
493 else {
494 rho = lp_build_swizzle_scalar_aos(coord_bld, rho, 0, 4);
495 }
496 }
497 else {
498 if (dims <= 1) {
499 rho_vec = LLVMBuildExtractElement(builder, rho_vec, index0, "");
500 }
501 rho_vec = lp_build_mul(float_size_bld, rho_vec, float_size);
502
503 if (dims <= 1) {
504 rho = rho_vec;
505 }
506 else {
507 if (dims >= 2) {
508 LLVMValueRef rho_s, rho_t, rho_r;
509
510 rho_s = LLVMBuildExtractElement(builder, rho_vec, index0, "");
511 rho_t = LLVMBuildExtractElement(builder, rho_vec, index1, "");
512
513 rho = lp_build_max(float_bld, rho_s, rho_t);
514
515 if (dims >= 3) {
516 rho_r = LLVMBuildExtractElement(builder, rho_vec, index2, "");
517 rho = lp_build_max(float_bld, rho, rho_r);
518 }
519 }
520 }
521 if (!rho_per_quad) {
522 rho = lp_build_broadcast_scalar(rho_bld, rho);
523 }
524 }
525 }
526 }
527
528 return rho;
529 }
530
531
532 /*
533 * Bri-linear lod computation
534 *
535 * Use a piece-wise linear approximation of log2 such that:
536 * - round to nearest, for values in the neighborhood of -1, 0, 1, 2, etc.
537 * - linear approximation for values in the neighborhood of 0.5, 1.5., etc,
538 * with the steepness specified in 'factor'
539 * - exact result for 0.5, 1.5, etc.
540 *
541 *
542 * 1.0 - /----*
543 * /
544 * /
545 * /
546 * 0.5 - *
547 * /
548 * /
549 * /
550 * 0.0 - *----/
551 *
552 * | |
553 * 2^0 2^1
554 *
555 * This is a technique also commonly used in hardware:
556 * - http://ixbtlabs.com/articles2/gffx/nv40-rx800-3.html
557 *
558 * TODO: For correctness, this should only be applied when texture is known to
559 * have regular mipmaps, i.e., mipmaps derived from the base level.
560 *
561 * TODO: This could be done in fixed point, where applicable.
562 */
563 static void
564 lp_build_brilinear_lod(struct lp_build_context *bld,
565 LLVMValueRef lod,
566 double factor,
567 LLVMValueRef *out_lod_ipart,
568 LLVMValueRef *out_lod_fpart)
569 {
570 LLVMValueRef lod_fpart;
571 double pre_offset = (factor - 0.5)/factor - 0.5;
572 double post_offset = 1 - factor;
573
574 if (0) {
575 lp_build_printf(bld->gallivm, "lod = %f\n", lod);
576 }
577
578 lod = lp_build_add(bld, lod,
579 lp_build_const_vec(bld->gallivm, bld->type, pre_offset));
580
581 lp_build_ifloor_fract(bld, lod, out_lod_ipart, &lod_fpart);
582
583 lod_fpart = lp_build_mul(bld, lod_fpart,
584 lp_build_const_vec(bld->gallivm, bld->type, factor));
585
586 lod_fpart = lp_build_add(bld, lod_fpart,
587 lp_build_const_vec(bld->gallivm, bld->type, post_offset));
588
589 /*
590 * It's not necessary to clamp lod_fpart since:
591 * - the above expression will never produce numbers greater than one.
592 * - the mip filtering branch is only taken if lod_fpart is positive
593 */
594
595 *out_lod_fpart = lod_fpart;
596
597 if (0) {
598 lp_build_printf(bld->gallivm, "lod_ipart = %i\n", *out_lod_ipart);
599 lp_build_printf(bld->gallivm, "lod_fpart = %f\n\n", *out_lod_fpart);
600 }
601 }
602
603
604 /*
605 * Combined log2 and brilinear lod computation.
606 *
607 * It's in all identical to calling lp_build_fast_log2() and
608 * lp_build_brilinear_lod() above, but by combining we can compute the integer
609 * and fractional part independently.
610 */
611 static void
612 lp_build_brilinear_rho(struct lp_build_context *bld,
613 LLVMValueRef rho,
614 double factor,
615 LLVMValueRef *out_lod_ipart,
616 LLVMValueRef *out_lod_fpart)
617 {
618 LLVMValueRef lod_ipart;
619 LLVMValueRef lod_fpart;
620
621 const double pre_factor = (2*factor - 0.5)/(M_SQRT2*factor);
622 const double post_offset = 1 - 2*factor;
623
624 assert(bld->type.floating);
625
626 assert(lp_check_value(bld->type, rho));
627
628 /*
629 * The pre factor will make the intersections with the exact powers of two
630 * happen precisely where we want them to be, which means that the integer
631 * part will not need any post adjustments.
632 */
633 rho = lp_build_mul(bld, rho,
634 lp_build_const_vec(bld->gallivm, bld->type, pre_factor));
635
636 /* ipart = ifloor(log2(rho)) */
637 lod_ipart = lp_build_extract_exponent(bld, rho, 0);
638
639 /* fpart = rho / 2**ipart */
640 lod_fpart = lp_build_extract_mantissa(bld, rho);
641
642 lod_fpart = lp_build_mul(bld, lod_fpart,
643 lp_build_const_vec(bld->gallivm, bld->type, factor));
644
645 lod_fpart = lp_build_add(bld, lod_fpart,
646 lp_build_const_vec(bld->gallivm, bld->type, post_offset));
647
648 /*
649 * Like lp_build_brilinear_lod, it's not necessary to clamp lod_fpart since:
650 * - the above expression will never produce numbers greater than one.
651 * - the mip filtering branch is only taken if lod_fpart is positive
652 */
653
654 *out_lod_ipart = lod_ipart;
655 *out_lod_fpart = lod_fpart;
656 }
657
658
659 /**
660 * Fast implementation of iround(log2(sqrt(x))), based on
661 * log2(x^n) == n*log2(x).
662 *
663 * Gives accurate results all the time.
664 * (Could be trivially extended to handle other power-of-two roots.)
665 */
666 static LLVMValueRef
667 lp_build_ilog2_sqrt(struct lp_build_context *bld,
668 LLVMValueRef x)
669 {
670 LLVMBuilderRef builder = bld->gallivm->builder;
671 LLVMValueRef ipart;
672 struct lp_type i_type = lp_int_type(bld->type);
673 LLVMValueRef one = lp_build_const_int_vec(bld->gallivm, i_type, 1);
674
675 assert(bld->type.floating);
676
677 assert(lp_check_value(bld->type, x));
678
679 /* ipart = log2(x) + 0.5 = 0.5*(log2(x^2) + 1.0) */
680 ipart = lp_build_extract_exponent(bld, x, 1);
681 ipart = LLVMBuildAShr(builder, ipart, one, "");
682
683 return ipart;
684 }
685
686
687 /**
688 * Generate code to compute texture level of detail (lambda).
689 * \param derivs partial derivatives of (s, t, r, q) with respect to X and Y
690 * \param lod_bias optional float vector with the shader lod bias
691 * \param explicit_lod optional float vector with the explicit lod
692 * \param cube_rho rho calculated by cube coord mapping (optional)
693 * \param out_lod_ipart integer part of lod
694 * \param out_lod_fpart float part of lod (never larger than 1 but may be negative)
695 * \param out_lod_positive (mask) if lod is positive (i.e. texture is minified)
696 *
697 * The resulting lod can be scalar per quad or be per element.
698 */
699 void
700 lp_build_lod_selector(struct lp_build_sample_context *bld,
701 unsigned texture_unit,
702 unsigned sampler_unit,
703 LLVMValueRef s,
704 LLVMValueRef t,
705 LLVMValueRef r,
706 LLVMValueRef cube_rho,
707 const struct lp_derivatives *derivs,
708 LLVMValueRef lod_bias, /* optional */
709 LLVMValueRef explicit_lod, /* optional */
710 unsigned mip_filter,
711 LLVMValueRef *out_lod_ipart,
712 LLVMValueRef *out_lod_fpart,
713 LLVMValueRef *out_lod_positive)
714
715 {
716 LLVMBuilderRef builder = bld->gallivm->builder;
717 struct lp_sampler_dynamic_state *dynamic_state = bld->dynamic_state;
718 struct lp_build_context *lodf_bld = &bld->lodf_bld;
719 LLVMValueRef lod;
720
721 *out_lod_ipart = bld->lodi_bld.zero;
722 *out_lod_positive = bld->lodi_bld.zero;
723 *out_lod_fpart = lodf_bld->zero;
724
725 /*
726 * For determining min/mag, we follow GL 4.1 spec, 3.9.12 Texture Magnification:
727 * "Implementations may either unconditionally assume c = 0 for the minification
728 * vs. magnification switch-over point, or may choose to make c depend on the
729 * combination of minification and magnification modes as follows: if the
730 * magnification filter is given by LINEAR and the minification filter is given
731 * by NEAREST_MIPMAP_NEAREST or NEAREST_MIPMAP_LINEAR, then c = 0.5. This is
732 * done to ensure that a minified texture does not appear "sharper" than a
733 * magnified texture. Otherwise c = 0."
734 * And 3.9.11 Texture Minification:
735 * "If lod is less than or equal to the constant c (see section 3.9.12) the
736 * texture is said to be magnified; if it is greater, the texture is minified."
737 * So, using 0 as switchover point always, and using magnification for lod == 0.
738 * Note that the always c = 0 behavior is new (first appearing in GL 3.1 spec),
739 * old GL versions required 0.5 for the modes listed above.
