mesa/gallium: Move u_bit_scan{,64} from gallium to util.
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_tgsi_soa.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007-2008 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * TGSI to LLVM IR translation -- SoA.
32 *
33 * @author Jose Fonseca <jfonseca@vmware.com>
34 *
35 * Based on tgsi_sse2.c code written by Michal Krol, Keith Whitwell,
36 * Brian Paul, and others.
37 */
38
39 #include "pipe/p_config.h"
40 #include "pipe/p_shader_tokens.h"
41 #include "util/u_debug.h"
42 #include "util/u_math.h"
43 #include "util/u_memory.h"
44 #include "tgsi/tgsi_dump.h"
45 #include "tgsi/tgsi_exec.h"
46 #include "tgsi/tgsi_info.h"
47 #include "tgsi/tgsi_parse.h"
48 #include "tgsi/tgsi_util.h"
49 #include "tgsi/tgsi_scan.h"
50 #include "tgsi/tgsi_strings.h"
51 #include "lp_bld_tgsi_action.h"
52 #include "lp_bld_type.h"
53 #include "lp_bld_const.h"
54 #include "lp_bld_arit.h"
55 #include "lp_bld_bitarit.h"
56 #include "lp_bld_gather.h"
57 #include "lp_bld_init.h"
58 #include "lp_bld_logic.h"
59 #include "lp_bld_swizzle.h"
60 #include "lp_bld_flow.h"
61 #include "lp_bld_quad.h"
62 #include "lp_bld_tgsi.h"
63 #include "lp_bld_limits.h"
64 #include "lp_bld_debug.h"
65 #include "lp_bld_printf.h"
66 #include "lp_bld_sample.h"
67 #include "lp_bld_struct.h"
68
69 /* SM 4.0 says that subroutines can nest 32 deep and
70 * we need one more for our main function */
71 #define LP_MAX_NUM_FUNCS 33
72
73 #define DUMP_GS_EMITS 0
74
75 /*
76 * If non-zero, the generated LLVM IR will print intermediate results on every TGSI
77 * instruction.
78 *
79 * TODO:
80 * - take execution masks in consideration
81 * - debug control-flow instructions
82 */
83 #define DEBUG_EXECUTION 0
84
85
86 /*
87 * Emit code to print a register value.
88 */
89 static void
90 emit_dump_reg(struct gallivm_state *gallivm,
91 unsigned file,
92 unsigned index,
93 unsigned chan,
94 LLVMValueRef value)
95 {
96 char buf[32];
97
98 util_snprintf(buf, sizeof buf, " %s[%u].%c = ",
99 tgsi_file_name(file),
100 index, "xyzw"[chan]);
101
102 lp_build_print_value(gallivm, buf, value);
103 }
104
105 /*
106 * Return the context for the current function.
107 * (always 'main', if shader doesn't do any function calls)
108 */
109 static inline struct function_ctx *
110 func_ctx(struct lp_exec_mask *mask)
111 {
112 assert(mask->function_stack_size > 0);
113 assert(mask->function_stack_size <= LP_MAX_NUM_FUNCS);
114 return &mask->function_stack[mask->function_stack_size - 1];
115 }
116
117 /*
118 * Returns true if we're in a loop.
119 * It's global, meaning that it returns true even if there's
120 * no loop inside the current function, but we were inside
121 * a loop inside another function, from which this one was called.
122 */
123 static inline boolean
124 mask_has_loop(struct lp_exec_mask *mask)
125 {
126 int i;
127 for (i = mask->function_stack_size - 1; i >= 0; --i) {
128 const struct function_ctx *ctx = &mask->function_stack[i];
129 if (ctx->loop_stack_size > 0)
130 return TRUE;
131 }
132 return FALSE;
133 }
134
135 /*
136 * Returns true if we're inside a switch statement.
137 * It's global, meaning that it returns true even if there's
138 * no switch in the current function, but we were inside
139 * a switch inside another function, from which this one was called.
140 */
141 static inline boolean
142 mask_has_switch(struct lp_exec_mask *mask)
143 {
144 int i;
145 for (i = mask->function_stack_size - 1; i >= 0; --i) {
146 const struct function_ctx *ctx = &mask->function_stack[i];
147 if (ctx->switch_stack_size > 0)
148 return TRUE;
149 }
150 return FALSE;
151 }
152
153 /*
154 * Returns true if we're inside a conditional.
155 * It's global, meaning that it returns true even if there's
156 * no conditional in the current function, but we were inside
157 * a conditional inside another function, from which this one was called.
158 */
159 static inline boolean
160 mask_has_cond(struct lp_exec_mask *mask)
161 {
162 int i;
163 for (i = mask->function_stack_size - 1; i >= 0; --i) {
164 const struct function_ctx *ctx = &mask->function_stack[i];
165 if (ctx->cond_stack_size > 0)
166 return TRUE;
167 }
168 return FALSE;
169 }
170
171
172 /*
173 * Initialize a function context at the specified index.
174 */
175 static void
176 lp_exec_mask_function_init(struct lp_exec_mask *mask, int function_idx)
177 {
178 LLVMTypeRef int_type = LLVMInt32TypeInContext(mask->bld->gallivm->context);
179 LLVMBuilderRef builder = mask->bld->gallivm->builder;
180 struct function_ctx *ctx = &mask->function_stack[function_idx];
181
182 ctx->cond_stack_size = 0;
183 ctx->loop_stack_size = 0;
184 ctx->switch_stack_size = 0;
185
186 if (function_idx == 0) {
187 ctx->ret_mask = mask->ret_mask;
188 }
189
190 ctx->loop_limiter = lp_build_alloca(mask->bld->gallivm,
191 int_type, "looplimiter");
192 LLVMBuildStore(
193 builder,
194 LLVMConstInt(int_type, LP_MAX_TGSI_LOOP_ITERATIONS, false),
195 ctx->loop_limiter);
196 }
197
198 static void lp_exec_mask_init(struct lp_exec_mask *mask, struct lp_build_context *bld)
199 {
200 mask->bld = bld;
201 mask->has_mask = FALSE;
202 mask->ret_in_main = FALSE;
203 /* For the main function */
204 mask->function_stack_size = 1;
205
206 mask->int_vec_type = lp_build_int_vec_type(bld->gallivm, mask->bld->type);
207 mask->exec_mask = mask->ret_mask = mask->break_mask = mask->cont_mask =
208 mask->cond_mask = mask->switch_mask =
209 LLVMConstAllOnes(mask->int_vec_type);
210
211 mask->function_stack = CALLOC(LP_MAX_NUM_FUNCS,
212 sizeof(mask->function_stack[0]));
213 lp_exec_mask_function_init(mask, 0);
214 }
215
216 static void
217 lp_exec_mask_fini(struct lp_exec_mask *mask)
218 {
219 FREE(mask->function_stack);
220 }
221
222 static void lp_exec_mask_update(struct lp_exec_mask *mask)
223 {
224 LLVMBuilderRef builder = mask->bld->gallivm->builder;
225 boolean has_loop_mask = mask_has_loop(mask);
226 boolean has_cond_mask = mask_has_cond(mask);
227 boolean has_switch_mask = mask_has_switch(mask);
228 boolean has_ret_mask = mask->function_stack_size > 1 ||
229 mask->ret_in_main;
230
231 if (has_loop_mask) {
232 /*for loops we need to update the entire mask at runtime */
233 LLVMValueRef tmp;
234 assert(mask->break_mask);
235 tmp = LLVMBuildAnd(builder,
236 mask->cont_mask,
237 mask->break_mask,
238 "maskcb");
239 mask->exec_mask = LLVMBuildAnd(builder,
240 mask->cond_mask,
241 tmp,
242 "maskfull");
243 } else
244 mask->exec_mask = mask->cond_mask;
245
246 if (has_switch_mask) {
247 mask->exec_mask = LLVMBuildAnd(builder,
248 mask->exec_mask,
249 mask->switch_mask,
250 "switchmask");
251 }
252
253 if (has_ret_mask) {
254 mask->exec_mask = LLVMBuildAnd(builder,
255 mask->exec_mask,
256 mask->ret_mask,
257 "callmask");
258 }
259
260 mask->has_mask = (has_cond_mask ||
261 has_loop_mask ||
262 has_switch_mask ||
263 has_ret_mask);
264 }
265
266 static void lp_exec_mask_cond_push(struct lp_exec_mask *mask,
267 LLVMValueRef val)
268 {
269 LLVMBuilderRef builder = mask->bld->gallivm->builder;
270 struct function_ctx *ctx = func_ctx(mask);
271
272 if (ctx->cond_stack_size >= LP_MAX_TGSI_NESTING) {
273 ctx->cond_stack_size++;
274 return;
275 }
276 if (ctx->cond_stack_size == 0 && mask->function_stack_size == 1) {
277 assert(mask->cond_mask == LLVMConstAllOnes(mask->int_vec_type));
278 }
279 ctx->cond_stack[ctx->cond_stack_size++] = mask->cond_mask;
280 assert(LLVMTypeOf(val) == mask->int_vec_type);
281 mask->cond_mask = LLVMBuildAnd(builder,
282 mask->cond_mask,
283 val,
284 "");
285 lp_exec_mask_update(mask);
286 }
287
288 static void lp_exec_mask_cond_invert(struct lp_exec_mask *mask)
289 {
290 LLVMBuilderRef builder = mask->bld->gallivm->builder;
291 struct function_ctx *ctx = func_ctx(mask);
292 LLVMValueRef prev_mask;
293 LLVMValueRef inv_mask;
294
295 assert(ctx->cond_stack_size);
296 if (ctx->cond_stack_size >= LP_MAX_TGSI_NESTING)
297 return;
298 prev_mask = ctx->cond_stack[ctx->cond_stack_size - 1];
299 if (ctx->cond_stack_size == 1 && mask->function_stack_size == 1) {
300 assert(prev_mask == LLVMConstAllOnes(mask->int_vec_type));
301 }
302
303 inv_mask = LLVMBuildNot(builder, mask->cond_mask, "");
304
305 mask->cond_mask = LLVMBuildAnd(builder,
306 inv_mask,
307 prev_mask, "");
308 lp_exec_mask_update(mask);
309 }
310
311 static void lp_exec_mask_cond_pop(struct lp_exec_mask *mask)
312 {
313 struct function_ctx *ctx = func_ctx(mask);
314 assert(ctx->cond_stack_size);
315 --ctx->cond_stack_size;
316 if (ctx->cond_stack_size >= LP_MAX_TGSI_NESTING)
317 return;
318 mask->cond_mask = ctx->cond_stack[ctx->cond_stack_size];
319 lp_exec_mask_update(mask);
320 }
321
322 static void lp_exec_bgnloop(struct lp_exec_mask *mask)
323 {
324 LLVMBuilderRef builder = mask->bld->gallivm->builder;
325 struct function_ctx *ctx = func_ctx(mask);
326
327 if (ctx->loop_stack_size >= LP_MAX_TGSI_NESTING) {
328 ++ctx->loop_stack_size;
329 return;
330 }
331
332 ctx->break_type_stack[ctx->loop_stack_size + ctx->switch_stack_size] =
333 ctx->break_type;
334 ctx->break_type = LP_EXEC_MASK_BREAK_TYPE_LOOP;
335
336 ctx->loop_stack[ctx->loop_stack_size].loop_block = ctx->loop_block;
337 ctx->loop_stack[ctx->loop_stack_size].cont_mask = mask->cont_mask;
338 ctx->loop_stack[ctx->loop_stack_size].break_mask = mask->break_mask;
339 ctx->loop_stack[ctx->loop_stack_size].break_var = ctx->break_var;
340 ++ctx->loop_stack_size;
341
342 ctx->break_var = lp_build_alloca(mask->bld->gallivm, mask->int_vec_type, "");
343 LLVMBuildStore(builder, mask->break_mask, ctx->break_var);
344
345 ctx->loop_block = lp_build_insert_new_block(mask->bld->gallivm, "bgnloop");
346
347 LLVMBuildBr(builder, ctx->loop_block);
348 LLVMPositionBuilderAtEnd(builder, ctx->loop_block);
349
350 mask->break_mask = LLVMBuildLoad(builder, ctx->break_var, "");
351
352 lp_exec_mask_update(mask);
353 }
354
355 static void lp_exec_break(struct lp_exec_mask *mask,
356 struct lp_build_tgsi_context * bld_base)
357 {
358 LLVMBuilderRef builder = mask->bld->gallivm->builder;
359 struct function_ctx *ctx = func_ctx(mask);
360
361 if (ctx->break_type == LP_EXEC_MASK_BREAK_TYPE_LOOP) {
362 LLVMValueRef exec_mask = LLVMBuildNot(builder,
363 mask->exec_mask,
364 "break");
365
366 mask->break_mask = LLVMBuildAnd(builder,
367 mask->break_mask,
368 exec_mask, "break_full");
369 }
370 else {
371 unsigned opcode = bld_base->instructions[bld_base->pc + 1].Instruction.Opcode;
372 boolean break_always = (opcode == TGSI_OPCODE_ENDSWITCH ||
373 opcode == TGSI_OPCODE_CASE);
374
375
376 if (ctx->switch_in_default) {
377 /*
378 * stop default execution but only if this is an unconditional switch.
