gallivm: Combined ifloor & fract helper.
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_sample.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * @file
30 * Texture sampling -- common code.
31 *
32 * @author Jose Fonseca <jfonseca@vmware.com>
33 */
34
35 #include "pipe/p_defines.h"
36 #include "pipe/p_state.h"
37 #include "util/u_format.h"
38 #include "util/u_math.h"
39 #include "lp_bld_arit.h"
40 #include "lp_bld_const.h"
41 #include "lp_bld_debug.h"
42 #include "lp_bld_flow.h"
43 #include "lp_bld_sample.h"
44 #include "lp_bld_swizzle.h"
45 #include "lp_bld_type.h"
46
47
48 /**
49 * Does the given texture wrap mode allow sampling the texture border color?
50 * XXX maybe move this into gallium util code.
51 */
52 boolean
53 lp_sampler_wrap_mode_uses_border_color(unsigned mode,
54 unsigned min_img_filter,
55 unsigned mag_img_filter)
56 {
57 switch (mode) {
58 case PIPE_TEX_WRAP_REPEAT:
59 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
60 case PIPE_TEX_WRAP_MIRROR_REPEAT:
61 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
62 return FALSE;
63 case PIPE_TEX_WRAP_CLAMP:
64 case PIPE_TEX_WRAP_MIRROR_CLAMP:
65 if (min_img_filter == PIPE_TEX_FILTER_NEAREST &&
66 mag_img_filter == PIPE_TEX_FILTER_NEAREST) {
67 return FALSE;
68 } else {
69 return TRUE;
70 }
71 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
72 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
73 return TRUE;
74 default:
75 assert(0 && "unexpected wrap mode");
76 return FALSE;
77 }
78 }
79
80
81 /**
82 * Initialize lp_sampler_static_state object with the gallium sampler
83 * and texture state.
84 * The former is considered to be static and the later dynamic.
85 */
86 void
87 lp_sampler_static_state(struct lp_sampler_static_state *state,
88 const struct pipe_sampler_view *view,
89 const struct pipe_sampler_state *sampler)
90 {
91 const struct pipe_resource *texture = view->texture;
92
93 memset(state, 0, sizeof *state);
94
95 if(!texture)
96 return;
97
98 if(!sampler)
99 return;
100
101 /*
102 * We don't copy sampler state over unless it is actually enabled, to avoid
103 * spurious recompiles, as the sampler static state is part of the shader
104 * key.
105 *
106 * Ideally the state tracker or cso_cache module would make all state
107 * canonical, but until that happens it's better to be safe than sorry here.
108 *
109 * XXX: Actually there's much more than can be done here, especially
110 * regarding 1D/2D/3D/CUBE textures, wrap modes, etc.
111 */
112
113 state->format = view->format;
114 state->swizzle_r = view->swizzle_r;
115 state->swizzle_g = view->swizzle_g;
116 state->swizzle_b = view->swizzle_b;
117 state->swizzle_a = view->swizzle_a;
118
119 state->target = texture->target;
120 state->pot_width = util_is_power_of_two(texture->width0);
121 state->pot_height = util_is_power_of_two(texture->height0);
122 state->pot_depth = util_is_power_of_two(texture->depth0);
123
124 state->wrap_s = sampler->wrap_s;
125 state->wrap_t = sampler->wrap_t;
126 state->wrap_r = sampler->wrap_r;
127 state->min_img_filter = sampler->min_img_filter;
128 state->mag_img_filter = sampler->mag_img_filter;
129 if (view->last_level) {
130 state->min_mip_filter = sampler->min_mip_filter;
131 } else {
132 state->min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
133 }
134
135 /* If min_lod == max_lod we can greatly simplify mipmap selection.
136 * This is a case that occurs during automatic mipmap generation.