740 * I have no clue about the (undocumented) wishes of d3d9/d3d10 here!
741 */
742
743 if (bld->static_sampler_state->min_max_lod_equal) {
744 /* User is forcing sampling from a particular mipmap level.
745 * This is hit during mipmap generation.
746 */
747 LLVMValueRef min_lod =
748 dynamic_state->min_lod(dynamic_state, bld->gallivm,
749 bld->context_ptr, sampler_unit);
750
751 lod = lp_build_broadcast_scalar(lodf_bld, min_lod);
752 }
753 else {
754 if (explicit_lod) {
755 if (bld->num_lods != bld->coord_type.length)
756 lod = lp_build_pack_aos_scalars(bld->gallivm, bld->coord_bld.type,
757 lodf_bld->type, explicit_lod, 0);
758 else
759 lod = explicit_lod;
760 }
761 else {
762 LLVMValueRef rho;
763 boolean rho_squared = ((gallivm_debug & GALLIVM_DEBUG_NO_RHO_APPROX) &&
764 (bld->dims > 1)) || cube_rho;
765
766 rho = lp_build_rho(bld, texture_unit, s, t, r, cube_rho, derivs);
767
768 /*
769 * Compute lod = log2(rho)
770 */
771
772 if (!lod_bias &&
773 !bld->static_sampler_state->lod_bias_non_zero &&
774 !bld->static_sampler_state->apply_max_lod &&
775 !bld->static_sampler_state->apply_min_lod) {
776 /*
777 * Special case when there are no post-log2 adjustments, which
778 * saves instructions but keeping the integer and fractional lod
779 * computations separate from the start.
780 */
781
782 if (mip_filter == PIPE_TEX_MIPFILTER_NONE ||
783 mip_filter == PIPE_TEX_MIPFILTER_NEAREST) {
784 /*
785 * Don't actually need both values all the time, lod_ipart is
786 * needed for nearest mipfilter, lod_positive if min != mag.
787 */
788 if (rho_squared) {
789 *out_lod_ipart = lp_build_ilog2_sqrt(lodf_bld, rho);
790 }
791 else {
792 *out_lod_ipart = lp_build_ilog2(lodf_bld, rho);
793 }
794 *out_lod_positive = lp_build_cmp(lodf_bld, PIPE_FUNC_GREATER,
795 rho, lodf_bld->one);
796 return;
797 }
798 if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR &&
799 !(gallivm_debug & GALLIVM_DEBUG_NO_BRILINEAR) &&
800 !rho_squared) {
801 /*
802 * This can't work if rho is squared. Not sure if it could be
803 * fixed while keeping it worthwile, could also do sqrt here
804 * but brilinear and no_rho_opt seems like a combination not
805 * making much sense anyway so just use ordinary path below.
806 */
807 lp_build_brilinear_rho(lodf_bld, rho, BRILINEAR_FACTOR,
808 out_lod_ipart, out_lod_fpart);
809 *out_lod_positive = lp_build_cmp(lodf_bld, PIPE_FUNC_GREATER,
810 rho, lodf_bld->one);
811 return;
812 }
813 }
814
815 if (0) {
816 lod = lp_build_log2(lodf_bld, rho);
817 }
818 else {
819 lod = lp_build_fast_log2(lodf_bld, rho);
820 }
821 if (rho_squared) {
822 /* log2(x^2) == 0.5*log2(x) */
823 lod = lp_build_mul(lodf_bld, lod,
824 lp_build_const_vec(bld->gallivm, lodf_bld->type, 0.5F));
825 }
826
827 /* add shader lod bias */
828 if (lod_bias) {
829 if (bld->num_lods != bld->coord_type.length)
830 lod_bias = lp_build_pack_aos_scalars(bld->gallivm, bld->coord_bld.type,
831 lodf_bld->type, lod_bias, 0);
832 lod = LLVMBuildFAdd(builder, lod, lod_bias, "shader_lod_bias");
833 }
834 }
835
836 /* add sampler lod bias */
837 if (bld->static_sampler_state->lod_bias_non_zero) {
838 LLVMValueRef sampler_lod_bias =
839 dynamic_state->lod_bias(dynamic_state, bld->gallivm,
840 bld->context_ptr, sampler_unit);
841 sampler_lod_bias = lp_build_broadcast_scalar(lodf_bld,
842 sampler_lod_bias);
843 lod = LLVMBuildFAdd(builder, lod, sampler_lod_bias, "sampler_lod_bias");
844 }
845
846 /* clamp lod */
847 if (bld->static_sampler_state->apply_max_lod) {
848 LLVMValueRef max_lod =
849 dynamic_state->max_lod(dynamic_state, bld->gallivm,
850 bld->context_ptr, sampler_unit);
851 max_lod = lp_build_broadcast_scalar(lodf_bld, max_lod);
852
853 lod = lp_build_min(lodf_bld, lod, max_lod);
854 }
855 if (bld->static_sampler_state->apply_min_lod) {
856 LLVMValueRef min_lod =
857 dynamic_state->min_lod(dynamic_state, bld->gallivm,
858 bld->context_ptr, sampler_unit);
859 min_lod = lp_build_broadcast_scalar(lodf_bld, min_lod);
860
861 lod = lp_build_max(lodf_bld, lod, min_lod);
862 }
863 }
864
865 *out_lod_positive = lp_build_cmp(lodf_bld, PIPE_FUNC_GREATER,
866 lod, lodf_bld->zero);
867
868 if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR) {
869 if (!(gallivm_debug & GALLIVM_DEBUG_NO_BRILINEAR)) {
870 lp_build_brilinear_lod(lodf_bld, lod, BRILINEAR_FACTOR,
871 out_lod_ipart, out_lod_fpart);
872 }
873 else {
874 lp_build_ifloor_fract(lodf_bld, lod, out_lod_ipart, out_lod_fpart);
875 }
876
877 lp_build_name(*out_lod_fpart, "lod_fpart");
878 }
879 else {
880 *out_lod_ipart = lp_build_iround(lodf_bld, lod);
881 }
882
883 lp_build_name(*out_lod_ipart, "lod_ipart");
884
885 return;
886 }
887
888
889 /**
890 * For PIPE_TEX_MIPFILTER_NEAREST, convert int part of lod
891 * to actual mip level.
892 * Note: this is all scalar per quad code.
893 * \param lod_ipart int texture level of detail
894 * \param level_out returns integer
895 * \param out_of_bounds returns per coord out_of_bounds mask if provided
896 */
897 void
898 lp_build_nearest_mip_level(struct lp_build_sample_context *bld,
899 unsigned texture_unit,
900 LLVMValueRef lod_ipart,
901 LLVMValueRef *level_out,
902 LLVMValueRef *out_of_bounds)
903 {
904 struct lp_build_context *leveli_bld = &bld->leveli_bld;
905 struct lp_sampler_dynamic_state *dynamic_state = bld->dynamic_state;
906 LLVMValueRef first_level, last_level, level;
907
908 first_level = dynamic_state->first_level(dynamic_state, bld->gallivm,
909 bld->context_ptr, texture_unit);
910 last_level = dynamic_state->last_level(dynamic_state, bld->gallivm,
911 bld->context_ptr, texture_unit);
912 first_level = lp_build_broadcast_scalar(leveli_bld, first_level);
913 last_level = lp_build_broadcast_scalar(leveli_bld, last_level);
914
915 level = lp_build_add(leveli_bld, lod_ipart, first_level);
916
917 if (out_of_bounds) {
918 LLVMValueRef out, out1;
919 out = lp_build_cmp(leveli_bld, PIPE_FUNC_LESS, level, first_level);
920 out1 = lp_build_cmp(leveli_bld, PIPE_FUNC_GREATER, level, last_level);
921 out = lp_build_or(leveli_bld, out, out1);
922 if (bld->num_mips == bld->coord_bld.type.length) {
923 *out_of_bounds = out;
924 }
925 else if (bld->num_mips == 1) {
926 *out_of_bounds = lp_build_broadcast_scalar(&bld->int_coord_bld, out);
927 }
928 else {
929 assert(bld->num_mips == bld->coord_bld.type.length / 4);
930 *out_of_bounds = lp_build_unpack_broadcast_aos_scalars(bld->gallivm,
931 leveli_bld->type,
932 bld->int_coord_bld.type,
933 out);
934 }
935 level = lp_build_andnot(&bld->int_coord_bld, level, *out_of_bounds);
936 *level_out = level;
937 }
938 else {
939 /* clamp level to legal range of levels */
940 *level_out = lp_build_clamp(leveli_bld, level, first_level, last_level);
941
942 }
943 }
944
945
946 /**
947 * For PIPE_TEX_MIPFILTER_LINEAR, convert per-quad (or per element) int LOD(s)
948 * to two (per-quad) (adjacent) mipmap level indexes, and fix up float lod
949 * part accordingly.
950 * Later, we'll sample from those two mipmap levels and interpolate between them.
