freedreno/ir3: fix register usage calculations
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_tgsi_soa.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007-2008 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * TGSI to LLVM IR translation -- SoA.
32 *
33 * @author Jose Fonseca <jfonseca@vmware.com>
34 *
35 * Based on tgsi_sse2.c code written by Michal Krol, Keith Whitwell,
36 * Brian Paul, and others.
37 */
38
39 #include "pipe/p_config.h"
40 #include "pipe/p_shader_tokens.h"
41 #include "util/u_debug.h"
42 #include "util/u_math.h"
43 #include "util/u_memory.h"
44 #include "tgsi/tgsi_dump.h"
45 #include "tgsi/tgsi_exec.h"
46 #include "tgsi/tgsi_info.h"
47 #include "tgsi/tgsi_parse.h"
48 #include "tgsi/tgsi_util.h"
49 #include "tgsi/tgsi_scan.h"
50 #include "tgsi/tgsi_strings.h"
51 #include "lp_bld_tgsi_action.h"
52 #include "lp_bld_type.h"
53 #include "lp_bld_const.h"
54 #include "lp_bld_arit.h"
55 #include "lp_bld_bitarit.h"
56 #include "lp_bld_gather.h"
57 #include "lp_bld_init.h"
58 #include "lp_bld_logic.h"
59 #include "lp_bld_swizzle.h"
60 #include "lp_bld_flow.h"
61 #include "lp_bld_quad.h"
62 #include "lp_bld_tgsi.h"
63 #include "lp_bld_limits.h"
64 #include "lp_bld_debug.h"
65 #include "lp_bld_printf.h"
66 #include "lp_bld_sample.h"
67 #include "lp_bld_struct.h"
68
69 /* SM 4.0 says that subroutines can nest 32 deep and
70 * we need one more for our main function */
71 #define LP_MAX_NUM_FUNCS 33
72
73 #define DUMP_GS_EMITS 0
74
75 /*
76 * If non-zero, the generated LLVM IR will print intermediate results on every TGSI
77 * instruction.
78 *
79 * TODO:
80 * - take execution masks in consideration
81 * - debug control-flow instructions
82 */
83 #define DEBUG_EXECUTION 0
84
85
86 /*
87 * Emit code to print a register value.
88 */
89 static void
90 emit_dump_reg(struct gallivm_state *gallivm,
91 unsigned file,
92 unsigned index,
93 unsigned chan,
94 LLVMValueRef value)
95 {
96 char buf[32];
97
98 util_snprintf(buf, sizeof buf, " %s[%u].%c = ",
99 tgsi_file_name(file),
100 index, "xyzw"[chan]);
101
102 lp_build_print_value(gallivm, buf, value);
103 }
104
105 /*
106 * Return the context for the current function.
107 * (always 'main', if shader doesn't do any function calls)
108 */
109 static INLINE struct function_ctx *
110 func_ctx(struct lp_exec_mask *mask)
111 {
112 assert(mask->function_stack_size > 0);
113 assert(mask->function_stack_size <= LP_MAX_NUM_FUNCS);
114 return &mask->function_stack[mask->function_stack_size - 1];
115 }
116
117 /*
118 * Returns true if we're in a loop.
119 * It's global, meaning that it returns true even if there's
120 * no loop inside the current function, but we were inside
121 * a loop inside another function, from which this one was called.
122 */
123 static INLINE boolean
124 mask_has_loop(struct lp_exec_mask *mask)
125 {
126 int i;
127 for (i = mask->function_stack_size - 1; i >= 0; --i) {
128 const struct function_ctx *ctx = &mask->function_stack[i];
129 if (ctx->loop_stack_size > 0)
130 return TRUE;
131 }
132 return FALSE;
133 }
134
135 /*
136 * Returns true if we're inside a switch statement.
137 * It's global, meaning that it returns true even if there's
138 * no switch in the current function, but we were inside
139 * a switch inside another function, from which this one was called.
140 */
141 static INLINE boolean
142 mask_has_switch(struct lp_exec_mask *mask)
143 {
144 int i;
145 for (i = mask->function_stack_size - 1; i >= 0; --i) {
146 const struct function_ctx *ctx = &mask->function_stack[i];
147 if (ctx->switch_stack_size > 0)
148 return TRUE;
149 }
150 return FALSE;
151 }
152
153 /*
154 * Returns true if we're inside a conditional.
155 * It's global, meaning that it returns true even if there's
156 * no conditional in the current function, but we were inside
157 * a conditional inside another function, from which this one was called.
158 */
159 static INLINE boolean
160 mask_has_cond(struct lp_exec_mask *mask)
161 {
162 int i;
163 for (i = mask->function_stack_size - 1; i >= 0; --i) {
164 const struct function_ctx *ctx = &mask->function_stack[i];
165 if (ctx->cond_stack_size > 0)
166 return TRUE;
167 }
168 return FALSE;
169 }
170
171
172 /*
173 * Initialize a function context at the specified index.
174 */
175 static void
176 lp_exec_mask_function_init(struct lp_exec_mask *mask, int function_idx)
177 {
178 LLVMTypeRef int_type = LLVMInt32TypeInContext(mask->bld->gallivm->context);
179 LLVMBuilderRef builder = mask->bld->gallivm->builder;
180 struct function_ctx *ctx = &mask->function_stack[function_idx];
181
182 ctx->cond_stack_size = 0;
183 ctx->loop_stack_size = 0;
184 ctx->switch_stack_size = 0;
185
186 if (function_idx == 0) {
187 ctx->ret_mask = mask->ret_mask;
188 }
189
190 ctx->loop_limiter = lp_build_alloca(mask->bld->gallivm,
191 int_type, "looplimiter");
192 LLVMBuildStore(
193 builder,
194 LLVMConstInt(int_type, LP_MAX_TGSI_LOOP_ITERATIONS, false),
195 ctx->loop_limiter);
196 }
197
198 static void lp_exec_mask_init(struct lp_exec_mask *mask, struct lp_build_context *bld)
199 {
200 mask->bld = bld;
201 mask->has_mask = FALSE;
202 mask->ret_in_main = FALSE;
203 /* For the main function */
204 mask->function_stack_size = 1;
205
206 mask->int_vec_type = lp_build_int_vec_type(bld->gallivm, mask->bld->type);
207 mask->exec_mask = mask->ret_mask = mask->break_mask = mask->cont_mask =
208 mask->cond_mask = mask->switch_mask =
209 LLVMConstAllOnes(mask->int_vec_type);
210
211 mask->function_stack = CALLOC(LP_MAX_NUM_FUNCS,
212 sizeof(mask->function_stack[0]));
213 lp_exec_mask_function_init(mask, 0);
214 }
215
216 static void
217 lp_exec_mask_fini(struct lp_exec_mask *mask)
218 {
219 FREE(mask->function_stack);
220 }
221
222 static void lp_exec_mask_update(struct lp_exec_mask *mask)
223 {
224 LLVMBuilderRef builder = mask->bld->gallivm->builder;
225 boolean has_loop_mask = mask_has_loop(mask);
226 boolean has_cond_mask = mask_has_cond(mask);
227 boolean has_switch_mask = mask_has_switch(mask);
228 boolean has_ret_mask = mask->function_stack_size > 1 ||
229 mask->ret_in_main;
230
231 if (has_loop_mask) {
232 /*for loops we need to update the entire mask at runtime */
233 LLVMValueRef tmp;
234 assert(mask->break_mask);
235 tmp = LLVMBuildAnd(builder,
236 mask->cont_mask,
237 mask->break_mask,
238 "maskcb");
239 mask->exec_mask = LLVMBuildAnd(builder,
240 mask->cond_mask,
241 tmp,
242 "maskfull");
243 } else
244 mask->exec_mask = mask->cond_mask;
245
246 if (has_switch_mask) {
247 mask->exec_mask = LLVMBuildAnd(builder,
248 mask->exec_mask,
249 mask->switch_mask,
250 "switchmask");
251 }
252
253 if (has_ret_mask) {
254 mask->exec_mask = LLVMBuildAnd(builder,
255 mask->exec_mask,
256 mask->ret_mask,
257 "callmask");
258 }
259
260 mask->has_mask = (has_cond_mask ||
261 has_loop_mask ||
262 has_switch_mask ||
263 has_ret_mask);
264 }
265
266 static void lp_exec_mask_cond_push(struct lp_exec_mask *mask,
267 LLVMValueRef val)
268 {
269 LLVMBuilderRef builder = mask->bld->gallivm->builder;
270 struct function_ctx *ctx = func_ctx(mask);
271
272 if (ctx->cond_stack_size >= LP_MAX_TGSI_NESTING) {
273 ctx->cond_stack_size++;
274 return;
275 }
276 if (ctx->cond_stack_size == 0 && mask->function_stack_size == 1) {
277 assert(mask->cond_mask == LLVMConstAllOnes(mask->int_vec_type));
278 }
279 ctx->cond_stack[ctx->cond_stack_size++] = mask->cond_mask;
280 assert(LLVMTypeOf(val) == mask->int_vec_type);
281 mask->cond_mask = LLVMBuildAnd(builder,
282 mask->cond_mask,
283 val,
284 "");
285 lp_exec_mask_update(mask);
286 }
287
288 static void lp_exec_mask_cond_invert(struct lp_exec_mask *mask)
289 {
290 LLVMBuilderRef builder = mask->bld->gallivm->builder;
291 struct function_ctx *ctx = func_ctx(mask);
292 LLVMValueRef prev_mask;
293 LLVMValueRef inv_mask;
294
295 assert(ctx->cond_stack_size);
296 if (ctx->cond_stack_size >= LP_MAX_TGSI_NESTING)
297 return;
298 prev_mask = ctx->cond_stack[ctx->cond_stack_size - 1];
299 if (ctx->cond_stack_size == 1 && mask->function_stack_size == 1) {
300 assert(prev_mask == LLVMConstAllOnes(mask->int_vec_type));
301 }
302
303 inv_mask = LLVMBuildNot(builder, mask->cond_mask, "");
304
305 mask->cond_mask = LLVMBuildAnd(builder,
306 inv_mask,
307 prev_mask, "");
308 lp_exec_mask_update(mask);
309 }
310
311 static void lp_exec_mask_cond_pop(struct lp_exec_mask *mask)
312 {
313 struct function_ctx *ctx = func_ctx(mask);
314 assert(ctx->cond_stack_size);
315 --ctx->cond_stack_size;
316 if (ctx->cond_stack_size >= LP_MAX_TGSI_NESTING)
317 return;
318 mask->cond_mask = ctx->cond_stack[ctx->cond_stack_size];
319 lp_exec_mask_update(mask);
320 }
321
322 static void lp_exec_bgnloop(struct lp_exec_mask *mask)
323 {
324 LLVMBuilderRef builder = mask->bld->gallivm->builder;
325 struct function_ctx *ctx = func_ctx(mask);
326
327 if (ctx->loop_stack_size >= LP_MAX_TGSI_NESTING) {
328 ++ctx->loop_stack_size;
329 return;
330 }
331
332 ctx->break_type_stack[ctx->loop_stack_size + ctx->switch_stack_size] =
333 ctx->break_type;
334 ctx->break_type = LP_EXEC_MASK_BREAK_TYPE_LOOP;
335
336 ctx->loop_stack[ctx->loop_stack_size].loop_block = ctx->loop_block;
337 ctx->loop_stack[ctx->loop_stack_size].cont_mask = mask->cont_mask;
338 ctx->loop_stack[ctx->loop_stack_size].break_mask = mask->break_mask;
339 ctx->loop_stack[ctx->loop_stack_size].break_var = ctx->break_var;
340 ++ctx->loop_stack_size;
341
342 ctx->break_var = lp_build_alloca(mask->bld->gallivm, mask->int_vec_type, "");
343 LLVMBuildStore(builder, mask->break_mask, ctx->break_var);
344
345 ctx->loop_block = lp_build_insert_new_block(mask->bld->gallivm, "bgnloop");
346
347 LLVMBuildBr(builder, ctx->loop_block);
348 LLVMPositionBuilderAtEnd(builder, ctx->loop_block);
349
350 mask->break_mask = LLVMBuildLoad(builder, ctx->break_var, "");
351
352 lp_exec_mask_update(mask);
353 }
354
355 static void lp_exec_break(struct lp_exec_mask *mask,
356 struct lp_build_tgsi_context * bld_base)
357 {
358 LLVMBuilderRef builder = mask->bld->gallivm->builder;
359 struct function_ctx *ctx = func_ctx(mask);
360
361 if (ctx->break_type == LP_EXEC_MASK_BREAK_TYPE_LOOP) {
362 LLVMValueRef exec_mask = LLVMBuildNot(builder,
363 mask->exec_mask,
364 "break");
365
366 mask->break_mask = LLVMBuildAnd(builder,
367 mask->break_mask,
368 exec_mask, "break_full");
369 }
370 else {
371 unsigned opcode = bld_base->instructions[bld_base->pc + 1].Instruction.Opcode;
372 boolean break_always = (opcode == TGSI_OPCODE_ENDSWITCH ||
373 opcode == TGSI_OPCODE_CASE);
374
375
376 if (ctx->switch_in_default) {
377 /*
378 * stop default execution but only if this is an unconditional switch.
379 * (The condition here is not perfect since dead code after break is
380 * allowed but should be sufficient since false negatives are just
381 * unoptimized - so we don't have to pre-evaluate that).
382 */
383 if(break_always && ctx->switch_pc) {
384 bld_base->pc = ctx->switch_pc;
385 return;
386 }
387 }
388
389 if (break_always) {
390 mask->switch_mask = LLVMConstNull(mask->bld->int_vec_type);
391 }
392 else {
393 LLVMValueRef exec_mask = LLVMBuildNot(builder,
394 mask->exec_mask,
395 "break");
396 mask->switch_mask = LLVMBuildAnd(builder,
397 mask->switch_mask,
398 exec_mask, "break_switch");
399 }
400 }
401
402 lp_exec_mask_update(mask);
403 }
404
405 static void lp_exec_break_condition(struct lp_exec_mask *mask,
406 LLVMValueRef cond)
407 {
408 LLVMBuilderRef builder = mask->bld->gallivm->builder;
409 struct function_ctx *ctx = func_ctx(mask);
410 LLVMValueRef cond_mask = LLVMBuildAnd(builder,
411 mask->exec_mask,
412 cond, "cond_mask");
413 cond_mask = LLVMBuildNot(builder, cond_mask, "break_cond");
414
415 if (ctx->break_type == LP_EXEC_MASK_BREAK_TYPE_LOOP) {
416 mask->break_mask = LLVMBuildAnd(builder,
417 mask->break_mask,
418 cond_mask, "breakc_full");
419 }
420 else {
421 mask->switch_mask = LLVMBuildAnd(builder,
422 mask->switch_mask,
423 cond_mask, "breakc_switch");
424 }
425
426 lp_exec_mask_update(mask);
427 }
428
429 static void lp_exec_continue(struct lp_exec_mask *mask)
430 {
431 LLVMBuilderRef builder = mask->bld->gallivm->builder;
432 LLVMValueRef exec_mask = LLVMBuildNot(builder,
433 mask->exec_mask,
434 "");
435
436 mask->cont_mask = LLVMBuildAnd(builder,
437 mask->cont_mask,
438 exec_mask, "");
439
440 lp_exec_mask_update(mask);
441 }
442
443
444 static void lp_exec_endloop(struct gallivm_state *gallivm,
445 struct lp_exec_mask *mask)
446 {
447 LLVMBuilderRef builder = mask->bld->gallivm->builder;
448 struct function_ctx *ctx = func_ctx(mask);
449 LLVMBasicBlockRef endloop;
450 LLVMTypeRef int_type = LLVMInt32TypeInContext(mask->bld->gallivm->context);
451 LLVMTypeRef reg_type = LLVMIntTypeInContext(gallivm->context,
452 mask->bld->type.width *
453 mask->bld->type.length);
454 LLVMValueRef i1cond, i2cond, icond, limiter;
455
456 assert(mask->break_mask);
457
458
459 assert(ctx->loop_stack_size);
460 if (ctx->loop_stack_size > LP_MAX_TGSI_NESTING) {
461 --ctx->loop_stack_size;
462 return;
463 }
464
465 /*
466 * Restore the cont_mask, but don't pop
467 */
468 mask->cont_mask = ctx->loop_stack[ctx->loop_stack_size - 1].cont_mask;
469 lp_exec_mask_update(mask);
470
471 /*
472 * Unlike the continue mask, the break_mask must be preserved across loop
473 * iterations
474 */
475 LLVMBuildStore(builder, mask->break_mask, ctx->break_var);
476
477 /* Decrement the loop limiter */
478 limiter = LLVMBuildLoad(builder, ctx->loop_limiter, "");
479
480 limiter = LLVMBuildSub(
481 builder,
482 limiter,
483 LLVMConstInt(int_type, 1, false),
484 "");
485
486 LLVMBuildStore(builder, limiter, ctx->loop_limiter);
487
488 /* i1cond = (mask != 0) */
489 i1cond = LLVMBuildICmp(
490 builder,
491 LLVMIntNE,
492 LLVMBuildBitCast(builder, mask->exec_mask, reg_type, ""),
493 LLVMConstNull(reg_type), "i1cond");
494
495 /* i2cond = (looplimiter > 0) */
496 i2cond = LLVMBuildICmp(
497 builder,
498 LLVMIntSGT,
499 limiter,
500 LLVMConstNull(int_type), "i2cond");
501
502 /* if( i1cond && i2cond ) */
503 icond = LLVMBuildAnd(builder, i1cond, i2cond, "");
504
505 endloop = lp_build_insert_new_block(mask->bld->gallivm, "endloop");
506
507 LLVMBuildCondBr(builder,
508 icond, ctx->loop_block, endloop);
509
510 LLVMPositionBuilderAtEnd(builder, endloop);
511
512 assert(ctx->loop_stack_size);
513 --ctx->loop_stack_size;
514 mask->cont_mask = ctx->loop_stack[ctx->loop_stack_size].cont_mask;
515 mask->break_mask = ctx->loop_stack[ctx->loop_stack_size].break_mask;
516 ctx->loop_block = ctx->loop_stack[ctx->loop_stack_size].loop_block;
517 ctx->break_var = ctx->loop_stack[ctx->loop_stack_size].break_var;
518 ctx->break_type = ctx->break_type_stack[ctx->loop_stack_size +
519 ctx->switch_stack_size];
520
521 lp_exec_mask_update(mask);
522 }
523
524 static void lp_exec_switch(struct lp_exec_mask *mask,
525 LLVMValueRef switchval)
526 {
527 struct function_ctx *ctx = func_ctx(mask);
528
529 if (ctx->switch_stack_size >= LP_MAX_TGSI_NESTING ||
530 ctx->loop_stack_size > LP_MAX_TGSI_NESTING) {
531 ctx->switch_stack_size++;
532 return;
533 }
534
535 ctx->break_type_stack[ctx->loop_stack_size + ctx->switch_stack_size] =
536 ctx->break_type;
537 ctx->break_type = LP_EXEC_MASK_BREAK_TYPE_SWITCH;
538
539 ctx->switch_stack[ctx->switch_stack_size].switch_mask = mask->switch_mask;
540 ctx->switch_stack[ctx->switch_stack_size].switch_val = ctx->switch_val;
541 ctx->switch_stack[ctx->switch_stack_size].switch_mask_default = ctx->switch_mask_default;
542 ctx->switch_stack[ctx->switch_stack_size].switch_in_default = ctx->switch_in_default;
543 ctx->switch_stack[ctx->switch_stack_size].switch_pc = ctx->switch_pc;
544 ctx->switch_stack_size++;
545
546 mask->switch_mask = LLVMConstNull(mask->int_vec_type);
547 ctx->switch_val = switchval;
548 ctx->switch_mask_default = LLVMConstNull(mask->int_vec_type);
549 ctx->switch_in_default = false;
550 ctx->switch_pc = 0;
551
552 lp_exec_mask_update(mask);
553 }
554
555 static void lp_exec_endswitch(struct lp_exec_mask *mask,
556 struct lp_build_tgsi_context * bld_base)
557 {
558 LLVMBuilderRef builder = mask->bld->gallivm->builder;
559 struct function_ctx *ctx = func_ctx(mask);
560
561 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
562 ctx->switch_stack_size--;
563 return;
564 }
565
566 /* check if there's deferred default if so do it now */
567 if (ctx->switch_pc && !ctx->switch_in_default) {
568 LLVMValueRef prevmask, defaultmask;
569 unsigned tmp_pc;
570 prevmask = ctx->switch_stack[ctx->switch_stack_size - 1].switch_mask;
571 defaultmask = LLVMBuildNot(builder, ctx->switch_mask_default, "sw_default_mask");
572 mask->switch_mask = LLVMBuildAnd(builder, prevmask, defaultmask, "sw_mask");
573 ctx->switch_in_default = true;
574
575 lp_exec_mask_update(mask);
576
577 assert(bld_base->instructions[ctx->switch_pc - 1].Instruction.Opcode ==
578 TGSI_OPCODE_DEFAULT);
579
580 tmp_pc = bld_base->pc;
581 bld_base->pc = ctx->switch_pc;
582 /*
583 * re-purpose switch_pc to point to here again, since we stop execution of
584 * the deferred default after next break.