137 */
138 if (sampler->min_lod == sampler->max_lod) {
139 state->min_max_lod_equal = 1;
140 }
141
142 state->compare_mode = sampler->compare_mode;
143 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE) {
144 state->compare_func = sampler->compare_func;
145 }
146
147 state->normalized_coords = sampler->normalized_coords;
148
149 /*
150 * FIXME: Handle the remainder of pipe_sampler_view.
151 */
152 }
153
154
155 /**
156 * Generate code to compute texture level of detail (lambda).
157 * \param ddx partial derivatives of (s, t, r, q) with respect to X
158 * \param ddy partial derivatives of (s, t, r, q) with respect to Y
159 * \param lod_bias optional float vector with the shader lod bias
160 * \param explicit_lod optional float vector with the explicit lod
161 * \param width scalar int texture width
162 * \param height scalar int texture height
163 * \param depth scalar int texture depth
164 *
165 * XXX: The resulting lod is scalar, so ignore all but the first element of
166 * derivatives, lod_bias, etc that are passed by the shader.
167 */
168 LLVMValueRef
169 lp_build_lod_selector(struct lp_build_sample_context *bld,
170 unsigned unit,
171 const LLVMValueRef ddx[4],
172 const LLVMValueRef ddy[4],
173 LLVMValueRef lod_bias, /* optional */
174 LLVMValueRef explicit_lod, /* optional */
175 LLVMValueRef width,
176 LLVMValueRef height,
177 LLVMValueRef depth)
178
179 {
180 LLVMValueRef min_lod =
181 bld->dynamic_state->min_lod(bld->dynamic_state, bld->builder, unit);
182
183 if (bld->static_state->min_max_lod_equal) {
184 /* User is forcing sampling from a particular mipmap level.
185 * This is hit during mipmap generation.
186 */
187 return min_lod;
188 }
189 else {
190 struct lp_build_context *float_bld = &bld->float_bld;
191 LLVMValueRef sampler_lod_bias =
192 bld->dynamic_state->lod_bias(bld->dynamic_state, bld->builder, unit);
193 LLVMValueRef max_lod =
194 bld->dynamic_state->max_lod(bld->dynamic_state, bld->builder, unit);
195 LLVMValueRef index0 = LLVMConstInt(LLVMInt32Type(), 0, 0);
196 LLVMValueRef lod;
197
198 if (explicit_lod) {
199 lod = LLVMBuildExtractElement(bld->builder, explicit_lod,
200 index0, "");
201 }
202 else {
203 const int dims = texture_dims(bld->static_state->target);
204 LLVMValueRef dsdx, dsdy;
205 LLVMValueRef dtdx = NULL, dtdy = NULL, drdx = NULL, drdy = NULL;
206 LLVMValueRef rho;
207
208 dsdx = LLVMBuildExtractElement(bld->builder, ddx[0], index0, "dsdx");
209 dsdx = lp_build_abs(float_bld, dsdx);
210 dsdy = LLVMBuildExtractElement(bld->builder, ddy[0], index0, "dsdy");
211 dsdy = lp_build_abs(float_bld, dsdy);
212 if (dims > 1) {
213 dtdx = LLVMBuildExtractElement(bld->builder, ddx[1], index0, "dtdx");
214 dtdx = lp_build_abs(float_bld, dtdx);
215 dtdy = LLVMBuildExtractElement(bld->builder, ddy[1], index0, "dtdy");
216 dtdy = lp_build_abs(float_bld, dtdy);
217 if (dims > 2) {
218 drdx = LLVMBuildExtractElement(bld->builder, ddx[2], index0, "drdx");
219 drdx = lp_build_abs(float_bld, drdx);
220 drdy = LLVMBuildExtractElement(bld->builder, ddy[2], index0, "drdy");
221 drdy = lp_build_abs(float_bld, drdy);
222 }
223 }
224
225 /* Compute rho = max of all partial derivatives scaled by texture size.