951 */
952 void
953 lp_build_linear_mip_levels(struct lp_build_sample_context *bld,
954 unsigned texture_unit,
955 LLVMValueRef lod_ipart,
956 LLVMValueRef *lod_fpart_inout,
957 LLVMValueRef *level0_out,
958 LLVMValueRef *level1_out)
959 {
960 LLVMBuilderRef builder = bld->gallivm->builder;
961 struct lp_sampler_dynamic_state *dynamic_state = bld->dynamic_state;
962 struct lp_build_context *leveli_bld = &bld->leveli_bld;
963 struct lp_build_context *levelf_bld = &bld->levelf_bld;
964 LLVMValueRef first_level, last_level;
965 LLVMValueRef clamp_min;
966 LLVMValueRef clamp_max;
967
968 assert(bld->num_lods == bld->num_mips);
969
970 first_level = dynamic_state->first_level(dynamic_state, bld->gallivm,
971 bld->context_ptr, texture_unit);
972 last_level = dynamic_state->last_level(dynamic_state, bld->gallivm,
973 bld->context_ptr, texture_unit);
974 first_level = lp_build_broadcast_scalar(leveli_bld, first_level);
975 last_level = lp_build_broadcast_scalar(leveli_bld, last_level);
976
977 *level0_out = lp_build_add(leveli_bld, lod_ipart, first_level);
978 *level1_out = lp_build_add(leveli_bld, *level0_out, leveli_bld->one);
979
980 /*
981 * Clamp both *level0_out and *level1_out to [first_level, last_level], with
982 * the minimum number of comparisons, and zeroing lod_fpart in the extreme
983 * ends in the process.
984 */
985
986 /* *level0_out < first_level */
987 clamp_min = LLVMBuildICmp(builder, LLVMIntSLT,
988 *level0_out, first_level,
989 "clamp_lod_to_first");
990
991 *level0_out = LLVMBuildSelect(builder, clamp_min,
992 first_level, *level0_out, "");
993
994 *level1_out = LLVMBuildSelect(builder, clamp_min,
995 first_level, *level1_out, "");
996
997 *lod_fpart_inout = LLVMBuildSelect(builder, clamp_min,
998 levelf_bld->zero, *lod_fpart_inout, "");
999
1000 /* *level0_out >= last_level */
1001 clamp_max = LLVMBuildICmp(builder, LLVMIntSGE,
1002 *level0_out, last_level,
1003 "clamp_lod_to_last");
1004
1005 *level0_out = LLVMBuildSelect(builder, clamp_max,
1006 last_level, *level0_out, "");
1007
1008 *level1_out = LLVMBuildSelect(builder, clamp_max,
1009 last_level, *level1_out, "");
1010
1011 *lod_fpart_inout = LLVMBuildSelect(builder, clamp_max,
1012 levelf_bld->zero, *lod_fpart_inout, "");
1013
1014 lp_build_name(*level0_out, "texture%u_miplevel0", texture_unit);
1015 lp_build_name(*level1_out, "texture%u_miplevel1", texture_unit);
1016 lp_build_name(*lod_fpart_inout, "texture%u_mipweight", texture_unit);
1017 }
1018
1019
1020 /**
1021 * Return pointer to a single mipmap level.
1022 * \param level integer mipmap level
1023 */
1024 LLVMValueRef
1025 lp_build_get_mipmap_level(struct lp_build_sample_context *bld,
1026 LLVMValueRef level)
1027 {
1028 LLVMBuilderRef builder = bld->gallivm->builder;
1029 LLVMValueRef indexes[2], data_ptr, mip_offset;
1030
1031 indexes[0] = lp_build_const_int32(bld->gallivm, 0);
1032 indexes[1] = level;
1033 mip_offset = LLVMBuildGEP(builder, bld->mip_offsets, indexes, 2, "");
1034 mip_offset = LLVMBuildLoad(builder, mip_offset, "");
1035 data_ptr = LLVMBuildGEP(builder, bld->base_ptr, &mip_offset, 1, "");
1036 return data_ptr;
1037 }
1038
1039 /**
1040 * Return (per-pixel) offsets to mip levels.
1041 * \param level integer mipmap level
1042 */
1043 LLVMValueRef
1044 lp_build_get_mip_offsets(struct lp_build_sample_context *bld,
1045 LLVMValueRef level)
1046 {
1047 LLVMBuilderRef builder = bld->gallivm->builder;
1048 LLVMValueRef indexes[2], offsets, offset1;
1049
1050 indexes[0] = lp_build_const_int32(bld->gallivm, 0);
1051 if (bld->num_mips == 1) {
1052 indexes[1] = level;
1053 offset1 = LLVMBuildGEP(builder, bld->mip_offsets, indexes, 2, "");
1054 offset1 = LLVMBuildLoad(builder, offset1, "");
1055 offsets = lp_build_broadcast_scalar(&bld->int_coord_bld, offset1);
1056 }
1057 else if (bld->num_mips == bld->coord_bld.type.length / 4) {
1058 unsigned i;
1059
1060 offsets = bld->int_coord_bld.undef;
1061 for (i = 0; i < bld->num_mips; i++) {
1062 LLVMValueRef indexi = lp_build_const_int32(bld->gallivm, i);
1063 LLVMValueRef indexo = lp_build_const_int32(bld->gallivm, 4 * i);
1064 indexes[1] = LLVMBuildExtractElement(builder, level, indexi, "");
1065 offset1 = LLVMBuildGEP(builder, bld->mip_offsets, indexes, 2, "");
1066 offset1 = LLVMBuildLoad(builder, offset1, "");
1067 offsets = LLVMBuildInsertElement(builder, offsets, offset1, indexo, "");
1068 }
1069 offsets = lp_build_swizzle_scalar_aos(&bld->int_coord_bld, offsets, 0, 4);
1070 }
1071 else {
1072 unsigned i;
1073
1074 assert (bld->num_mips == bld->coord_bld.type.length);
1075
1076 offsets = bld->int_coord_bld.undef;
1077 for (i = 0; i < bld->num_mips; i++) {
1078 LLVMValueRef indexi = lp_build_const_int32(bld->gallivm, i);
1079 indexes[1] = LLVMBuildExtractElement(builder, level, indexi, "");
1080 offset1 = LLVMBuildGEP(builder, bld->mip_offsets, indexes, 2, "");
1081 offset1 = LLVMBuildLoad(builder, offset1, "");
1082 offsets = LLVMBuildInsertElement(builder, offsets, offset1, indexi, "");
1083 }
1084 }
1085 return offsets;
1086 }
1087
1088
1089 /**
1090 * Codegen equivalent for u_minify().
1091 * @param lod_scalar if lod is a (broadcasted) scalar
1092 * Return max(1, base_size >> level);
1093 */
1094 LLVMValueRef
1095 lp_build_minify(struct lp_build_context *bld,
1096 LLVMValueRef base_size,
1097 LLVMValueRef level,
1098 boolean lod_scalar)
1099 {
1100 LLVMBuilderRef builder = bld->gallivm->builder;
1101 assert(lp_check_value(bld->type, base_size));
1102 assert(lp_check_value(bld->type, level));
1103
1104 if (level == bld->zero) {
1105 /* if we're using mipmap level zero, no minification is needed */
1106 return base_size;
1107 }
1108 else {
1109 LLVMValueRef size;
1110 assert(bld->type.sign);
1111 if (lod_scalar ||
1112 (util_cpu_caps.has_avx2 || !util_cpu_caps.has_sse)) {
1113 size = LLVMBuildLShr(builder, base_size, level, "minify");
1114 size = lp_build_max(bld, size, bld->one);
1115 }
1116 else {
1117 /*
1118 * emulate shift with float mul, since intel "forgot" shifts with
1119 * per-element shift count until avx2, which results in terrible
1120 * scalar extraction (both count and value), scalar shift,
1121 * vector reinsertion. Should not be an issue on any non-x86 cpu
1122 * with a vector instruction set.
1123 * On cpus with AMD's XOP this should also be unnecessary but I'm
1124 * not sure if llvm would emit this with current flags.
1125 */
1126 LLVMValueRef const127, const23, lf;
1127 struct lp_type ftype;
1128 struct lp_build_context fbld;
1129 ftype = lp_type_float_vec(32, bld->type.length * bld->type.width);
1130 lp_build_context_init(&fbld, bld->gallivm, ftype);
1131 const127 = lp_build_const_int_vec(bld->gallivm, bld->type, 127);
1132 const23 = lp_build_const_int_vec(bld->gallivm, bld->type, 23);
1133
1134 /* calculate 2^(-level) float */
1135 lf = lp_build_sub(bld, const127, level);
1136 lf = lp_build_shl(bld, lf, const23);
1137 lf = LLVMBuildBitCast(builder, lf, fbld.vec_type, "");
1138
1139 /* finish shift operation by doing float mul */
1140 base_size = lp_build_int_to_float(&fbld, base_size);
1141 size = lp_build_mul(&fbld, base_size, lf);
1142 /*
1143 * do the max also with floats because
1144 * a) non-emulated int max requires sse41
1145 * (this is actually a lie as we could cast to 16bit values
1146 * as 16bit is sufficient and 16bit int max is sse2)
1147 * b) with avx we can do int max 4-wide but float max 8-wide
1148 */
1149 size = lp_build_max(&fbld, size, fbld.one);
1150 size = lp_build_itrunc(&fbld, size);
1151 }
1152 return size;
1153 }
1154 }
1155
1156
1157 /**
1158 * Dereference stride_array[mipmap_level] array to get a stride.
1159 * Return stride as a vector.