585 */
586 ctx->switch_pc = tmp_pc - 1;
587
588 return;
589 }
590
591 else if (ctx->switch_pc && ctx->switch_in_default) {
592 assert(bld_base->pc == ctx->switch_pc + 1);
593 }
594
595 ctx->switch_stack_size--;
596 mask->switch_mask = ctx->switch_stack[ctx->switch_stack_size].switch_mask;
597 ctx->switch_val = ctx->switch_stack[ctx->switch_stack_size].switch_val;
598 ctx->switch_mask_default = ctx->switch_stack[ctx->switch_stack_size].switch_mask_default;
599 ctx->switch_in_default = ctx->switch_stack[ctx->switch_stack_size].switch_in_default;
600 ctx->switch_pc = ctx->switch_stack[ctx->switch_stack_size].switch_pc;
601
602 ctx->break_type = ctx->break_type_stack[ctx->loop_stack_size + ctx->switch_stack_size];
603
604 lp_exec_mask_update(mask);
605 }
606
607 static void lp_exec_case(struct lp_exec_mask *mask,
608 LLVMValueRef caseval)
609 {
610 LLVMBuilderRef builder = mask->bld->gallivm->builder;
611 struct function_ctx *ctx = func_ctx(mask);
612
613 LLVMValueRef casemask, prevmask;
614
615 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
616 return;
617 }
618
619 /* skipping case mask evaluation here is NOT optional (not in all cases anyway). */
620 if (!ctx->switch_in_default) {
621 prevmask = ctx->switch_stack[ctx->switch_stack_size - 1].switch_mask;
622 casemask = lp_build_cmp(mask->bld, PIPE_FUNC_EQUAL, caseval, ctx->switch_val);
623 ctx->switch_mask_default = LLVMBuildOr(builder, casemask,
624 ctx->switch_mask_default, "sw_default_mask");
625 casemask = LLVMBuildOr(builder, casemask, mask->switch_mask, "");
626 mask->switch_mask = LLVMBuildAnd(builder, casemask, prevmask, "sw_mask");
627
628 lp_exec_mask_update(mask);
629 }
630 }
631
632 /*
633 * Analyse default statement in a switch.
634 * \return true if default is last statement, false otherwise
635 * \param default_pc_start contains pc of instruction to jump to
636 * if default wasn't last but there's no
637 * fallthrough into default.
638 */
639 static boolean default_analyse_is_last(struct lp_exec_mask *mask,
640 struct lp_build_tgsi_context * bld_base,
641 int *default_pc_start)
642 {
643 unsigned pc = bld_base->pc;
644 struct function_ctx *ctx = func_ctx(mask);
645 unsigned curr_switch_stack = ctx->switch_stack_size;
646
647 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
648 return false;
649 }
650
651 /* skip over case statements which are together with default */
652 while (bld_base->instructions[pc].Instruction.Opcode == TGSI_OPCODE_CASE) {
653 pc++;
654 }
655
656 while (pc != -1 && pc < bld_base->num_instructions) {
657 unsigned opcode = bld_base->instructions[pc].Instruction.Opcode;
658 switch (opcode) {
659 case TGSI_OPCODE_CASE:
660 if (curr_switch_stack == ctx->switch_stack_size) {
661 *default_pc_start = pc - 1;
662 return false;
663 }
664 break;
665 case TGSI_OPCODE_SWITCH:
666 curr_switch_stack++;
667 break;
668 case TGSI_OPCODE_ENDSWITCH:
669 if (curr_switch_stack == ctx->switch_stack_size) {
670 *default_pc_start = pc - 1;
671 return true;
672 }
673 curr_switch_stack--;
674 break;
675 }
676 pc++;
677 }
678 /* should never arrive here */
679 assert(0);
680 return true;
681 }
682
683 static void lp_exec_default(struct lp_exec_mask *mask,
684 struct lp_build_tgsi_context * bld_base)
685 {
686 LLVMBuilderRef builder = mask->bld->gallivm->builder;
687 struct function_ctx *ctx = func_ctx(mask);
688
689 int default_exec_pc;
690 boolean default_is_last;
691
692 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
693 return;
694 }
695
696 /*
697 * This is a messy opcode, because it may not be always at the end and
698 * there can be fallthrough in and out of it.
699 */
700
701 default_is_last = default_analyse_is_last(mask, bld_base, &default_exec_pc);
702 /*
703 * If it is last statement in switch (note that case statements appearing
704 * "at the same time" as default don't change that) everything is just fine,
705 * update switch mask and go on. This means we can handle default with
706 * fallthrough INTO it without overhead, if it is last.
707 */
708 if (default_is_last) {
709 LLVMValueRef prevmask, defaultmask;
710 prevmask = ctx->switch_stack[ctx->switch_stack_size - 1].switch_mask;
711 defaultmask = LLVMBuildNot(builder, ctx->switch_mask_default, "sw_default_mask");
712 defaultmask = LLVMBuildOr(builder, defaultmask, mask->switch_mask, "");
713 mask->switch_mask = LLVMBuildAnd(builder, prevmask, defaultmask, "sw_mask");
714 ctx->switch_in_default = true;
715
716 lp_exec_mask_update(mask);
717 }
718 else {
719 /*
720 * Technically, "case" immediately before default isn't really a
721 * fallthrough, however we still have to count them as such as we
722 * already have updated the masks.
723 * If that happens in practice could add a switch optimizer pass
724 * which just gets rid of all case statements appearing together with
725 * default (or could do switch analysis at switch start time instead).
726 */
727 unsigned opcode = bld_base->instructions[bld_base->pc - 1].Instruction.Opcode;
728 boolean ft_into = (opcode != TGSI_OPCODE_BRK &&
729 opcode != TGSI_OPCODE_SWITCH);
730 /*
731 * If it is not last statement and there was no fallthrough into it,
732 * we record the PC and continue execution at next case (again, those
733 * case encountered at the same time don't count). At endswitch
734 * time, we update switchmask, and go back executing the code we skipped
735 * until the next break (possibly re-executing some code with changed mask
736 * if there was a fallthrough out of default).
737 * Finally, if it is not last statement and there was a fallthrough into it,
738 * do the same as with the former case, except instead of skipping the code
739 * just execute it without updating the mask, then go back and re-execute.
740 */
741 ctx->switch_pc = bld_base->pc;
742 if (!ft_into) {
743 bld_base->pc = default_exec_pc;
744 }
745 }
746 }
747
748
749 /* stores val into an address pointed to by dst_ptr.
750 * mask->exec_mask is used to figure out which bits of val
751 * should be stored into the address
752 * (0 means don't store this bit, 1 means do store).
753 */
754 static void lp_exec_mask_store(struct lp_exec_mask *mask,
755 struct lp_build_context *bld_store,
756 LLVMValueRef pred,
757 LLVMValueRef val,
758 LLVMValueRef dst_ptr)
759 {
760 LLVMBuilderRef builder = mask->bld->gallivm->builder;
761
762 assert(lp_check_value(bld_store->type, val));
763 assert(LLVMGetTypeKind(LLVMTypeOf(dst_ptr)) == LLVMPointerTypeKind);
764 assert(LLVMGetElementType(LLVMTypeOf(dst_ptr)) == LLVMTypeOf(val));
765
766 /* Mix the predicate and execution mask */
767 if (mask->has_mask) {
768 if (pred) {
769 pred = LLVMBuildAnd(builder, pred, mask->exec_mask, "");
770 } else {
771 pred = mask->exec_mask;
772 }
773 }
774
775 if (pred) {
776 LLVMValueRef res, dst;
777
778 dst = LLVMBuildLoad(builder, dst_ptr, "");
779 res = lp_build_select(bld_store, pred, val, dst);
780 LLVMBuildStore(builder, res, dst_ptr);
781 } else
782 LLVMBuildStore(builder, val, dst_ptr);
783 }
784
785 static void lp_exec_mask_call(struct lp_exec_mask *mask,
786 int func,
787 int *pc)
788 {
789 if (mask->function_stack_size >= LP_MAX_NUM_FUNCS) {
790 return;
791 }
792
793 lp_exec_mask_function_init(mask, mask->function_stack_size);
794 mask->function_stack[mask->function_stack_size].pc = *pc;
795 mask->function_stack[mask->function_stack_size].ret_mask = mask->ret_mask;
796 mask->function_stack_size++;
797 *pc = func;
798 }
799
800 static void lp_exec_mask_ret(struct lp_exec_mask *mask, int *pc)
801 {
802 LLVMBuilderRef builder = mask->bld->gallivm->builder;
803 struct function_ctx *ctx = func_ctx(mask);
804 LLVMValueRef exec_mask;
805
806 if (ctx->cond_stack_size == 0 &&
807 ctx->loop_stack_size == 0 &&
808 ctx->switch_stack_size == 0 &&
809 mask->function_stack_size == 1) {
810 /* returning from main() */
811 *pc = -1;
812 return;
813 }
814
815 if (mask->function_stack_size == 1) {
816 /*
817 * This requires special handling since we need to ensure
818 * we don't drop the mask even if we have no call stack
819 * (e.g. after a ret in a if clause after the endif)
820 */
821 mask->ret_in_main = TRUE;
822 }
823
824 exec_mask = LLVMBuildNot(builder,
825 mask->exec_mask,
826 "ret");
827
828 mask->ret_mask = LLVMBuildAnd(builder,
829 mask->ret_mask,
830 exec_mask, "ret_full");
831
832 lp_exec_mask_update(mask);
833 }
834
835 static void lp_exec_mask_bgnsub(struct lp_exec_mask *mask)
836 {
837 }
838
839 static void lp_exec_mask_endsub(struct lp_exec_mask *mask, int *pc)
840 {
841 struct function_ctx *ctx;
842
843 assert(mask->function_stack_size > 1);
844 assert(mask->function_stack_size <= LP_MAX_NUM_FUNCS);
845
846 ctx = func_ctx(mask);
847 mask->function_stack_size--;
848
849 *pc = ctx->pc;
850 mask->ret_mask = ctx->ret_mask;
851
852 lp_exec_mask_update(mask);
853 }
854
855
856 static LLVMValueRef
857 get_file_ptr(struct lp_build_tgsi_soa_context *bld,
858 unsigned file,
859 unsigned index,
860 unsigned chan)
861 {
862 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
863 LLVMValueRef (*array_of_vars)[TGSI_NUM_CHANNELS];
864 LLVMValueRef var_of_array;
865
866 switch (file) {
867 case TGSI_FILE_TEMPORARY:
868 array_of_vars = bld->temps;
869 var_of_array = bld->temps_array;
870 break;
871 case TGSI_FILE_OUTPUT:
872 array_of_vars = bld->outputs;
873 var_of_array = bld->outputs_array;
874 break;
875 default:
876 assert(0);
877 return NULL;
878 }
879
880 assert(chan < 4);
881
882 if (bld->indirect_files & (1 << file)) {
883 LLVMValueRef lindex = lp_build_const_int32(bld->bld_base.base.gallivm, index * 4 + chan);
884 return LLVMBuildGEP(builder, var_of_array, &lindex, 1, "");
885 }
886 else {
887 assert(index <= bld->bld_base.info->file_max[file]);
888 return array_of_vars[index][chan];
889 }
890 }
891
892
893 /**
894 * Return pointer to a temporary register channel (src or dest).
895 * Note that indirect addressing cannot be handled here.
896 * \param index which temporary register
897 * \param chan which channel of the temp register.
898 */
899 LLVMValueRef
900 lp_get_temp_ptr_soa(struct lp_build_tgsi_soa_context *bld,
901 unsigned index,
902 unsigned chan)
903 {
904 return get_file_ptr(bld, TGSI_FILE_TEMPORARY, index, chan);
905 }
906
907 /**
908 * Return pointer to a output register channel (src or dest).
909 * Note that indirect addressing cannot be handled here.
910 * \param index which output register
911 * \param chan which channel of the output register.
912 */
913 LLVMValueRef
914 lp_get_output_ptr(struct lp_build_tgsi_soa_context *bld,
915 unsigned index,
916 unsigned chan)
917 {
918 return get_file_ptr(bld, TGSI_FILE_OUTPUT, index, chan);
919 }
920
921 /*
922 * If we have indirect addressing in outputs copy our alloca array
923 * to the outputs slots specified by the caller to make sure
924 * our outputs are delivered consistently via the same interface.
925 */
926 static void
927 gather_outputs(struct lp_build_tgsi_soa_context * bld)
928 {
929 if ((bld->indirect_files & (1 << TGSI_FILE_OUTPUT))) {
930 unsigned index, chan;
931 assert(bld->bld_base.info->num_outputs <=
932 bld->bld_base.info->file_max[TGSI_FILE_OUTPUT] + 1);
933 for (index = 0; index < bld->bld_base.info->num_outputs; ++index) {
934 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
935 bld->outputs[index][chan] = lp_get_output_ptr(bld, index, chan);
936 }
937 }
938 }
939 }
940
941 /**
942 * Gather vector.
943 * XXX the lp_build_gather() function should be capable of doing this
944 * with a little work.
945 */
946 static LLVMValueRef
947 build_gather(struct lp_build_context *bld,
948 LLVMValueRef base_ptr,
949 LLVMValueRef indexes,
950 LLVMValueRef *overflow_mask)
951 {
952 LLVMBuilderRef builder = bld->gallivm->builder;
953 LLVMValueRef res = bld->undef;
954 unsigned i;
955 LLVMValueRef temp_ptr = NULL;
956
957 if (overflow_mask) {
958 temp_ptr = lp_build_alloca(
959 bld->gallivm,
960 lp_build_vec_type(bld->gallivm, bld->type), "");
961 }
962
963 /*
964 * Loop over elements of index_vec, load scalar value, insert it into 'res'.
965 */
966 for (i = 0; i < bld->type.length; i++) {
967 LLVMValueRef ii = lp_build_const_int32(bld->gallivm, i);
968 LLVMValueRef index = LLVMBuildExtractElement(builder,
969 indexes, ii, "");
970 LLVMValueRef scalar_ptr, scalar;
971 LLVMValueRef overflow;
972 struct lp_build_if_state if_ctx;
973
974 /*
975 * overflow_mask is a boolean vector telling us which channels
976 * in the vector overflowed. We use the overflow behavior for
977 * constant buffers which is defined as:
978 * Out of bounds access to constant buffer returns 0 in all
979 * componenets. Out of bounds behavior is always with respect
980 * to the size of the buffer bound at that slot.