226 * XXX this could be vectorized somewhat
227 */
228 rho = LLVMBuildFMul(bld->builder,
229 lp_build_max(float_bld, dsdx, dsdy),
230 lp_build_int_to_float(float_bld, width), "");
231 if (dims > 1) {
232 LLVMValueRef max;
233 max = LLVMBuildFMul(bld->builder,
234 lp_build_max(float_bld, dtdx, dtdy),
235 lp_build_int_to_float(float_bld, height), "");
236 rho = lp_build_max(float_bld, rho, max);
237 if (dims > 2) {
238 max = LLVMBuildFMul(bld->builder,
239 lp_build_max(float_bld, drdx, drdy),
240 lp_build_int_to_float(float_bld, depth), "");
241 rho = lp_build_max(float_bld, rho, max);
242 }
243 }
244
245 /* compute lod = log2(rho) */
246 #if 0
247 lod = lp_build_log2(float_bld, rho);
248 #else
249 lod = lp_build_fast_log2(float_bld, rho);
250 #endif
251
252 /* add shader lod bias */
253 if (lod_bias) {
254 lod_bias = LLVMBuildExtractElement(bld->builder, lod_bias,
255 index0, "");
256 lod = LLVMBuildFAdd(bld->builder, lod, lod_bias, "shader_lod_bias");
257 }
258 }
259
260 /* add sampler lod bias */
261 lod = LLVMBuildFAdd(bld->builder, lod, sampler_lod_bias, "sampler_lod_bias");
262
263 /* clamp lod */
264 lod = lp_build_clamp(float_bld, lod, min_lod, max_lod);
265
266 return lod;
267 }
268 }
269
270
271 /**
272 * For PIPE_TEX_MIPFILTER_NEAREST, convert float LOD to integer
273 * mipmap level index.
274 * Note: this is all scalar code.
275 * \param lod scalar float texture level of detail
276 * \param level_out returns integer
277 */
278 void
279 lp_build_nearest_mip_level(struct lp_build_sample_context *bld,
280 unsigned unit,
281 LLVMValueRef lod,
282 LLVMValueRef *level_out)
283 {
284 struct lp_build_context *float_bld = &bld->float_bld;
285 struct lp_build_context *int_bld = &bld->int_bld;
286 LLVMValueRef last_level, level;
287
288 LLVMValueRef zero = LLVMConstInt(LLVMInt32Type(), 0, 0);
289
290 last_level = bld->dynamic_state->last_level(bld->dynamic_state,
291 bld->builder, unit);
292
293 /* convert float lod to integer */
294 level = lp_build_iround(float_bld, lod);
295
296 /* clamp level to legal range of levels */
297 *level_out = lp_build_clamp(int_bld, level, zero, last_level);
298 }
299
300
301 /**
302 * For PIPE_TEX_MIPFILTER_LINEAR, convert float LOD to integer to
303 * two (adjacent) mipmap level indexes. Later, we'll sample from those
304 * two mipmap levels and interpolate between them.
305 */
306 void
307 lp_build_linear_mip_levels(struct lp_build_sample_context *bld,
308 unsigned unit,
309 LLVMValueRef lod,
310 LLVMValueRef *level0_out,
311 LLVMValueRef *level1_out,
312 LLVMValueRef *weight_out)
313 {
314 struct lp_build_context *float_bld = &bld->float_bld;
315 struct lp_build_context *int_bld = &bld->int_bld;
316 LLVMValueRef last_level, level;
317
318 last_level = bld->dynamic_state->last_level(bld->dynamic_state,
319 bld->builder, unit);
320
321 /* convert float lod to integer */
322 lp_build_ifloor_fract(float_bld, lod, &level, weight_out);
323
324 /* compute level 0 and clamp to legal range of levels */
325 *level0_out = lp_build_clamp(int_bld, level,
326 int_bld->zero,
327 last_level);
328 /* compute level 1 and clamp to legal range of levels */
329 level = lp_build_add(int_bld, level, int_bld->one);
330 *level1_out = lp_build_clamp(int_bld, level,
331 int_bld->zero,
332 last_level);
333 }
334
335
336 /**
337 * Return pointer to a single mipmap level.