379 * (The condition here is not perfect since dead code after break is
380 * allowed but should be sufficient since false negatives are just
381 * unoptimized - so we don't have to pre-evaluate that).
382 */
383 if(break_always && ctx->switch_pc) {
384 bld_base->pc = ctx->switch_pc;
385 return;
386 }
387 }
388
389 if (break_always) {
390 mask->switch_mask = LLVMConstNull(mask->bld->int_vec_type);
391 }
392 else {
393 LLVMValueRef exec_mask = LLVMBuildNot(builder,
394 mask->exec_mask,
395 "break");
396 mask->switch_mask = LLVMBuildAnd(builder,
397 mask->switch_mask,
398 exec_mask, "break_switch");
399 }
400 }
401
402 lp_exec_mask_update(mask);
403 }
404
405 static void lp_exec_break_condition(struct lp_exec_mask *mask,
406 LLVMValueRef cond)
407 {
408 LLVMBuilderRef builder = mask->bld->gallivm->builder;
409 struct function_ctx *ctx = func_ctx(mask);
410 LLVMValueRef cond_mask = LLVMBuildAnd(builder,
411 mask->exec_mask,
412 cond, "cond_mask");
413 cond_mask = LLVMBuildNot(builder, cond_mask, "break_cond");
414
415 if (ctx->break_type == LP_EXEC_MASK_BREAK_TYPE_LOOP) {
416 mask->break_mask = LLVMBuildAnd(builder,
417 mask->break_mask,
418 cond_mask, "breakc_full");
419 }
420 else {
421 mask->switch_mask = LLVMBuildAnd(builder,
422 mask->switch_mask,
423 cond_mask, "breakc_switch");
424 }
425
426 lp_exec_mask_update(mask);
427 }
428
429 static void lp_exec_continue(struct lp_exec_mask *mask)
430 {
431 LLVMBuilderRef builder = mask->bld->gallivm->builder;
432 LLVMValueRef exec_mask = LLVMBuildNot(builder,
433 mask->exec_mask,
434 "");
435
436 mask->cont_mask = LLVMBuildAnd(builder,
437 mask->cont_mask,
438 exec_mask, "");
439
440 lp_exec_mask_update(mask);
441 }
442
443
444 static void lp_exec_endloop(struct gallivm_state *gallivm,
445 struct lp_exec_mask *mask)
446 {
447 LLVMBuilderRef builder = mask->bld->gallivm->builder;
448 struct function_ctx *ctx = func_ctx(mask);
449 LLVMBasicBlockRef endloop;
450 LLVMTypeRef int_type = LLVMInt32TypeInContext(mask->bld->gallivm->context);
451 LLVMTypeRef reg_type = LLVMIntTypeInContext(gallivm->context,
452 mask->bld->type.width *
453 mask->bld->type.length);
454 LLVMValueRef i1cond, i2cond, icond, limiter;
455
456 assert(mask->break_mask);
457
458
459 assert(ctx->loop_stack_size);
460 if (ctx->loop_stack_size > LP_MAX_TGSI_NESTING) {
461 --ctx->loop_stack_size;
462 return;
463 }
464
465 /*
466 * Restore the cont_mask, but don't pop
467 */
468 mask->cont_mask = ctx->loop_stack[ctx->loop_stack_size - 1].cont_mask;
469 lp_exec_mask_update(mask);
470
471 /*
472 * Unlike the continue mask, the break_mask must be preserved across loop
473 * iterations
474 */
475 LLVMBuildStore(builder, mask->break_mask, ctx->break_var);
476
477 /* Decrement the loop limiter */
478 limiter = LLVMBuildLoad(builder, ctx->loop_limiter, "");
479
480 limiter = LLVMBuildSub(
481 builder,
482 limiter,
483 LLVMConstInt(int_type, 1, false),
484 "");
485
486 LLVMBuildStore(builder, limiter, ctx->loop_limiter);
487
488 /* i1cond = (mask != 0) */
489 i1cond = LLVMBuildICmp(
490 builder,
491 LLVMIntNE,
492 LLVMBuildBitCast(builder, mask->exec_mask, reg_type, ""),
493 LLVMConstNull(reg_type), "i1cond");
494
495 /* i2cond = (looplimiter > 0) */
496 i2cond = LLVMBuildICmp(
497 builder,
498 LLVMIntSGT,
499 limiter,
500 LLVMConstNull(int_type), "i2cond");
501
502 /* if( i1cond && i2cond ) */
503 icond = LLVMBuildAnd(builder, i1cond, i2cond, "");
504
505 endloop = lp_build_insert_new_block(mask->bld->gallivm, "endloop");
506
507 LLVMBuildCondBr(builder,
508 icond, ctx->loop_block, endloop);
509
510 LLVMPositionBuilderAtEnd(builder, endloop);
511
512 assert(ctx->loop_stack_size);
513 --ctx->loop_stack_size;
514 mask->cont_mask = ctx->loop_stack[ctx->loop_stack_size].cont_mask;
515 mask->break_mask = ctx->loop_stack[ctx->loop_stack_size].break_mask;
516 ctx->loop_block = ctx->loop_stack[ctx->loop_stack_size].loop_block;
517 ctx->break_var = ctx->loop_stack[ctx->loop_stack_size].break_var;
518 ctx->break_type = ctx->break_type_stack[ctx->loop_stack_size +
519 ctx->switch_stack_size];
520
521 lp_exec_mask_update(mask);
522 }
523
524 static void lp_exec_switch(struct lp_exec_mask *mask,
525 LLVMValueRef switchval)
526 {
527 struct function_ctx *ctx = func_ctx(mask);
528
529 if (ctx->switch_stack_size >= LP_MAX_TGSI_NESTING ||
530 ctx->loop_stack_size > LP_MAX_TGSI_NESTING) {
531 ctx->switch_stack_size++;
532 return;
533 }
534
535 ctx->break_type_stack[ctx->loop_stack_size + ctx->switch_stack_size] =
536 ctx->break_type;
537 ctx->break_type = LP_EXEC_MASK_BREAK_TYPE_SWITCH;
538
539 ctx->switch_stack[ctx->switch_stack_size].switch_mask = mask->switch_mask;
540 ctx->switch_stack[ctx->switch_stack_size].switch_val = ctx->switch_val;
541 ctx->switch_stack[ctx->switch_stack_size].switch_mask_default = ctx->switch_mask_default;
542 ctx->switch_stack[ctx->switch_stack_size].switch_in_default = ctx->switch_in_default;
543 ctx->switch_stack[ctx->switch_stack_size].switch_pc = ctx->switch_pc;
544 ctx->switch_stack_size++;
545
546 mask->switch_mask = LLVMConstNull(mask->int_vec_type);
547 ctx->switch_val = switchval;
548 ctx->switch_mask_default = LLVMConstNull(mask->int_vec_type);
549 ctx->switch_in_default = false;
550 ctx->switch_pc = 0;
551
552 lp_exec_mask_update(mask);
553 }
554
555 static void lp_exec_endswitch(struct lp_exec_mask *mask,
556 struct lp_build_tgsi_context * bld_base)
557 {
558 LLVMBuilderRef builder = mask->bld->gallivm->builder;
559 struct function_ctx *ctx = func_ctx(mask);
560
561 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
562 ctx->switch_stack_size--;
563 return;
564 }
565
566 /* check if there's deferred default if so do it now */
567 if (ctx->switch_pc && !ctx->switch_in_default) {
568 LLVMValueRef prevmask, defaultmask;
569 unsigned tmp_pc;
570 prevmask = ctx->switch_stack[ctx->switch_stack_size - 1].switch_mask;
571 defaultmask = LLVMBuildNot(builder, ctx->switch_mask_default, "sw_default_mask");
572 mask->switch_mask = LLVMBuildAnd(builder, prevmask, defaultmask, "sw_mask");
573 ctx->switch_in_default = true;
574
575 lp_exec_mask_update(mask);
576
577 assert(bld_base->instructions[ctx->switch_pc - 1].Instruction.Opcode ==
578 TGSI_OPCODE_DEFAULT);
579
580 tmp_pc = bld_base->pc;
581 bld_base->pc = ctx->switch_pc;
582 /*
583 * re-purpose switch_pc to point to here again, since we stop execution of
584 * the deferred default after next break.
585 */
586 ctx->switch_pc = tmp_pc - 1;
587
588 return;
589 }
590
591 else if (ctx->switch_pc && ctx->switch_in_default) {
592 assert(bld_base->pc == ctx->switch_pc + 1);
593 }
594
595 ctx->switch_stack_size--;
596 mask->switch_mask = ctx->switch_stack[ctx->switch_stack_size].switch_mask;
597 ctx->switch_val = ctx->switch_stack[ctx->switch_stack_size].switch_val;
598 ctx->switch_mask_default = ctx->switch_stack[ctx->switch_stack_size].switch_mask_default;
599 ctx->switch_in_default = ctx->switch_stack[ctx->switch_stack_size].switch_in_default;
600 ctx->switch_pc = ctx->switch_stack[ctx->switch_stack_size].switch_pc;
601
602 ctx->break_type = ctx->break_type_stack[ctx->loop_stack_size + ctx->switch_stack_size];
603
604 lp_exec_mask_update(mask);
605 }
606
607 static void lp_exec_case(struct lp_exec_mask *mask,
608 LLVMValueRef caseval)
609 {
610 LLVMBuilderRef builder = mask->bld->gallivm->builder;
611 struct function_ctx *ctx = func_ctx(mask);
612
613 LLVMValueRef casemask, prevmask;
614
615 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
616 return;
617 }
618
619 /* skipping case mask evaluation here is NOT optional (not in all cases anyway). */
620 if (!ctx->switch_in_default) {
621 prevmask = ctx->switch_stack[ctx->switch_stack_size - 1].switch_mask;
622 casemask = lp_build_cmp(mask->bld, PIPE_FUNC_EQUAL, caseval, ctx->switch_val);
623 ctx->switch_mask_default = LLVMBuildOr(builder, casemask,
624 ctx->switch_mask_default, "sw_default_mask");
625 casemask = LLVMBuildOr(builder, casemask, mask->switch_mask, "");
626 mask->switch_mask = LLVMBuildAnd(builder, casemask, prevmask, "sw_mask");
627
628 lp_exec_mask_update(mask);
629 }
630 }
631
632 /*
633 * Analyse default statement in a switch.
634 * \return true if default is last statement, false otherwise
635 * \param default_pc_start contains pc of instruction to jump to
636 * if default wasn't last but there's no
637 * fallthrough into default.
638 */
639 static boolean default_analyse_is_last(struct lp_exec_mask *mask,
640 struct lp_build_tgsi_context * bld_base,
641 int *default_pc_start)
642 {
643 unsigned pc = bld_base->pc;
644 struct function_ctx *ctx = func_ctx(mask);
645 int curr_switch_stack = ctx->switch_stack_size;
646
647 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
648 return false;
649 }
650
651 /* skip over case statements which are together with default */
652 while (bld_base->instructions[pc].Instruction.Opcode == TGSI_OPCODE_CASE) {
653 pc++;
654 }
655
656 while (pc != ~0u && pc < bld_base->num_instructions) {
657 unsigned opcode = bld_base->instructions[pc].Instruction.Opcode;
658 switch (opcode) {
659 case TGSI_OPCODE_CASE:
660 if (curr_switch_stack == ctx->switch_stack_size) {
661 *default_pc_start = pc - 1;
662 return false;
663 }
664 break;
665 case TGSI_OPCODE_SWITCH:
666 curr_switch_stack++;
667 break;
668 case TGSI_OPCODE_ENDSWITCH:
669 if (curr_switch_stack == ctx->switch_stack_size) {
670 *default_pc_start = pc - 1;
671 return true;
672 }
673 curr_switch_stack--;
674 break;
675 }
676 pc++;
677 }
678 /* should never arrive here */
679 assert(0);
680 return true;
681 }
682
683 static void lp_exec_default(struct lp_exec_mask *mask,
684 struct lp_build_tgsi_context * bld_base)
685 {
686 LLVMBuilderRef builder = mask->bld->gallivm->builder;
687 struct function_ctx *ctx = func_ctx(mask);
688
689 int default_exec_pc;
690 boolean default_is_last;
691
692 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
693 return;
694 }
695
696 /*
697 * This is a messy opcode, because it may not be always at the end and
698 * there can be fallthrough in and out of it.
699 */
700
701 default_is_last = default_analyse_is_last(mask, bld_base, &default_exec_pc);
702 /*
703 * If it is last statement in switch (note that case statements appearing
704 * "at the same time" as default don't change that) everything is just fine,
705 * update switch mask and go on. This means we can handle default with
706 * fallthrough INTO it without overhead, if it is last.