981 */
982 if (overflow_mask) {
983 overflow = LLVMBuildExtractElement(builder, *overflow_mask,
984 ii, "");
985 lp_build_if(&if_ctx, bld->gallivm, overflow);
986 {
987 LLVMValueRef val = LLVMBuildLoad(builder, temp_ptr, "");
988 val = LLVMBuildInsertElement(
989 builder, val,
990 LLVMConstNull(LLVMFloatTypeInContext(bld->gallivm->context)),
991 ii, "");
992 LLVMBuildStore(builder, val, temp_ptr);
993 }
994 lp_build_else(&if_ctx);
995 {
996 LLVMValueRef val = LLVMBuildLoad(builder, temp_ptr, "");
997
998 scalar_ptr = LLVMBuildGEP(builder, base_ptr,
999 &index, 1, "gather_ptr");
1000 scalar = LLVMBuildLoad(builder, scalar_ptr, "");
1001
1002 val = LLVMBuildInsertElement(builder, val, scalar, ii, "");
1003
1004 LLVMBuildStore(builder, val, temp_ptr);
1005 }
1006 lp_build_endif(&if_ctx);
1007 } else {
1008 scalar_ptr = LLVMBuildGEP(builder, base_ptr,
1009 &index, 1, "gather_ptr");
1010 scalar = LLVMBuildLoad(builder, scalar_ptr, "");
1011
1012 res = LLVMBuildInsertElement(builder, res, scalar, ii, "");
1013 }
1014 }
1015
1016 if (overflow_mask) {
1017 res = LLVMBuildLoad(builder, temp_ptr, "gather_val");
1018 }
1019
1020 return res;
1021 }
1022
1023
1024 /**
1025 * Scatter/store vector.
1026 */
1027 static void
1028 emit_mask_scatter(struct lp_build_tgsi_soa_context *bld,
1029 LLVMValueRef base_ptr,
1030 LLVMValueRef indexes,
1031 LLVMValueRef values,
1032 struct lp_exec_mask *mask,
1033 LLVMValueRef pred)
1034 {
1035 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1036 LLVMBuilderRef builder = gallivm->builder;
1037 unsigned i;
1038
1039 /* Mix the predicate and execution mask */
1040 if (mask->has_mask) {
1041 if (pred) {
1042 pred = LLVMBuildAnd(builder, pred, mask->exec_mask, "");
1043 }
1044 else {
1045 pred = mask->exec_mask;
1046 }
1047 }
1048
1049 /*
1050 * Loop over elements of index_vec, store scalar value.
1051 */
1052 for (i = 0; i < bld->bld_base.base.type.length; i++) {
1053 LLVMValueRef ii = lp_build_const_int32(gallivm, i);
1054 LLVMValueRef index = LLVMBuildExtractElement(builder, indexes, ii, "");
1055 LLVMValueRef scalar_ptr = LLVMBuildGEP(builder, base_ptr, &index, 1, "scatter_ptr");
1056 LLVMValueRef val = LLVMBuildExtractElement(builder, values, ii, "scatter_val");
1057 LLVMValueRef scalar_pred = pred ?
1058 LLVMBuildExtractElement(builder, pred, ii, "scatter_pred") : NULL;
1059
1060 if (0)
1061 lp_build_printf(gallivm, "scatter %d: val %f at %d %p\n",
1062 ii, val, index, scalar_ptr);
1063
1064 if (scalar_pred) {
1065 LLVMValueRef real_val, dst_val;
1066 dst_val = LLVMBuildLoad(builder, scalar_ptr, "");
1067 real_val = lp_build_select(&bld->elem_bld, scalar_pred, val, dst_val);
1068 LLVMBuildStore(builder, real_val, scalar_ptr);
1069 }
1070 else {
1071 LLVMBuildStore(builder, val, scalar_ptr);
1072 }
1073 }
1074 }
1075
1076
1077 /**
1078 * Read the current value of the ADDR register, convert the floats to
1079 * ints, add the base index and return the vector of offsets.
1080 * The offsets will be used to index into the constant buffer or
1081 * temporary register file.
1082 */
1083 static LLVMValueRef
1084 get_indirect_index(struct lp_build_tgsi_soa_context *bld,
1085 unsigned reg_file, unsigned reg_index,
1086 const struct tgsi_ind_register *indirect_reg)
1087 {
1088 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
1089 struct lp_build_context *uint_bld = &bld->bld_base.uint_bld;
1090 /* always use X component of address register */
1091 unsigned swizzle = indirect_reg->Swizzle;
1092 LLVMValueRef base;
1093 LLVMValueRef rel;
1094 LLVMValueRef max_index;
1095 LLVMValueRef index;
1096
1097 assert(bld->indirect_files & (1 << reg_file));
1098
1099 base = lp_build_const_int_vec(bld->bld_base.base.gallivm, uint_bld->type, reg_index);
1100
1101 assert(swizzle < 4);
1102 switch (indirect_reg->File) {
1103 case TGSI_FILE_ADDRESS:
1104 rel = LLVMBuildLoad(builder,
1105 bld->addr[indirect_reg->Index][swizzle],
1106 "load addr reg");
1107 /* ADDR LLVM values already have LLVM integer type. */
1108 break;
1109 case TGSI_FILE_TEMPORARY:
1110 rel = lp_get_temp_ptr_soa(bld, indirect_reg->Index, swizzle);
1111 rel = LLVMBuildLoad(builder, rel, "load temp reg");
1112 /* TEMP LLVM values always have LLVM float type, but for indirection, the
1113 * value actually stored is expected to be an integer */
1114 rel = LLVMBuildBitCast(builder, rel, uint_bld->vec_type, "");
1115 break;
1116 default:
1117 assert(0);
1118 rel = uint_bld->zero;
1119 }
1120
1121 index = lp_build_add(uint_bld, base, rel);
1122
1123 /*
1124 * emit_fetch_constant handles constant buffer overflow so this code
1125 * is pointless for them.
1126 * Furthermore the D3D10 spec in section 6.5 says:
1127 * If the constant buffer bound to a slot is larger than the size
1128 * declared in the shader for that slot, implementations are allowed
1129 * to return incorrect data (not necessarily 0) for indices that are
1130 * larger than the declared size but smaller than the buffer size.
1131 */
1132 if (reg_file != TGSI_FILE_CONSTANT) {
1133 max_index = lp_build_const_int_vec(bld->bld_base.base.gallivm,
1134 uint_bld->type,
1135 bld->bld_base.info->file_max[reg_file]);
1136
1137 assert(!uint_bld->type.sign);
1138 index = lp_build_min(uint_bld, index, max_index);
1139 }
1140
1141 return index;
1142 }
1143
1144 static struct lp_build_context *
1145 stype_to_fetch(struct lp_build_tgsi_context * bld_base,
1146 enum tgsi_opcode_type stype)
1147 {
1148 struct lp_build_context *bld_fetch;
1149
1150 switch (stype) {
1151 case TGSI_TYPE_FLOAT:
1152 case TGSI_TYPE_UNTYPED:
1153 bld_fetch = &bld_base->base;
1154 break;
1155 case TGSI_TYPE_UNSIGNED:
1156 bld_fetch = &bld_base->uint_bld;
1157 break;
1158 case TGSI_TYPE_SIGNED:
1159 bld_fetch = &bld_base->int_bld;
1160 break;
1161 case TGSI_TYPE_VOID:
1162 case TGSI_TYPE_DOUBLE:
1163 default:
1164 assert(0);
1165 bld_fetch = NULL;
1166 break;
1167 }
1168 return bld_fetch;
1169 }
1170
1171 static LLVMValueRef
1172 get_soa_array_offsets(struct lp_build_context *uint_bld,
1173 LLVMValueRef indirect_index,
1174 unsigned chan_index,
1175 boolean need_perelement_offset)
1176 {
1177 struct gallivm_state *gallivm = uint_bld->gallivm;
1178 LLVMValueRef chan_vec =
1179 lp_build_const_int_vec(uint_bld->gallivm, uint_bld->type, chan_index);
1180 LLVMValueRef length_vec =
1181 lp_build_const_int_vec(gallivm, uint_bld->type, uint_bld->type.length);
1182 LLVMValueRef index_vec;
1183
1184 /* index_vec = (indirect_index * 4 + chan_index) * length + offsets */
1185 index_vec = lp_build_shl_imm(uint_bld, indirect_index, 2);
1186 index_vec = lp_build_add(uint_bld, index_vec, chan_vec);
1187 index_vec = lp_build_mul(uint_bld, index_vec, length_vec);
1188
1189 if (need_perelement_offset) {
1190 LLVMValueRef pixel_offsets;
1191 int i;
1192 /* build pixel offset vector: {0, 1, 2, 3, ...} */
1193 pixel_offsets = uint_bld->undef;
1194 for (i = 0; i < uint_bld->type.length; i++) {
1195 LLVMValueRef ii = lp_build_const_int32(gallivm, i);
1196 pixel_offsets = LLVMBuildInsertElement(gallivm->builder, pixel_offsets,
1197 ii, ii, "");
1198 }
1199 index_vec = lp_build_add(uint_bld, index_vec, pixel_offsets);
1200 }
1201 return index_vec;
1202 }
1203
1204 static LLVMValueRef
1205 emit_fetch_constant(
1206 struct lp_build_tgsi_context * bld_base,
1207 const struct tgsi_full_src_register * reg,
1208 enum tgsi_opcode_type stype,
1209 unsigned swizzle)
1210 {
1211 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1212 struct gallivm_state *gallivm = bld_base->base.gallivm;
1213 LLVMBuilderRef builder = gallivm->builder;
1214 struct lp_build_context *uint_bld = &bld_base->uint_bld;
1215 unsigned dimension = 0;
1216 LLVMValueRef consts_ptr;
1217 LLVMValueRef num_consts;
1218 LLVMValueRef res;
1219
1220 /* XXX: Handle fetching xyzw components as a vector */
1221 assert(swizzle != ~0);
1222
1223 if (reg->Register.Dimension) {
1224 assert(!reg->Dimension.Indirect);
1225 dimension = reg->Dimension.Index;
1226 assert(dimension < LP_MAX_TGSI_CONST_BUFFERS);
1227 }
1228
1229 consts_ptr = bld->consts[dimension];
1230 num_consts = bld->consts_sizes[dimension];
1231
1232 if (reg->Register.Indirect) {
1233 LLVMValueRef indirect_index;
1234 LLVMValueRef swizzle_vec =
1235 lp_build_const_int_vec(gallivm, uint_bld->type, swizzle);
1236 LLVMValueRef index_vec; /* index into the const buffer */
1237 LLVMValueRef overflow_mask;
1238
1239 indirect_index = get_indirect_index(bld,
1240 reg->Register.File,
1241 reg->Register.Index,
1242 &reg->Indirect);
1243
1244 /* All fetches are from the same constant buffer, so
1245 * we need to propagate the size to a vector to do a
1246 * vector comparison */
1247 num_consts = lp_build_broadcast_scalar(uint_bld, num_consts);
1248 /* Construct a boolean vector telling us which channels
1249 * overflow the bound constant buffer */
1250 overflow_mask = LLVMBuildICmp(builder, LLVMIntUGE,
1251 indirect_index,
1252 num_consts, "");
1253
1254 /* index_vec = indirect_index * 4 + swizzle */
1255 index_vec = lp_build_shl_imm(uint_bld, indirect_index, 2);
1256 index_vec = lp_build_add(uint_bld, index_vec, swizzle_vec);
1257
1258 /* Gather values from the constant buffer */
1259 res = build_gather(&bld_base->base, consts_ptr, index_vec,
1260 &overflow_mask);
1261 }
1262 else {
1263 LLVMValueRef index; /* index into the const buffer */
1264 LLVMValueRef scalar, scalar_ptr;
1265
1266 index = lp_build_const_int32(gallivm, reg->Register.Index * 4 + swizzle);
1267
1268 scalar_ptr = LLVMBuildGEP(builder, consts_ptr,
1269 &index, 1, "");
1270 scalar = LLVMBuildLoad(builder, scalar_ptr, "");
1271 res = lp_build_broadcast_scalar(&bld_base->base, scalar);
1272 }
1273
1274 if (stype == TGSI_TYPE_SIGNED || stype == TGSI_TYPE_UNSIGNED) {
1275 struct lp_build_context *bld_fetch = stype_to_fetch(bld_base, stype);
1276 res = LLVMBuildBitCast(builder, res, bld_fetch->vec_type, "");
1277 }
1278
1279 return res;
1280 }
1281
1282 static LLVMValueRef
1283 emit_fetch_immediate(
1284 struct lp_build_tgsi_context * bld_base,
1285 const struct tgsi_full_src_register * reg,
1286 enum tgsi_opcode_type stype,
1287 unsigned swizzle)
1288 {
1289 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1290 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1291 LLVMBuilderRef builder = gallivm->builder;
1292 LLVMValueRef res = NULL;
1293
1294 if (bld->use_immediates_array || reg->Register.Indirect) {
1295 LLVMValueRef imms_array;
1296 LLVMTypeRef fptr_type;
1297
1298 /* cast imms_array pointer to float* */
1299 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1300 imms_array = LLVMBuildBitCast(builder, bld->imms_array, fptr_type, "");
1301
1302 if (reg->Register.Indirect) {
1303 LLVMValueRef indirect_index;
1304 LLVMValueRef index_vec; /* index into the immediate register array */
1305
1306 indirect_index = get_indirect_index(bld,
1307 reg->Register.File,
1308 reg->Register.Index,
1309 &reg->Indirect);
1310 /*
1311 * Unlike for other reg classes, adding pixel offsets is unnecessary -
1312 * immediates are stored as full vectors (FIXME??? - might be better
1313 * to store them the same as constants) but all elements are the same
1314 * in any case.