338 * \param data_array array of pointers to mipmap levels
339 * \param level integer mipmap level
340 */
341 LLVMValueRef
342 lp_build_get_mipmap_level(struct lp_build_sample_context *bld,
343 LLVMValueRef data_array, LLVMValueRef level)
344 {
345 LLVMValueRef indexes[2], data_ptr;
346 indexes[0] = LLVMConstInt(LLVMInt32Type(), 0, 0);
347 indexes[1] = level;
348 data_ptr = LLVMBuildGEP(bld->builder, data_array, indexes, 2, "");
349 data_ptr = LLVMBuildLoad(bld->builder, data_ptr, "");
350 return data_ptr;
351 }
352
353
354 LLVMValueRef
355 lp_build_get_const_mipmap_level(struct lp_build_sample_context *bld,
356 LLVMValueRef data_array, int level)
357 {
358 LLVMValueRef lvl = LLVMConstInt(LLVMInt32Type(), level, 0);
359 return lp_build_get_mipmap_level(bld, data_array, lvl);
360 }
361
362
363 /**
364 * Codegen equivalent for u_minify().
365 * Return max(1, base_size >> level);
366 */
367 static LLVMValueRef
368 lp_build_minify(struct lp_build_sample_context *bld,
369 LLVMValueRef base_size,
370 LLVMValueRef level)
371 {
372 if (level == bld->int_coord_bld.zero) {
373 /* if we're using mipmap level zero, no minification is needed */
374 return base_size;
375 }
376 else {
377 LLVMValueRef size =
378 LLVMBuildLShr(bld->builder, base_size, level, "minify");
379 size = lp_build_max(&bld->int_coord_bld, size, bld->int_coord_bld.one);
380 return size;
381 }
382 }
383
384
385 /**
386 * Dereference stride_array[mipmap_level] array to get a stride.
387 * Return stride as a vector.
388 */
389 static LLVMValueRef
390 lp_build_get_level_stride_vec(struct lp_build_sample_context *bld,
391 LLVMValueRef stride_array, LLVMValueRef level)
392 {
393 LLVMValueRef indexes[2], stride;
394 indexes[0] = LLVMConstInt(LLVMInt32Type(), 0, 0);
395 indexes[1] = level;
396 stride = LLVMBuildGEP(bld->builder, stride_array, indexes, 2, "");
397 stride = LLVMBuildLoad(bld->builder, stride, "");
398 stride = lp_build_broadcast_scalar(&bld->int_coord_bld, stride);
399 return stride;
400 }
401
402
403 /**
404 * When sampling a mipmap, we need to compute the width, height, depth
405 * of the source levels from the level indexes. This helper function
406 * does that.