707 */
708 if (default_is_last) {
709 LLVMValueRef prevmask, defaultmask;
710 prevmask = ctx->switch_stack[ctx->switch_stack_size - 1].switch_mask;
711 defaultmask = LLVMBuildNot(builder, ctx->switch_mask_default, "sw_default_mask");
712 defaultmask = LLVMBuildOr(builder, defaultmask, mask->switch_mask, "");
713 mask->switch_mask = LLVMBuildAnd(builder, prevmask, defaultmask, "sw_mask");
714 ctx->switch_in_default = true;
715
716 lp_exec_mask_update(mask);
717 }
718 else {
719 /*
720 * Technically, "case" immediately before default isn't really a
721 * fallthrough, however we still have to count them as such as we
722 * already have updated the masks.
723 * If that happens in practice could add a switch optimizer pass
724 * which just gets rid of all case statements appearing together with
725 * default (or could do switch analysis at switch start time instead).
726 */
727 unsigned opcode = bld_base->instructions[bld_base->pc - 1].Instruction.Opcode;
728 boolean ft_into = (opcode != TGSI_OPCODE_BRK &&
729 opcode != TGSI_OPCODE_SWITCH);
730 /*
731 * If it is not last statement and there was no fallthrough into it,
732 * we record the PC and continue execution at next case (again, those
733 * case encountered at the same time don't count). At endswitch
734 * time, we update switchmask, and go back executing the code we skipped
735 * until the next break (possibly re-executing some code with changed mask
736 * if there was a fallthrough out of default).
737 * Finally, if it is not last statement and there was a fallthrough into it,
738 * do the same as with the former case, except instead of skipping the code
739 * just execute it without updating the mask, then go back and re-execute.
740 */
741 ctx->switch_pc = bld_base->pc;
742 if (!ft_into) {
743 bld_base->pc = default_exec_pc;
744 }
745 }
746 }
747
748
749 /* stores val into an address pointed to by dst_ptr.
750 * mask->exec_mask is used to figure out which bits of val
751 * should be stored into the address
752 * (0 means don't store this bit, 1 means do store).
753 */
754 static void lp_exec_mask_store(struct lp_exec_mask *mask,
755 struct lp_build_context *bld_store,
756 LLVMValueRef pred,
757 LLVMValueRef val,
758 LLVMValueRef dst_ptr)
759 {
760 LLVMBuilderRef builder = mask->bld->gallivm->builder;
761
762 assert(lp_check_value(bld_store->type, val));
763 assert(LLVMGetTypeKind(LLVMTypeOf(dst_ptr)) == LLVMPointerTypeKind);
764 assert(LLVMGetElementType(LLVMTypeOf(dst_ptr)) == LLVMTypeOf(val));
765
766 /* Mix the predicate and execution mask */
767 if (mask->has_mask) {
768 if (pred) {
769 pred = LLVMBuildAnd(builder, pred, mask->exec_mask, "");
770 } else {
771 pred = mask->exec_mask;
772 }
773 }
774
775 if (pred) {
776 LLVMValueRef res, dst;
777
778 dst = LLVMBuildLoad(builder, dst_ptr, "");
779 res = lp_build_select(bld_store, pred, val, dst);
780 LLVMBuildStore(builder, res, dst_ptr);
781 } else
782 LLVMBuildStore(builder, val, dst_ptr);
783 }
784
785 static void lp_exec_mask_call(struct lp_exec_mask *mask,
786 int func,
787 int *pc)
788 {
789 if (mask->function_stack_size >= LP_MAX_NUM_FUNCS) {
790 return;
791 }
792
793 lp_exec_mask_function_init(mask, mask->function_stack_size);
794 mask->function_stack[mask->function_stack_size].pc = *pc;
795 mask->function_stack[mask->function_stack_size].ret_mask = mask->ret_mask;
796 mask->function_stack_size++;
797 *pc = func;
798 }
799
800 static void lp_exec_mask_ret(struct lp_exec_mask *mask, int *pc)
801 {
802 LLVMBuilderRef builder = mask->bld->gallivm->builder;
803 struct function_ctx *ctx = func_ctx(mask);
804 LLVMValueRef exec_mask;
805
806 if (ctx->cond_stack_size == 0 &&
807 ctx->loop_stack_size == 0 &&
808 ctx->switch_stack_size == 0 &&
809 mask->function_stack_size == 1) {
810 /* returning from main() */
811 *pc = -1;
812 return;
813 }
814
815 if (mask->function_stack_size == 1) {
816 /*
817 * This requires special handling since we need to ensure
818 * we don't drop the mask even if we have no call stack
819 * (e.g. after a ret in a if clause after the endif)
820 */
821 mask->ret_in_main = TRUE;
822 }
823
824 exec_mask = LLVMBuildNot(builder,
825 mask->exec_mask,
826 "ret");
827
828 mask->ret_mask = LLVMBuildAnd(builder,
829 mask->ret_mask,
830 exec_mask, "ret_full");
831
832 lp_exec_mask_update(mask);
833 }
834
835 static void lp_exec_mask_bgnsub(struct lp_exec_mask *mask)
836 {
837 }
838
839 static void lp_exec_mask_endsub(struct lp_exec_mask *mask, int *pc)
840 {
841 struct function_ctx *ctx;
842
843 assert(mask->function_stack_size > 1);
844 assert(mask->function_stack_size <= LP_MAX_NUM_FUNCS);
845
846 ctx = func_ctx(mask);
847 mask->function_stack_size--;
848
849 *pc = ctx->pc;
850 mask->ret_mask = ctx->ret_mask;
851
852 lp_exec_mask_update(mask);
853 }
854
855
856 static LLVMValueRef
857 get_file_ptr(struct lp_build_tgsi_soa_context *bld,
858 unsigned file,
859 int index,
860 unsigned chan)
861 {
862 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
863 LLVMValueRef (*array_of_vars)[TGSI_NUM_CHANNELS];
864 LLVMValueRef var_of_array;
865
866 switch (file) {
867 case TGSI_FILE_TEMPORARY:
868 array_of_vars = bld->temps;
869 var_of_array = bld->temps_array;
870 break;
871 case TGSI_FILE_OUTPUT:
872 array_of_vars = bld->outputs;
873 var_of_array = bld->outputs_array;
874 break;
875 default:
876 assert(0);
877 return NULL;
878 }
879
880 assert(chan < 4);
881
882 if (bld->indirect_files & (1 << file)) {
883 LLVMValueRef lindex = lp_build_const_int32(bld->bld_base.base.gallivm, index * 4 + chan);
884 return LLVMBuildGEP(builder, var_of_array, &lindex, 1, "");
885 }
886 else {
887 assert(index <= bld->bld_base.info->file_max[file]);
888 return array_of_vars[index][chan];
889 }
890 }
891
892
893 /**
894 * Return pointer to a temporary register channel (src or dest).
895 * Note that indirect addressing cannot be handled here.
896 * \param index which temporary register
897 * \param chan which channel of the temp register.
898 */
899 LLVMValueRef
900 lp_get_temp_ptr_soa(struct lp_build_tgsi_soa_context *bld,
901 unsigned index,
902 unsigned chan)
903 {
904 return get_file_ptr(bld, TGSI_FILE_TEMPORARY, index, chan);
905 }
906
907 /**
908 * Return pointer to a output register channel (src or dest).
909 * Note that indirect addressing cannot be handled here.
910 * \param index which output register
911 * \param chan which channel of the output register.
912 */
913 LLVMValueRef
914 lp_get_output_ptr(struct lp_build_tgsi_soa_context *bld,
915 unsigned index,
916 unsigned chan)
917 {
918 return get_file_ptr(bld, TGSI_FILE_OUTPUT, index, chan);
919 }
920
921 /*
922 * If we have indirect addressing in outputs copy our alloca array
923 * to the outputs slots specified by the caller to make sure
924 * our outputs are delivered consistently via the same interface.
925 */
926 static void
927 gather_outputs(struct lp_build_tgsi_soa_context * bld)
928 {
929 if ((bld->indirect_files & (1 << TGSI_FILE_OUTPUT))) {
930 unsigned index, chan;
931 assert(bld->bld_base.info->num_outputs <=
932 bld->bld_base.info->file_max[TGSI_FILE_OUTPUT] + 1);
933 for (index = 0; index < bld->bld_base.info->num_outputs; ++index) {
934 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
935 bld->outputs[index][chan] = lp_get_output_ptr(bld, index, chan);
936 }
937 }
938 }
939 }
940
941 /**
942 * Gather vector.
943 * XXX the lp_build_gather() function should be capable of doing this
944 * with a little work.
945 */
946 static LLVMValueRef
947 build_gather(struct lp_build_tgsi_context *bld_base,
948 LLVMValueRef base_ptr,
949 LLVMValueRef indexes,
950 LLVMValueRef overflow_mask,
951 LLVMValueRef indexes2)
952 {
953 struct gallivm_state *gallivm = bld_base->base.gallivm;
954 LLVMBuilderRef builder = gallivm->builder;
955 struct lp_build_context *uint_bld = &bld_base->uint_bld;
956 struct lp_build_context *bld = &bld_base->base;
957 LLVMValueRef res;
958 unsigned i;
959
960 if (indexes2)
961 res = LLVMGetUndef(LLVMVectorType(LLVMFloatTypeInContext(gallivm->context), bld_base->base.type.length * 2));
962 else
963 res = bld->undef;
964 /*
965 * overflow_mask is a vector telling us which channels
966 * in the vector overflowed. We use the overflow behavior for
967 * constant buffers which is defined as:
968 * Out of bounds access to constant buffer returns 0 in all
969 * components. Out of bounds behavior is always with respect
970 * to the size of the buffer bound at that slot.
971 */
972
973 if (overflow_mask) {
974 /*
975 * We avoid per-element control flow here (also due to llvm going crazy,
976 * though I suspect it's better anyway since overflow is likely rare).
977 * Note that since we still fetch from buffers even if num_elements was
978 * zero (in this case we'll fetch from index zero) the jit func callers
979 * MUST provide valid fake constant buffers of size 4x32 (the values do
980 * not matter), otherwise we'd still need (not per element though)
981 * control flow.
982 */
983 indexes = lp_build_select(uint_bld, overflow_mask, uint_bld->zero, indexes);
984 if (indexes2)
985 indexes2 = lp_build_select(uint_bld, overflow_mask, uint_bld->zero, indexes2);
986 }
987
988 /*
989 * Loop over elements of index_vec, load scalar value, insert it into 'res'.
990 */
991 for (i = 0; i < bld->type.length * (indexes2 ? 2 : 1); i++) {
992 LLVMValueRef si, di;
993 LLVMValueRef index;
994 LLVMValueRef scalar_ptr, scalar;
995
996 di = lp_build_const_int32(bld->gallivm, i);
997 if (indexes2)
998 si = lp_build_const_int32(bld->gallivm, i >> 1);
999 else
1000 si = di;
1001
1002 if (indexes2 && (i & 1)) {
1003 index = LLVMBuildExtractElement(builder,
1004 indexes2, si, "");
1005 } else {
1006 index = LLVMBuildExtractElement(builder,
1007 indexes, si, "");
1008 }
1009 scalar_ptr = LLVMBuildGEP(builder, base_ptr,
1010 &index, 1, "gather_ptr");
1011 scalar = LLVMBuildLoad(builder, scalar_ptr, "");
1012
1013 res = LLVMBuildInsertElement(builder, res, scalar, di, "");
1014 }
1015
1016 if (overflow_mask) {
1017 if (indexes2) {
1018 res = LLVMBuildBitCast(builder, res, bld_base->dbl_bld.vec_type, "");
1019 overflow_mask = LLVMBuildSExt(builder, overflow_mask,
1020 bld_base->dbl_bld.int_vec_type, "");
1021 res = lp_build_select(&bld_base->dbl_bld, overflow_mask,
1022 bld_base->dbl_bld.zero, res);
1023 } else
1024 res = lp_build_select(bld, overflow_mask, bld->zero, res);
1025 }
1026
1027 return res;
1028 }
1029
1030
1031 /**
1032 * Scatter/store vector.
1033 */
1034 static void
1035 emit_mask_scatter(struct lp_build_tgsi_soa_context *bld,
1036 LLVMValueRef base_ptr,
1037 LLVMValueRef indexes,
1038 LLVMValueRef values,
1039 struct lp_exec_mask *mask,
1040 LLVMValueRef pred)
1041 {
1042 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1043 LLVMBuilderRef builder = gallivm->builder;
1044 unsigned i;
1045
1046 /* Mix the predicate and execution mask */
1047 if (mask->has_mask) {
1048 if (pred) {
1049 pred = LLVMBuildAnd(builder, pred, mask->exec_mask, "");
1050 }
1051 else {
1052 pred = mask->exec_mask;
1053 }
1054 }
1055
1056 /*
1057 * Loop over elements of index_vec, store scalar value.