1315 */
1316 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1317 indirect_index,
1318 swizzle,
1319 FALSE);
1320
1321 /* Gather values from the immediate register array */
1322 res = build_gather(&bld_base->base, imms_array, index_vec, NULL);
1323 } else {
1324 LLVMValueRef lindex = lp_build_const_int32(gallivm,
1325 reg->Register.Index * 4 + swizzle);
1326 LLVMValueRef imms_ptr = LLVMBuildGEP(builder,
1327 bld->imms_array, &lindex, 1, "");
1328 res = LLVMBuildLoad(builder, imms_ptr, "");
1329 }
1330 }
1331 else {
1332 res = bld->immediates[reg->Register.Index][swizzle];
1333 }
1334
1335 if (stype == TGSI_TYPE_UNSIGNED) {
1336 res = LLVMBuildBitCast(builder, res, bld_base->uint_bld.vec_type, "");
1337 } else if (stype == TGSI_TYPE_SIGNED) {
1338 res = LLVMBuildBitCast(builder, res, bld_base->int_bld.vec_type, "");
1339 }
1340 return res;
1341 }
1342
1343 static LLVMValueRef
1344 emit_fetch_input(
1345 struct lp_build_tgsi_context * bld_base,
1346 const struct tgsi_full_src_register * reg,
1347 enum tgsi_opcode_type stype,
1348 unsigned swizzle)
1349 {
1350 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1351 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1352 LLVMBuilderRef builder = gallivm->builder;
1353 LLVMValueRef res;
1354
1355 if (reg->Register.Indirect) {
1356 LLVMValueRef indirect_index;
1357 LLVMValueRef index_vec; /* index into the input reg array */
1358 LLVMValueRef inputs_array;
1359 LLVMTypeRef fptr_type;
1360
1361 indirect_index = get_indirect_index(bld,
1362 reg->Register.File,
1363 reg->Register.Index,
1364 &reg->Indirect);
1365
1366 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1367 indirect_index,
1368 swizzle,
1369 TRUE);
1370
1371 /* cast inputs_array pointer to float* */
1372 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1373 inputs_array = LLVMBuildBitCast(builder, bld->inputs_array, fptr_type, "");
1374
1375 /* Gather values from the input register array */
1376 res = build_gather(&bld_base->base, inputs_array, index_vec, NULL);
1377 } else {
1378 if (bld->indirect_files & (1 << TGSI_FILE_INPUT)) {
1379 LLVMValueRef lindex = lp_build_const_int32(gallivm,
1380 reg->Register.Index * 4 + swizzle);
1381 LLVMValueRef input_ptr = LLVMBuildGEP(builder,
1382 bld->inputs_array, &lindex, 1, "");
1383 res = LLVMBuildLoad(builder, input_ptr, "");
1384 }
1385 else {
1386 res = bld->inputs[reg->Register.Index][swizzle];
1387 }
1388 }
1389
1390 assert(res);
1391
1392 if (stype == TGSI_TYPE_UNSIGNED) {
1393 res = LLVMBuildBitCast(builder, res, bld_base->uint_bld.vec_type, "");
1394 } else if (stype == TGSI_TYPE_SIGNED) {
1395 res = LLVMBuildBitCast(builder, res, bld_base->int_bld.vec_type, "");
1396 }
1397
1398 return res;
1399 }
1400
1401
1402 static LLVMValueRef
1403 emit_fetch_gs_input(
1404 struct lp_build_tgsi_context * bld_base,
1405 const struct tgsi_full_src_register * reg,
1406 enum tgsi_opcode_type stype,
1407 unsigned swizzle)
1408 {
1409 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1410 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1411 const struct tgsi_shader_info *info = bld->bld_base.info;
1412 LLVMBuilderRef builder = gallivm->builder;
1413 LLVMValueRef attrib_index = NULL;
1414 LLVMValueRef vertex_index = NULL;
1415 LLVMValueRef swizzle_index = lp_build_const_int32(gallivm, swizzle);
1416 LLVMValueRef res;
1417
1418 if (info->input_semantic_name[reg->Register.Index] == TGSI_SEMANTIC_PRIMID) {
1419 /* This is really a system value not a regular input */
1420 assert(!reg->Register.Indirect);
1421 assert(!reg->Dimension.Indirect);
1422 res = bld->system_values.prim_id;
1423 if (stype != TGSI_TYPE_UNSIGNED && stype != TGSI_TYPE_SIGNED) {
1424 res = LLVMBuildBitCast(builder, res, bld_base->base.vec_type, "");
1425 }
1426 return res;
1427 }
1428
1429 if (reg->Register.Indirect) {
1430 attrib_index = get_indirect_index(bld,
1431 reg->Register.File,
1432 reg->Register.Index,
1433 &reg->Indirect);
1434 } else {
1435 attrib_index = lp_build_const_int32(gallivm, reg->Register.Index);
1436 }
1437
1438 if (reg->Dimension.Indirect) {
1439 vertex_index = get_indirect_index(bld,
1440 reg->Register.File,
1441 reg->Dimension.Index,
1442 &reg->DimIndirect);
1443 } else {
1444 vertex_index = lp_build_const_int32(gallivm, reg->Dimension.Index);
1445 }
1446
1447 res = bld->gs_iface->fetch_input(bld->gs_iface, bld_base,
1448 reg->Dimension.Indirect,
1449 vertex_index,
1450 reg->Register.Indirect,
1451 attrib_index,
1452 swizzle_index);
1453
1454 assert(res);
1455
1456 if (stype == TGSI_TYPE_UNSIGNED) {
1457 res = LLVMBuildBitCast(builder, res, bld_base->uint_bld.vec_type, "");
1458 } else if (stype == TGSI_TYPE_SIGNED) {
1459 res = LLVMBuildBitCast(builder, res, bld_base->int_bld.vec_type, "");
1460 }
1461
1462 return res;
1463 }
1464
1465 static LLVMValueRef
1466 emit_fetch_temporary(
1467 struct lp_build_tgsi_context * bld_base,
1468 const struct tgsi_full_src_register * reg,
1469 enum tgsi_opcode_type stype,
1470 unsigned swizzle)
1471 {
1472 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1473 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1474 LLVMBuilderRef builder = gallivm->builder;
1475 LLVMValueRef res;
1476
1477 if (reg->Register.Indirect) {
1478 LLVMValueRef indirect_index;
1479 LLVMValueRef index_vec; /* index into the temp reg array */
1480 LLVMValueRef temps_array;
1481 LLVMTypeRef fptr_type;
1482
1483 indirect_index = get_indirect_index(bld,
1484 reg->Register.File,
1485 reg->Register.Index,
1486 &reg->Indirect);
1487
1488 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1489 indirect_index,
1490 swizzle,
1491 TRUE);
1492
1493 /* cast temps_array pointer to float* */
1494 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1495 temps_array = LLVMBuildBitCast(builder, bld->temps_array, fptr_type, "");
1496
1497 /* Gather values from the temporary register array */
1498 res = build_gather(&bld_base->base, temps_array, index_vec, NULL);
1499 }
1500 else {
1501 LLVMValueRef temp_ptr;
1502 temp_ptr = lp_get_temp_ptr_soa(bld, reg->Register.Index, swizzle);
1503 res = LLVMBuildLoad(builder, temp_ptr, "");
1504 }
1505
1506 if (stype == TGSI_TYPE_SIGNED || stype == TGSI_TYPE_UNSIGNED) {
1507 struct lp_build_context *bld_fetch = stype_to_fetch(bld_base, stype);
1508 res = LLVMBuildBitCast(builder, res, bld_fetch->vec_type, "");
1509 }
1510
1511 return res;
1512 }
1513
1514 static LLVMValueRef
1515 emit_fetch_system_value(
1516 struct lp_build_tgsi_context * bld_base,
1517 const struct tgsi_full_src_register * reg,
1518 enum tgsi_opcode_type stype,
1519 unsigned swizzle)
1520 {
1521 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1522 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1523 const struct tgsi_shader_info *info = bld->bld_base.info;
1524 LLVMBuilderRef builder = gallivm->builder;
1525 LLVMValueRef res;
1526 enum tgsi_opcode_type atype; // Actual type of the value
1527
1528 assert(!reg->Register.Indirect);
1529
1530 switch (info->system_value_semantic_name[reg->Register.Index]) {
1531 case TGSI_SEMANTIC_INSTANCEID:
1532 res = lp_build_broadcast_scalar(&bld_base->uint_bld, bld->system_values.instance_id);
1533 atype = TGSI_TYPE_UNSIGNED;
1534 break;
1535
1536 case TGSI_SEMANTIC_VERTEXID:
1537 res = bld->system_values.vertex_id;
1538 atype = TGSI_TYPE_UNSIGNED;
1539 break;
1540
1541 case TGSI_SEMANTIC_VERTEXID_NOBASE:
1542 res = bld->system_values.vertex_id_nobase;
1543 atype = TGSI_TYPE_UNSIGNED;
1544 break;
1545
1546 case TGSI_SEMANTIC_BASEVERTEX:
1547 res = bld->system_values.basevertex;
1548 atype = TGSI_TYPE_UNSIGNED;
1549 break;
1550
1551 case TGSI_SEMANTIC_PRIMID:
1552 res = bld->system_values.prim_id;
1553 atype = TGSI_TYPE_UNSIGNED;
1554 break;
1555
1556 default:
1557 assert(!"unexpected semantic in emit_fetch_system_value");
1558 res = bld_base->base.zero;
1559 atype = TGSI_TYPE_FLOAT;
1560 break;
1561 }
1562
1563 if (atype != stype) {
1564 if (stype == TGSI_TYPE_FLOAT) {
1565 res = LLVMBuildBitCast(builder, res, bld_base->base.vec_type, "");
1566 } else if (stype == TGSI_TYPE_UNSIGNED) {
1567 res = LLVMBuildBitCast(builder, res, bld_base->uint_bld.vec_type, "");
1568 } else if (stype == TGSI_TYPE_SIGNED) {
1569 res = LLVMBuildBitCast(builder, res, bld_base->int_bld.vec_type, "");
1570 }
1571 }
1572
1573 return res;
1574 }
1575
1576 /**
1577 * Register fetch with derivatives.
1578 */
1579 static void
1580 emit_fetch_deriv(
1581 struct lp_build_tgsi_soa_context *bld,
1582 LLVMValueRef src,
1583 LLVMValueRef *res,
1584 LLVMValueRef *ddx,
1585 LLVMValueRef *ddy)
1586 {
1587 if(res)
1588 *res = src;
1589
1590 /* TODO: use interpolation coeffs for inputs */
1591
1592 if(ddx)
1593 *ddx = lp_build_ddx(&bld->bld_base.base, src);
1594
1595 if(ddy)
1596 *ddy = lp_build_ddy(&bld->bld_base.base, src);
1597 }
1598
1599
1600 /**
1601 * Predicate.
1602 */
1603 static void
1604 emit_fetch_predicate(
1605 struct lp_build_tgsi_soa_context *bld,
1606 const struct tgsi_full_instruction *inst,
1607 LLVMValueRef *pred)
1608 {
1609 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
1610 unsigned index;
1611 unsigned char swizzles[4];
1612 LLVMValueRef unswizzled[4] = {NULL, NULL, NULL, NULL};
1613 LLVMValueRef value;
1614 unsigned chan;
1615
1616 if (!inst->Instruction.Predicate) {
1617 TGSI_FOR_EACH_CHANNEL( chan ) {
1618 pred[chan] = NULL;
1619 }
1620 return;
1621 }
1622
1623 swizzles[0] = inst->Predicate.SwizzleX;
1624 swizzles[1] = inst->Predicate.SwizzleY;
1625 swizzles[2] = inst->Predicate.SwizzleZ;
1626 swizzles[3] = inst->Predicate.SwizzleW;
1627
1628 index = inst->Predicate.Index;
1629 assert(index < LP_MAX_TGSI_PREDS);
1630
1631 TGSI_FOR_EACH_CHANNEL( chan ) {
1632 unsigned swizzle = swizzles[chan];
1633
1634 /*
1635 * Only fetch the predicate register channels that are actually listed
1636 * in the swizzles
1637 */
1638 if (!unswizzled[swizzle]) {
1639 value = LLVMBuildLoad(builder,
1640 bld->preds[index][swizzle], "");
1641
1642 /*
1643 * Convert the value to an integer mask.
1644 *
1645 * TODO: Short-circuit this comparison -- a D3D setp_xx instructions
1646 * is needlessly causing two comparisons due to storing the intermediate
1647 * result as float vector instead of an integer mask vector.
1648 */
1649 value = lp_build_compare(bld->bld_base.base.gallivm,
1650 bld->bld_base.base.type,
1651 PIPE_FUNC_NOTEQUAL,
1652 value,
1653 bld->bld_base.base.zero);
1654 if (inst->Predicate.Negate) {
1655 value = LLVMBuildNot(builder, value, "");
1656 }
1657
1658 unswizzled[swizzle] = value;
1659 } else {
1660 value = unswizzled[swizzle];
1661 }
1662
1663 pred[chan] = value;
1664 }
1665 }
1666
1667
1668 /**
1669 * Register store.
1670 */
1671 static void
1672 emit_store_chan(
1673 struct lp_build_tgsi_context *bld_base,
1674 const struct tgsi_full_instruction *inst,
1675 unsigned index,
1676 unsigned chan_index,
1677 LLVMValueRef pred,
1678 LLVMValueRef value)
1679 {
1680 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1681 struct gallivm_state *gallivm = bld_base->base.gallivm;
1682 LLVMBuilderRef builder = gallivm->builder;
1683 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1684 struct lp_build_context *float_bld = &bld_base->base;
1685 struct lp_build_context *int_bld = &bld_base->int_bld;
1686 LLVMValueRef indirect_index = NULL;
1687 enum tgsi_opcode_type dtype = tgsi_opcode_infer_dst_type(inst->Instruction.Opcode);
1688
1689 /*
1690 * Apply saturation.
1691 *
1692 * It is always assumed to be float.
1693 */
1694 switch( inst->Instruction.Saturate ) {
1695 case TGSI_SAT_NONE:
1696 break;
1697
1698 case TGSI_SAT_ZERO_ONE:
1699 assert(dtype == TGSI_TYPE_FLOAT ||
1700 dtype == TGSI_TYPE_UNTYPED);
1701 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1702 value = lp_build_clamp_zero_one_nanzero(float_bld, value);
1703 break;
1704
1705 case TGSI_SAT_MINUS_PLUS_ONE:
1706 assert(dtype == TGSI_TYPE_FLOAT ||
1707 dtype == TGSI_TYPE_UNTYPED);
1708 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1709 /* This will give -1.0 for NaN which is probably not what we want. */
1710 value = lp_build_max_ext(float_bld, value,
1711 lp_build_const_vec(gallivm, float_bld->type, -1.0),
1712 GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN);
1713 value = lp_build_min(float_bld, value, float_bld->one);
1714 break;
1715
1716 default:
1717 assert(0);
1718 }
1719
1720 if (reg->Register.Indirect) {
1721 indirect_index = get_indirect_index(bld,
1722 reg->Register.File,
1723 reg->Register.Index,
1724 &reg->Indirect);
1725 } else {
1726 assert(reg->Register.Index <=
1727 bld_base->info->file_max[reg->Register.File]);
1728 }
1729
1730 if (DEBUG_EXECUTION) {
1731 emit_dump_reg(gallivm, reg->Register.File, reg->Register.Index, chan_index, value);
1732 }
1733
1734 switch( reg->Register.File ) {
1735 case TGSI_FILE_OUTPUT:
1736 /* Outputs are always stored as floats */
1737 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1738
1739 if (reg->Register.Indirect) {
1740 LLVMValueRef index_vec; /* indexes into the output registers */
1741 LLVMValueRef outputs_array;
1742 LLVMTypeRef fptr_type;
1743
1744 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1745 indirect_index,
1746 chan_index,
1747 TRUE);
1748
1749 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1750 outputs_array = LLVMBuildBitCast(builder, bld->outputs_array, fptr_type, "");
1751
1752 /* Scatter store values into output registers */
1753 emit_mask_scatter(bld, outputs_array, index_vec, value,
1754 &bld->exec_mask, pred);
1755 }
1756 else {
1757 LLVMValueRef out_ptr = lp_get_output_ptr(bld, reg->Register.Index,
1758 chan_index);
1759 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, value, out_ptr);
1760 }
1761 break;
1762
1763 case TGSI_FILE_TEMPORARY:
1764 /* Temporaries are always stored as floats */
1765 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1766
1767 if (reg->Register.Indirect) {
1768 LLVMValueRef index_vec; /* indexes into the temp registers */
1769 LLVMValueRef temps_array;
1770 LLVMTypeRef fptr_type;
1771
1772 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1773 indirect_index,
1774 chan_index,
1775 TRUE);
1776
1777 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1778 temps_array = LLVMBuildBitCast(builder, bld->temps_array, fptr_type, "");
1779
1780 /* Scatter store values into temp registers */
1781 emit_mask_scatter(bld, temps_array, index_vec, value,
1782 &bld->exec_mask, pred);
1783 }
1784 else {
1785 LLVMValueRef temp_ptr;
1786 temp_ptr = lp_get_temp_ptr_soa(bld, reg->Register.Index, chan_index);
1787 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, value, temp_ptr);
1788 }
1789 break;
1790
1791 case TGSI_FILE_ADDRESS:
1792 assert(dtype == TGSI_TYPE_SIGNED);
1793 assert(LLVMTypeOf(value) == int_bld->vec_type);
1794 value = LLVMBuildBitCast(builder, value, int_bld->vec_type, "");
1795 lp_exec_mask_store(&bld->exec_mask, int_bld, pred, value,
1796 bld->addr[reg->Register.Index][chan_index]);
1797 break;
1798
1799 case TGSI_FILE_PREDICATE:
1800 assert(LLVMTypeOf(value) == float_bld->vec_type);
1801 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1802 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, value,
1803 bld->preds[reg->Register.Index][chan_index]);
1804 break;
1805
1806 default:
1807 assert( 0 );
1808 }
1809
1810 (void)dtype;
1811 }
1812
1813 /*
1814 * Called at the beginning of the translation of each TGSI instruction, to
1815 * emit some debug code.
1816 */
1817 static void
1818 emit_debug(
1819 struct lp_build_tgsi_context * bld_base,
1820 const struct tgsi_full_instruction * inst,
1821 const struct tgsi_opcode_info * info)
1822
1823 {
1824 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1825
1826 if (DEBUG_EXECUTION) {
1827 /*
1828 * Dump the TGSI instruction.
1829 */
1830
1831 struct gallivm_state *gallivm = bld_base->base.gallivm;
1832 char buf[512];
1833 buf[0] = '$';
1834 buf[1] = ' ';
1835 tgsi_dump_instruction_str(inst, bld_base->pc, &buf[2], sizeof buf - 2);
1836 lp_build_printf(gallivm, buf);
1837
1838 /* Dump the execution mask.
1839 */
1840 if (bld->exec_mask.has_mask) {
1841 lp_build_print_value(gallivm, " mask = ", bld->exec_mask.exec_mask);
1842 }
1843 }
1844 }
1845
1846 static void
1847 emit_store(
1848 struct lp_build_tgsi_context * bld_base,
1849 const struct tgsi_full_instruction * inst,
1850 const struct tgsi_opcode_info * info,
1851 LLVMValueRef dst[4])
1852
1853 {
1854 unsigned chan_index;
1855 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1856
1857 if(info->num_dst) {
1858 LLVMValueRef pred[TGSI_NUM_CHANNELS];
1859
1860 emit_fetch_predicate( bld, inst, pred );
1861
1862 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1863 emit_store_chan(bld_base, inst, 0, chan_index, pred[chan_index], dst[chan_index]);
1864 }
1865 }
1866 }
1867
1868 static unsigned
1869 tgsi_to_pipe_tex_target(unsigned tgsi_target)
1870 {
1871 switch (tgsi_target) {
1872 case TGSI_TEXTURE_BUFFER:
1873 return PIPE_BUFFER;
1874 case TGSI_TEXTURE_1D:
1875 case TGSI_TEXTURE_SHADOW1D:
1876 return PIPE_TEXTURE_1D;
1877 case TGSI_TEXTURE_2D:
1878 case TGSI_TEXTURE_SHADOW2D:
1879 case TGSI_TEXTURE_2D_MSAA:
1880 return PIPE_TEXTURE_2D;
1881 case TGSI_TEXTURE_3D:
1882 return PIPE_TEXTURE_3D;
1883 case TGSI_TEXTURE_CUBE:
1884 case TGSI_TEXTURE_SHADOWCUBE:
1885 return PIPE_TEXTURE_CUBE;
1886 case TGSI_TEXTURE_RECT:
1887 case TGSI_TEXTURE_SHADOWRECT:
1888 return PIPE_TEXTURE_RECT;
1889 case TGSI_TEXTURE_1D_ARRAY:
1890 case TGSI_TEXTURE_SHADOW1D_ARRAY:
1891 return PIPE_TEXTURE_1D_ARRAY;
1892 case TGSI_TEXTURE_2D_ARRAY:
1893 case TGSI_TEXTURE_SHADOW2D_ARRAY:
1894 case TGSI_TEXTURE_2D_ARRAY_MSAA:
1895 return PIPE_TEXTURE_2D_ARRAY;
1896 case TGSI_TEXTURE_CUBE_ARRAY:
1897 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
1898 return PIPE_TEXTURE_CUBE_ARRAY;
1899 default:
1900 assert(0);
1901 return PIPE_BUFFER;
1902 }
1903 }
1904
1905
1906 static enum lp_sampler_lod_property
1907 lp_build_lod_property(
1908 struct lp_build_tgsi_context *bld_base,
1909 const struct tgsi_full_instruction *inst,
1910 unsigned src_op)
1911 {
1912 const struct tgsi_full_src_register *reg = &inst->Src[src_op];
1913 enum lp_sampler_lod_property lod_property;
1914
1915 /*
1916 * Not much we can do here. We could try catching inputs declared
1917 * with constant interpolation but not sure it's worth it - since for
1918 * TEX opcodes as well as FETCH/LD the lod comes from same reg as
1919 * the coords, so it could only work for SAMPLE/TXQ/SVIEWINFO), just
1920 * like the constant/immediate recognition below.
1921 * What seems to be of more value would be to recognize temps holding
1922 * broadcasted scalars but no way we can do it.