407 */
408 void
409 lp_build_mipmap_level_sizes(struct lp_build_sample_context *bld,
410 unsigned dims,
411 LLVMValueRef width_vec,
412 LLVMValueRef height_vec,
413 LLVMValueRef depth_vec,
414 LLVMValueRef ilevel0,
415 LLVMValueRef ilevel1,
416 LLVMValueRef row_stride_array,
417 LLVMValueRef img_stride_array,
418 LLVMValueRef *width0_vec,
419 LLVMValueRef *width1_vec,
420 LLVMValueRef *height0_vec,
421 LLVMValueRef *height1_vec,
422 LLVMValueRef *depth0_vec,
423 LLVMValueRef *depth1_vec,
424 LLVMValueRef *row_stride0_vec,
425 LLVMValueRef *row_stride1_vec,
426 LLVMValueRef *img_stride0_vec,
427 LLVMValueRef *img_stride1_vec)
428 {
429 const unsigned mip_filter = bld->static_state->min_mip_filter;
430 LLVMValueRef ilevel0_vec, ilevel1_vec;
431
432 ilevel0_vec = lp_build_broadcast_scalar(&bld->int_coord_bld, ilevel0);
433 if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR)
434 ilevel1_vec = lp_build_broadcast_scalar(&bld->int_coord_bld, ilevel1);
435
436 /*
437 * Compute width, height, depth at mipmap level 'ilevel0'
438 */
439 *width0_vec = lp_build_minify(bld, width_vec, ilevel0_vec);
440 if (dims >= 2) {
441 *height0_vec = lp_build_minify(bld, height_vec, ilevel0_vec);
442 *row_stride0_vec = lp_build_get_level_stride_vec(bld,
443 row_stride_array,
444 ilevel0);
445 if (dims == 3 || bld->static_state->target == PIPE_TEXTURE_CUBE) {
446 *img_stride0_vec = lp_build_get_level_stride_vec(bld,
447 img_stride_array,
448 ilevel0);
449 if (dims == 3) {
450 *depth0_vec = lp_build_minify(bld, depth_vec, ilevel0_vec);
451 }
452 }
453 }
454 if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR) {
455 /* compute width, height, depth for second mipmap level at 'ilevel1' */
456 *width1_vec = lp_build_minify(bld, width_vec, ilevel1_vec);
457 if (dims >= 2) {
458 *height1_vec = lp_build_minify(bld, height_vec, ilevel1_vec);
459 *row_stride1_vec = lp_build_get_level_stride_vec(bld,
460 row_stride_array,
461 ilevel1);
462 if (dims == 3 || bld->static_state->target == PIPE_TEXTURE_CUBE) {
463 *img_stride1_vec = lp_build_get_level_stride_vec(bld,
464 img_stride_array,
465 ilevel1);
466 if (dims == 3) {
467 *depth1_vec = lp_build_minify(bld, depth_vec, ilevel1_vec);
468 }
469 }
470 }
471 }
472 }
473
474
475
476 /** Helper used by lp_build_cube_lookup() */
477 static LLVMValueRef
478 lp_build_cube_ima(struct lp_build_context *coord_bld, LLVMValueRef coord)
479 {
480 /* ima = -0.5 / abs(coord); */
481 LLVMValueRef negHalf = lp_build_const_vec(coord_bld->type, -0.5);
482 LLVMValueRef absCoord = lp_build_abs(coord_bld, coord);
483 LLVMValueRef ima = lp_build_div(coord_bld, negHalf, absCoord);
484 return ima;
485 }
486
487
488 /**
489 * Helper used by lp_build_cube_lookup()
490 * \param sign scalar +1 or -1
491 * \param coord float vector
492 * \param ima float vector
493 */
494 static LLVMValueRef
495 lp_build_cube_coord(struct lp_build_context *coord_bld,
496 LLVMValueRef sign, int negate_coord,
497 LLVMValueRef coord, LLVMValueRef ima)
498 {
499 /* return negate(coord) * ima * sign + 0.5; */
500 LLVMValueRef half = lp_build_const_vec(coord_bld->type, 0.5);
501 LLVMValueRef res;
502
503 assert(negate_coord == +1 || negate_coord == -1);
504
505 if (negate_coord == -1) {
506 coord = lp_build_negate(coord_bld, coord);
507 }
508
509 res = lp_build_mul(coord_bld, coord, ima);
510 if (sign) {
511 sign = lp_build_broadcast_scalar(coord_bld, sign);
512 res = lp_build_mul(coord_bld, res, sign);
513 }
514 res = lp_build_add(coord_bld, res, half);
515
516 return res;
517 }
518
519
520 /** Helper used by lp_build_cube_lookup()
521 * Return (major_coord >= 0) ? pos_face : neg_face;
522 */
523 static LLVMValueRef
524 lp_build_cube_face(struct lp_build_sample_context *bld,
525 LLVMValueRef major_coord,
526 unsigned pos_face, unsigned neg_face)
527 {
528 LLVMValueRef cmp = LLVMBuildFCmp(bld->builder, LLVMRealUGE,
529 major_coord,
530 bld->float_bld.zero, "");
531 LLVMValueRef pos = LLVMConstInt(LLVMInt32Type(), pos_face, 0);
532 LLVMValueRef neg = LLVMConstInt(LLVMInt32Type(), neg_face, 0);
533 LLVMValueRef res = LLVMBuildSelect(bld->builder, cmp, pos, neg, "");
534 return res;
535 }
536
537
538
539 /**
540 * Generate code to do cube face selection and compute per-face texcoords.