1160 */
1161 static LLVMValueRef
1162 lp_build_get_level_stride_vec(struct lp_build_sample_context *bld,
1163 LLVMValueRef stride_array, LLVMValueRef level)
1164 {
1165 LLVMBuilderRef builder = bld->gallivm->builder;
1166 LLVMValueRef indexes[2], stride, stride1;
1167 indexes[0] = lp_build_const_int32(bld->gallivm, 0);
1168 if (bld->num_mips == 1) {
1169 indexes[1] = level;
1170 stride1 = LLVMBuildGEP(builder, stride_array, indexes, 2, "");
1171 stride1 = LLVMBuildLoad(builder, stride1, "");
1172 stride = lp_build_broadcast_scalar(&bld->int_coord_bld, stride1);
1173 }
1174 else if (bld->num_mips == bld->coord_bld.type.length / 4) {
1175 LLVMValueRef stride1;
1176 unsigned i;
1177
1178 stride = bld->int_coord_bld.undef;
1179 for (i = 0; i < bld->num_mips; i++) {
1180 LLVMValueRef indexi = lp_build_const_int32(bld->gallivm, i);
1181 LLVMValueRef indexo = lp_build_const_int32(bld->gallivm, 4 * i);
1182 indexes[1] = LLVMBuildExtractElement(builder, level, indexi, "");
1183 stride1 = LLVMBuildGEP(builder, stride_array, indexes, 2, "");
1184 stride1 = LLVMBuildLoad(builder, stride1, "");
1185 stride = LLVMBuildInsertElement(builder, stride, stride1, indexo, "");
1186 }
1187 stride = lp_build_swizzle_scalar_aos(&bld->int_coord_bld, stride, 0, 4);
1188 }
1189 else {
1190 LLVMValueRef stride1;
1191 unsigned i;
1192
1193 assert (bld->num_mips == bld->coord_bld.type.length);
1194
1195 stride = bld->int_coord_bld.undef;
1196 for (i = 0; i < bld->coord_bld.type.length; i++) {
1197 LLVMValueRef indexi = lp_build_const_int32(bld->gallivm, i);
1198 indexes[1] = LLVMBuildExtractElement(builder, level, indexi, "");
1199 stride1 = LLVMBuildGEP(builder, stride_array, indexes, 2, "");
1200 stride1 = LLVMBuildLoad(builder, stride1, "");
1201 stride = LLVMBuildInsertElement(builder, stride, stride1, indexi, "");
1202 }
1203 }
1204 return stride;
1205 }
1206
1207
1208 /**
1209 * When sampling a mipmap, we need to compute the width, height, depth
1210 * of the source levels from the level indexes. This helper function
1211 * does that.
1212 */
1213 void
1214 lp_build_mipmap_level_sizes(struct lp_build_sample_context *bld,
1215 LLVMValueRef ilevel,
1216 LLVMValueRef *out_size,
1217 LLVMValueRef *row_stride_vec,
1218 LLVMValueRef *img_stride_vec)
1219 {
1220 const unsigned dims = bld->dims;
1221 LLVMValueRef ilevel_vec;
1222
1223 /*
1224 * Compute width, height, depth at mipmap level 'ilevel'
1225 */
1226 if (bld->num_mips == 1) {
1227 ilevel_vec = lp_build_broadcast_scalar(&bld->int_size_bld, ilevel);
1228 *out_size = lp_build_minify(&bld->int_size_bld, bld->int_size, ilevel_vec, TRUE);
1229 }
1230 else {
1231 LLVMValueRef int_size_vec;
1232 LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
1233 unsigned num_quads = bld->coord_bld.type.length / 4;
1234 unsigned i;
1235
1236 if (bld->num_mips == num_quads) {
1237 /*
1238 * XXX: this should be #ifndef SANE_INSTRUCTION_SET.
1239 * intel "forgot" the variable shift count instruction until avx2.
1240 * A harmless 8x32 shift gets translated into 32 instructions
1241 * (16 extracts, 8 scalar shifts, 8 inserts), llvm is apparently
1242 * unable to recognize if there are really just 2 different shift
1243 * count values. So do the shift 4-wide before expansion.
1244 */
1245 struct lp_build_context bld4;
1246 struct lp_type type4;
1247
1248 type4 = bld->int_coord_bld.type;
1249 type4.length = 4;
1250
1251 lp_build_context_init(&bld4, bld->gallivm, type4);
1252
1253 if (bld->dims == 1) {
1254 assert(bld->int_size_in_bld.type.length == 1);
1255 int_size_vec = lp_build_broadcast_scalar(&bld4,
1256 bld->int_size);
1257 }
1258 else {
1259 assert(bld->int_size_in_bld.type.length == 4);
1260 int_size_vec = bld->int_size;
1261 }
1262
1263 for (i = 0; i < num_quads; i++) {
1264 LLVMValueRef ileveli;
1265 LLVMValueRef indexi = lp_build_const_int32(bld->gallivm, i);
1266
1267 ileveli = lp_build_extract_broadcast(bld->gallivm,
1268 bld->leveli_bld.type,
1269 bld4.type,
1270 ilevel,
1271 indexi);
1272 tmp[i] = lp_build_minify(&bld4, int_size_vec, ileveli, TRUE);
1273 }
1274 /*
1275 * out_size is [w0, h0, d0, _, w1, h1, d1, _, ...] vector for dims > 1,
1276 * [w0, w0, w0, w0, w1, w1, w1, w1, ...] otherwise.
1277 */
1278 *out_size = lp_build_concat(bld->gallivm,
1279 tmp,
1280 bld4.type,
1281 num_quads);
1282 }
1283 else {
1284 /* FIXME: this is terrible and results in _huge_ vector
1285 * (for the dims > 1 case).
1286 * Should refactor this (together with extract_image_sizes) and do
1287 * something more useful. Could for instance if we have width,height
1288 * with 4-wide vector pack all elements into a 8xi16 vector
1289 * (on which we can still do useful math) instead of using a 16xi32
1290 * vector.
1291 * For dims == 1 this will create [w0, w1, w2, w3, ...] vector.
1292 * For dims > 1 this will create [w0, h0, d0, _, w1, h1, d1, _, ...] vector.
1293 */
1294 assert(bld->num_mips == bld->coord_bld.type.length);
1295 if (bld->dims == 1) {
1296 assert(bld->int_size_in_bld.type.length == 1);
1297 int_size_vec = lp_build_broadcast_scalar(&bld->int_coord_bld,
1298 bld->int_size);
1299 *out_size = lp_build_minify(&bld->int_coord_bld, int_size_vec, ilevel, FALSE);
1300 }
1301 else {
1302 LLVMValueRef ilevel1;
1303 for (i = 0; i < bld->num_mips; i++) {
1304 LLVMValueRef indexi = lp_build_const_int32(bld->gallivm, i);
1305 ilevel1 = lp_build_extract_broadcast(bld->gallivm, bld->int_coord_type,
1306 bld->int_size_in_bld.type, ilevel, indexi);
1307 tmp[i] = bld->int_size;
1308 tmp[i] = lp_build_minify(&bld->int_size_in_bld, tmp[i], ilevel1, TRUE);
1309 }
1310 *out_size = lp_build_concat(bld->gallivm, tmp,
1311 bld->int_size_in_bld.type,
1312 bld->num_mips);
1313 }
1314 }
1315 }
1316
1317 if (dims >= 2) {
1318 *row_stride_vec = lp_build_get_level_stride_vec(bld,
1319 bld->row_stride_array,
1320 ilevel);
1321 }
1322 if (dims == 3 || has_layer_coord(bld->static_texture_state->target)) {
1323 *img_stride_vec = lp_build_get_level_stride_vec(bld,
1324 bld->img_stride_array,
1325 ilevel);
1326 }
1327 }
1328
1329
1330 /**
1331 * Extract and broadcast texture size.
1332 *
1333 * @param size_type type of the texture size vector (either
1334 * bld->int_size_type or bld->float_size_type)
1335 * @param coord_type type of the texture size vector (either
1336 * bld->int_coord_type or bld->coord_type)
1337 * @param size vector with the texture size (width, height, depth)
1338 */
1339 void
1340 lp_build_extract_image_sizes(struct lp_build_sample_context *bld,
1341 struct lp_build_context *size_bld,
1342 struct lp_type coord_type,
1343 LLVMValueRef size,
1344 LLVMValueRef *out_width,
1345 LLVMValueRef *out_height,
1346 LLVMValueRef *out_depth)
1347 {
1348 const unsigned dims = bld->dims;
1349 LLVMTypeRef i32t = LLVMInt32TypeInContext(bld->gallivm->context);
1350 struct lp_type size_type = size_bld->type;
1351
1352 if (bld->num_mips == 1) {
1353 *out_width = lp_build_extract_broadcast(bld->gallivm,
1354 size_type,
1355 coord_type,
1356 size,
1357 LLVMConstInt(i32t, 0, 0));
1358 if (dims >= 2) {
1359 *out_height = lp_build_extract_broadcast(bld->gallivm,
1360 size_type,
1361 coord_type,
1362 size,
1363 LLVMConstInt(i32t, 1, 0));
1364 if (dims == 3) {
1365 *out_depth = lp_build_extract_broadcast(bld->gallivm,
1366 size_type,
1367 coord_type,
1368 size,
1369 LLVMConstInt(i32t, 2, 0));
1370 }
1371 }
1372 }
1373 else {
1374 unsigned num_quads = bld->coord_bld.type.length / 4;
1375
1376 if (dims == 1) {
1377 *out_width = size;
1378 }
1379 else if (bld->num_mips == num_quads) {
1380 *out_width = lp_build_swizzle_scalar_aos(size_bld, size, 0, 4);
1381 if (dims >= 2) {
1382 *out_height = lp_build_swizzle_scalar_aos(size_bld, size, 1, 4);
1383 if (dims == 3) {
1384 *out_depth = lp_build_swizzle_scalar_aos(size_bld, size, 2, 4);
1385 }
1386 }
1387 }
1388 else {
1389 assert(bld->num_mips == bld->coord_type.length);
1390 *out_width = lp_build_pack_aos_scalars(bld->gallivm, size_type,
1391 coord_type, size, 0);
1392 if (dims >= 2) {
1393 *out_height = lp_build_pack_aos_scalars(bld->gallivm, size_type,
1394 coord_type, size, 1);
1395 if (dims == 3) {
1396 *out_depth = lp_build_pack_aos_scalars(bld->gallivm, size_type,
1397 coord_type, size, 2);
1398 }
1399 }
1400 }
1401 }
1402 }
1403
1404
1405 /**
1406 * Unnormalize coords.