1923 * Tried asking llvm but without any success (using LLVMIsConstant
1924 * even though this isn't exactly what we'd need), even as simple as
1925 * IMM[0] UINT32 (0,-1,0,0)
1926 * MOV TEMP[0] IMM[0].yyyy
1927 * SVIEWINFO TEMP[1], TEMP[0].xxxx, SVIEWINFO[0]
1928 * doesn't work.
1929 * This means there's ZERO chance this will ever catch a scalar lod
1930 * with traditional tex opcodes as well as texel fetches, since the lod
1931 * comes from the same reg as coords (except some test shaders using
1932 * constant coords maybe).
1933 * There's at least hope for sample opcodes as well as size queries.
1934 */
1935 if (reg->Register.File == TGSI_FILE_CONSTANT ||
1936 reg->Register.File == TGSI_FILE_IMMEDIATE) {
1937 lod_property = LP_SAMPLER_LOD_SCALAR;
1938 }
1939 else if (bld_base->info->processor == TGSI_PROCESSOR_FRAGMENT) {
1940 if (gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) {
1941 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
1942 }
1943 else {
1944 lod_property = LP_SAMPLER_LOD_PER_QUAD;
1945 }
1946 }
1947 else {
1948 /* never use scalar (per-quad) lod the results are just too wrong. */
1949 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
1950 }
1951 return lod_property;
1952 }
1953
1954
1955 /**
1956 * High-level instruction translators.
1957 */
1958
1959 static void
1960 emit_tex( struct lp_build_tgsi_soa_context *bld,
1961 const struct tgsi_full_instruction *inst,
1962 enum lp_build_tex_modifier modifier,
1963 LLVMValueRef *texel,
1964 unsigned sampler_reg)
1965 {
1966 unsigned unit = inst->Src[sampler_reg].Register.Index;
1967 LLVMValueRef lod_bias, explicit_lod;
1968 LLVMValueRef oow = NULL;
1969 LLVMValueRef coords[5];
1970 LLVMValueRef offsets[3] = { NULL };
1971 struct lp_derivatives derivs;
1972 struct lp_derivatives *deriv_ptr = NULL;
1973 enum lp_sampler_lod_property lod_property = LP_SAMPLER_LOD_SCALAR;
1974 unsigned num_derivs, num_offsets, i;
1975 unsigned shadow_coord = 0;
1976 unsigned layer_coord = 0;
1977
1978 if (!bld->sampler) {
1979 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
1980 for (i = 0; i < 4; i++) {
1981 texel[i] = bld->bld_base.base.undef;
1982 }
1983 return;
1984 }
1985
1986 switch (inst->Texture.Texture) {
1987 case TGSI_TEXTURE_1D_ARRAY:
1988 layer_coord = 1;
1989 /* fallthrough */
1990 case TGSI_TEXTURE_1D:
1991 num_offsets = 1;
1992 num_derivs = 1;
1993 break;
1994 case TGSI_TEXTURE_2D_ARRAY:
1995 layer_coord = 2;
1996 /* fallthrough */
1997 case TGSI_TEXTURE_2D:
1998 case TGSI_TEXTURE_RECT:
1999 num_offsets = 2;
2000 num_derivs = 2;
2001 break;
2002 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2003 layer_coord = 1;
2004 /* fallthrough */
2005 case TGSI_TEXTURE_SHADOW1D:
2006 shadow_coord = 2;
2007 num_offsets = 1;
2008 num_derivs = 1;
2009 break;
2010 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2011 layer_coord = 2;
2012 shadow_coord = 3;
2013 num_offsets = 2;
2014 num_derivs = 2;
2015 break;
2016 case TGSI_TEXTURE_SHADOW2D:
2017 case TGSI_TEXTURE_SHADOWRECT:
2018 shadow_coord = 2;
2019 num_offsets = 2;
2020 num_derivs = 2;
2021 break;
2022 case TGSI_TEXTURE_CUBE:
2023 num_offsets = 2;
2024 num_derivs = 3;
2025 break;
2026 case TGSI_TEXTURE_3D:
2027 num_offsets = 3;
2028 num_derivs = 3;
2029 break;
2030 case TGSI_TEXTURE_SHADOWCUBE:
2031 shadow_coord = 3;
2032 num_offsets = 2;
2033 num_derivs = 3;
2034 break;
2035 case TGSI_TEXTURE_CUBE_ARRAY:
2036 num_offsets = 2;
2037 num_derivs = 3;
2038 layer_coord = 3;
2039 break;
2040 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
2041 num_offsets = 2;
2042 num_derivs = 3;
2043 layer_coord = 3;
2044 shadow_coord = 4; /* shadow coord special different reg */
2045 break;
2046 case TGSI_TEXTURE_2D_MSAA:
2047 case TGSI_TEXTURE_2D_ARRAY_MSAA:
2048 default:
2049 assert(0);
2050 return;
2051 }
2052
2053 /* Note lod and especially projected are illegal in a LOT of cases */
2054 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS ||
2055 modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2056 LLVMValueRef lod;
2057 if (inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE ||
2058 inst->Texture.Texture == TGSI_TEXTURE_CUBE_ARRAY) {
2059 /* note that shadow cube array with bias/explicit lod does not exist */
2060 lod = lp_build_emit_fetch(&bld->bld_base, inst, 1, 0);
2061 }
2062 else {
2063 lod = lp_build_emit_fetch(&bld->bld_base, inst, 0, 3);
2064 }
2065 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS) {
2066 lod_bias = lod;
2067 explicit_lod = NULL;
2068 }
2069 else if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2070 lod_bias = NULL;
2071 explicit_lod = lod;
2072 }
2073 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2074 }
2075 else {
2076 lod_bias = NULL;
2077 explicit_lod = NULL;
2078 }
2079
2080 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED) {
2081 oow = lp_build_emit_fetch(&bld->bld_base, inst, 0, 3);
2082 oow = lp_build_rcp(&bld->bld_base.base, oow);
2083 }
2084
2085 for (i = 0; i < num_derivs; i++) {
2086 coords[i] = lp_build_emit_fetch(&bld->bld_base, inst, 0, i);
2087 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED)
2088 coords[i] = lp_build_mul(&bld->bld_base.base, coords[i], oow);
2089 }
2090 for (i = num_derivs; i < 5; i++) {
2091 coords[i] = bld->bld_base.base.undef;
2092 }
2093
2094 /* Layer coord always goes into 3rd slot, except for cube map arrays */
2095 if (layer_coord) {
2096 if (layer_coord == 3) {
2097 coords[3] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2098 }
2099 else {
2100 coords[2] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2101 }
2102 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED)
2103 coords[2] = lp_build_mul(&bld->bld_base.base, coords[2], oow);
2104 }
2105 /* Shadow coord occupies always 5th slot. */
2106 if (shadow_coord) {
2107 if (shadow_coord == 4) {
2108 coords[4] = lp_build_emit_fetch(&bld->bld_base, inst, 1, 0);
2109 }
2110 else {
2111 coords[4] = lp_build_emit_fetch(&bld->bld_base, inst, 0, shadow_coord);
2112 }
2113 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED)
2114 coords[4] = lp_build_mul(&bld->bld_base.base, coords[4], oow);
2115 }
2116
2117 if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV) {
2118 unsigned dim;
2119 for (dim = 0; dim < num_derivs; ++dim) {
2120 derivs.ddx[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 1, dim);
2121 derivs.ddy[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 2, dim);
2122 }
2123 deriv_ptr = &derivs;
2124 /*
2125 * could also check all src regs if constant but I doubt such
2126 * cases exist in practice.
2127 */
2128 if (bld->bld_base.info->processor == TGSI_PROCESSOR_FRAGMENT) {
2129 if (gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) {
2130 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2131 }
2132 else {
2133 lod_property = LP_SAMPLER_LOD_PER_QUAD;
2134 }
2135 }
2136 else {
2137 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2138 }
2139 }
2140
2141 /* some advanced gather instructions (txgo) would require 4 offsets */
2142 if (inst->Texture.NumOffsets == 1) {
2143 unsigned dim;
2144 for (dim = 0; dim < num_offsets; dim++) {
2145 offsets[dim] = lp_build_emit_fetch_texoffset(&bld->bld_base, inst, 0, dim);
2146 }
2147 }
2148
2149 bld->sampler->emit_fetch_texel(bld->sampler,
2150 bld->bld_base.base.gallivm,
2151 bld->bld_base.base.type,
2152 FALSE,
2153 unit, unit,
2154 coords,
2155 offsets,
2156 deriv_ptr,
2157 lod_bias, explicit_lod, lod_property,
2158 texel);
2159 }
2160
2161 static void
2162 emit_sample(struct lp_build_tgsi_soa_context *bld,
2163 const struct tgsi_full_instruction *inst,
2164 enum lp_build_tex_modifier modifier,
2165 boolean compare,
2166 LLVMValueRef *texel)
2167 {
2168 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2169 unsigned texture_unit, sampler_unit;
2170 LLVMValueRef lod_bias, explicit_lod;
2171 LLVMValueRef coords[5];
2172 LLVMValueRef offsets[3] = { NULL };
2173 struct lp_derivatives derivs;
2174 struct lp_derivatives *deriv_ptr = NULL;
2175 enum lp_sampler_lod_property lod_property = LP_SAMPLER_LOD_SCALAR;
2176
2177 unsigned num_offsets, num_derivs, i;
2178 unsigned layer_coord = 0;
2179
2180 if (!bld->sampler) {
2181 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
2182 for (i = 0; i < 4; i++) {
2183 texel[i] = bld->bld_base.base.undef;
2184 }
2185 return;
2186 }
2187
2188 /*
2189 * unlike old-style tex opcodes the texture/sampler indices
2190 * always come from src1 and src2 respectively.
2191 */
2192 texture_unit = inst->Src[1].Register.Index;
2193 sampler_unit = inst->Src[2].Register.Index;
2194
2195 /*
2196 * Note inst->Texture.Texture will contain the number of offsets,
2197 * however the target information is NOT there and comes from the
2198 * declared sampler views instead.
2199 */
2200 switch (bld->sv[texture_unit].Resource) {
2201 case TGSI_TEXTURE_1D:
2202 num_offsets = 1;
2203 num_derivs = 1;
2204 break;
2205 case TGSI_TEXTURE_1D_ARRAY:
2206 layer_coord = 1;
2207 num_offsets = 1;
2208 num_derivs = 1;
2209 break;
2210 case TGSI_TEXTURE_2D:
2211 case TGSI_TEXTURE_RECT:
2212 num_offsets = 2;
2213 num_derivs = 2;
2214 break;
2215 case TGSI_TEXTURE_2D_ARRAY:
2216 layer_coord = 2;
2217 num_offsets = 2;
2218 num_derivs = 2;
2219 break;
2220 case TGSI_TEXTURE_CUBE:
2221 num_offsets = 2;
2222 num_derivs = 3;
2223 break;
2224 case TGSI_TEXTURE_3D:
2225 num_offsets = 3;
2226 num_derivs = 3;
2227 break;
2228 case TGSI_TEXTURE_CUBE_ARRAY:
2229 layer_coord = 3;
2230 num_offsets = 2;
2231 num_derivs = 3;
2232 break;
2233 default:
2234 assert(0);
2235 return;
2236 }
2237
2238 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS ||
2239 modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2240 LLVMValueRef lod = lp_build_emit_fetch(&bld->bld_base, inst, 3, 0);
2241 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS) {
2242 lod_bias = lod;
2243 explicit_lod = NULL;
2244 }
2245 else if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2246 lod_bias = NULL;
2247 explicit_lod = lod;
2248 }
2249 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2250 }
2251 else if (modifier == LP_BLD_TEX_MODIFIER_LOD_ZERO) {
2252 lod_bias = NULL;
2253 /* XXX might be better to explicitly pass the level zero information */
2254 explicit_lod = lp_build_const_vec(gallivm, bld->bld_base.base.type, 0.0F);
2255 }
2256 else {
2257 lod_bias = NULL;
2258 explicit_lod = NULL;
2259 }
2260
2261 for (i = 0; i < num_derivs; i++) {
2262 coords[i] = lp_build_emit_fetch(&bld->bld_base, inst, 0, i);
2263 }
2264 for (i = num_derivs; i < 5; i++) {
2265 coords[i] = bld->bld_base.base.undef;
2266 }
2267
2268 /* Layer coord always goes into 3rd slot, except for cube map arrays */
2269 if (layer_coord) {
2270 if (layer_coord == 3)
2271 coords[3] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2272 else
2273 coords[2] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2274 }
2275 /* Shadow coord occupies always 5th slot. */
2276 if (compare) {
2277 coords[4] = lp_build_emit_fetch(&bld->bld_base, inst, 3, 0);
2278 }
2279
2280 if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV) {
2281 unsigned dim;
2282 for (dim = 0; dim < num_derivs; ++dim) {
2283 derivs.ddx[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 3, dim);
2284 derivs.ddy[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 4, dim);
2285 }
2286 deriv_ptr = &derivs;
2287 /*
2288 * could also check all src regs if constant but I doubt such
2289 * cases exist in practice.