541 */
542 void
543 lp_build_cube_lookup(struct lp_build_sample_context *bld,
544 LLVMValueRef s,
545 LLVMValueRef t,
546 LLVMValueRef r,
547 LLVMValueRef *face,
548 LLVMValueRef *face_s,
549 LLVMValueRef *face_t)
550 {
551 struct lp_build_context *float_bld = &bld->float_bld;
552 struct lp_build_context *coord_bld = &bld->coord_bld;
553 LLVMValueRef rx, ry, rz;
554 LLVMValueRef arx, ary, arz;
555 LLVMValueRef c25 = LLVMConstReal(LLVMFloatType(), 0.25);
556 LLVMValueRef arx_ge_ary, arx_ge_arz;
557 LLVMValueRef ary_ge_arx, ary_ge_arz;
558 LLVMValueRef arx_ge_ary_arz, ary_ge_arx_arz;
559 LLVMValueRef rx_pos, ry_pos, rz_pos;
560
561 assert(bld->coord_bld.type.length == 4);
562
563 /*
564 * Use the average of the four pixel's texcoords to choose the face.
565 */
566 rx = lp_build_mul(float_bld, c25,
567 lp_build_sum_vector(&bld->coord_bld, s));
568 ry = lp_build_mul(float_bld, c25,
569 lp_build_sum_vector(&bld->coord_bld, t));
570 rz = lp_build_mul(float_bld, c25,
571 lp_build_sum_vector(&bld->coord_bld, r));
572
573 arx = lp_build_abs(float_bld, rx);
574 ary = lp_build_abs(float_bld, ry);
575 arz = lp_build_abs(float_bld, rz);
576
577 /*
578 * Compare sign/magnitude of rx,ry,rz to determine face
579 */
580 arx_ge_ary = LLVMBuildFCmp(bld->builder, LLVMRealUGE, arx, ary, "");
581 arx_ge_arz = LLVMBuildFCmp(bld->builder, LLVMRealUGE, arx, arz, "");
582 ary_ge_arx = LLVMBuildFCmp(bld->builder, LLVMRealUGE, ary, arx, "");
583 ary_ge_arz = LLVMBuildFCmp(bld->builder, LLVMRealUGE, ary, arz, "");
584
585 arx_ge_ary_arz = LLVMBuildAnd(bld->builder, arx_ge_ary, arx_ge_arz, "");
586 ary_ge_arx_arz = LLVMBuildAnd(bld->builder, ary_ge_arx, ary_ge_arz, "");
587
588 rx_pos = LLVMBuildFCmp(bld->builder, LLVMRealUGE, rx, float_bld->zero, "");
589 ry_pos = LLVMBuildFCmp(bld->builder, LLVMRealUGE, ry, float_bld->zero, "");
590 rz_pos = LLVMBuildFCmp(bld->builder, LLVMRealUGE, rz, float_bld->zero, "");
591
592 {
593 struct lp_build_flow_context *flow_ctx;
594 struct lp_build_if_state if_ctx;
595
596 flow_ctx = lp_build_flow_create(bld->builder);
597 lp_build_flow_scope_begin(flow_ctx);
598
599 *face_s = bld->coord_bld.undef;
600 *face_t = bld->coord_bld.undef;
601 *face = bld->int_bld.undef;
602
603 lp_build_name(*face_s, "face_s");
604 lp_build_name(*face_t, "face_t");
605 lp_build_name(*face, "face");
606
607 lp_build_flow_scope_declare(flow_ctx, face_s);