1407 *
1408 * @param flt_size vector with the integer texture size (width, height, depth)
1409 */
1410 void
1411 lp_build_unnormalized_coords(struct lp_build_sample_context *bld,
1412 LLVMValueRef flt_size,
1413 LLVMValueRef *s,
1414 LLVMValueRef *t,
1415 LLVMValueRef *r)
1416 {
1417 const unsigned dims = bld->dims;
1418 LLVMValueRef width;
1419 LLVMValueRef height;
1420 LLVMValueRef depth;
1421
1422 lp_build_extract_image_sizes(bld,
1423 &bld->float_size_bld,
1424 bld->coord_type,
1425 flt_size,
1426 &width,
1427 &height,
1428 &depth);
1429
1430 /* s = s * width, t = t * height */
1431 *s = lp_build_mul(&bld->coord_bld, *s, width);
1432 if (dims >= 2) {
1433 *t = lp_build_mul(&bld->coord_bld, *t, height);
1434 if (dims >= 3) {
1435 *r = lp_build_mul(&bld->coord_bld, *r, depth);
1436 }
1437 }
1438 }
1439
1440 /**
1441 * Generate new coords and faces for cubemap texels falling off the face.
1442 *
1443 * @param face face (center) of the pixel
1444 * @param x0 lower x coord
1445 * @param x1 higher x coord (must be x0 + 1)
1446 * @param y0 lower y coord
1447 * @param y1 higher y coord (must be x0 + 1)
1448 * @param max_coord texture cube (level) size - 1
1449 * @param next_faces new face values when falling off
1450 * @param next_xcoords new x coord values when falling off
1451 * @param next_ycoords new y coord values when falling off
1452 *
1453 * The arrays hold the new values when under/overflow of
1454 * lower x, higher x, lower y, higher y coord would occur (in this order).
1455 * next_xcoords/next_ycoords have two entries each (for both new lower and
1456 * higher coord).
1457 */
1458 void
1459 lp_build_cube_new_coords(struct lp_build_context *ivec_bld,
1460 LLVMValueRef face,
1461 LLVMValueRef x0,
1462 LLVMValueRef x1,
1463 LLVMValueRef y0,
1464 LLVMValueRef y1,
1465 LLVMValueRef max_coord,
1466 LLVMValueRef next_faces[4],
1467 LLVMValueRef next_xcoords[4][2],
1468 LLVMValueRef next_ycoords[4][2])
1469 {
1470 /*
1471 * Lookup tables aren't nice for simd code hence try some logic here.
1472 * (Note that while it would not be necessary to do per-sample (4) lookups
1473 * when using a LUT as it's impossible that texels fall off of positive
1474 * and negative edges simultaneously, it would however be necessary to
1475 * do 2 lookups for corner handling as in this case texels both fall off
1476 * of x and y axes.)
1477 */
1478 /*
1479 * Next faces (for face 012345):
1480 * x < 0.0 : 451110
1481 * x >= 1.0 : 540001
1482 * y < 0.0 : 225422
1483 * y >= 1.0 : 334533
1484 * Hence nfx+ (and nfy+) == nfx- (nfy-) xor 1
1485 * nfx-: face > 1 ? (face == 5 ? 0 : 1) : (4 + face & 1)
1486 * nfy+: face & ~4 > 1 ? face + 2 : 3;
1487 * This could also use pshufb instead, but would need (manually coded)
1488 * ssse3 intrinsic (llvm won't do non-constant shuffles).
1489 */
1490 struct gallivm_state *gallivm = ivec_bld->gallivm;
1491 LLVMValueRef sel, sel_f2345, sel_f23, sel_f2, tmpsel, tmp;
1492 LLVMValueRef faceand1, sel_fand1, maxmx0, maxmx1, maxmy0, maxmy1;
1493 LLVMValueRef c2 = lp_build_const_int_vec(gallivm, ivec_bld->type, 2);
1494 LLVMValueRef c3 = lp_build_const_int_vec(gallivm, ivec_bld->type, 3);
1495 LLVMValueRef c4 = lp_build_const_int_vec(gallivm, ivec_bld->type, 4);
1496 LLVMValueRef c5 = lp_build_const_int_vec(gallivm, ivec_bld->type, 5);
1497
1498 sel = lp_build_cmp(ivec_bld, PIPE_FUNC_EQUAL, face, c5);
1499 tmpsel = lp_build_select(ivec_bld, sel, ivec_bld->zero, ivec_bld->one);
1500 sel_f2345 = lp_build_cmp(ivec_bld, PIPE_FUNC_GREATER, face, ivec_bld->one);
1501 faceand1 = lp_build_and(ivec_bld, face, ivec_bld->one);
1502 tmp = lp_build_add(ivec_bld, faceand1, c4);
1503 next_faces[0] = lp_build_select(ivec_bld, sel_f2345, tmpsel, tmp);
1504 next_faces[1] = lp_build_xor(ivec_bld, next_faces[0], ivec_bld->one);
1505
1506 tmp = lp_build_andnot(ivec_bld, face, c4);
1507 sel_f23 = lp_build_cmp(ivec_bld, PIPE_FUNC_GREATER, tmp, ivec_bld->one);
1508 tmp = lp_build_add(ivec_bld, face, c2);
1509 next_faces[3] = lp_build_select(ivec_bld, sel_f23, tmp, c3);
1510 next_faces[2] = lp_build_xor(ivec_bld, next_faces[3], ivec_bld->one);
1511
1512 /*
1513 * new xcoords (for face 012345):
1514 * x < 0.0 : max max t max-t max max
1515 * x >= 1.0 : 0 0 max-t t 0 0
1516 * y < 0.0 : max 0 max-s s s max-s
1517 * y >= 1.0 : max 0 s max-s s max-s
1518 *
1519 * ncx[1] = face & ~4 > 1 ? (face == 2 ? max-t : t) : 0
1520 * ncx[0] = max - ncx[1]
1521 * ncx[3] = face > 1 ? (face & 1 ? max-s : s) : (face & 1) ? 0 : max
1522 * ncx[2] = face & ~4 > 1 ? max - ncx[3] : ncx[3]
1523 */
1524 sel_f2 = lp_build_cmp(ivec_bld, PIPE_FUNC_EQUAL, face, c2);
1525 maxmy0 = lp_build_sub(ivec_bld, max_coord, y0);
1526 tmp = lp_build_select(ivec_bld, sel_f2, maxmy0, y0);
1527 next_xcoords[1][0] = lp_build_select(ivec_bld, sel_f23, tmp, ivec_bld->zero);
1528 next_xcoords[0][0] = lp_build_sub(ivec_bld, max_coord, next_xcoords[1][0]);
1529 maxmy1 = lp_build_sub(ivec_bld, max_coord, y1);
1530 tmp = lp_build_select(ivec_bld, sel_f2, maxmy1, y1);
1531 next_xcoords[1][1] = lp_build_select(ivec_bld, sel_f23, tmp, ivec_bld->zero);
1532 next_xcoords[0][1] = lp_build_sub(ivec_bld, max_coord, next_xcoords[1][1]);
1533
1534 sel_fand1 = lp_build_cmp(ivec_bld, PIPE_FUNC_EQUAL, faceand1, ivec_bld->one);
1535
1536 tmpsel = lp_build_select(ivec_bld, sel_fand1, ivec_bld->zero, max_coord);
1537 maxmx0 = lp_build_sub(ivec_bld, max_coord, x0);
1538 tmp = lp_build_select(ivec_bld, sel_fand1, maxmx0, x0);
1539 next_xcoords[3][0] = lp_build_select(ivec_bld, sel_f2345, tmp, tmpsel);
1540 tmp = lp_build_sub(ivec_bld, max_coord, next_xcoords[3][0]);
1541 next_xcoords[2][0] = lp_build_select(ivec_bld, sel_f23, tmp, next_xcoords[3][0]);
1542 maxmx1 = lp_build_sub(ivec_bld, max_coord, x1);
1543 tmp = lp_build_select(ivec_bld, sel_fand1, maxmx1, x1);
1544 next_xcoords[3][1] = lp_build_select(ivec_bld, sel_f2345, tmp, tmpsel);
1545 tmp = lp_build_sub(ivec_bld, max_coord, next_xcoords[3][1]);
1546 next_xcoords[2][1] = lp_build_select(ivec_bld, sel_f23, tmp, next_xcoords[3][1]);
1547
1548 /*
1549 * new ycoords (for face 012345):
1550 * x < 0.0 : t t 0 max t t
1551 * x >= 1.0 : t t 0 max t t
1552 * y < 0.0 : max-s s 0 max max 0
1553 * y >= 1.0 : s max-s 0 max 0 max
1554 *
1555 * ncy[0] = face & ~4 > 1 ? (face == 2 ? 0 : max) : t
1556 * ncy[1] = ncy[0]
1557 * ncy[3] = face > 1 ? (face & 1 ? max : 0) : (face & 1) ? max-s : max
1558 * ncx[2] = face & ~4 > 1 ? max - ncx[3] : ncx[3]
1559 */
1560 tmp = lp_build_select(ivec_bld, sel_f2, ivec_bld->zero, max_coord);
1561 next_ycoords[0][0] = lp_build_select(ivec_bld, sel_f23, tmp, y0);
1562 next_ycoords[1][0] = next_ycoords[0][0];
1563 next_ycoords[0][1] = lp_build_select(ivec_bld, sel_f23, tmp, y1);
1564 next_ycoords[1][1] = next_ycoords[0][1];
1565
1566 tmpsel = lp_build_select(ivec_bld, sel_fand1, maxmx0, x0);
1567 tmp = lp_build_select(ivec_bld, sel_fand1, max_coord, ivec_bld->zero);
1568 next_ycoords[3][0] = lp_build_select(ivec_bld, sel_f2345, tmp, tmpsel);
1569 tmp = lp_build_sub(ivec_bld, max_coord, next_ycoords[3][0]);
1570 next_ycoords[2][0] = lp_build_select(ivec_bld, sel_f23, next_ycoords[3][0], tmp);
1571 tmpsel = lp_build_select(ivec_bld, sel_fand1, maxmx1, x1);
1572 tmp = lp_build_select(ivec_bld, sel_fand1, max_coord, ivec_bld->zero);
1573 next_ycoords[3][1] = lp_build_select(ivec_bld, sel_f2345, tmp, tmpsel);
1574 tmp = lp_build_sub(ivec_bld, max_coord, next_ycoords[3][1]);
1575 next_ycoords[2][1] = lp_build_select(ivec_bld, sel_f23, next_ycoords[3][1], tmp);
1576 }
1577
1578
1579 /** Helper used by lp_build_cube_lookup() */
1580 static LLVMValueRef
1581 lp_build_cube_imapos(struct lp_build_context *coord_bld, LLVMValueRef coord)
1582 {
1583 /* ima = +0.5 / abs(coord); */
1584 LLVMValueRef posHalf = lp_build_const_vec(coord_bld->gallivm, coord_bld->type, 0.5);
1585 LLVMValueRef absCoord = lp_build_abs(coord_bld, coord);
1586 LLVMValueRef ima = lp_build_div(coord_bld, posHalf, absCoord);
1587 return ima;
1588 }
1589
1590
1591 /** Helper for doing 3-wise selection.