1058 */
1059 for (i = 0; i < bld->bld_base.base.type.length; i++) {
1060 LLVMValueRef ii = lp_build_const_int32(gallivm, i);
1061 LLVMValueRef index = LLVMBuildExtractElement(builder, indexes, ii, "");
1062 LLVMValueRef scalar_ptr = LLVMBuildGEP(builder, base_ptr, &index, 1, "scatter_ptr");
1063 LLVMValueRef val = LLVMBuildExtractElement(builder, values, ii, "scatter_val");
1064 LLVMValueRef scalar_pred = pred ?
1065 LLVMBuildExtractElement(builder, pred, ii, "scatter_pred") : NULL;
1066
1067 if (0)
1068 lp_build_printf(gallivm, "scatter %d: val %f at %d %p\n",
1069 ii, val, index, scalar_ptr);
1070
1071 if (scalar_pred) {
1072 LLVMValueRef real_val, dst_val;
1073 dst_val = LLVMBuildLoad(builder, scalar_ptr, "");
1074 real_val = lp_build_select(&bld->elem_bld, scalar_pred, val, dst_val);
1075 LLVMBuildStore(builder, real_val, scalar_ptr);
1076 }
1077 else {
1078 LLVMBuildStore(builder, val, scalar_ptr);
1079 }
1080 }
1081 }
1082
1083
1084 /**
1085 * Read the current value of the ADDR register, convert the floats to
1086 * ints, add the base index and return the vector of offsets.
1087 * The offsets will be used to index into the constant buffer or
1088 * temporary register file.
1089 */
1090 static LLVMValueRef
1091 get_indirect_index(struct lp_build_tgsi_soa_context *bld,
1092 unsigned reg_file, unsigned reg_index,
1093 const struct tgsi_ind_register *indirect_reg)
1094 {
1095 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
1096 struct lp_build_context *uint_bld = &bld->bld_base.uint_bld;
1097 /* always use X component of address register */
1098 unsigned swizzle = indirect_reg->Swizzle;
1099 LLVMValueRef base;
1100 LLVMValueRef rel;
1101 LLVMValueRef max_index;
1102 LLVMValueRef index;
1103
1104 assert(bld->indirect_files & (1 << reg_file));
1105
1106 base = lp_build_const_int_vec(bld->bld_base.base.gallivm, uint_bld->type, reg_index);
1107
1108 assert(swizzle < 4);
1109 switch (indirect_reg->File) {
1110 case TGSI_FILE_ADDRESS:
1111 rel = LLVMBuildLoad(builder,
1112 bld->addr[indirect_reg->Index][swizzle],
1113 "load addr reg");
1114 /* ADDR LLVM values already have LLVM integer type. */
1115 break;
1116 case TGSI_FILE_TEMPORARY:
1117 rel = lp_get_temp_ptr_soa(bld, indirect_reg->Index, swizzle);
1118 rel = LLVMBuildLoad(builder, rel, "load temp reg");
1119 /* TEMP LLVM values always have LLVM float type, but for indirection, the
1120 * value actually stored is expected to be an integer */
1121 rel = LLVMBuildBitCast(builder, rel, uint_bld->vec_type, "");
1122 break;
1123 default:
1124 assert(0);
1125 rel = uint_bld->zero;
1126 }
1127
1128 index = lp_build_add(uint_bld, base, rel);
1129
1130 /*
1131 * emit_fetch_constant handles constant buffer overflow so this code
1132 * is pointless for them.
1133 * Furthermore the D3D10 spec in section 6.5 says:
1134 * If the constant buffer bound to a slot is larger than the size
1135 * declared in the shader for that slot, implementations are allowed
1136 * to return incorrect data (not necessarily 0) for indices that are
1137 * larger than the declared size but smaller than the buffer size.
1138 */
1139 if (reg_file != TGSI_FILE_CONSTANT) {
1140 max_index = lp_build_const_int_vec(bld->bld_base.base.gallivm,
1141 uint_bld->type,
1142 bld->bld_base.info->file_max[reg_file]);
1143
1144 assert(!uint_bld->type.sign);
1145 index = lp_build_min(uint_bld, index, max_index);
1146 }
1147
1148 return index;
1149 }
1150
1151 static struct lp_build_context *
1152 stype_to_fetch(struct lp_build_tgsi_context * bld_base,
1153 enum tgsi_opcode_type stype)
1154 {
1155 struct lp_build_context *bld_fetch;
1156
1157 switch (stype) {
1158 case TGSI_TYPE_FLOAT:
1159 case TGSI_TYPE_UNTYPED:
1160 bld_fetch = &bld_base->base;
1161 break;
1162 case TGSI_TYPE_UNSIGNED:
1163 bld_fetch = &bld_base->uint_bld;
1164 break;
1165 case TGSI_TYPE_SIGNED:
1166 bld_fetch = &bld_base->int_bld;
1167 break;
1168 case TGSI_TYPE_DOUBLE:
1169 bld_fetch = &bld_base->dbl_bld;
1170 break;
1171 case TGSI_TYPE_VOID:
1172 default:
1173 assert(0);
1174 bld_fetch = NULL;
1175 break;
1176 }
1177 return bld_fetch;
1178 }
1179
1180 static LLVMValueRef
1181 get_soa_array_offsets(struct lp_build_context *uint_bld,
1182 LLVMValueRef indirect_index,
1183 unsigned chan_index,
1184 boolean need_perelement_offset)
1185 {
1186 struct gallivm_state *gallivm = uint_bld->gallivm;
1187 LLVMValueRef chan_vec =
1188 lp_build_const_int_vec(uint_bld->gallivm, uint_bld->type, chan_index);
1189 LLVMValueRef length_vec =
1190 lp_build_const_int_vec(gallivm, uint_bld->type, uint_bld->type.length);
1191 LLVMValueRef index_vec;
1192
1193 /* index_vec = (indirect_index * 4 + chan_index) * length + offsets */
1194 index_vec = lp_build_shl_imm(uint_bld, indirect_index, 2);
1195 index_vec = lp_build_add(uint_bld, index_vec, chan_vec);
1196 index_vec = lp_build_mul(uint_bld, index_vec, length_vec);
1197
1198 if (need_perelement_offset) {
1199 LLVMValueRef pixel_offsets;
1200 unsigned i;
1201 /* build pixel offset vector: {0, 1, 2, 3, ...} */
1202 pixel_offsets = uint_bld->undef;
1203 for (i = 0; i < uint_bld->type.length; i++) {
1204 LLVMValueRef ii = lp_build_const_int32(gallivm, i);
1205 pixel_offsets = LLVMBuildInsertElement(gallivm->builder, pixel_offsets,
1206 ii, ii, "");
1207 }
1208 index_vec = lp_build_add(uint_bld, index_vec, pixel_offsets);
1209 }
1210 return index_vec;
1211 }
1212
1213 static LLVMValueRef
1214 emit_fetch_constant(
1215 struct lp_build_tgsi_context * bld_base,
1216 const struct tgsi_full_src_register * reg,
1217 enum tgsi_opcode_type stype,
1218 unsigned swizzle)
1219 {
1220 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1221 struct gallivm_state *gallivm = bld_base->base.gallivm;
1222 LLVMBuilderRef builder = gallivm->builder;
1223 struct lp_build_context *uint_bld = &bld_base->uint_bld;
1224 unsigned dimension = 0;
1225 LLVMValueRef consts_ptr;
1226 LLVMValueRef num_consts;
1227 LLVMValueRef res;
1228
1229 /* XXX: Handle fetching xyzw components as a vector */
1230 assert(swizzle != ~0u);
1231
1232 if (reg->Register.Dimension) {
1233 assert(!reg->Dimension.Indirect);
1234 dimension = reg->Dimension.Index;
1235 assert(dimension < LP_MAX_TGSI_CONST_BUFFERS);
1236 }
1237
1238 consts_ptr = bld->consts[dimension];
1239 num_consts = bld->consts_sizes[dimension];
1240
1241 if (reg->Register.Indirect) {
1242 LLVMValueRef indirect_index;
1243 LLVMValueRef swizzle_vec =
1244 lp_build_const_int_vec(gallivm, uint_bld->type, swizzle);
1245 LLVMValueRef index_vec; /* index into the const buffer */
1246 LLVMValueRef overflow_mask;
1247 LLVMValueRef index_vec2 = NULL;
1248
1249 indirect_index = get_indirect_index(bld,
1250 reg->Register.File,
1251 reg->Register.Index,
1252 &reg->Indirect);
1253
1254 /* All fetches are from the same constant buffer, so
1255 * we need to propagate the size to a vector to do a
1256 * vector comparison */
1257 num_consts = lp_build_broadcast_scalar(uint_bld, num_consts);
1258 /* Construct a boolean vector telling us which channels
1259 * overflow the bound constant buffer */
1260 overflow_mask = lp_build_compare(gallivm, uint_bld->type, PIPE_FUNC_GEQUAL,
1261 indirect_index, num_consts);
1262
1263 /* index_vec = indirect_index * 4 + swizzle */
1264 index_vec = lp_build_shl_imm(uint_bld, indirect_index, 2);
1265 index_vec = lp_build_add(uint_bld, index_vec, swizzle_vec);
1266
1267 if (tgsi_type_is_64bit(stype)) {
1268 LLVMValueRef swizzle_vec2;
1269 swizzle_vec2 = lp_build_const_int_vec(gallivm, uint_bld->type, swizzle + 1);
1270 index_vec2 = lp_build_shl_imm(uint_bld, indirect_index, 2);
1271 index_vec2 = lp_build_add(uint_bld, index_vec2, swizzle_vec2);
1272 }
1273 /* Gather values from the constant buffer */
1274 res = build_gather(bld_base, consts_ptr, index_vec, overflow_mask, index_vec2);
1275 }
1276 else {
1277 LLVMValueRef index; /* index into the const buffer */
1278 LLVMValueRef scalar, scalar_ptr;
1279 struct lp_build_context *bld_broad = &bld_base->base;
1280 index = lp_build_const_int32(gallivm, reg->Register.Index * 4 + swizzle);
1281
1282 scalar_ptr = LLVMBuildGEP(builder, consts_ptr,
1283 &index, 1, "");
1284 if (stype == TGSI_TYPE_DOUBLE) {
1285 LLVMTypeRef dptr_type = LLVMPointerType(LLVMDoubleTypeInContext(gallivm->context), 0);
1286 scalar_ptr = LLVMBuildBitCast(builder, scalar_ptr, dptr_type, "");
1287 bld_broad = &bld_base->dbl_bld;
1288 }
1289 scalar = LLVMBuildLoad(builder, scalar_ptr, "");
1290 res = lp_build_broadcast_scalar(bld_broad, scalar);
1291 }
1292
1293 if (stype == TGSI_TYPE_SIGNED || stype == TGSI_TYPE_UNSIGNED || stype == TGSI_TYPE_DOUBLE) {
1294 struct lp_build_context *bld_fetch = stype_to_fetch(bld_base, stype);
1295 res = LLVMBuildBitCast(builder, res, bld_fetch->vec_type, "");
1296 }
1297
1298 return res;
1299 }
1300
1301 /**
1302 * Fetch 64-bit values from two separate channels.
1303 * 64-bit values are stored split across two channels, like xy and zw.
1304 * This function creates a set of 16 floats,
1305 * extracts the values from the two channels,
1306 * puts them in the correct place, then casts to 8 64-bits.
1307 */
1308 static LLVMValueRef
1309 emit_fetch_64bit(
1310 struct lp_build_tgsi_context * bld_base,
1311 enum tgsi_opcode_type stype,
1312 LLVMValueRef input,
1313 LLVMValueRef input2)
1314 {
1315 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1316 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1317 LLVMBuilderRef builder = gallivm->builder;
1318 LLVMValueRef res;
1319 struct lp_build_context *bld_fetch = stype_to_fetch(bld_base, stype);
1320 int i;
1321 LLVMValueRef shuffles[16];
1322 int len = bld_base->base.type.length * 2;
1323 assert(len <= 16);
1324
1325 for (i = 0; i < bld_base->base.type.length * 2; i+=2) {
1326 shuffles[i] = lp_build_const_int32(gallivm, i / 2);
1327 shuffles[i + 1] = lp_build_const_int32(gallivm, i / 2 + bld_base->base.type.length);
1328 }
1329 res = LLVMBuildShuffleVector(builder, input, input2, LLVMConstVector(shuffles, len), "");
1330
1331 return LLVMBuildBitCast(builder, res, bld_fetch->vec_type, "");
1332 }
1333
1334 static LLVMValueRef
1335 emit_fetch_immediate(
1336 struct lp_build_tgsi_context * bld_base,
1337 const struct tgsi_full_src_register * reg,
1338 enum tgsi_opcode_type stype,
1339 unsigned swizzle)
1340 {
1341 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1342 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1343 LLVMBuilderRef builder = gallivm->builder;
1344 LLVMValueRef res = NULL;
1345
1346 if (bld->use_immediates_array || reg->Register.Indirect) {
1347 LLVMValueRef imms_array;
1348 LLVMTypeRef fptr_type;
1349
1350 /* cast imms_array pointer to float* */
1351 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1352 imms_array = LLVMBuildBitCast(builder, bld->imms_array, fptr_type, "");
1353
1354 if (reg->Register.Indirect) {
1355 LLVMValueRef indirect_index;
1356 LLVMValueRef index_vec; /* index into the immediate register array */
1357 LLVMValueRef index_vec2 = NULL;
1358 indirect_index = get_indirect_index(bld,
1359 reg->Register.File,
1360 reg->Register.Index,
1361 &reg->Indirect);
1362 /*
1363 * Unlike for other reg classes, adding pixel offsets is unnecessary -
1364 * immediates are stored as full vectors (FIXME??? - might be better
1365 * to store them the same as constants) but all elements are the same
1366 * in any case.