608 lp_build_flow_scope_declare(flow_ctx, face_t);
609 lp_build_flow_scope_declare(flow_ctx, face);
610
611 lp_build_if(&if_ctx, flow_ctx, bld->builder, arx_ge_ary_arz);
612 {
613 /* +/- X face */
614 LLVMValueRef sign = lp_build_sgn(float_bld, rx);
615 LLVMValueRef ima = lp_build_cube_ima(coord_bld, s);
616 *face_s = lp_build_cube_coord(coord_bld, sign, +1, r, ima);
617 *face_t = lp_build_cube_coord(coord_bld, NULL, +1, t, ima);
618 *face = lp_build_cube_face(bld, rx,
619 PIPE_TEX_FACE_POS_X,
620 PIPE_TEX_FACE_NEG_X);
621 }
622 lp_build_else(&if_ctx);
623 {
624 struct lp_build_flow_context *flow_ctx2;
625 struct lp_build_if_state if_ctx2;
626
627 LLVMValueRef face_s2 = bld->coord_bld.undef;
628 LLVMValueRef face_t2 = bld->coord_bld.undef;
629 LLVMValueRef face2 = bld->int_bld.undef;
630
631 flow_ctx2 = lp_build_flow_create(bld->builder);
632 lp_build_flow_scope_begin(flow_ctx2);
633 lp_build_flow_scope_declare(flow_ctx2, &face_s2);
634 lp_build_flow_scope_declare(flow_ctx2, &face_t2);
635 lp_build_flow_scope_declare(flow_ctx2, &face2);
636
637 ary_ge_arx_arz = LLVMBuildAnd(bld->builder, ary_ge_arx, ary_ge_arz, "");
638
639 lp_build_if(&if_ctx2, flow_ctx2, bld->builder, ary_ge_arx_arz);
640 {
641 /* +/- Y face */
642 LLVMValueRef sign = lp_build_sgn(float_bld, ry);
643 LLVMValueRef ima = lp_build_cube_ima(coord_bld, t);
644 face_s2 = lp_build_cube_coord(coord_bld, NULL, -1, s, ima);
645 face_t2 = lp_build_cube_coord(coord_bld, sign, -1, r, ima);
646 face2 = lp_build_cube_face(bld, ry,
647 PIPE_TEX_FACE_POS_Y,
648 PIPE_TEX_FACE_NEG_Y);
649 }
650 lp_build_else(&if_ctx2);
651 {
652 /* +/- Z face */
653 LLVMValueRef sign = lp_build_sgn(float_bld, rz);
654 LLVMValueRef ima = lp_build_cube_ima(coord_bld, r);
655 face_s2 = lp_build_cube_coord(coord_bld, sign, -1, s, ima);
656 face_t2 = lp_build_cube_coord(coord_bld, NULL, +1, t, ima);
657 face2 = lp_build_cube_face(bld, rz,
658 PIPE_TEX_FACE_POS_Z,
659 PIPE_TEX_FACE_NEG_Z);
660 }
661 lp_build_endif(&if_ctx2);
662 lp_build_flow_scope_end(flow_ctx2);
663 lp_build_flow_destroy(flow_ctx2);
664 *face_s = face_s2;
665 *face_t = face_t2;
666 *face = face2;
667 }
668
669 lp_build_endif(&if_ctx);
670 lp_build_flow_scope_end(flow_ctx);
671 lp_build_flow_destroy(flow_ctx);
672 }
673 }
674
675
676 /**
677 * Compute the partial offset of a pixel block along an arbitrary axis.