1592 * Returns sel1 ? val2 : (sel0 ? val0 : val1).
1593 */
1594 static LLVMValueRef
1595 lp_build_select3(struct lp_build_context *sel_bld,
1596 LLVMValueRef sel0,
1597 LLVMValueRef sel1,
1598 LLVMValueRef val0,
1599 LLVMValueRef val1,
1600 LLVMValueRef val2)
1601 {
1602 LLVMValueRef tmp;
1603 tmp = lp_build_select(sel_bld, sel0, val0, val1);
1604 return lp_build_select(sel_bld, sel1, val2, tmp);
1605 }
1606
1607
1608 /**
1609 * Generate code to do cube face selection and compute per-face texcoords.
1610 */
1611 void
1612 lp_build_cube_lookup(struct lp_build_sample_context *bld,
1613 LLVMValueRef *coords,
1614 const struct lp_derivatives *derivs_in, /* optional */
1615 LLVMValueRef *rho,
1616 struct lp_derivatives *derivs_out, /* optional */
1617 boolean need_derivs)
1618 {
1619 struct lp_build_context *coord_bld = &bld->coord_bld;
1620 LLVMBuilderRef builder = bld->gallivm->builder;
1621 struct gallivm_state *gallivm = bld->gallivm;
1622 LLVMValueRef si, ti, ri;
1623
1624 /*
1625 * Do per-pixel face selection. We cannot however (as we used to do)
1626 * simply calculate the derivs afterwards (which is very bogus for
1627 * explicit derivs btw) because the values would be "random" when
1628 * not all pixels lie on the same face. So what we do here is just
1629 * calculate the derivatives after scaling the coords by the absolute
1630 * value of the inverse major axis, and essentially do rho calculation
1631 * steps as if it were a 3d texture. This is perfect if all pixels hit
1632 * the same face, but not so great at edges, I believe the max error
1633 * should be sqrt(2) with no_rho_approx or 2 otherwise (essentially measuring
1634 * the 3d distance between 2 points on the cube instead of measuring up/down
1635 * the edge). Still this is possibly a win over just selecting the same face
1636 * for all pixels. Unfortunately, something like that doesn't work for
1637 * explicit derivatives.
1638 */
1639 struct lp_build_context *cint_bld = &bld->int_coord_bld;
1640 struct lp_type intctype = cint_bld->type;
1641 LLVMTypeRef coord_vec_type = coord_bld->vec_type;
1642 LLVMTypeRef cint_vec_type = cint_bld->vec_type;
1643 LLVMValueRef as, at, ar, face, face_s, face_t;
1644 LLVMValueRef as_ge_at, maxasat, ar_ge_as_at;
1645 LLVMValueRef snewx, tnewx, snewy, tnewy, snewz, tnewz;
1646 LLVMValueRef tnegi, rnegi;
1647 LLVMValueRef ma, mai, signma, signmabit, imahalfpos;
1648 LLVMValueRef posHalf = lp_build_const_vec(gallivm, coord_bld->type, 0.5);
1649 LLVMValueRef signmask = lp_build_const_int_vec(gallivm, intctype,
1650 1LL << (intctype.width - 1));
1651 LLVMValueRef signshift = lp_build_const_int_vec(gallivm, intctype,
1652 intctype.width -1);
1653 LLVMValueRef facex = lp_build_const_int_vec(gallivm, intctype, PIPE_TEX_FACE_POS_X);
1654 LLVMValueRef facey = lp_build_const_int_vec(gallivm, intctype, PIPE_TEX_FACE_POS_Y);
1655 LLVMValueRef facez = lp_build_const_int_vec(gallivm, intctype, PIPE_TEX_FACE_POS_Z);
1656 LLVMValueRef s = coords[0];
1657 LLVMValueRef t = coords[1];
1658 LLVMValueRef r = coords[2];
1659
1660 assert(PIPE_TEX_FACE_NEG_X == PIPE_TEX_FACE_POS_X + 1);
1661 assert(PIPE_TEX_FACE_NEG_Y == PIPE_TEX_FACE_POS_Y + 1);
1662 assert(PIPE_TEX_FACE_NEG_Z == PIPE_TEX_FACE_POS_Z + 1);
1663
1664 /*
1665 * get absolute value (for x/y/z face selection) and sign bit
1666 * (for mirroring minor coords and pos/neg face selection)
1667 * of the original coords.
1668 */
1669 as = lp_build_abs(&bld->coord_bld, s);
1670 at = lp_build_abs(&bld->coord_bld, t);
1671 ar = lp_build_abs(&bld->coord_bld, r);
1672
1673 /*
1674 * major face determination: select x if x > y else select y
1675 * select z if z >= max(x,y) else select previous result
1676 * if some axis are the same we chose z over y, y over x - the
1677 * dx10 spec seems to ask for it while OpenGL doesn't care (if we
1678 * wouldn't care could save a select or two if using different
1679 * compares and doing at_g_as_ar last since tnewx and tnewz are the
1680 * same).
1681 */
1682 as_ge_at = lp_build_cmp(coord_bld, PIPE_FUNC_GREATER, as, at);
1683 maxasat = lp_build_max(coord_bld, as, at);
1684 ar_ge_as_at = lp_build_cmp(coord_bld, PIPE_FUNC_GEQUAL, ar, maxasat);
1685
1686 if (need_derivs && (derivs_in ||
1687 ((gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) &&
1688 (gallivm_debug & GALLIVM_DEBUG_NO_RHO_APPROX)))) {
1689 /*
1690 * XXX: This is really really complex.
1691 * It is a bit overkill to use this for implicit derivatives as well,
1692 * no way this is worth the cost in practice, but seems to be the
1693 * only way for getting accurate and per-pixel lod values.