2290 */
2291 if (bld->bld_base.info->processor == TGSI_PROCESSOR_FRAGMENT) {
2292 if (gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) {
2293 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2294 }
2295 else {
2296 lod_property = LP_SAMPLER_LOD_PER_QUAD;
2297 }
2298 }
2299 else {
2300 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2301 }
2302 }
2303
2304 /* some advanced gather instructions (txgo) would require 4 offsets */
2305 if (inst->Texture.NumOffsets == 1) {
2306 unsigned dim;
2307 for (dim = 0; dim < num_offsets; dim++) {
2308 offsets[dim] = lp_build_emit_fetch_texoffset(&bld->bld_base, inst, 0, dim);
2309 }
2310 }
2311
2312 bld->sampler->emit_fetch_texel(bld->sampler,
2313 bld->bld_base.base.gallivm,
2314 bld->bld_base.base.type,
2315 FALSE,
2316 texture_unit, sampler_unit,
2317 coords,
2318 offsets,
2319 deriv_ptr,
2320 lod_bias, explicit_lod, lod_property,
2321 texel);
2322
2323 if (inst->Src[1].Register.SwizzleX != PIPE_SWIZZLE_RED ||
2324 inst->Src[1].Register.SwizzleY != PIPE_SWIZZLE_GREEN ||
2325 inst->Src[1].Register.SwizzleZ != PIPE_SWIZZLE_BLUE ||
2326 inst->Src[1].Register.SwizzleW != PIPE_SWIZZLE_ALPHA) {
2327 unsigned char swizzles[4];
2328 swizzles[0] = inst->Src[1].Register.SwizzleX;
2329 swizzles[1] = inst->Src[1].Register.SwizzleY;
2330 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2331 swizzles[3] = inst->Src[1].Register.SwizzleW;
2332
2333 lp_build_swizzle_soa_inplace(&bld->bld_base.base, texel, swizzles);
2334 }
2335 }
2336
2337 static void
2338 emit_fetch_texels( struct lp_build_tgsi_soa_context *bld,
2339 const struct tgsi_full_instruction *inst,
2340 LLVMValueRef *texel,
2341 boolean is_samplei)
2342 {
2343 unsigned unit, target;
2344 LLVMValueRef coord_undef = LLVMGetUndef(bld->bld_base.base.int_vec_type);
2345 LLVMValueRef explicit_lod = NULL;
2346 LLVMValueRef coords[5];
2347 LLVMValueRef offsets[3] = { NULL };
2348 enum lp_sampler_lod_property lod_property = LP_SAMPLER_LOD_SCALAR;
2349 unsigned dims, i;
2350 unsigned layer_coord = 0;
2351
2352 if (!bld->sampler) {
2353 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
2354 for (i = 0; i < 4; i++) {
2355 texel[i] = coord_undef;
2356 }
2357 return;
2358 }
2359
2360 unit = inst->Src[1].Register.Index;
2361
2362 if (is_samplei) {
2363 target = bld->sv[unit].Resource;
2364 }
2365 else {
2366 target = inst->Texture.Texture;
2367 }
2368
2369 switch (target) {
2370 case TGSI_TEXTURE_1D:
2371 case TGSI_TEXTURE_BUFFER:
2372 dims = 1;
2373 break;
2374 case TGSI_TEXTURE_1D_ARRAY:
2375 layer_coord = 1;
2376 dims = 1;
2377 break;
2378 case TGSI_TEXTURE_2D:
2379 case TGSI_TEXTURE_RECT:
2380 case TGSI_TEXTURE_2D_MSAA:
2381 dims = 2;
2382 break;
2383 case TGSI_TEXTURE_2D_ARRAY:
2384 case TGSI_TEXTURE_2D_ARRAY_MSAA:
2385 layer_coord = 2;
2386 dims = 2;
2387 break;
2388 case TGSI_TEXTURE_3D:
2389 dims = 3;
2390 break;
2391 default:
2392 assert(0);
2393 return;
2394 }
2395
2396 /* always have lod except for buffers and msaa targets ? */
2397 if (target != TGSI_TEXTURE_BUFFER &&
2398 target != TGSI_TEXTURE_2D_MSAA &&
2399 target != TGSI_TEXTURE_2D_ARRAY_MSAA) {
2400 explicit_lod = lp_build_emit_fetch(&bld->bld_base, inst, 0, 3);
2401 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2402 }
2403 /* XXX: for real msaa support, the w component would be the sample index. */
2404
2405 for (i = 0; i < dims; i++) {
2406 coords[i] = lp_build_emit_fetch(&bld->bld_base, inst, 0, i);
2407 }
2408 /* never use more than 3 coords here but emit_fetch_texel copies all 5 anyway */
2409 for (i = dims; i < 5; i++) {
2410 coords[i] = coord_undef;
2411 }
2412 if (layer_coord)
2413 coords[2] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2414
2415 if (inst->Texture.NumOffsets == 1) {
2416 unsigned dim;
2417 for (dim = 0; dim < dims; dim++) {
2418 offsets[dim] = lp_build_emit_fetch_texoffset(&bld->bld_base, inst, 0, dim);
2419 }
2420 }
2421
2422 bld->sampler->emit_fetch_texel(bld->sampler,
2423 bld->bld_base.base.gallivm,
2424 bld->bld_base.base.type,
2425 TRUE,
2426 unit, unit,
2427 coords,
2428 offsets,
2429 NULL,
2430 NULL, explicit_lod, lod_property,
2431 texel);
2432
2433 if (is_samplei &&
2434 (inst->Src[1].Register.SwizzleX != PIPE_SWIZZLE_RED ||
2435 inst->Src[1].Register.SwizzleY != PIPE_SWIZZLE_GREEN ||
2436 inst->Src[1].Register.SwizzleZ != PIPE_SWIZZLE_BLUE ||
2437 inst->Src[1].Register.SwizzleW != PIPE_SWIZZLE_ALPHA)) {
2438 unsigned char swizzles[4];
2439 swizzles[0] = inst->Src[1].Register.SwizzleX;
2440 swizzles[1] = inst->Src[1].Register.SwizzleY;
2441 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2442 swizzles[3] = inst->Src[1].Register.SwizzleW;
2443
2444 lp_build_swizzle_soa_inplace(&bld->bld_base.base, texel, swizzles);
2445 }
2446 }
2447
2448 static void
2449 emit_size_query( struct lp_build_tgsi_soa_context *bld,
2450 const struct tgsi_full_instruction *inst,
2451 LLVMValueRef *sizes_out,
2452 boolean is_sviewinfo)
2453 {
2454 LLVMValueRef explicit_lod;
2455 enum lp_sampler_lod_property lod_property;
2456 unsigned has_lod;
2457 unsigned i;
2458 unsigned unit = inst->Src[1].Register.Index;
2459 unsigned target, pipe_target;
2460
2461 if (is_sviewinfo) {
2462 target = bld->sv[unit].Resource;
2463 }
2464 else {
2465 target = inst->Texture.Texture;
2466 }
2467 switch (target) {
2468 case TGSI_TEXTURE_BUFFER:
2469 case TGSI_TEXTURE_RECT:
2470 case TGSI_TEXTURE_SHADOWRECT:
2471 has_lod = 0;
2472 break;
2473 default:
2474 has_lod = 1;
2475 break;
2476 }
2477
2478 if (!bld->sampler) {
2479 _debug_printf("warning: found texture query instruction but no sampler generator supplied\n");
2480 for (i = 0; i < 4; i++)
2481 sizes_out[i] = bld->bld_base.int_bld.undef;
2482 return;
2483 }
2484
2485 if (has_lod) {
2486 explicit_lod = lp_build_emit_fetch(&bld->bld_base, inst, 0, 0);
2487 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2488 }
2489 else {
2490 explicit_lod = NULL;
2491 lod_property = LP_SAMPLER_LOD_SCALAR;
2492 }
2493
2494
2495 pipe_target = tgsi_to_pipe_tex_target(target);
2496
2497 bld->sampler->emit_size_query(bld->sampler,
2498 bld->bld_base.base.gallivm,
2499 bld->bld_base.int_bld.type,
2500 unit, pipe_target,
2501 TRUE,
2502 lod_property,
2503 explicit_lod,
2504 sizes_out);
2505 }
2506
2507 static boolean
2508 near_end_of_shader(struct lp_build_tgsi_soa_context *bld,
2509 int pc)
2510 {
2511 int i;
2512
2513 for (i = 0; i < 5; i++) {
2514 unsigned opcode;
2515
2516 if (pc + i >= bld->bld_base.info->num_instructions)
2517 return TRUE;
2518
2519 opcode = bld->bld_base.instructions[pc + i].Instruction.Opcode;
2520
2521 if (opcode == TGSI_OPCODE_END)
2522 return TRUE;
2523
2524 if (opcode == TGSI_OPCODE_TEX ||
2525 opcode == TGSI_OPCODE_TXP ||
2526 opcode == TGSI_OPCODE_TXD ||
2527 opcode == TGSI_OPCODE_TXB ||
2528 opcode == TGSI_OPCODE_TXL ||
2529 opcode == TGSI_OPCODE_TXF ||
2530 opcode == TGSI_OPCODE_TXQ ||
2531 opcode == TGSI_OPCODE_TEX2 ||
2532 opcode == TGSI_OPCODE_TXB2 ||
2533 opcode == TGSI_OPCODE_TXL2 ||
2534 opcode == TGSI_OPCODE_SAMPLE ||
2535 opcode == TGSI_OPCODE_SAMPLE_B ||
2536 opcode == TGSI_OPCODE_SAMPLE_C ||
2537 opcode == TGSI_OPCODE_SAMPLE_C_LZ ||
2538 opcode == TGSI_OPCODE_SAMPLE_D ||
2539 opcode == TGSI_OPCODE_SAMPLE_I ||
2540 opcode == TGSI_OPCODE_SAMPLE_L ||
2541 opcode == TGSI_OPCODE_SVIEWINFO ||
2542 opcode == TGSI_OPCODE_CAL ||
2543 opcode == TGSI_OPCODE_CALLNZ ||
2544 opcode == TGSI_OPCODE_IF ||
2545 opcode == TGSI_OPCODE_UIF ||
2546 opcode == TGSI_OPCODE_BGNLOOP ||
2547 opcode == TGSI_OPCODE_SWITCH)
2548 return FALSE;
2549 }
2550
2551 return TRUE;
2552 }
2553
2554
2555
2556 /**
2557 * Kill fragment if any of the src register values are negative.
2558 */
2559 static void
2560 emit_kill_if(
2561 struct lp_build_tgsi_soa_context *bld,
2562 const struct tgsi_full_instruction *inst,
2563 int pc)
2564 {
2565 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
2566 const struct tgsi_full_src_register *reg = &inst->Src[0];
2567 LLVMValueRef terms[TGSI_NUM_CHANNELS];
2568 LLVMValueRef mask;
2569 unsigned chan_index;
2570
2571 memset(&terms, 0, sizeof terms);
2572
2573 TGSI_FOR_EACH_CHANNEL( chan_index ) {
2574 unsigned swizzle;
2575
2576 /* Unswizzle channel */
2577 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
2578
2579 /* Check if the component has not been already tested. */
2580 assert(swizzle < TGSI_NUM_CHANNELS);
2581 if( !terms[swizzle] )
2582 /* TODO: change the comparison operator instead of setting the sign */
2583 terms[swizzle] = lp_build_emit_fetch(&bld->bld_base, inst, 0, chan_index );
2584 }
2585
2586 mask = NULL;
2587 TGSI_FOR_EACH_CHANNEL( chan_index ) {
2588 if(terms[chan_index]) {
2589 LLVMValueRef chan_mask;
2590
2591 /*
2592 * If term < 0 then mask = 0 else mask = ~0.
2593 */
2594 chan_mask = lp_build_cmp(&bld->bld_base.base, PIPE_FUNC_GEQUAL, terms[chan_index], bld->bld_base.base.zero);
2595
2596 if(mask)
2597 mask = LLVMBuildAnd(builder, mask, chan_mask, "");
2598 else
2599 mask = chan_mask;
2600 }
2601 }
2602
2603 if (bld->exec_mask.has_mask) {
2604 LLVMValueRef invmask;
2605 invmask = LLVMBuildNot(builder, bld->exec_mask.exec_mask, "kilp");
2606 mask = LLVMBuildOr(builder, mask, invmask, "");
2607 }
2608
2609 lp_build_mask_update(bld->mask, mask);
2610 if (!near_end_of_shader(bld, pc))
2611 lp_build_mask_check(bld->mask);
2612 }
2613
2614
2615 /**
2616 * Unconditional fragment kill.
2617 * The only predication is the execution mask which will apply if
2618 * we're inside a loop or conditional.
2619 */
2620 static void
2621 emit_kill(struct lp_build_tgsi_soa_context *bld,
2622 int pc)
2623 {
2624 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
2625 LLVMValueRef mask;
2626
2627 /* For those channels which are "alive", disable fragment shader
2628 * execution.
2629 */
2630 if (bld->exec_mask.has_mask) {
2631 mask = LLVMBuildNot(builder, bld->exec_mask.exec_mask, "kilp");
2632 }
2633 else {
2634 LLVMValueRef zero = LLVMConstNull(bld->bld_base.base.int_vec_type);
2635 mask = zero;
2636 }
2637
2638 lp_build_mask_update(bld->mask, mask);
2639
2640 if (!near_end_of_shader(bld, pc))
2641 lp_build_mask_check(bld->mask);
2642 }
2643
2644
2645 /**
2646 * Emit code which will dump the value of all the temporary registers
2647 * to stdout.
2648 */
2649 static void
2650 emit_dump_file(struct lp_build_tgsi_soa_context *bld,
2651 unsigned file)
2652 {
2653 const struct tgsi_shader_info *info = bld->bld_base.info;
2654 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2655 LLVMBuilderRef builder = gallivm->builder;
2656 LLVMValueRef reg_ptr;
2657 int index;
2658 int max_index = info->file_max[file];
2659
2660 /*
2661 * Some register files, particularly constants, can be very large,
2662 * and dumping everything could make this unusably slow.
2663 */
2664 max_index = MIN2(max_index, 32);
2665
2666 for (index = 0; index <= max_index; index++) {
2667 LLVMValueRef res;
2668 unsigned mask;
2669 int chan;
2670
2671 if (index < 8 * sizeof(unsigned) &&
2672 (info->file_mask[file] & (1 << index)) == 0) {
2673 /* This was not declared.*/
2674 continue;
2675 }
2676
2677 if (file == TGSI_FILE_INPUT) {
2678 mask = info->input_usage_mask[index];
2679 } else {
2680 mask = TGSI_WRITEMASK_XYZW;
2681 }
2682
2683 for (chan = 0; chan < 4; chan++) {
2684 if ((mask & (1 << chan)) == 0) {
2685 /* This channel is not used.*/
2686 continue;
2687 }
2688
2689 if (file == TGSI_FILE_CONSTANT) {
2690 struct tgsi_full_src_register reg;
2691 memset(&reg, 0, sizeof reg);
2692 reg.Register.File = file;
2693 reg.Register.Index = index;
2694 reg.Register.SwizzleX = 0;
2695 reg.Register.SwizzleY = 1;
2696 reg.Register.SwizzleZ = 2;
2697 reg.Register.SwizzleW = 3;
2698
2699 res = bld->bld_base.emit_fetch_funcs[file](&bld->bld_base, &reg, TGSI_TYPE_FLOAT, chan);
2700 if (!res) {
2701 continue;
2702 }
2703 } else if (file == TGSI_FILE_INPUT) {
2704 res = bld->inputs[index][chan];
2705 if (!res) {
2706 continue;
2707 }
2708 } else if (file == TGSI_FILE_TEMPORARY) {
2709 reg_ptr = lp_get_temp_ptr_soa(bld, index, chan);
2710 assert(reg_ptr);
2711 res = LLVMBuildLoad(builder, reg_ptr, "");
2712 } else if (file == TGSI_FILE_OUTPUT) {
2713 reg_ptr = lp_get_output_ptr(bld, index, chan);
2714 assert(reg_ptr);
2715 res = LLVMBuildLoad(builder, reg_ptr, "");
2716 } else {
2717 assert(0);
2718 continue;
2719 }
2720
2721 emit_dump_reg(gallivm, file, index, chan, res);
2722 }
2723 }
2724 }
2725
2726
2727
2728 void
2729 lp_emit_declaration_soa(
2730 struct lp_build_tgsi_context *bld_base,
2731 const struct tgsi_full_declaration *decl)
2732 {
2733 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
2734 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2735 LLVMTypeRef vec_type = bld->bld_base.base.vec_type;
2736 const unsigned first = decl->Range.First;
2737 const unsigned last = decl->Range.Last;
2738 unsigned idx, i;
2739
2740 assert(last <= bld->bld_base.info->file_max[decl->Declaration.File]);
2741
2742 switch (decl->Declaration.File) {
2743 case TGSI_FILE_TEMPORARY:
2744 if (!(bld->indirect_files & (1 << TGSI_FILE_TEMPORARY))) {
2745 assert(last < LP_MAX_INLINED_TEMPS);
2746 for (idx = first; idx <= last; ++idx) {
2747 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2748 bld->temps[idx][i] = lp_build_alloca(gallivm, vec_type, "temp");
2749 }
2750 }
2751 break;
2752
2753 case TGSI_FILE_OUTPUT:
2754 if (!(bld->indirect_files & (1 << TGSI_FILE_OUTPUT))) {
2755 for (idx = first; idx <= last; ++idx) {
2756 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2757 bld->outputs[idx][i] = lp_build_alloca(gallivm,
2758 vec_type, "output");
2759 }
2760 }
2761 break;
2762
2763 case TGSI_FILE_ADDRESS:
2764 /* ADDR registers are only allocated with an integer LLVM IR type,
2765 * as they are guaranteed to always have integers.
2766 * XXX: Not sure if this exception is worthwhile (or the whole idea of
2767 * an ADDR register for that matter).
2768 */
2769 assert(last < LP_MAX_TGSI_ADDRS);
2770 for (idx = first; idx <= last; ++idx) {
2771 assert(idx < LP_MAX_TGSI_ADDRS);
2772 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2773 bld->addr[idx][i] = lp_build_alloca(gallivm, bld_base->base.int_vec_type, "addr");
2774 }
2775 break;
2776
2777 case TGSI_FILE_PREDICATE:
2778 assert(last < LP_MAX_TGSI_PREDS);
2779 for (idx = first; idx <= last; ++idx) {
2780 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2781 bld->preds[idx][i] = lp_build_alloca(gallivm, vec_type,
2782 "predicate");
2783 }
2784 break;
2785
2786 case TGSI_FILE_SAMPLER_VIEW:
2787 /*
2788 * The target stored here MUST match whatever there actually
2789 * is in the set sampler views (what about return type?).
2790 */
2791 assert(last < PIPE_MAX_SHADER_SAMPLER_VIEWS);
2792 for (idx = first; idx <= last; ++idx) {
2793 bld->sv[idx] = decl->SamplerView;
2794 }
2795 break;
2796
2797 case TGSI_FILE_CONSTANT:
2798 {
2799 /*
2800 * We could trivially fetch the per-buffer pointer when fetching the
2801 * constant, relying on llvm to figure out it's always the same pointer
2802 * anyway. However, doing so results in a huge (more than factor of 10)
2803 * slowdown in llvm compilation times for some (but not all) shaders
2804 * (more specifically, the IR optimization spends way more time in
2805 * DominatorTree::dominates). At least with llvm versions 3.1, 3.3.