678 *
679 * @param coord coordinate in pixels
680 * @param stride number of bytes between rows of successive pixel blocks
681 * @param block_length number of pixels in a pixels block along the coordinate
682 * axis
683 * @param out_offset resulting relative offset of the pixel block in bytes
684 * @param out_subcoord resulting sub-block pixel coordinate
685 */
686 void
687 lp_build_sample_partial_offset(struct lp_build_context *bld,
688 unsigned block_length,
689 LLVMValueRef coord,
690 LLVMValueRef stride,
691 LLVMValueRef *out_offset,
692 LLVMValueRef *out_subcoord)
693 {
694 LLVMValueRef offset;
695 LLVMValueRef subcoord;
696
697 if (block_length == 1) {
698 subcoord = bld->zero;
699 }
700 else {
701 /*
702 * Pixel blocks have power of two dimensions. LLVM should convert the
703 * rem/div to bit arithmetic.
704 * TODO: Verify this.
705 * It does indeed BUT it does transform it to scalar (and back) when doing so
706 * (using roughly extract, shift/and, mov, unpack) (llvm 2.7).
707 * The generated code looks seriously unfunny and is quite expensive.
708 */
709 #if 0
710 LLVMValueRef block_width = lp_build_const_int_vec(bld->type, block_length);
711 subcoord = LLVMBuildURem(bld->builder, coord, block_width, "");
712 coord = LLVMBuildUDiv(bld->builder, coord, block_width, "");
713 #else
714 unsigned logbase2 = util_unsigned_logbase2(block_length);
715 LLVMValueRef block_shift = lp_build_const_int_vec(bld->type, logbase2);
716 LLVMValueRef block_mask = lp_build_const_int_vec(bld->type, block_length - 1);
717 subcoord = LLVMBuildAnd(bld->builder, coord, block_mask, "");
718 coord = LLVMBuildLShr(bld->builder, coord, block_shift, "");
719 #endif
720 }
721
722 offset = lp_build_mul(bld, coord, stride);
723
724 assert(out_offset);
725 assert(out_subcoord);
726
727 *out_offset = offset;
728 *out_subcoord = subcoord;
729 }
730
731
732 /**
733 * Compute the offset of a pixel block.
734 *
735 * x, y, z, y_stride, z_stride are vectors, and they refer to pixels.
736 *
737 * Returns the relative offset and i,j sub-block coordinates
738 */
739 void
740 lp_build_sample_offset(struct lp_build_context *bld,
741 const struct util_format_description *format_desc,
742 LLVMValueRef x,
743 LLVMValueRef y,
744 LLVMValueRef z,
745 LLVMValueRef y_stride,
746 LLVMValueRef z_stride,
747 LLVMValueRef *out_offset,
748 LLVMValueRef *out_i,
749 LLVMValueRef *out_j)
750 {
751 LLVMValueRef x_stride;
752 LLVMValueRef offset;
753
754 x_stride = lp_build_const_vec(bld->type, format_desc->block.bits/8);
755
756 lp_build_sample_partial_offset(bld,
757 format_desc->block.width,
758 x, x_stride,
759 &offset, out_i);
760
761 if (y && y_stride) {
762 LLVMValueRef y_offset;
763 lp_build_sample_partial_offset(bld,
764 format_desc->block.height,
765 y, y_stride,
766 &y_offset, out_j);
767 offset = lp_build_add(bld, offset, y_offset);
768 }
769 else {
770 *out_j = bld->zero;
771 }
772
773 if (z && z_stride) {
774 LLVMValueRef z_offset;
775 LLVMValueRef k;
776 lp_build_sample_partial_offset(bld,
777 1, /* pixel blocks are always 2D */
778 z, z_stride,
779 &z_offset, &k);
780 offset = lp_build_add(bld, offset, z_offset);
781 }
782
783 *out_offset = offset;
784 }