1367 */
1368 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1369 indirect_index,
1370 swizzle,
1371 FALSE);
1372 if (tgsi_type_is_64bit(stype))
1373 index_vec2 = get_soa_array_offsets(&bld_base->uint_bld,
1374 indirect_index,
1375 swizzle + 1,
1376 FALSE);
1377 /* Gather values from the immediate register array */
1378 res = build_gather(bld_base, imms_array, index_vec, NULL, index_vec2);
1379 } else {
1380 LLVMValueRef lindex = lp_build_const_int32(gallivm,
1381 reg->Register.Index * 4 + swizzle);
1382 LLVMValueRef imms_ptr = LLVMBuildGEP(builder,
1383 bld->imms_array, &lindex, 1, "");
1384 res = LLVMBuildLoad(builder, imms_ptr, "");
1385
1386 if (tgsi_type_is_64bit(stype)) {
1387 LLVMValueRef lindex1;
1388 LLVMValueRef imms_ptr2;
1389 LLVMValueRef res2;
1390
1391 lindex1 = lp_build_const_int32(gallivm,
1392 reg->Register.Index * 4 + swizzle + 1);
1393 imms_ptr2 = LLVMBuildGEP(builder,
1394 bld->imms_array, &lindex1, 1, "");
1395 res2 = LLVMBuildLoad(builder, imms_ptr2, "");
1396 res = emit_fetch_64bit(bld_base, stype, res, res2);
1397 }
1398 }
1399 }
1400 else {
1401 res = bld->immediates[reg->Register.Index][swizzle];
1402 if (tgsi_type_is_64bit(stype))
1403 res = emit_fetch_64bit(bld_base, stype, res, bld->immediates[reg->Register.Index][swizzle + 1]);
1404 }
1405
1406 if (stype == TGSI_TYPE_SIGNED || stype == TGSI_TYPE_UNSIGNED || stype == TGSI_TYPE_DOUBLE) {
1407 struct lp_build_context *bld_fetch = stype_to_fetch(bld_base, stype);
1408 res = LLVMBuildBitCast(builder, res, bld_fetch->vec_type, "");
1409 }
1410 return res;
1411 }
1412
1413 static LLVMValueRef
1414 emit_fetch_input(
1415 struct lp_build_tgsi_context * bld_base,
1416 const struct tgsi_full_src_register * reg,
1417 enum tgsi_opcode_type stype,
1418 unsigned swizzle)
1419 {
1420 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1421 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1422 LLVMBuilderRef builder = gallivm->builder;
1423 LLVMValueRef res;
1424
1425 if (reg->Register.Indirect) {
1426 LLVMValueRef indirect_index;
1427 LLVMValueRef index_vec; /* index into the input reg array */
1428 LLVMValueRef index_vec2 = NULL;
1429 LLVMValueRef inputs_array;
1430 LLVMTypeRef fptr_type;
1431
1432 indirect_index = get_indirect_index(bld,
1433 reg->Register.File,
1434 reg->Register.Index,
1435 &reg->Indirect);
1436
1437 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1438 indirect_index,
1439 swizzle,
1440 TRUE);
1441 if (tgsi_type_is_64bit(stype)) {
1442 index_vec2 = get_soa_array_offsets(&bld_base->uint_bld,
1443 indirect_index,
1444 swizzle + 1,
1445 TRUE);
1446 }
1447 /* cast inputs_array pointer to float* */
1448 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1449 inputs_array = LLVMBuildBitCast(builder, bld->inputs_array, fptr_type, "");
1450
1451 /* Gather values from the input register array */
1452 res = build_gather(bld_base, inputs_array, index_vec, NULL, index_vec2);
1453 } else {
1454 if (bld->indirect_files & (1 << TGSI_FILE_INPUT)) {
1455 LLVMValueRef lindex = lp_build_const_int32(gallivm,
1456 reg->Register.Index * 4 + swizzle);
1457 LLVMValueRef input_ptr = LLVMBuildGEP(builder,
1458 bld->inputs_array, &lindex, 1, "");
1459
1460 res = LLVMBuildLoad(builder, input_ptr, "");
1461 if (tgsi_type_is_64bit(stype)) {
1462 LLVMValueRef lindex1;
1463 LLVMValueRef input_ptr2;
1464 LLVMValueRef res2;
1465
1466 lindex1 = lp_build_const_int32(gallivm,
1467 reg->Register.Index * 4 + swizzle + 1);
1468 input_ptr2 = LLVMBuildGEP(builder,
1469 bld->inputs_array, &lindex1, 1, "");
1470 res2 = LLVMBuildLoad(builder, input_ptr2, "");
1471 res = emit_fetch_64bit(bld_base, stype, res, res2);
1472 }
1473 }
1474 else {
1475 res = bld->inputs[reg->Register.Index][swizzle];
1476 if (tgsi_type_is_64bit(stype))
1477 res = emit_fetch_64bit(bld_base, stype, res, bld->inputs[reg->Register.Index][swizzle + 1]);
1478 }
1479 }
1480
1481 assert(res);
1482
1483 if (stype == TGSI_TYPE_SIGNED || stype == TGSI_TYPE_UNSIGNED || stype == TGSI_TYPE_DOUBLE) {
1484 struct lp_build_context *bld_fetch = stype_to_fetch(bld_base, stype);
1485 res = LLVMBuildBitCast(builder, res, bld_fetch->vec_type, "");
1486 }
1487
1488 return res;
1489 }
1490
1491
1492 static LLVMValueRef
1493 emit_fetch_gs_input(
1494 struct lp_build_tgsi_context * bld_base,
1495 const struct tgsi_full_src_register * reg,
1496 enum tgsi_opcode_type stype,
1497 unsigned swizzle)
1498 {
1499 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1500 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1501 const struct tgsi_shader_info *info = bld->bld_base.info;
1502 LLVMBuilderRef builder = gallivm->builder;
1503 LLVMValueRef attrib_index = NULL;
1504 LLVMValueRef vertex_index = NULL;
1505 LLVMValueRef swizzle_index = lp_build_const_int32(gallivm, swizzle);
1506 LLVMValueRef res;
1507
1508 if (info->input_semantic_name[reg->Register.Index] == TGSI_SEMANTIC_PRIMID) {
1509 /* This is really a system value not a regular input */
1510 assert(!reg->Register.Indirect);
1511 assert(!reg->Dimension.Indirect);
1512 res = bld->system_values.prim_id;
1513 if (stype != TGSI_TYPE_UNSIGNED && stype != TGSI_TYPE_SIGNED) {
1514 res = LLVMBuildBitCast(builder, res, bld_base->base.vec_type, "");
1515 }
1516 return res;
1517 }
1518
1519 if (reg->Register.Indirect) {
1520 attrib_index = get_indirect_index(bld,
1521 reg->Register.File,
1522 reg->Register.Index,
1523 &reg->Indirect);
1524 } else {
1525 attrib_index = lp_build_const_int32(gallivm, reg->Register.Index);
1526 }
1527
1528 if (reg->Dimension.Indirect) {
1529 vertex_index = get_indirect_index(bld,
1530 reg->Register.File,
1531 reg->Dimension.Index,
1532 &reg->DimIndirect);
1533 } else {
1534 vertex_index = lp_build_const_int32(gallivm, reg->Dimension.Index);
1535 }
1536
1537 res = bld->gs_iface->fetch_input(bld->gs_iface, bld_base,
1538 reg->Dimension.Indirect,
1539 vertex_index,
1540 reg->Register.Indirect,
1541 attrib_index,
1542 swizzle_index);
1543
1544 assert(res);
1545 if (tgsi_type_is_64bit(stype)) {
1546 LLVMValueRef swizzle_index = lp_build_const_int32(gallivm, swizzle + 1);
1547 LLVMValueRef res2;
1548 res2 = bld->gs_iface->fetch_input(bld->gs_iface, bld_base,
1549 reg->Dimension.Indirect,
1550 vertex_index,
1551 reg->Register.Indirect,
1552 attrib_index,
1553 swizzle_index);
1554 assert(res2);
1555 res = emit_fetch_64bit(bld_base, stype, res, res2);
1556 } else if (stype == TGSI_TYPE_UNSIGNED) {
1557 res = LLVMBuildBitCast(builder, res, bld_base->uint_bld.vec_type, "");
1558 } else if (stype == TGSI_TYPE_SIGNED) {
1559 res = LLVMBuildBitCast(builder, res, bld_base->int_bld.vec_type, "");
1560 }
1561
1562 return res;
1563 }
1564
1565 static LLVMValueRef
1566 emit_fetch_temporary(
1567 struct lp_build_tgsi_context * bld_base,
1568 const struct tgsi_full_src_register * reg,
1569 enum tgsi_opcode_type stype,
1570 unsigned swizzle)
1571 {
1572 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1573 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1574 LLVMBuilderRef builder = gallivm->builder;
1575 LLVMValueRef res;
1576
1577 if (reg->Register.Indirect) {
1578 LLVMValueRef indirect_index;
1579 LLVMValueRef index_vec, index_vec2 = NULL; /* index into the temp reg array */
1580 LLVMValueRef temps_array;
1581 LLVMTypeRef fptr_type;
1582
1583 indirect_index = get_indirect_index(bld,
1584 reg->Register.File,
1585 reg->Register.Index,
1586 &reg->Indirect);
1587
1588 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1589 indirect_index,
1590 swizzle,
1591 TRUE);
1592 if (tgsi_type_is_64bit(stype)) {
1593 index_vec2 = get_soa_array_offsets(&bld_base->uint_bld,
1594 indirect_index,
1595 swizzle + 1,
1596 TRUE);
1597 }
1598
1599 /* cast temps_array pointer to float* */
1600 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1601 temps_array = LLVMBuildBitCast(builder, bld->temps_array, fptr_type, "");
1602
1603 /* Gather values from the temporary register array */
1604 res = build_gather(bld_base, temps_array, index_vec, NULL, index_vec2);
1605 }
1606 else {
1607 LLVMValueRef temp_ptr;
1608 temp_ptr = lp_get_temp_ptr_soa(bld, reg->Register.Index, swizzle);
1609 res = LLVMBuildLoad(builder, temp_ptr, "");
1610
1611 if (tgsi_type_is_64bit(stype)) {
1612 LLVMValueRef temp_ptr2, res2;
1613
1614 temp_ptr2 = lp_get_temp_ptr_soa(bld, reg->Register.Index, swizzle + 1);
1615 res2 = LLVMBuildLoad(builder, temp_ptr2, "");
1616 res = emit_fetch_64bit(bld_base, stype, res, res2);
1617 }
1618 }
1619
1620 if (stype == TGSI_TYPE_SIGNED || stype == TGSI_TYPE_UNSIGNED || stype == TGSI_TYPE_DOUBLE) {
1621 struct lp_build_context *bld_fetch = stype_to_fetch(bld_base, stype);
1622 res = LLVMBuildBitCast(builder, res, bld_fetch->vec_type, "");
1623 }
1624
1625 return res;
1626 }
1627
1628 static LLVMValueRef
1629 emit_fetch_system_value(
1630 struct lp_build_tgsi_context * bld_base,
1631 const struct tgsi_full_src_register * reg,
1632 enum tgsi_opcode_type stype,
1633 unsigned swizzle)
1634 {
1635 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1636 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1637 const struct tgsi_shader_info *info = bld->bld_base.info;
1638 LLVMBuilderRef builder = gallivm->builder;
1639 LLVMValueRef res;
1640 enum tgsi_opcode_type atype; // Actual type of the value
1641
1642 assert(!reg->Register.Indirect);
1643
1644 switch (info->system_value_semantic_name[reg->Register.Index]) {
1645 case TGSI_SEMANTIC_INSTANCEID:
1646 res = lp_build_broadcast_scalar(&bld_base->uint_bld, bld->system_values.instance_id);
1647 atype = TGSI_TYPE_UNSIGNED;
1648 break;
1649
1650 case TGSI_SEMANTIC_VERTEXID:
1651 res = bld->system_values.vertex_id;
1652 atype = TGSI_TYPE_UNSIGNED;
1653 break;
1654
1655 case TGSI_SEMANTIC_VERTEXID_NOBASE:
1656 res = bld->system_values.vertex_id_nobase;
1657 atype = TGSI_TYPE_UNSIGNED;
1658 break;
1659
1660 case TGSI_SEMANTIC_BASEVERTEX:
1661 res = bld->system_values.basevertex;
1662 atype = TGSI_TYPE_UNSIGNED;
1663 break;
1664
1665 case TGSI_SEMANTIC_PRIMID:
1666 res = bld->system_values.prim_id;
1667 atype = TGSI_TYPE_UNSIGNED;
1668 break;
1669
1670 case TGSI_SEMANTIC_INVOCATIONID:
1671 res = lp_build_broadcast_scalar(&bld_base->uint_bld, bld->system_values.invocation_id);
1672 atype = TGSI_TYPE_UNSIGNED;
1673 break;
1674
1675 default:
1676 assert(!"unexpected semantic in emit_fetch_system_value");
1677 res = bld_base->base.zero;
1678 atype = TGSI_TYPE_FLOAT;
1679 break;
1680 }
1681
1682 if (atype != stype) {
1683 if (stype == TGSI_TYPE_FLOAT) {
1684 res = LLVMBuildBitCast(builder, res, bld_base->base.vec_type, "");
1685 } else if (stype == TGSI_TYPE_UNSIGNED) {
1686 res = LLVMBuildBitCast(builder, res, bld_base->uint_bld.vec_type, "");
1687 } else if (stype == TGSI_TYPE_SIGNED) {
1688 res = LLVMBuildBitCast(builder, res, bld_base->int_bld.vec_type, "");
1689 }
1690 }
1691
1692 return res;
1693 }
1694
1695 /**
1696 * Register fetch with derivatives.