1694 */
1695 LLVMValueRef ima, imahalf, tmp, ddx[3], ddy[3];
1696 LLVMValueRef madx, mady, madxdivma, madydivma;
1697 LLVMValueRef sdxi, tdxi, rdxi, sdyi, tdyi, rdyi;
1698 LLVMValueRef tdxnegi, rdxnegi, tdynegi, rdynegi;
1699 LLVMValueRef sdxnewx, sdxnewy, sdxnewz, tdxnewx, tdxnewy, tdxnewz;
1700 LLVMValueRef sdynewx, sdynewy, sdynewz, tdynewx, tdynewy, tdynewz;
1701 LLVMValueRef face_sdx, face_tdx, face_sdy, face_tdy;
1702 /*
1703 * s = 1/2 * ( sc / ma + 1)
1704 * t = 1/2 * ( tc / ma + 1)
1705 *
1706 * s' = 1/2 * (sc' * ma - sc * ma') / ma^2
1707 * t' = 1/2 * (tc' * ma - tc * ma') / ma^2
1708 *
1709 * dx.s = 0.5 * (dx.sc - sc * dx.ma / ma) / ma
1710 * dx.t = 0.5 * (dx.tc - tc * dx.ma / ma) / ma
1711 * dy.s = 0.5 * (dy.sc - sc * dy.ma / ma) / ma
1712 * dy.t = 0.5 * (dy.tc - tc * dy.ma / ma) / ma
1713 */
1714
1715 /* select ma, calculate ima */
1716 ma = lp_build_select3(coord_bld, as_ge_at, ar_ge_as_at, s, t, r);
1717 mai = LLVMBuildBitCast(builder, ma, cint_vec_type, "");
1718 signmabit = LLVMBuildAnd(builder, mai, signmask, "");
1719 ima = lp_build_div(coord_bld, coord_bld->one, ma);
1720 imahalf = lp_build_mul(coord_bld, posHalf, ima);
1721 imahalfpos = lp_build_abs(coord_bld, imahalf);
1722
1723 if (!derivs_in) {
1724 ddx[0] = lp_build_ddx(coord_bld, s);
1725 ddx[1] = lp_build_ddx(coord_bld, t);
1726 ddx[2] = lp_build_ddx(coord_bld, r);
1727 ddy[0] = lp_build_ddy(coord_bld, s);
1728 ddy[1] = lp_build_ddy(coord_bld, t);
1729 ddy[2] = lp_build_ddy(coord_bld, r);
1730 }
1731 else {
1732 ddx[0] = derivs_in->ddx[0];
1733 ddx[1] = derivs_in->ddx[1];
1734 ddx[2] = derivs_in->ddx[2];
1735 ddy[0] = derivs_in->ddy[0];
1736 ddy[1] = derivs_in->ddy[1];
1737 ddy[2] = derivs_in->ddy[2];
1738 }
1739
1740 /* select major derivatives */
1741 madx = lp_build_select3(coord_bld, as_ge_at, ar_ge_as_at, ddx[0], ddx[1], ddx[2]);
1742 mady = lp_build_select3(coord_bld, as_ge_at, ar_ge_as_at, ddy[0], ddy[1], ddy[2]);
1743
1744 si = LLVMBuildBitCast(builder, s, cint_vec_type, "");
1745 ti = LLVMBuildBitCast(builder, t, cint_vec_type, "");
1746 ri = LLVMBuildBitCast(builder, r, cint_vec_type, "");
1747
1748 sdxi = LLVMBuildBitCast(builder, ddx[0], cint_vec_type, "");
1749 tdxi = LLVMBuildBitCast(builder, ddx[1], cint_vec_type, "");
1750 rdxi = LLVMBuildBitCast(builder, ddx[2], cint_vec_type, "");
1751
1752 sdyi = LLVMBuildBitCast(builder, ddy[0], cint_vec_type, "");
1753 tdyi = LLVMBuildBitCast(builder, ddy[1], cint_vec_type, "");
1754 rdyi = LLVMBuildBitCast(builder, ddy[2], cint_vec_type, "");
1755
1756 /*
1757 * compute all possible new s/t coords, which does the mirroring,
1758 * and do the same for derivs minor axes.
1759 * snewx = signma * -r;
1760 * tnewx = -t;
1761 * snewy = s;
1762 * tnewy = signma * r;
1763 * snewz = signma * s;
1764 * tnewz = -t;
1765 */
1766 tnegi = LLVMBuildXor(builder, ti, signmask, "");
1767 rnegi = LLVMBuildXor(builder, ri, signmask, "");
1768 tdxnegi = LLVMBuildXor(builder, tdxi, signmask, "");
1769 rdxnegi = LLVMBuildXor(builder, rdxi, signmask, "");
1770 tdynegi = LLVMBuildXor(builder, tdyi, signmask, "");
1771 rdynegi = LLVMBuildXor(builder, rdyi, signmask, "");
1772
1773 snewx = LLVMBuildXor(builder, signmabit, rnegi, "");
1774 tnewx = tnegi;
1775 sdxnewx = LLVMBuildXor(builder, signmabit, rdxnegi, "");
1776 tdxnewx = tdxnegi;
1777 sdynewx = LLVMBuildXor(builder, signmabit, rdynegi, "");
1778 tdynewx = tdynegi;
1779
1780 snewy = si;
1781 tnewy = LLVMBuildXor(builder, signmabit, ri, "");
1782 sdxnewy = sdxi;
1783 tdxnewy = LLVMBuildXor(builder, signmabit, rdxi, "");
1784 sdynewy = sdyi;
1785 tdynewy = LLVMBuildXor(builder, signmabit, rdyi, "");
1786
1787 snewz = LLVMBuildXor(builder, signmabit, si, "");
1788 tnewz = tnegi;
1789 sdxnewz = LLVMBuildXor(builder, signmabit, sdxi, "");
1790 tdxnewz = tdxnegi;
1791 sdynewz = LLVMBuildXor(builder, signmabit, sdyi, "");
1792 tdynewz = tdynegi;
1793
1794 /* select the mirrored values */
1795 face = lp_build_select3(cint_bld, as_ge_at, ar_ge_as_at, facex, facey, facez);
1796 face_s = lp_build_select3(cint_bld, as_ge_at, ar_ge_as_at, snewx, snewy, snewz);
1797 face_t = lp_build_select3(cint_bld, as_ge_at, ar_ge_as_at, tnewx, tnewy, tnewz);
1798 face_sdx = lp_build_select3(cint_bld, as_ge_at, ar_ge_as_at, sdxnewx, sdxnewy, sdxnewz);
1799 face_tdx = lp_build_select3(cint_bld, as_ge_at, ar_ge_as_at, tdxnewx, tdxnewy, tdxnewz);
1800 face_sdy = lp_build_select3(cint_bld, as_ge_at, ar_ge_as_at, sdynewx, sdynewy, sdynewz);
1801 face_tdy = lp_build_select3(cint_bld, as_ge_at, ar_ge_as_at, tdynewx, tdynewy, tdynewz);
1802
1803 face_s = LLVMBuildBitCast(builder, face_s, coord_vec_type, "");
1804 face_t = LLVMBuildBitCast(builder, face_t, coord_vec_type, "");
1805 face_sdx = LLVMBuildBitCast(builder, face_sdx, coord_vec_type, "");
1806 face_tdx = LLVMBuildBitCast(builder, face_tdx, coord_vec_type, "");
1807 face_sdy = LLVMBuildBitCast(builder, face_sdy, coord_vec_type, "");
1808 face_tdy = LLVMBuildBitCast(builder, face_tdy, coord_vec_type, "");
1809
1810 /* deriv math, dx.s = 0.5 * (dx.sc - sc * dx.ma / ma) / ma */
1811 madxdivma = lp_build_mul(coord_bld, madx, ima);
1812 tmp = lp_build_mul(coord_bld, madxdivma, face_s);
1813 tmp = lp_build_sub(coord_bld, face_sdx, tmp);
1814 derivs_out->ddx[0] = lp_build_mul(coord_bld, tmp, imahalf);
1815
1816 /* dx.t = 0.5 * (dx.tc - tc * dx.ma / ma) / ma */
1817 tmp = lp_build_mul(coord_bld, madxdivma, face_t);
1818 tmp = lp_build_sub(coord_bld, face_tdx, tmp);
1819 derivs_out->ddx[1] = lp_build_mul(coord_bld, tmp, imahalf);
1820
1821 /* dy.s = 0.5 * (dy.sc - sc * dy.ma / ma) / ma */
1822 madydivma = lp_build_mul(coord_bld, mady, ima);
1823 tmp = lp_build_mul(coord_bld, madydivma, face_s);
1824 tmp = lp_build_sub(coord_bld, face_sdy, tmp);
1825 derivs_out->ddy[0] = lp_build_mul(coord_bld, tmp, imahalf);
1826
1827 /* dy.t = 0.5 * (dy.tc - tc * dy.ma / ma) / ma */
1828 tmp = lp_build_mul(coord_bld, madydivma, face_t);
1829 tmp = lp_build_sub(coord_bld, face_tdy, tmp);
1830 derivs_out->ddy[1] = lp_build_mul(coord_bld, tmp, imahalf);
1831
1832 signma = LLVMBuildLShr(builder, mai, signshift, "");
1833 coords[2] = LLVMBuildOr(builder, face, signma, "face");
1834
1835 /* project coords */
1836 face_s = lp_build_mul(coord_bld, face_s, imahalfpos);
1837 face_t = lp_build_mul(coord_bld, face_t, imahalfpos);
1838
1839 coords[0] = lp_build_add(coord_bld, face_s, posHalf);
1840 coords[1] = lp_build_add(coord_bld, face_t, posHalf);
1841
1842 return;
1843 }
1844
1845 else if (need_derivs) {
1846 LLVMValueRef ddx_ddy[2], tmp[3], rho_vec;
1847 static const unsigned char swizzle0[] = { /* no-op swizzle */
1848 0, LP_BLD_SWIZZLE_DONTCARE,
1849 LP_BLD_SWIZZLE_DONTCARE, LP_BLD_SWIZZLE_DONTCARE
1850 };
1851 static const unsigned char swizzle1[] = {
1852 1, LP_BLD_SWIZZLE_DONTCARE,
1853 LP_BLD_SWIZZLE_DONTCARE, LP_BLD_SWIZZLE_DONTCARE
1854 };
1855 static const unsigned char swizzle01[] = { /* no-op swizzle */
1856 0, 1,
1857 LP_BLD_SWIZZLE_DONTCARE, LP_BLD_SWIZZLE_DONTCARE
1858 };
1859 static const unsigned char swizzle23[] = {
1860 2, 3,
1861 LP_BLD_SWIZZLE_DONTCARE, LP_BLD_SWIZZLE_DONTCARE
1862 };
1863 static const unsigned char swizzle02[] = {
1864 0, 2,
1865 LP_BLD_SWIZZLE_DONTCARE, LP_BLD_SWIZZLE_DONTCARE
1866 };
1867
1868 /*
1869 * scale the s/t/r coords pre-select/mirror so we can calculate
1870 * "reasonable" derivs.