2806 */
2807 unsigned idx2D = decl->Dim.Index2D;
2808 LLVMValueRef index2D = lp_build_const_int32(gallivm, idx2D);
2809 assert(idx2D < LP_MAX_TGSI_CONST_BUFFERS);
2810 bld->consts[idx2D] =
2811 lp_build_array_get(gallivm, bld->consts_ptr, index2D);
2812 bld->consts_sizes[idx2D] =
2813 lp_build_array_get(gallivm, bld->const_sizes_ptr, index2D);
2814 }
2815 break;
2816
2817 default:
2818 /* don't need to declare other vars */
2819 break;
2820 }
2821 }
2822
2823
2824 void lp_emit_immediate_soa(
2825 struct lp_build_tgsi_context *bld_base,
2826 const struct tgsi_full_immediate *imm)
2827 {
2828 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
2829 struct gallivm_state * gallivm = bld_base->base.gallivm;
2830 LLVMValueRef imms[4];
2831 unsigned i;
2832 const uint size = imm->Immediate.NrTokens - 1;
2833 assert(size <= 4);
2834 switch (imm->Immediate.DataType) {
2835 case TGSI_IMM_FLOAT32:
2836 for( i = 0; i < size; ++i )
2837 imms[i] =
2838 lp_build_const_vec(gallivm, bld_base->base.type, imm->u[i].Float);
2839
2840 break;
2841 case TGSI_IMM_UINT32:
2842 for( i = 0; i < size; ++i ) {
2843 LLVMValueRef tmp = lp_build_const_vec(gallivm, bld_base->uint_bld.type, imm->u[i].Uint);
2844 imms[i] = LLVMConstBitCast(tmp, bld_base->base.vec_type);
2845 }
2846
2847 break;
2848 case TGSI_IMM_INT32:
2849 for( i = 0; i < size; ++i ) {
2850 LLVMValueRef tmp = lp_build_const_vec(gallivm, bld_base->int_bld.type, imm->u[i].Int);
2851 imms[i] = LLVMConstBitCast(tmp, bld_base->base.vec_type);
2852 }
2853
2854 break;
2855 }
2856 for( i = size; i < 4; ++i )
2857 imms[i] = bld_base->base.undef;
2858
2859 if (bld->use_immediates_array) {
2860 unsigned index = bld->num_immediates;
2861 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2862 LLVMBuilderRef builder = gallivm->builder;
2863
2864 assert(bld->indirect_files & (1 << TGSI_FILE_IMMEDIATE));
2865 for (i = 0; i < 4; ++i ) {
2866 LLVMValueRef lindex = lp_build_const_int32(
2867 bld->bld_base.base.gallivm, index * 4 + i);
2868 LLVMValueRef imm_ptr = LLVMBuildGEP(builder,
2869 bld->imms_array, &lindex, 1, "");
2870 LLVMBuildStore(builder, imms[i], imm_ptr);
2871 }
2872 } else {
2873 /* simply copy the immediate values into the next immediates[] slot */
2874 unsigned i;
2875 const uint size = imm->Immediate.NrTokens - 1;
2876 assert(size <= 4);
2877 assert(bld->num_immediates < LP_MAX_INLINED_IMMEDIATES);
2878
2879 for(i = 0; i < 4; ++i )
2880 bld->immediates[bld->num_immediates][i] = imms[i];
2881
2882 if (bld->indirect_files & (1 << TGSI_FILE_IMMEDIATE)) {
2883 unsigned index = bld->num_immediates;
2884 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2885 LLVMBuilderRef builder = gallivm->builder;
2886 for (i = 0; i < 4; ++i ) {
2887 LLVMValueRef lindex = lp_build_const_int32(
2888 bld->bld_base.base.gallivm, index * 4 + i);
2889 LLVMValueRef imm_ptr = LLVMBuildGEP(builder,
2890 bld->imms_array, &lindex, 1, "");
2891 LLVMBuildStore(builder,
2892 bld->immediates[index][i],
2893 imm_ptr);
2894 }
2895 }
2896 }
2897
2898 bld->num_immediates++;
2899 }
2900
2901 static void
2902 ddx_emit(
2903 const struct lp_build_tgsi_action * action,
2904 struct lp_build_tgsi_context * bld_base,
2905 struct lp_build_emit_data * emit_data)
2906 {
2907 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2908
2909 emit_fetch_deriv(bld, emit_data->args[0], NULL,
2910 &emit_data->output[emit_data->chan], NULL);
2911 }
2912
2913 static void
2914 ddy_emit(
2915 const struct lp_build_tgsi_action * action,
2916 struct lp_build_tgsi_context * bld_base,
2917 struct lp_build_emit_data * emit_data)
2918 {
2919 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2920
2921 emit_fetch_deriv(bld, emit_data->args[0], NULL, NULL,
2922 &emit_data->output[emit_data->chan]);
2923 }
2924
2925 static void
2926 kill_emit(
2927 const struct lp_build_tgsi_action * action,
2928 struct lp_build_tgsi_context * bld_base,
2929 struct lp_build_emit_data * emit_data)
2930 {
2931 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2932
2933 emit_kill(bld, bld_base->pc - 1);
2934 }
2935
2936 static void
2937 kill_if_emit(
2938 const struct lp_build_tgsi_action * action,
2939 struct lp_build_tgsi_context * bld_base,
2940 struct lp_build_emit_data * emit_data)
2941 {
2942 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2943
2944 emit_kill_if(bld, emit_data->inst, bld_base->pc - 1);
2945 }
2946
2947 static void
2948 tex_emit(
2949 const struct lp_build_tgsi_action * action,
2950 struct lp_build_tgsi_context * bld_base,
2951 struct lp_build_emit_data * emit_data)
2952 {
2953 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2954
2955 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
2956 emit_data->output, 1);
2957 }
2958
2959 static void
2960 tex2_emit(
2961 const struct lp_build_tgsi_action * action,
2962 struct lp_build_tgsi_context * bld_base,
2963 struct lp_build_emit_data * emit_data)
2964 {
2965 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2966
2967 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
2968 emit_data->output, 2);
2969 }
2970
2971 static void
2972 txb_emit(
2973 const struct lp_build_tgsi_action * action,
2974 struct lp_build_tgsi_context * bld_base,
2975 struct lp_build_emit_data * emit_data)
2976 {
2977 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2978
2979 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_BIAS,
2980 emit_data->output, 1);
2981 }
2982
2983 static void
2984 txb2_emit(
2985 const struct lp_build_tgsi_action * action,
2986 struct lp_build_tgsi_context * bld_base,
2987 struct lp_build_emit_data * emit_data)
2988 {
2989 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2990
2991 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_BIAS,
2992 emit_data->output, 2);
2993 }
2994
2995 static void
2996 txd_emit(
2997 const struct lp_build_tgsi_action * action,
2998 struct lp_build_tgsi_context * bld_base,
2999 struct lp_build_emit_data * emit_data)
3000 {
3001 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3002
3003 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV,
3004 emit_data->output, 3);
3005 }
3006
3007 static void
3008 txl_emit(
3009 const struct lp_build_tgsi_action * action,
3010 struct lp_build_tgsi_context * bld_base,
3011 struct lp_build_emit_data * emit_data)
3012 {
3013 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3014
3015 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_LOD,
3016 emit_data->output, 1);
3017 }
3018
3019 static void
3020 txl2_emit(
3021 const struct lp_build_tgsi_action * action,
3022 struct lp_build_tgsi_context * bld_base,
3023 struct lp_build_emit_data * emit_data)
3024 {
3025 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3026
3027 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_LOD,
3028 emit_data->output, 2);
3029 }
3030
3031 static void
3032 txp_emit(
3033 const struct lp_build_tgsi_action * action,
3034 struct lp_build_tgsi_context * bld_base,
3035 struct lp_build_emit_data * emit_data)
3036 {
3037 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3038
3039 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_PROJECTED,
3040 emit_data->output, 1);
3041 }
3042
3043 static void
3044 txq_emit(
3045 const struct lp_build_tgsi_action * action,
3046 struct lp_build_tgsi_context * bld_base,
3047 struct lp_build_emit_data * emit_data)
3048 {
3049 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3050
3051 emit_size_query(bld, emit_data->inst, emit_data->output, FALSE);
3052 }
3053
3054 static void
3055 txf_emit(
3056 const struct lp_build_tgsi_action * action,
3057 struct lp_build_tgsi_context * bld_base,
3058 struct lp_build_emit_data * emit_data)
3059 {
3060 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3061
3062 emit_fetch_texels(bld, emit_data->inst, emit_data->output, FALSE);
3063 }
3064
3065 static void
3066 sample_i_emit(
3067 const struct lp_build_tgsi_action * action,
3068 struct lp_build_tgsi_context * bld_base,
3069 struct lp_build_emit_data * emit_data)
3070 {
3071 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3072
3073 emit_fetch_texels(bld, emit_data->inst, emit_data->output, TRUE);
3074 }
3075
3076 static void
3077 sample_emit(
3078 const struct lp_build_tgsi_action * action,
3079 struct lp_build_tgsi_context * bld_base,
3080 struct lp_build_emit_data * emit_data)
3081 {
3082 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3083
3084 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
3085 FALSE, emit_data->output);
3086 }
3087
3088 static void
3089 sample_b_emit(
3090 const struct lp_build_tgsi_action * action,
3091 struct lp_build_tgsi_context * bld_base,
3092 struct lp_build_emit_data * emit_data)
3093 {
3094 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3095
3096 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_BIAS,
3097 FALSE, emit_data->output);
3098 }
3099
3100 static void
3101 sample_c_emit(
3102 const struct lp_build_tgsi_action * action,
3103 struct lp_build_tgsi_context * bld_base,
3104 struct lp_build_emit_data * emit_data)
3105 {
3106 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3107
3108 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
3109 TRUE, emit_data->output);
3110 }
3111
3112 static void
3113 sample_c_lz_emit(
3114 const struct lp_build_tgsi_action * action,
3115 struct lp_build_tgsi_context * bld_base,
3116 struct lp_build_emit_data * emit_data)
3117 {
3118 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3119
3120 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_ZERO,
3121 TRUE, emit_data->output);
3122 }
3123
3124 static void
3125 sample_d_emit(
3126 const struct lp_build_tgsi_action * action,
3127 struct lp_build_tgsi_context * bld_base,
3128 struct lp_build_emit_data * emit_data)
3129 {
3130 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3131
3132 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV,
3133 FALSE, emit_data->output);
3134 }
3135
3136 static void
3137 sample_l_emit(
3138 const struct lp_build_tgsi_action * action,
3139 struct lp_build_tgsi_context * bld_base,
3140 struct lp_build_emit_data * emit_data)
3141 {
3142 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3143
3144 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_LOD,
3145 FALSE, emit_data->output);
3146 }
3147
3148 static void
3149 sviewinfo_emit(
3150 const struct lp_build_tgsi_action * action,
3151 struct lp_build_tgsi_context * bld_base,
3152 struct lp_build_emit_data * emit_data)
3153 {
3154 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3155
3156 emit_size_query(bld, emit_data->inst, emit_data->output, TRUE);
3157 }
3158
3159 static LLVMValueRef
3160 mask_vec(struct lp_build_tgsi_context *bld_base)
3161 {
3162 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3163 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3164 struct lp_exec_mask *exec_mask = &bld->exec_mask;
3165
3166 if (!exec_mask->has_mask) {
3167 return lp_build_mask_value(bld->mask);
3168 }
3169 return LLVMBuildAnd(builder, lp_build_mask_value(bld->mask),
3170 exec_mask->exec_mask, "");
3171 }
3172
3173 static void
3174 increment_vec_ptr_by_mask(struct lp_build_tgsi_context * bld_base,
3175 LLVMValueRef ptr,
3176 LLVMValueRef mask)
3177 {
3178 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3179 LLVMValueRef current_vec = LLVMBuildLoad(builder, ptr, "");
3180
3181 current_vec = LLVMBuildSub(builder, current_vec, mask, "");
3182
3183 LLVMBuildStore(builder, current_vec, ptr);
3184 }
3185
3186 static void
3187 clear_uint_vec_ptr_from_mask(struct lp_build_tgsi_context * bld_base,
3188 LLVMValueRef ptr,
3189 LLVMValueRef mask)
3190 {
3191 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3192 LLVMValueRef current_vec = LLVMBuildLoad(builder, ptr, "");
3193
3194 current_vec = lp_build_select(&bld_base->uint_bld,
3195 mask,
3196 bld_base->uint_bld.zero,
3197 current_vec);
3198
3199 LLVMBuildStore(builder, current_vec, ptr);
3200 }
3201
3202 static LLVMValueRef
3203 clamp_mask_to_max_output_vertices(struct lp_build_tgsi_soa_context * bld,
3204 LLVMValueRef current_mask_vec,
3205 LLVMValueRef total_emitted_vertices_vec)
3206 {
3207 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3208 struct lp_build_context *int_bld = &bld->bld_base.int_bld;
3209 LLVMValueRef max_mask = lp_build_cmp(int_bld, PIPE_FUNC_LESS,
3210 total_emitted_vertices_vec,
3211 bld->max_output_vertices_vec);
3212
3213 return LLVMBuildAnd(builder, current_mask_vec, max_mask, "");
3214 }
3215
3216 static void
3217 emit_vertex(
3218 const struct lp_build_tgsi_action * action,
3219 struct lp_build_tgsi_context * bld_base,
3220 struct lp_build_emit_data * emit_data)
3221 {
3222 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3223 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3224
3225 if (bld->gs_iface->emit_vertex) {
3226 LLVMValueRef mask = mask_vec(bld_base);
3227 LLVMValueRef total_emitted_vertices_vec =
3228 LLVMBuildLoad(builder, bld->total_emitted_vertices_vec_ptr, "");
3229 mask = clamp_mask_to_max_output_vertices(bld, mask,
3230 total_emitted_vertices_vec);
3231 gather_outputs(bld);
3232 bld->gs_iface->emit_vertex(bld->gs_iface, &bld->bld_base,
3233 bld->outputs,
3234 total_emitted_vertices_vec);
3235 increment_vec_ptr_by_mask(bld_base, bld->emitted_vertices_vec_ptr,
3236 mask);
3237 increment_vec_ptr_by_mask(bld_base, bld->total_emitted_vertices_vec_ptr,
3238 mask);
3239 #if DUMP_GS_EMITS
3240 lp_build_print_value(bld->bld_base.base.gallivm,
3241 " +++ emit vertex masked ones = ",
3242 mask);
3243 lp_build_print_value(bld->bld_base.base.gallivm,
3244 " +++ emit vertex emitted = ",
3245 total_emitted_vertices_vec);
3246 #endif
3247 }
3248 }
3249
3250
3251 static void
3252 end_primitive_masked(struct lp_build_tgsi_context * bld_base,
3253 LLVMValueRef mask)
3254 {
3255 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3256 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3257
3258 if (bld->gs_iface->end_primitive) {
3259 struct lp_build_context *uint_bld = &bld_base->uint_bld;
3260 LLVMValueRef emitted_vertices_vec =
3261 LLVMBuildLoad(builder, bld->emitted_vertices_vec_ptr, "");
3262 LLVMValueRef emitted_prims_vec =
3263 LLVMBuildLoad(builder, bld->emitted_prims_vec_ptr, "");
3264
3265 LLVMValueRef emitted_mask = lp_build_cmp(uint_bld, PIPE_FUNC_NOTEQUAL,
3266 emitted_vertices_vec,
3267 uint_bld->zero);
3268 /* We need to combine the current execution mask with the mask
3269 telling us which, if any, execution slots actually have
3270 unemitted primitives, this way we make sure that end_primitives
3271 executes only on the paths that have unflushed vertices */
3272 mask = LLVMBuildAnd(builder, mask, emitted_mask, "");
3273
3274 bld->gs_iface->end_primitive(bld->gs_iface, &bld->bld_base,
3275 emitted_vertices_vec,
3276 emitted_prims_vec);
3277
3278 #if DUMP_GS_EMITS
3279 lp_build_print_value(bld->bld_base.base.gallivm,
3280 " +++ end prim masked ones = ",
3281 mask);
3282 lp_build_print_value(bld->bld_base.base.gallivm,
3283 " +++ end prim emitted verts1 = ",
3284 emitted_vertices_vec);
3285 lp_build_print_value(bld->bld_base.base.gallivm,
3286 " +++ end prim emitted prims1 = ",
3287 LLVMBuildLoad(builder,
3288 bld->emitted_prims_vec_ptr, ""));
3289 #endif
3290 increment_vec_ptr_by_mask(bld_base, bld->emitted_prims_vec_ptr,
3291 mask);
3292 clear_uint_vec_ptr_from_mask(bld_base, bld->emitted_vertices_vec_ptr,
3293 mask);
3294 #if DUMP_GS_EMITS
3295 lp_build_print_value(bld->bld_base.base.gallivm,
3296 " +++ end prim emitted verts2 = ",
3297 LLVMBuildLoad(builder,
3298 bld->emitted_vertices_vec_ptr, ""));
3299 #endif
3300 }
3301
3302 }
3303
3304 static void
3305 end_primitive(
3306 const struct lp_build_tgsi_action * action,
3307 struct lp_build_tgsi_context * bld_base,
3308 struct lp_build_emit_data * emit_data)
3309 {
3310 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3311
3312 if (bld->gs_iface->end_primitive) {
3313 LLVMValueRef mask = mask_vec(bld_base);
3314 end_primitive_masked(bld_base, mask);
3315 }
3316 }
3317
3318 static void
3319 cal_emit(
3320 const struct lp_build_tgsi_action * action,
3321 struct lp_build_tgsi_context * bld_base,
3322 struct lp_build_emit_data * emit_data)
3323 {
3324 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3325
3326 lp_exec_mask_call(&bld->exec_mask, emit_data->inst->Label.Label,
3327 &bld_base->pc);
3328 }
3329
3330 static void
3331 ret_emit(
3332 const struct lp_build_tgsi_action * action,
3333 struct lp_build_tgsi_context * bld_base,
3334 struct lp_build_emit_data * emit_data)
3335 {
3336 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3337
3338 lp_exec_mask_ret(&bld->exec_mask, &bld_base->pc);
3339 }
3340
3341 static void
3342 brk_emit(
3343 const struct lp_build_tgsi_action * action,
3344 struct lp_build_tgsi_context * bld_base,
3345 struct lp_build_emit_data * emit_data)
3346 {
3347 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3348
3349 lp_exec_break(&bld->exec_mask, bld_base);
3350 }
3351
3352 static void