1697 */
1698 static void
1699 emit_fetch_deriv(
1700 struct lp_build_tgsi_soa_context *bld,
1701 LLVMValueRef src,
1702 LLVMValueRef *res,
1703 LLVMValueRef *ddx,
1704 LLVMValueRef *ddy)
1705 {
1706 if (res)
1707 *res = src;
1708
1709 /* TODO: use interpolation coeffs for inputs */
1710
1711 if (ddx)
1712 *ddx = lp_build_ddx(&bld->bld_base.base, src);
1713
1714 if (ddy)
1715 *ddy = lp_build_ddy(&bld->bld_base.base, src);
1716 }
1717
1718
1719 /**
1720 * Predicate.
1721 */
1722 static void
1723 emit_fetch_predicate(
1724 struct lp_build_tgsi_soa_context *bld,
1725 const struct tgsi_full_instruction *inst,
1726 LLVMValueRef *pred)
1727 {
1728 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
1729 unsigned index;
1730 unsigned char swizzles[4];
1731 LLVMValueRef unswizzled[4] = {NULL, NULL, NULL, NULL};
1732 LLVMValueRef value;
1733 unsigned chan;
1734
1735 if (!inst->Instruction.Predicate) {
1736 TGSI_FOR_EACH_CHANNEL( chan ) {
1737 pred[chan] = NULL;
1738 }
1739 return;
1740 }
1741
1742 swizzles[0] = inst->Predicate.SwizzleX;
1743 swizzles[1] = inst->Predicate.SwizzleY;
1744 swizzles[2] = inst->Predicate.SwizzleZ;
1745 swizzles[3] = inst->Predicate.SwizzleW;
1746
1747 index = inst->Predicate.Index;
1748 assert(index < LP_MAX_TGSI_PREDS);
1749
1750 TGSI_FOR_EACH_CHANNEL( chan ) {
1751 unsigned swizzle = swizzles[chan];
1752
1753 /*
1754 * Only fetch the predicate register channels that are actually listed
1755 * in the swizzles
1756 */
1757 if (!unswizzled[swizzle]) {
1758 value = LLVMBuildLoad(builder,
1759 bld->preds[index][swizzle], "");
1760
1761 /*
1762 * Convert the value to an integer mask.
1763 *
1764 * TODO: Short-circuit this comparison -- a D3D setp_xx instructions
1765 * is needlessly causing two comparisons due to storing the intermediate
1766 * result as float vector instead of an integer mask vector.
1767 */
1768 value = lp_build_compare(bld->bld_base.base.gallivm,
1769 bld->bld_base.base.type,
1770 PIPE_FUNC_NOTEQUAL,
1771 value,
1772 bld->bld_base.base.zero);
1773 if (inst->Predicate.Negate) {
1774 value = LLVMBuildNot(builder, value, "");
1775 }
1776
1777 unswizzled[swizzle] = value;
1778 } else {
1779 value = unswizzled[swizzle];
1780 }
1781
1782 pred[chan] = value;
1783 }
1784 }
1785
1786 /**
1787 * store an array of 8 64-bit into two arrays of 8 floats
1788 * i.e.
1789 * value is d0, d1, d2, d3 etc.
1790 * each 64-bit has high and low pieces x, y
1791 * so gets stored into the separate channels as:
1792 * chan_ptr = d0.x, d1.x, d2.x, d3.x
1793 * chan_ptr2 = d0.y, d1.y, d2.y, d3.y
1794 */
1795 static void
1796 emit_store_64bit_chan(struct lp_build_tgsi_context *bld_base,
1797 LLVMValueRef chan_ptr, LLVMValueRef chan_ptr2,
1798 LLVMValueRef pred,
1799 LLVMValueRef value)
1800 {
1801 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1802 struct gallivm_state *gallivm = bld_base->base.gallivm;
1803 LLVMBuilderRef builder = gallivm->builder;
1804 struct lp_build_context *float_bld = &bld_base->base;
1805 unsigned i;
1806 LLVMValueRef temp, temp2;
1807 LLVMValueRef shuffles[8];
1808 LLVMValueRef shuffles2[8];
1809
1810 for (i = 0; i < bld_base->base.type.length; i++) {
1811 shuffles[i] = lp_build_const_int32(gallivm, i * 2);
1812 shuffles2[i] = lp_build_const_int32(gallivm, (i * 2) + 1);
1813 }
1814
1815 temp = LLVMBuildShuffleVector(builder, value,
1816 LLVMGetUndef(LLVMTypeOf(value)),
1817 LLVMConstVector(shuffles,
1818 bld_base->base.type.length),
1819 "");
1820 temp2 = LLVMBuildShuffleVector(builder, value,
1821 LLVMGetUndef(LLVMTypeOf(value)),
1822 LLVMConstVector(shuffles2,
1823 bld_base->base.type.length),
1824 "");
1825
1826 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, temp, chan_ptr);
1827 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, temp2, chan_ptr2);
1828 }
1829
1830 /**
1831 * Register store.
1832 */
1833 static void
1834 emit_store_chan(
1835 struct lp_build_tgsi_context *bld_base,
1836 const struct tgsi_full_instruction *inst,
1837 unsigned index,
1838 unsigned chan_index,
1839 LLVMValueRef pred,
1840 LLVMValueRef value)
1841 {
1842 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1843 struct gallivm_state *gallivm = bld_base->base.gallivm;
1844 LLVMBuilderRef builder = gallivm->builder;
1845 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1846 struct lp_build_context *float_bld = &bld_base->base;
1847 struct lp_build_context *int_bld = &bld_base->int_bld;
1848 LLVMValueRef indirect_index = NULL;
1849 enum tgsi_opcode_type dtype = tgsi_opcode_infer_dst_type(inst->Instruction.Opcode);
1850
1851 /*
1852 * Apply saturation.
1853 *
1854 * It is always assumed to be float.
1855 */
1856 if (inst->Instruction.Saturate) {
1857 assert(dtype == TGSI_TYPE_FLOAT ||
1858 dtype == TGSI_TYPE_UNTYPED);
1859 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1860 value = lp_build_clamp_zero_one_nanzero(float_bld, value);
1861 }
1862
1863 if (reg->Register.Indirect) {
1864 /*
1865 * Currently the mesa/st doesn't generate indirect stores
1866 * to 64-bit values, it normally uses MOV to do indirect stores.
1867 */
1868 assert(!tgsi_type_is_64bit(dtype));
1869 indirect_index = get_indirect_index(bld,
1870 reg->Register.File,
1871 reg->Register.Index,
1872 &reg->Indirect);
1873 } else {
1874 assert(reg->Register.Index <=
1875 bld_base->info->file_max[reg->Register.File]);
1876 }
1877
1878 if (DEBUG_EXECUTION) {
1879 emit_dump_reg(gallivm, reg->Register.File, reg->Register.Index, chan_index, value);
1880 }
1881
1882 switch( reg->Register.File ) {
1883 case TGSI_FILE_OUTPUT:
1884 /* Outputs are always stored as floats */
1885 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1886
1887 if (reg->Register.Indirect) {
1888 LLVMValueRef index_vec; /* indexes into the output registers */
1889 LLVMValueRef outputs_array;
1890 LLVMTypeRef fptr_type;
1891
1892 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1893 indirect_index,
1894 chan_index,
1895 TRUE);
1896
1897 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1898 outputs_array = LLVMBuildBitCast(builder, bld->outputs_array, fptr_type, "");
1899
1900 /* Scatter store values into output registers */
1901 emit_mask_scatter(bld, outputs_array, index_vec, value,
1902 &bld->exec_mask, pred);
1903 }
1904 else {
1905 LLVMValueRef out_ptr = lp_get_output_ptr(bld, reg->Register.Index,
1906 chan_index);
1907
1908 if (tgsi_type_is_64bit(dtype)) {
1909 LLVMValueRef out_ptr2 = lp_get_output_ptr(bld, reg->Register.Index,
1910 chan_index + 1);
1911 emit_store_64bit_chan(bld_base, out_ptr, out_ptr2,
1912 pred, value);
1913 } else
1914 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, value, out_ptr);
1915 }
1916 break;
1917
1918 case TGSI_FILE_TEMPORARY:
1919 /* Temporaries are always stored as floats */
1920 if (!tgsi_type_is_64bit(dtype))
1921 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1922 else
1923 value = LLVMBuildBitCast(builder, value, LLVMVectorType(LLVMFloatTypeInContext(gallivm->context), bld_base->base.type.length * 2), "");
1924
1925 if (reg->Register.Indirect) {
1926 LLVMValueRef index_vec; /* indexes into the temp registers */
1927 LLVMValueRef temps_array;
1928 LLVMTypeRef fptr_type;
1929
1930 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1931 indirect_index,
1932 chan_index,
1933 TRUE);
1934
1935 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1936 temps_array = LLVMBuildBitCast(builder, bld->temps_array, fptr_type, "");
1937
1938 /* Scatter store values into temp registers */
1939 emit_mask_scatter(bld, temps_array, index_vec, value,
1940 &bld->exec_mask, pred);
1941 }
1942 else {
1943 LLVMValueRef temp_ptr;
1944 temp_ptr = lp_get_temp_ptr_soa(bld, reg->Register.Index, chan_index);
1945
1946 if (tgsi_type_is_64bit(dtype)) {
1947 LLVMValueRef temp_ptr2 = lp_get_temp_ptr_soa(bld,
1948 reg->Register.Index,
1949 chan_index + 1);
1950 emit_store_64bit_chan(bld_base, temp_ptr, temp_ptr2,
1951 pred, value);
1952 }
1953 else
1954 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, value, temp_ptr);
1955 }
1956 break;
1957
1958 case TGSI_FILE_ADDRESS:
1959 assert(dtype == TGSI_TYPE_SIGNED);
1960 assert(LLVMTypeOf(value) == int_bld->vec_type);
1961 value = LLVMBuildBitCast(builder, value, int_bld->vec_type, "");
1962 lp_exec_mask_store(&bld->exec_mask, int_bld, pred, value,
1963 bld->addr[reg->Register.Index][chan_index]);
1964 break;
1965
1966 case TGSI_FILE_PREDICATE:
1967 assert(LLVMTypeOf(value) == float_bld->vec_type);
1968 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1969 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, value,
1970 bld->preds[reg->Register.Index][chan_index]);
1971 break;
1972
1973 default:
1974 assert( 0 );
1975 }
1976
1977 (void)dtype;
1978 }
1979
1980 /*
1981 * Called at the beginning of the translation of each TGSI instruction, to
1982 * emit some debug code.
1983 */
1984 static void
1985 emit_debug(
1986 struct lp_build_tgsi_context * bld_base,
1987 const struct tgsi_full_instruction * inst,
1988 const struct tgsi_opcode_info * info)
1989
1990 {
1991 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1992
1993 if (DEBUG_EXECUTION) {
1994 /*
1995 * Dump the TGSI instruction.
1996 */
1997
1998 struct gallivm_state *gallivm = bld_base->base.gallivm;
1999 char buf[512];
2000 buf[0] = '$';
2001 buf[1] = ' ';
2002 tgsi_dump_instruction_str(inst, bld_base->pc, &buf[2], sizeof buf - 2);
2003 lp_build_printf(gallivm, buf);
2004
2005 /* Dump the execution mask.