1871 */
1872 ma = lp_build_select3(coord_bld, as_ge_at, ar_ge_as_at, s, t, r);
1873 imahalfpos = lp_build_cube_imapos(coord_bld, ma);
1874 s = lp_build_mul(coord_bld, s, imahalfpos);
1875 t = lp_build_mul(coord_bld, t, imahalfpos);
1876 r = lp_build_mul(coord_bld, r, imahalfpos);
1877
1878 /*
1879 * This isn't quite the same as the "ordinary" (3d deriv) path since we
1880 * know the texture is square which simplifies things (we can omit the
1881 * size mul which happens very early completely here and do it at the
1882 * very end).
1883 * Also always do calculations according to GALLIVM_DEBUG_NO_RHO_APPROX
1884 * since the error can get quite big otherwise at edges.
1885 * (With no_rho_approx max error is sqrt(2) at edges, same as it is
1886 * without no_rho_approx for 2d textures, otherwise it would be factor 2.)
1887 */
1888 ddx_ddy[0] = lp_build_packed_ddx_ddy_twocoord(coord_bld, s, t);
1889 ddx_ddy[1] = lp_build_packed_ddx_ddy_onecoord(coord_bld, r);
1890
1891 ddx_ddy[0] = lp_build_mul(coord_bld, ddx_ddy[0], ddx_ddy[0]);
1892 ddx_ddy[1] = lp_build_mul(coord_bld, ddx_ddy[1], ddx_ddy[1]);
1893
1894 tmp[0] = lp_build_swizzle_aos(coord_bld, ddx_ddy[0], swizzle01);
1895 tmp[1] = lp_build_swizzle_aos(coord_bld, ddx_ddy[0], swizzle23);
1896 tmp[2] = lp_build_swizzle_aos(coord_bld, ddx_ddy[1], swizzle02);
1897
1898 rho_vec = lp_build_add(coord_bld, tmp[0], tmp[1]);
1899 rho_vec = lp_build_add(coord_bld, rho_vec, tmp[2]);
1900
1901 tmp[0] = lp_build_swizzle_aos(coord_bld, rho_vec, swizzle0);
1902 tmp[1] = lp_build_swizzle_aos(coord_bld, rho_vec, swizzle1);
1903 *rho = lp_build_max(coord_bld, tmp[0], tmp[1]);
1904 }
1905
1906 if (!need_derivs) {
1907 ma = lp_build_select3(coord_bld, as_ge_at, ar_ge_as_at, s, t, r);
1908 }
1909 mai = LLVMBuildBitCast(builder, ma, cint_vec_type, "");
1910 signmabit = LLVMBuildAnd(builder, mai, signmask, "");
1911
1912 si = LLVMBuildBitCast(builder, s, cint_vec_type, "");
1913 ti = LLVMBuildBitCast(builder, t, cint_vec_type, "");
1914 ri = LLVMBuildBitCast(builder, r, cint_vec_type, "");
1915
1916 /*
1917 * compute all possible new s/t coords, which does the mirroring
1918 * snewx = signma * -r;
1919 * tnewx = -t;
1920 * snewy = s;
1921 * tnewy = signma * r;
1922 * snewz = signma * s;
1923 * tnewz = -t;
1924 */
1925 tnegi = LLVMBuildXor(builder, ti, signmask, "");
1926 rnegi = LLVMBuildXor(builder, ri, signmask, "");
1927
1928 snewx = LLVMBuildXor(builder, signmabit, rnegi, "");
1929 tnewx = tnegi;
1930
1931 snewy = si;
1932 tnewy = LLVMBuildXor(builder, signmabit, ri, "");
1933
1934 snewz = LLVMBuildXor(builder, signmabit, si, "");
1935 tnewz = tnegi;
1936
1937 /* select the mirrored values */
1938 face_s = lp_build_select3(cint_bld, as_ge_at, ar_ge_as_at, snewx, snewy, snewz);
1939 face_t = lp_build_select3(cint_bld, as_ge_at, ar_ge_as_at, tnewx, tnewy, tnewz);
1940 face = lp_build_select3(cint_bld, as_ge_at, ar_ge_as_at, facex, facey, facez);
1941
1942 face_s = LLVMBuildBitCast(builder, face_s, coord_vec_type, "");
1943 face_t = LLVMBuildBitCast(builder, face_t, coord_vec_type, "");
1944
1945 /* add +1 for neg face */
1946 /* XXX with AVX probably want to use another select here -
1947 * as long as we ensure vblendvps gets used we can actually
1948 * skip the comparison and just use sign as a "mask" directly.
1949 */
1950 signma = LLVMBuildLShr(builder, mai, signshift, "");
1951 coords[2] = LLVMBuildOr(builder, face, signma, "face");
1952
1953 /* project coords */
1954 if (!need_derivs) {
1955 imahalfpos = lp_build_cube_imapos(coord_bld, ma);
1956 face_s = lp_build_mul(coord_bld, face_s, imahalfpos);
1957 face_t = lp_build_mul(coord_bld, face_t, imahalfpos);
1958 }
1959
1960 coords[0] = lp_build_add(coord_bld, face_s, posHalf);
1961 coords[1] = lp_build_add(coord_bld, face_t, posHalf);
1962 }
1963
1964
1965 /**
1966 * Compute the partial offset of a pixel block along an arbitrary axis.
1967 *
1968 * @param coord coordinate in pixels
1969 * @param stride number of bytes between rows of successive pixel blocks
1970 * @param block_length number of pixels in a pixels block along the coordinate
1971 * axis
1972 * @param out_offset resulting relative offset of the pixel block in bytes
1973 * @param out_subcoord resulting sub-block pixel coordinate
1974 */
1975 void
1976 lp_build_sample_partial_offset(struct lp_build_context *bld,
1977 unsigned block_length,
1978 LLVMValueRef coord,
1979 LLVMValueRef stride,
1980 LLVMValueRef *out_offset,
1981 LLVMValueRef *out_subcoord)
1982 {
1983 LLVMBuilderRef builder = bld->gallivm->builder;
1984 LLVMValueRef offset;
1985 LLVMValueRef subcoord;
1986
1987 if (block_length == 1) {
1988 subcoord = bld->zero;
1989 }
1990 else {
1991 /*
1992 * Pixel blocks have power of two dimensions. LLVM should convert the
1993 * rem/div to bit arithmetic.
1994 * TODO: Verify this.
1995 * It does indeed BUT it does transform it to scalar (and back) when doing so
1996 * (using roughly extract, shift/and, mov, unpack) (llvm 2.7).
1997 * The generated code looks seriously unfunny and is quite expensive.
1998 */
1999 #if 0
2000 LLVMValueRef block_width = lp_build_const_int_vec(bld->type, block_length);
2001 subcoord = LLVMBuildURem(builder, coord, block_width, "");
2002 coord = LLVMBuildUDiv(builder, coord, block_width, "");
2003 #else
2004 unsigned logbase2 = util_logbase2(block_length);
2005 LLVMValueRef block_shift = lp_build_const_int_vec(bld->gallivm, bld->type, logbase2);
2006 LLVMValueRef block_mask = lp_build_const_int_vec(bld->gallivm, bld->type, block_length - 1);
2007 subcoord = LLVMBuildAnd(builder, coord, block_mask, "");
2008 coord = LLVMBuildLShr(builder, coord, block_shift, "");
2009 #endif
2010 }
2011
2012 offset = lp_build_mul(bld, coord, stride);
2013
2014 assert(out_offset);
2015 assert(out_subcoord);
2016
2017 *out_offset = offset;
2018 *out_subcoord = subcoord;
2019 }
2020
2021
2022 /**
2023 * Compute the offset of a pixel block.
2024 *
2025 * x, y, z, y_stride, z_stride are vectors, and they refer to pixels.
2026 *
2027 * Returns the relative offset and i,j sub-block coordinates
2028 */
2029 void
2030 lp_build_sample_offset(struct lp_build_context *bld,
2031 const struct util_format_description *format_desc,
2032 LLVMValueRef x,
2033 LLVMValueRef y,
2034 LLVMValueRef z,
2035 LLVMValueRef y_stride,
2036 LLVMValueRef z_stride,
2037 LLVMValueRef *out_offset,
2038 LLVMValueRef *out_i,
2039 LLVMValueRef *out_j)
2040 {
2041 LLVMValueRef x_stride;
2042 LLVMValueRef offset;
2043
2044 x_stride = lp_build_const_vec(bld->gallivm, bld->type,
2045 format_desc->block.bits/8);
2046
2047 lp_build_sample_partial_offset(bld,
2048 format_desc->block.width,
2049 x, x_stride,
2050 &offset, out_i);
2051
2052 if (y && y_stride) {
2053 LLVMValueRef y_offset;
2054 lp_build_sample_partial_offset(bld,
2055 format_desc->block.height,
2056 y, y_stride,
2057 &y_offset, out_j);
2058 offset = lp_build_add(bld, offset, y_offset);
2059 }
2060 else {
2061 *out_j = bld->zero;
2062 }
2063
2064 if (z && z_stride) {
2065 LLVMValueRef z_offset;
2066 LLVMValueRef k;
2067 lp_build_sample_partial_offset(bld,
2068 1, /* pixel blocks are always 2D */
2069 z, z_stride,
2070 &z_offset, &k);
2071 offset = lp_build_add(bld, offset, z_offset);
2072 }
2073
2074 *out_offset = offset;
2075 }