3353 breakc_emit(
3354 const struct lp_build_tgsi_action * action,
3355 struct lp_build_tgsi_context * bld_base,
3356 struct lp_build_emit_data * emit_data)
3357 {
3358 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3359 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3360 struct lp_build_context *uint_bld = &bld_base->uint_bld;
3361 LLVMValueRef unsigned_cond =
3362 LLVMBuildBitCast(builder, emit_data->args[0], uint_bld->vec_type, "");
3363 LLVMValueRef cond = lp_build_cmp(uint_bld, PIPE_FUNC_NOTEQUAL,
3364 unsigned_cond,
3365 uint_bld->zero);
3366
3367 lp_exec_break_condition(&bld->exec_mask, cond);
3368 }
3369
3370 static void
3371 if_emit(
3372 const struct lp_build_tgsi_action * action,
3373 struct lp_build_tgsi_context * bld_base,
3374 struct lp_build_emit_data * emit_data)
3375 {
3376 LLVMValueRef tmp;
3377 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3378
3379 tmp = lp_build_cmp(&bld_base->base, PIPE_FUNC_NOTEQUAL,
3380 emit_data->args[0], bld->bld_base.base.zero);
3381 lp_exec_mask_cond_push(&bld->exec_mask, tmp);
3382 }
3383
3384 static void
3385 uif_emit(
3386 const struct lp_build_tgsi_action * action,
3387 struct lp_build_tgsi_context * bld_base,
3388 struct lp_build_emit_data * emit_data)
3389 {
3390 LLVMValueRef tmp;
3391 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3392 struct lp_build_context *uint_bld = &bld_base->uint_bld;
3393
3394 tmp = lp_build_cmp(uint_bld, PIPE_FUNC_NOTEQUAL,
3395 emit_data->args[0], uint_bld->zero);
3396 lp_exec_mask_cond_push(&bld->exec_mask, tmp);
3397 }
3398
3399 static void
3400 case_emit(
3401 const struct lp_build_tgsi_action * action,
3402 struct lp_build_tgsi_context * bld_base,
3403 struct lp_build_emit_data * emit_data)
3404 {
3405 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3406
3407 lp_exec_case(&bld->exec_mask, emit_data->args[0]);
3408 }
3409
3410 static void
3411 default_emit(
3412 const struct lp_build_tgsi_action * action,
3413 struct lp_build_tgsi_context * bld_base,
3414 struct lp_build_emit_data * emit_data)
3415 {
3416 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3417
3418 lp_exec_default(&bld->exec_mask, bld_base);
3419 }
3420
3421 static void
3422 switch_emit(
3423 const struct lp_build_tgsi_action * action,
3424 struct lp_build_tgsi_context * bld_base,
3425 struct lp_build_emit_data * emit_data)
3426 {
3427 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3428
3429 lp_exec_switch(&bld->exec_mask, emit_data->args[0]);
3430 }
3431
3432 static void
3433 endswitch_emit(
3434 const struct lp_build_tgsi_action * action,
3435 struct lp_build_tgsi_context * bld_base,
3436 struct lp_build_emit_data * emit_data)
3437 {
3438 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3439
3440 lp_exec_endswitch(&bld->exec_mask, bld_base);
3441 }
3442
3443 static void
3444 bgnloop_emit(
3445 const struct lp_build_tgsi_action * action,
3446 struct lp_build_tgsi_context * bld_base,
3447 struct lp_build_emit_data * emit_data)
3448 {
3449 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3450
3451 lp_exec_bgnloop(&bld->exec_mask);
3452 }
3453
3454 static void
3455 bgnsub_emit(
3456 const struct lp_build_tgsi_action * action,
3457 struct lp_build_tgsi_context * bld_base,
3458 struct lp_build_emit_data * emit_data)
3459 {
3460 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3461
3462 lp_exec_mask_bgnsub(&bld->exec_mask);
3463 }
3464
3465 static void
3466 else_emit(
3467 const struct lp_build_tgsi_action * action,
3468 struct lp_build_tgsi_context * bld_base,
3469 struct lp_build_emit_data * emit_data)
3470 {
3471 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3472
3473 lp_exec_mask_cond_invert(&bld->exec_mask);
3474 }
3475
3476 static void
3477 endif_emit(
3478 const struct lp_build_tgsi_action * action,
3479 struct lp_build_tgsi_context * bld_base,
3480 struct lp_build_emit_data * emit_data)
3481 {
3482 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3483
3484 lp_exec_mask_cond_pop(&bld->exec_mask);
3485 }
3486
3487 static void
3488 endloop_emit(
3489 const struct lp_build_tgsi_action * action,
3490 struct lp_build_tgsi_context * bld_base,
3491 struct lp_build_emit_data * emit_data)
3492 {
3493 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3494
3495 lp_exec_endloop(bld_base->base.gallivm, &bld->exec_mask);
3496 }
3497
3498 static void
3499 endsub_emit(
3500 const struct lp_build_tgsi_action * action,
3501 struct lp_build_tgsi_context * bld_base,
3502 struct lp_build_emit_data * emit_data)
3503 {
3504 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3505
3506 lp_exec_mask_endsub(&bld->exec_mask, &bld_base->pc);
3507 }
3508
3509 static void
3510 cont_emit(
3511 const struct lp_build_tgsi_action * action,
3512 struct lp_build_tgsi_context * bld_base,
3513 struct lp_build_emit_data * emit_data)
3514 {
3515 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3516
3517 lp_exec_continue(&bld->exec_mask);
3518 }
3519
3520 static void emit_prologue(struct lp_build_tgsi_context * bld_base)
3521 {
3522 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3523 struct gallivm_state * gallivm = bld_base->base.gallivm;
3524
3525 if (bld->indirect_files & (1 << TGSI_FILE_TEMPORARY)) {
3526 LLVMValueRef array_size =
3527 lp_build_const_int32(gallivm,
3528 bld_base->info->file_max[TGSI_FILE_TEMPORARY] * 4 + 4);
3529 bld->temps_array = lp_build_array_alloca(gallivm,
3530 bld_base->base.vec_type, array_size,
3531 "temp_array");
3532 }
3533
3534 if (bld->indirect_files & (1 << TGSI_FILE_OUTPUT)) {
3535 LLVMValueRef array_size =
3536 lp_build_const_int32(gallivm,
3537 bld_base->info->file_max[TGSI_FILE_OUTPUT] * 4 + 4);
3538 bld->outputs_array = lp_build_array_alloca(gallivm,
3539 bld_base->base.vec_type, array_size,
3540 "output_array");
3541 }
3542
3543 if (bld->indirect_files & (1 << TGSI_FILE_IMMEDIATE)) {
3544 LLVMValueRef array_size =
3545 lp_build_const_int32(gallivm,
3546 bld_base->info->file_max[TGSI_FILE_IMMEDIATE] * 4 + 4);
3547 bld->imms_array = lp_build_array_alloca(gallivm,
3548 bld_base->base.vec_type, array_size,
3549 "imms_array");
3550 }
3551
3552 /* If we have indirect addressing in inputs we need to copy them into
3553 * our alloca array to be able to iterate over them */
3554 if (bld->indirect_files & (1 << TGSI_FILE_INPUT) && !bld->gs_iface) {
3555 unsigned index, chan;
3556 LLVMTypeRef vec_type = bld_base->base.vec_type;
3557 LLVMValueRef array_size = lp_build_const_int32(gallivm,
3558 bld_base->info->file_max[TGSI_FILE_INPUT]*4 + 4);
3559 bld->inputs_array = lp_build_array_alloca(gallivm,
3560 vec_type, array_size,
3561 "input_array");
3562
3563 assert(bld_base->info->num_inputs
3564 <= bld_base->info->file_max[TGSI_FILE_INPUT] + 1);
3565
3566 for (index = 0; index < bld_base->info->num_inputs; ++index) {
3567 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
3568 LLVMValueRef lindex =
3569 lp_build_const_int32(gallivm, index * 4 + chan);
3570 LLVMValueRef input_ptr =
3571 LLVMBuildGEP(gallivm->builder, bld->inputs_array,
3572 &lindex, 1, "");
3573 LLVMValueRef value = bld->inputs[index][chan];
3574 if (value)
3575 LLVMBuildStore(gallivm->builder, value, input_ptr);
3576 }
3577 }
3578 }
3579
3580 if (bld->gs_iface) {
3581 struct lp_build_context *uint_bld = &bld->bld_base.uint_bld;
3582 bld->emitted_prims_vec_ptr =
3583 lp_build_alloca(gallivm,
3584 uint_bld->vec_type,
3585 "emitted_prims_ptr");
3586 bld->emitted_vertices_vec_ptr =
3587 lp_build_alloca(gallivm,
3588 uint_bld->vec_type,
3589 "emitted_vertices_ptr");
3590 bld->total_emitted_vertices_vec_ptr =
3591 lp_build_alloca(gallivm,
3592 uint_bld->vec_type,
3593 "total_emitted_vertices_ptr");
3594
3595 LLVMBuildStore(gallivm->builder, uint_bld->zero,
3596 bld->emitted_prims_vec_ptr);
3597 LLVMBuildStore(gallivm->builder, uint_bld->zero,
3598 bld->emitted_vertices_vec_ptr);
3599 LLVMBuildStore(gallivm->builder, uint_bld->zero,
3600 bld->total_emitted_vertices_vec_ptr);
3601 }
3602
3603 if (DEBUG_EXECUTION) {
3604 lp_build_printf(gallivm, "\n");
3605 emit_dump_file(bld, TGSI_FILE_CONSTANT);
3606 if (!bld->gs_iface)
3607 emit_dump_file(bld, TGSI_FILE_INPUT);
3608 }
3609 }
3610
3611 static void emit_epilogue(struct lp_build_tgsi_context * bld_base)
3612 {
3613 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3614 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3615
3616 if (DEBUG_EXECUTION) {
3617 /* for debugging */
3618 if (0) {
3619 emit_dump_file(bld, TGSI_FILE_TEMPORARY);
3620 }
3621 emit_dump_file(bld, TGSI_FILE_OUTPUT);
3622 lp_build_printf(bld_base->base.gallivm, "\n");
3623 }
3624
3625 /* If we have indirect addressing in outputs we need to copy our alloca array
3626 * to the outputs slots specified by the caller */
3627 if (bld->gs_iface) {
3628 LLVMValueRef total_emitted_vertices_vec;
3629 LLVMValueRef emitted_prims_vec;
3630 /* implicit end_primitives, needed in case there are any unflushed
3631 vertices in the cache. Note must not call end_primitive here
3632 since the exec_mask is not valid at this point. */
3633 end_primitive_masked(bld_base, lp_build_mask_value(bld->mask));
3634
3635 total_emitted_vertices_vec =
3636 LLVMBuildLoad(builder, bld->total_emitted_vertices_vec_ptr, "");
3637 emitted_prims_vec =
3638 LLVMBuildLoad(builder, bld->emitted_prims_vec_ptr, "");
3639
3640 bld->gs_iface->gs_epilogue(bld->gs_iface,
3641 &bld->bld_base,
3642 total_emitted_vertices_vec,
3643 emitted_prims_vec);
3644 } else {
3645 gather_outputs(bld);
3646 }
3647 }
3648
3649 void
3650 lp_build_tgsi_soa(struct gallivm_state *gallivm,
3651 const struct tgsi_token *tokens,
3652 struct lp_type type,
3653 struct lp_build_mask_context *mask,
3654 LLVMValueRef consts_ptr,
3655 LLVMValueRef const_sizes_ptr,
3656 const struct lp_bld_tgsi_system_values *system_values,
3657 const LLVMValueRef (*inputs)[TGSI_NUM_CHANNELS],
3658 LLVMValueRef (*outputs)[TGSI_NUM_CHANNELS],
3659 struct lp_build_sampler_soa *sampler,
3660 const struct tgsi_shader_info *info,
3661 const struct lp_build_tgsi_gs_iface *gs_iface)
3662 {
3663 struct lp_build_tgsi_soa_context bld;
3664
3665 struct lp_type res_type;
3666
3667 assert(type.length <= LP_MAX_VECTOR_LENGTH);
3668 memset(&res_type, 0, sizeof res_type);
3669 res_type.width = type.width;
3670 res_type.length = type.length;
3671 res_type.sign = 1;
3672
3673 /* Setup build context */
3674 memset(&bld, 0, sizeof bld);
3675 lp_build_context_init(&bld.bld_base.base, gallivm, type);
3676 lp_build_context_init(&bld.bld_base.uint_bld, gallivm, lp_uint_type(type));
3677 lp_build_context_init(&bld.bld_base.int_bld, gallivm, lp_int_type(type));
3678 lp_build_context_init(&bld.elem_bld, gallivm, lp_elem_type(type));
3679 bld.mask = mask;
3680 bld.inputs = inputs;
3681 bld.outputs = outputs;
3682 bld.consts_ptr = consts_ptr;
3683 bld.const_sizes_ptr = const_sizes_ptr;
3684 bld.sampler = sampler;
3685 bld.bld_base.info = info;
3686 bld.indirect_files = info->indirect_files;
3687
3688 /*
3689 * If the number of temporaries is rather large then we just
3690 * allocate them as an array right from the start and treat
3691 * like indirect temporaries.
3692 */
3693 if (info->file_max[TGSI_FILE_TEMPORARY] >= LP_MAX_INLINED_TEMPS) {
3694 bld.indirect_files |= (1 << TGSI_FILE_TEMPORARY);
3695 }
3696 /*
3697 * For performance reason immediates are always backed in a static
3698 * array, but if their number is too great, we have to use just
3699 * a dynamically allocated array.
3700 */
3701 bld.use_immediates_array =
3702 (info->file_max[TGSI_FILE_IMMEDIATE] >= LP_MAX_INLINED_IMMEDIATES);
3703 if (bld.use_immediates_array) {
3704 bld.indirect_files |= (1 << TGSI_FILE_IMMEDIATE);
3705 }
3706
3707
3708 bld.bld_base.soa = TRUE;
3709 bld.bld_base.emit_debug = emit_debug;
3710 bld.bld_base.emit_fetch_funcs[TGSI_FILE_CONSTANT] = emit_fetch_constant;
3711 bld.bld_base.emit_fetch_funcs[TGSI_FILE_IMMEDIATE] = emit_fetch_immediate;
3712 bld.bld_base.emit_fetch_funcs[TGSI_FILE_INPUT] = emit_fetch_input;
3713 bld.bld_base.emit_fetch_funcs[TGSI_FILE_TEMPORARY] = emit_fetch_temporary;
3714 bld.bld_base.emit_fetch_funcs[TGSI_FILE_SYSTEM_VALUE] = emit_fetch_system_value;
3715 bld.bld_base.emit_store = emit_store;
3716
3717 bld.bld_base.emit_declaration = lp_emit_declaration_soa;
3718 bld.bld_base.emit_immediate = lp_emit_immediate_soa;
3719
3720 bld.bld_base.emit_prologue = emit_prologue;
3721 bld.bld_base.emit_epilogue = emit_epilogue;
3722
3723 /* Set opcode actions */
3724 lp_set_default_actions_cpu(&bld.bld_base);
3725
3726 bld.bld_base.op_actions[TGSI_OPCODE_BGNLOOP].emit = bgnloop_emit;
3727 bld.bld_base.op_actions[TGSI_OPCODE_BGNSUB].emit = bgnsub_emit;
3728 bld.bld_base.op_actions[TGSI_OPCODE_BRK].emit = brk_emit;
3729 bld.bld_base.op_actions[TGSI_OPCODE_BREAKC].emit = breakc_emit;
3730 bld.bld_base.op_actions[TGSI_OPCODE_CAL].emit = cal_emit;
3731 bld.bld_base.op_actions[TGSI_OPCODE_CASE].emit = case_emit;
3732 bld.bld_base.op_actions[TGSI_OPCODE_CONT].emit = cont_emit;
3733 bld.bld_base.op_actions[TGSI_OPCODE_DDX].emit = ddx_emit;
3734 bld.bld_base.op_actions[TGSI_OPCODE_DDY].emit = ddy_emit;
3735 bld.bld_base.op_actions[TGSI_OPCODE_DEFAULT].emit = default_emit;
3736 bld.bld_base.op_actions[TGSI_OPCODE_ELSE].emit = else_emit;
3737 bld.bld_base.op_actions[TGSI_OPCODE_ENDIF].emit = endif_emit;
3738 bld.bld_base.op_actions[TGSI_OPCODE_ENDLOOP].emit = endloop_emit;
3739 bld.bld_base.op_actions[TGSI_OPCODE_ENDSUB].emit = endsub_emit;
3740 bld.bld_base.op_actions[TGSI_OPCODE_ENDSWITCH].emit = endswitch_emit;
3741 bld.bld_base.op_actions[TGSI_OPCODE_IF].emit = if_emit;
3742 bld.bld_base.op_actions[TGSI_OPCODE_UIF].emit = uif_emit;
3743 bld.bld_base.op_actions[TGSI_OPCODE_KILL_IF].emit = kill_if_emit;
3744 bld.bld_base.op_actions[TGSI_OPCODE_KILL].emit = kill_emit;
3745 bld.bld_base.op_actions[TGSI_OPCODE_RET].emit = ret_emit;
3746 bld.bld_base.op_actions[TGSI_OPCODE_SWITCH].emit = switch_emit;
3747 bld.bld_base.op_actions[TGSI_OPCODE_TEX].emit = tex_emit;
3748 bld.bld_base.op_actions[TGSI_OPCODE_TXB].emit = txb_emit;
3749 bld.bld_base.op_actions[TGSI_OPCODE_TXD].emit = txd_emit;
3750 bld.bld_base.op_actions[TGSI_OPCODE_TXL].emit = txl_emit;
3751 bld.bld_base.op_actions[TGSI_OPCODE_TXP].emit = txp_emit;
3752 bld.bld_base.op_actions[TGSI_OPCODE_TXQ].emit = txq_emit;
3753 bld.bld_base.op_actions[TGSI_OPCODE_TXF].emit = txf_emit;
3754 bld.bld_base.op_actions[TGSI_OPCODE_TEX2].emit = tex2_emit;
3755 bld.bld_base.op_actions[TGSI_OPCODE_TXB2].emit = txb2_emit;
3756 bld.bld_base.op_actions[TGSI_OPCODE_TXL2].emit = txl2_emit;
3757 /* DX10 sampling ops */
3758 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE].emit = sample_emit;
3759 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_B].emit = sample_b_emit;
3760 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_C].emit = sample_c_emit;
3761 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_C_LZ].emit = sample_c_lz_emit;
3762 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_D].emit = sample_d_emit;
3763 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_I].emit = sample_i_emit;
3764 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_L].emit = sample_l_emit;
3765 bld.bld_base.op_actions[TGSI_OPCODE_SVIEWINFO].emit = sviewinfo_emit;
3766
3767 if (gs_iface) {
3768 /* There's no specific value for this because it should always
3769 * be set, but apps using ext_geometry_shader4 quite often
3770 * were forgetting so we're using MAX_VERTEX_VARYING from
3771 * that spec even though we could debug_assert if it's not
3772 * set, but that's a lot uglier. */
3773 uint max_output_vertices;
3774
3775 /* inputs are always indirect with gs */
3776 bld.indirect_files |= (1 << TGSI_FILE_INPUT);
3777 bld.gs_iface = gs_iface;
3778 bld.bld_base.emit_fetch_funcs[TGSI_FILE_INPUT] = emit_fetch_gs_input;
3779 bld.bld_base.op_actions[TGSI_OPCODE_EMIT].emit = emit_vertex;
3780 bld.bld_base.op_actions[TGSI_OPCODE_ENDPRIM].emit = end_primitive;
3781
3782 max_output_vertices =
3783 info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
3784 if (!max_output_vertices)
3785 max_output_vertices = 32;
3786
3787 bld.max_output_vertices_vec =
3788 lp_build_const_int_vec(gallivm, bld.bld_base.int_bld.type,
3789 max_output_vertices);
3790 }
3791
3792 lp_exec_mask_init(&bld.exec_mask, &bld.bld_base.int_bld);
3793
3794 bld.system_values = *system_values;
3795
3796 lp_build_tgsi_llvm(&bld.bld_base, tokens);
3797
3798 if (0) {
3799 LLVMBasicBlockRef block = LLVMGetInsertBlock(gallivm->builder);
3800 LLVMValueRef function = LLVMGetBasicBlockParent(block);
3801 debug_printf("11111111111111111111111111111 \n");
3802 tgsi_dump(tokens, 0);
3803 lp_debug_dump_value(function);
3804 debug_printf("2222222222222222222222222222 \n");
3805 }
3806
3807 if (0) {
3808 LLVMModuleRef module = LLVMGetGlobalParent(
3809 LLVMGetBasicBlockParent(LLVMGetInsertBlock(gallivm->builder)));
3810 LLVMDumpModule(module);
3811
3812 }
3813 lp_exec_mask_fini(&bld.exec_mask);
3814 }