2006 */
2007 if (bld->exec_mask.has_mask) {
2008 lp_build_print_value(gallivm, " mask = ", bld->exec_mask.exec_mask);
2009 }
2010 }
2011 }
2012
2013 static void
2014 emit_store(
2015 struct lp_build_tgsi_context * bld_base,
2016 const struct tgsi_full_instruction * inst,
2017 const struct tgsi_opcode_info * info,
2018 LLVMValueRef dst[4])
2019
2020 {
2021 unsigned chan_index;
2022 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2023 enum tgsi_opcode_type dtype = tgsi_opcode_infer_dst_type(inst->Instruction.Opcode);
2024 if(info->num_dst) {
2025 LLVMValueRef pred[TGSI_NUM_CHANNELS];
2026
2027 emit_fetch_predicate( bld, inst, pred );
2028
2029 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
2030
2031 if (tgsi_type_is_64bit(dtype) && (chan_index == 1 || chan_index == 3))
2032 continue;
2033 emit_store_chan(bld_base, inst, 0, chan_index, pred[chan_index], dst[chan_index]);
2034 }
2035 }
2036 }
2037
2038 static unsigned
2039 tgsi_to_pipe_tex_target(unsigned tgsi_target)
2040 {
2041 switch (tgsi_target) {
2042 case TGSI_TEXTURE_BUFFER:
2043 return PIPE_BUFFER;
2044 case TGSI_TEXTURE_1D:
2045 case TGSI_TEXTURE_SHADOW1D:
2046 return PIPE_TEXTURE_1D;
2047 case TGSI_TEXTURE_2D:
2048 case TGSI_TEXTURE_SHADOW2D:
2049 case TGSI_TEXTURE_2D_MSAA:
2050 return PIPE_TEXTURE_2D;
2051 case TGSI_TEXTURE_3D:
2052 return PIPE_TEXTURE_3D;
2053 case TGSI_TEXTURE_CUBE:
2054 case TGSI_TEXTURE_SHADOWCUBE:
2055 return PIPE_TEXTURE_CUBE;
2056 case TGSI_TEXTURE_RECT:
2057 case TGSI_TEXTURE_SHADOWRECT:
2058 return PIPE_TEXTURE_RECT;
2059 case TGSI_TEXTURE_1D_ARRAY:
2060 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2061 return PIPE_TEXTURE_1D_ARRAY;
2062 case TGSI_TEXTURE_2D_ARRAY:
2063 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2064 case TGSI_TEXTURE_2D_ARRAY_MSAA:
2065 return PIPE_TEXTURE_2D_ARRAY;
2066 case TGSI_TEXTURE_CUBE_ARRAY:
2067 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
2068 return PIPE_TEXTURE_CUBE_ARRAY;
2069 default:
2070 assert(0);
2071 return PIPE_BUFFER;
2072 }
2073 }
2074
2075
2076 static enum lp_sampler_lod_property
2077 lp_build_lod_property(
2078 struct lp_build_tgsi_context *bld_base,
2079 const struct tgsi_full_instruction *inst,
2080 unsigned src_op)
2081 {
2082 const struct tgsi_full_src_register *reg = &inst->Src[src_op];
2083 enum lp_sampler_lod_property lod_property;
2084
2085 /*
2086 * Not much we can do here. We could try catching inputs declared
2087 * with constant interpolation but not sure it's worth it - since for
2088 * TEX opcodes as well as FETCH/LD the lod comes from same reg as
2089 * the coords, so it could only work for SAMPLE/TXQ/SVIEWINFO), just
2090 * like the constant/immediate recognition below.
2091 * What seems to be of more value would be to recognize temps holding
2092 * broadcasted scalars but no way we can do it.
2093 * Tried asking llvm but without any success (using LLVMIsConstant
2094 * even though this isn't exactly what we'd need), even as simple as
2095 * IMM[0] UINT32 (0,-1,0,0)
2096 * MOV TEMP[0] IMM[0].yyyy
2097 * SVIEWINFO TEMP[1], TEMP[0].xxxx, SVIEWINFO[0]
2098 * doesn't work.
2099 * This means there's ZERO chance this will ever catch a scalar lod
2100 * with traditional tex opcodes as well as texel fetches, since the lod
2101 * comes from the same reg as coords (except some test shaders using
2102 * constant coords maybe).
2103 * There's at least hope for sample opcodes as well as size queries.
2104 */
2105 if (reg->Register.File == TGSI_FILE_CONSTANT ||
2106 reg->Register.File == TGSI_FILE_IMMEDIATE) {
2107 lod_property = LP_SAMPLER_LOD_SCALAR;
2108 }
2109 else if (bld_base->info->processor == PIPE_SHADER_FRAGMENT) {
2110 if (gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) {
2111 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2112 }
2113 else {
2114 lod_property = LP_SAMPLER_LOD_PER_QUAD;
2115 }
2116 }
2117 else {
2118 /* never use scalar (per-quad) lod the results are just too wrong. */
2119 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2120 }
2121 return lod_property;
2122 }
2123
2124
2125 /**
2126 * High-level instruction translators.
2127 */
2128
2129 static void
2130 emit_tex( struct lp_build_tgsi_soa_context *bld,
2131 const struct tgsi_full_instruction *inst,
2132 enum lp_build_tex_modifier modifier,
2133 LLVMValueRef *texel,
2134 unsigned sampler_reg,
2135 enum lp_sampler_op_type sampler_op)
2136 {
2137 unsigned unit = inst->Src[sampler_reg].Register.Index;
2138 LLVMValueRef oow = NULL;
2139 LLVMValueRef lod = NULL;
2140 LLVMValueRef coords[5];
2141 LLVMValueRef offsets[3] = { NULL };
2142 struct lp_derivatives derivs;
2143 struct lp_sampler_params params;
2144 enum lp_sampler_lod_property lod_property = LP_SAMPLER_LOD_SCALAR;
2145 unsigned num_derivs, num_offsets, i;
2146 unsigned shadow_coord = 0;
2147 unsigned layer_coord = 0;
2148 unsigned sample_key = sampler_op << LP_SAMPLER_OP_TYPE_SHIFT;
2149
2150 memset(&params, 0, sizeof(params));
2151
2152 if (!bld->sampler) {
2153 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
2154 for (i = 0; i < 4; i++) {
2155 texel[i] = bld->bld_base.base.undef;
2156 }
2157 return;
2158 }
2159
2160 switch (inst->Texture.Texture) {
2161 case TGSI_TEXTURE_1D_ARRAY:
2162 layer_coord = 1;
2163 /* fallthrough */
2164 case TGSI_TEXTURE_1D:
2165 num_offsets = 1;
2166 num_derivs = 1;
2167 break;
2168 case TGSI_TEXTURE_2D_ARRAY:
2169 layer_coord = 2;
2170 /* fallthrough */
2171 case TGSI_TEXTURE_2D:
2172 case TGSI_TEXTURE_RECT:
2173 num_offsets = 2;
2174 num_derivs = 2;
2175 break;
2176 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2177 layer_coord = 1;
2178 /* fallthrough */
2179 case TGSI_TEXTURE_SHADOW1D:
2180 shadow_coord = 2;
2181 num_offsets = 1;
2182 num_derivs = 1;
2183 break;
2184 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2185 layer_coord = 2;
2186 shadow_coord = 3;
2187 num_offsets = 2;
2188 num_derivs = 2;
2189 break;
2190 case TGSI_TEXTURE_SHADOW2D:
2191 case TGSI_TEXTURE_SHADOWRECT:
2192 shadow_coord = 2;
2193 num_offsets = 2;
2194 num_derivs = 2;
2195 break;
2196 case TGSI_TEXTURE_CUBE:
2197 num_offsets = 2;
2198 num_derivs = 3;
2199 break;
2200 case TGSI_TEXTURE_3D:
2201 num_offsets = 3;
2202 num_derivs = 3;
2203 break;
2204 case TGSI_TEXTURE_SHADOWCUBE:
2205 shadow_coord = 3;
2206 num_offsets = 2;
2207 num_derivs = 3;
2208 break;
2209 case TGSI_TEXTURE_CUBE_ARRAY:
2210 num_offsets = 2;
2211 num_derivs = 3;
2212 layer_coord = 3;
2213 break;
2214 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
2215 num_offsets = 2;
2216 num_derivs = 3;
2217 layer_coord = 3;
2218 shadow_coord = 4; /* shadow coord special different reg */
2219 break;
2220 case TGSI_TEXTURE_2D_MSAA:
2221 case TGSI_TEXTURE_2D_ARRAY_MSAA:
2222 default:
2223 assert(0);
2224 return;
2225 }
2226
2227 /* Note lod and especially projected are illegal in a LOT of cases */
2228 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS ||
2229 modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2230 if (inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE ||
2231 inst->Texture.Texture == TGSI_TEXTURE_CUBE_ARRAY) {
2232 /* note that shadow cube array with bias/explicit lod does not exist */
2233 lod = lp_build_emit_fetch(&bld->bld_base, inst, 1, 0);
2234 }
2235 else {
2236 lod = lp_build_emit_fetch(&bld->bld_base, inst, 0, 3);
2237 }
2238 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS) {
2239 sample_key |= LP_SAMPLER_LOD_BIAS << LP_SAMPLER_LOD_CONTROL_SHIFT;
2240 }
2241 else if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2242 sample_key |= LP_SAMPLER_LOD_EXPLICIT << LP_SAMPLER_LOD_CONTROL_SHIFT;
2243 }
2244 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2245 }
2246
2247 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED) {
2248 oow = lp_build_emit_fetch(&bld->bld_base, inst, 0, 3);
2249 oow = lp_build_rcp(&bld->bld_base.base, oow);
2250 }
2251
2252 for (i = 0; i < num_derivs; i++) {
2253 coords[i] = lp_build_emit_fetch(&bld->bld_base, inst, 0, i);
2254 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED)
2255 coords[i] = lp_build_mul(&bld->bld_base.base, coords[i], oow);
2256 }
2257 for (i = num_derivs; i < 5; i++) {
2258 coords[i] = bld->bld_base.base.undef;
2259 }
2260
2261 /* Layer coord always goes into 3rd slot, except for cube map arrays */
2262 if (layer_coord) {
2263 if (layer_coord == 3) {
2264 coords[3] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2265 }
2266 else {
2267 coords[2] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2268 }
2269 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED)
2270 coords[2] = lp_build_mul(&bld->bld_base.base, coords[2], oow);
2271 }
2272 /* Shadow coord occupies always 5th slot. */
2273 if (shadow_coord) {
2274 sample_key |= LP_SAMPLER_SHADOW;
2275 if (shadow_coord == 4) {
2276 coords[4] = lp_build_emit_fetch(&bld->bld_base, inst, 1, 0);
2277 }
2278 else {
2279 coords[4] = lp_build_emit_fetch(&bld->bld_base, inst, 0, shadow_coord);
2280 }
2281 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED)
2282 coords[4] = lp_build_mul(&bld->bld_base.base, coords[4], oow);
2283 }
2284
2285 if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV) {
2286 unsigned dim;
2287 sample_key |= LP_SAMPLER_LOD_DERIVATIVES << LP_SAMPLER_LOD_CONTROL_SHIFT;
2288 for (dim = 0; dim < num_derivs; ++dim) {
2289 derivs.ddx[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 1, dim);
2290 derivs.ddy[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 2, dim);
2291 }
2292 params.derivs = &derivs;
2293 /*
2294 * could also check all src regs if constant but I doubt such
2295 * cases exist in practice.
2296 */
2297 if (bld->bld_base.info->processor == PIPE_SHADER_FRAGMENT) {
2298 if (gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) {
2299 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2300 }
2301 else {
2302 lod_property = LP_SAMPLER_LOD_PER_QUAD;
2303 }
2304 }
2305 else {
2306 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2307 }
2308 }
2309 sample_key |= lod_property << LP_SAMPLER_LOD_PROPERTY_SHIFT;
2310
2311 /* we don't handle the 4 offset version of tg4 */
2312 if (inst->Texture.NumOffsets == 1) {
2313 unsigned dim;
2314 sample_key |= LP_SAMPLER_OFFSETS;
2315 for (dim = 0; dim < num_offsets; dim++) {
2316 offsets[dim] = lp_build_emit_fetch_texoffset(&bld->bld_base, inst, 0, dim);
2317 }
2318 }
2319
2320 params.type = bld->bld_base.base.type;
2321 params.sample_key = sample_key;
2322 params.texture_index = unit;
2323 params.sampler_index = unit;
2324 params.context_ptr = bld->context_ptr;
2325 params.thread_data_ptr = bld->thread_data_ptr;
2326 params.coords = coords;
2327 params.offsets = offsets;
2328 params.lod = lod;
2329 params.texel = texel;
2330
2331 bld->sampler->emit_tex_sample(bld->sampler,
2332 bld->bld_base.base.gallivm,
2333 &params);
2334 }
2335
2336 static void
2337 emit_sample(struct lp_build_tgsi_soa_context *bld,
2338 const struct tgsi_full_instruction *inst,
2339 enum lp_build_tex_modifier modifier,
2340 boolean compare,
2341 LLVMValueRef *texel)
2342 {
2343 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2344 unsigned texture_unit, sampler_unit;
2345 LLVMValueRef lod = NULL;
2346 LLVMValueRef coords[5];
2347 LLVMValueRef offsets[3] = { NULL };
2348 struct lp_derivatives derivs;
2349 struct lp_sampler_params params;
2350 enum lp_sampler_lod_property lod_property = LP_SAMPLER_LOD_SCALAR;
2351
2352 unsigned num_offsets, num_derivs, i;
2353 unsigned layer_coord = 0;
2354 unsigned sample_key = LP_SAMPLER_OP_TEXTURE << LP_SAMPLER_OP_TYPE_SHIFT;
2355
2356 memset(&params, 0, sizeof(params));
2357
2358 if (!bld->sampler) {
2359 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
2360 for (i = 0; i < 4; i++) {
2361 texel[i] = bld->bld_base.base.undef;
2362 }
2363 return;
2364 }
2365
2366 /*
2367 * unlike old-style tex opcodes the texture/sampler indices
2368 * always come from src1 and src2 respectively.
2369 */
2370 texture_unit = inst->Src[1].Register.Index;
2371 sampler_unit = inst->Src[2].Register.Index;
2372
2373 /*
2374 * Note inst->Texture.Texture will contain the number of offsets,
2375 * however the target information is NOT there and comes from the
2376 * declared sampler views instead.
2377 */
2378 switch (bld->sv[texture_unit].Resource) {
2379 case TGSI_TEXTURE_1D:
2380 num_offsets = 1;
2381 num_derivs = 1;
2382 break;
2383 case TGSI_TEXTURE_1D_ARRAY:
2384 layer_coord = 1;
2385 num_offsets = 1;
2386 num_derivs = 1;
2387 break;
2388 case TGSI_TEXTURE_2D:
2389 case TGSI_TEXTURE_RECT:
2390 num_offsets = 2;
2391 num_derivs = 2;
2392 break;
2393 case TGSI_TEXTURE_2D_ARRAY:
2394 layer_coord = 2;
2395 num_offsets = 2;
2396 num_derivs = 2;
2397 break;
2398 case TGSI_TEXTURE_CUBE:
2399 num_offsets = 2;
2400 num_derivs = 3;
2401 break;
2402 case TGSI_TEXTURE_3D:
2403 num_offsets = 3;
2404 num_derivs = 3;
2405 break;
2406 case TGSI_TEXTURE_CUBE_ARRAY:
2407 layer_coord = 3;
2408 num_offsets = 2;
2409 num_derivs = 3;
2410 break;
2411 default:
2412 assert(0);
2413 return;
2414 }
2415
2416 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS ||
2417 modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2418 lod = lp_build_emit_fetch(&bld->bld_base, inst, 3, 0);
2419 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS) {
2420 sample_key |= LP_SAMPLER_LOD_BIAS << LP_SAMPLER_LOD_CONTROL_SHIFT;
2421 }
2422 else if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2423 sample_key |= LP_SAMPLER_LOD_EXPLICIT << LP_SAMPLER_LOD_CONTROL_SHIFT;
2424 }
2425 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2426 }
2427 else if (modifier == LP_BLD_TEX_MODIFIER_LOD_ZERO) {
2428 /* XXX might be better to explicitly pass the level zero information */
2429 sample_key |= LP_SAMPLER_LOD_EXPLICIT << LP_SAMPLER_LOD_CONTROL_SHIFT;
2430 lod = lp_build_const_vec(gallivm, bld->bld_base.base.type, 0.0F);
2431 }
2432
2433 for (i = 0; i < num_derivs; i++) {
2434 coords[i] = lp_build_emit_fetch(&bld->bld_base, inst, 0, i);
2435 }
2436 for (i = num_derivs; i < 5; i++) {
2437 coords[i] = bld->bld_base.base.undef;
2438 }
2439
2440 /* Layer coord always goes into 3rd slot, except for cube map arrays */
2441 if (layer_coord) {
2442 if (layer_coord == 3)
2443 coords[3] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2444 else
2445 coords[2] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2446 }
2447 /* Shadow coord occupies always 5th slot. */
2448 if (compare) {
2449 sample_key |= LP_SAMPLER_SHADOW;
2450 coords[4] = lp_build_emit_fetch(&bld->bld_base, inst, 3, 0);
2451 }
2452
2453 if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV) {
2454 unsigned dim;
2455 sample_key |= LP_SAMPLER_LOD_DERIVATIVES << LP_SAMPLER_LOD_CONTROL_SHIFT;
2456 for (dim = 0; dim < num_derivs; ++dim) {
2457 derivs.ddx[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 3, dim);
2458 derivs.ddy[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 4, dim);
2459 }
2460 params.derivs = &derivs;
2461 /*
2462 * could also check all src regs if constant but I doubt such
2463 * cases exist in practice.
2464 */
2465 if (bld->bld_base.info->processor == PIPE_SHADER_FRAGMENT) {
2466 if (gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) {
2467 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2468 }
2469 else {
2470 lod_property = LP_SAMPLER_LOD_PER_QUAD;
2471 }
2472 }
2473 else {
2474 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2475 }
2476 }
2477
2478 /* some advanced gather instructions (txgo) would require 4 offsets */
2479 if (inst->Texture.NumOffsets == 1) {
2480 unsigned dim;
2481 sample_key |= LP_SAMPLER_OFFSETS;
2482 for (dim = 0; dim < num_offsets; dim++) {
2483 offsets[dim] = lp_build_emit_fetch_texoffset(&bld->bld_base, inst, 0, dim);
2484 }
2485 }
2486 sample_key |= lod_property << LP_SAMPLER_LOD_PROPERTY_SHIFT;
2487
2488 params.type = bld->bld_base.base.type;
2489 params.sample_key = sample_key;
2490 params.texture_index = texture_unit;
2491 params.sampler_index = sampler_unit;
2492 params.context_ptr = bld->context_ptr;
2493 params.thread_data_ptr = bld->thread_data_ptr;
2494 params.coords = coords;
2495 params.offsets = offsets;
2496 params.lod = lod;
2497 params.texel = texel;
2498
2499 bld->sampler->emit_tex_sample(bld->sampler,
2500 bld->bld_base.base.gallivm,
2501 &params);
2502
2503 if (inst->Src[1].Register.SwizzleX != PIPE_SWIZZLE_X ||
2504 inst->Src[1].Register.SwizzleY != PIPE_SWIZZLE_Y ||
2505 inst->Src[1].Register.SwizzleZ != PIPE_SWIZZLE_Z ||
2506 inst->Src[1].Register.SwizzleW != PIPE_SWIZZLE_W) {
2507 unsigned char swizzles[4];
2508 swizzles[0] = inst->Src[1].Register.SwizzleX;
2509 swizzles[1] = inst->Src[1].Register.SwizzleY;
2510 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2511 swizzles[3] = inst->Src[1].Register.SwizzleW;
2512
2513 lp_build_swizzle_soa_inplace(&bld->bld_base.base, texel, swizzles);
2514 }
2515 }
2516
2517 static void
2518 emit_fetch_texels( struct lp_build_tgsi_soa_context *bld,
2519 const struct tgsi_full_instruction *inst,
2520 LLVMValueRef *texel,
2521 boolean is_samplei)
2522 {
2523 unsigned unit, target;
2524 LLVMValueRef coord_undef = LLVMGetUndef(bld->bld_base.base.int_vec_type);
2525 LLVMValueRef explicit_lod = NULL;
2526 LLVMValueRef coords[5];
2527 LLVMValueRef offsets[3] = { NULL };
2528 struct lp_sampler_params params;
2529 enum lp_sampler_lod_property lod_property = LP_SAMPLER_LOD_SCALAR;
2530 unsigned dims, i;
2531 unsigned layer_coord = 0;
2532 unsigned sample_key = LP_SAMPLER_OP_FETCH << LP_SAMPLER_OP_TYPE_SHIFT;
2533
2534 memset(&params, 0, sizeof(params));
2535
2536 if (!bld->sampler) {
2537 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
2538 for (i = 0; i < 4; i++) {
2539 texel[i] = coord_undef;
2540 }
2541 return;
2542 }
2543
2544 unit = inst->Src[1].Register.Index;
2545
2546 if (is_samplei) {
2547 target = bld->sv[unit].Resource;
2548 }
2549 else {
2550 target = inst->Texture.Texture;
2551 }
2552
2553 switch (target) {
2554 case TGSI_TEXTURE_1D:
2555 case TGSI_TEXTURE_BUFFER:
2556 dims = 1;
2557 break;
2558 case TGSI_TEXTURE_1D_ARRAY:
2559 layer_coord = 1;
2560 dims = 1;
2561 break;
2562 case TGSI_TEXTURE_2D:
2563 case TGSI_TEXTURE_RECT:
2564 case TGSI_TEXTURE_2D_MSAA:
2565 dims = 2;
2566 break;
2567 case TGSI_TEXTURE_2D_ARRAY:
2568 case TGSI_TEXTURE_2D_ARRAY_MSAA:
2569 layer_coord = 2;
2570 dims = 2;
2571 break;
2572 case TGSI_TEXTURE_3D:
2573 dims = 3;
2574 break;
2575 default:
2576 assert(0);
2577 return;
2578 }
2579
2580 /* always have lod except for buffers and msaa targets ? */
2581 if (target != TGSI_TEXTURE_BUFFER &&
2582 target != TGSI_TEXTURE_2D_MSAA &&
2583 target != TGSI_TEXTURE_2D_ARRAY_MSAA) {
2584 sample_key |= LP_SAMPLER_LOD_EXPLICIT << LP_SAMPLER_LOD_CONTROL_SHIFT;
2585 explicit_lod = lp_build_emit_fetch(&bld->bld_base, inst, 0, 3);
2586 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2587 }
2588 /*
2589 * XXX: for real msaa support, the w component (or src2.x for sample_i_ms)
2590 * would be the sample index.
2591 */
2592
2593 for (i = 0; i < dims; i++) {
2594 coords[i] = lp_build_emit_fetch(&bld->bld_base, inst, 0, i);
2595 }
2596 /* never use more than 3 coords here but emit_fetch_texel copies all 5 anyway */
2597 for (i = dims; i < 5; i++) {
2598 coords[i] = coord_undef;
2599 }
2600 if (layer_coord)
2601 coords[2] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2602
2603 if (inst->Texture.NumOffsets == 1) {
2604 unsigned dim;
2605 sample_key |= LP_SAMPLER_OFFSETS;
2606 for (dim = 0; dim < dims; dim++) {
2607 offsets[dim] = lp_build_emit_fetch_texoffset(&bld->bld_base, inst, 0, dim);
2608 }
2609 }
2610 sample_key |= lod_property << LP_SAMPLER_LOD_PROPERTY_SHIFT;
2611
2612 params.type = bld->bld_base.base.type;
2613 params.sample_key = sample_key;
2614 params.texture_index = unit;
2615 /*
2616 * sampler not actually used, set to 0 so it won't exceed PIPE_MAX_SAMPLERS
2617 * and trigger some assertions with d3d10 where the sampler view number
2618 * can exceed this.
2619 */
2620 params.sampler_index = 0;
2621 params.context_ptr = bld->context_ptr;
2622 params.thread_data_ptr = bld->thread_data_ptr;
2623 params.coords = coords;
2624 params.offsets = offsets;
2625 params.derivs = NULL;
2626 params.lod = explicit_lod;
2627 params.texel = texel;
2628
2629 bld->sampler->emit_tex_sample(bld->sampler,
2630 bld->bld_base.base.gallivm,
2631 &params);
2632
2633 if (is_samplei &&
2634 (inst->Src[1].Register.SwizzleX != PIPE_SWIZZLE_X ||
2635 inst->Src[1].Register.SwizzleY != PIPE_SWIZZLE_Y ||
2636 inst->Src[1].Register.SwizzleZ != PIPE_SWIZZLE_Z ||
2637 inst->Src[1].Register.SwizzleW != PIPE_SWIZZLE_W)) {
2638 unsigned char swizzles[4];
2639 swizzles[0] = inst->Src[1].Register.SwizzleX;
2640 swizzles[1] = inst->Src[1].Register.SwizzleY;
2641 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2642 swizzles[3] = inst->Src[1].Register.SwizzleW;
2643
2644 lp_build_swizzle_soa_inplace(&bld->bld_base.base, texel, swizzles);
2645 }
2646 }
2647
2648 static void
2649 emit_size_query( struct lp_build_tgsi_soa_context *bld,
2650 const struct tgsi_full_instruction *inst,
2651 LLVMValueRef *sizes_out,
2652 boolean is_sviewinfo)
2653 {
2654 LLVMValueRef explicit_lod;
2655 enum lp_sampler_lod_property lod_property;
2656 unsigned has_lod;
2657 unsigned i;
2658 unsigned unit = inst->Src[1].Register.Index;
2659 unsigned target, pipe_target;
2660 struct lp_sampler_size_query_params params;
2661
2662 if (is_sviewinfo) {
2663 target = bld->sv[unit].Resource;
2664 }
2665 else {
2666 target = inst->Texture.Texture;
2667 }
2668 switch (target) {
2669 case TGSI_TEXTURE_BUFFER:
2670 case TGSI_TEXTURE_RECT:
2671 case TGSI_TEXTURE_SHADOWRECT:
2672 has_lod = 0;
2673 break;
2674 default:
2675 has_lod = 1;
2676 break;
2677 }
2678
2679 if (!bld->sampler) {
2680 _debug_printf("warning: found texture query instruction but no sampler generator supplied\n");
2681 for (i = 0; i < 4; i++)
2682 sizes_out[i] = bld->bld_base.int_bld.undef;
2683 return;
2684 }
2685
2686 if (has_lod) {
2687 explicit_lod = lp_build_emit_fetch(&bld->bld_base, inst, 0, 0);
2688 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2689 }
2690 else {
2691 explicit_lod = NULL;
2692 lod_property = LP_SAMPLER_LOD_SCALAR;
2693 }
2694
2695
2696 pipe_target = tgsi_to_pipe_tex_target(target);
2697
2698 params.int_type = bld->bld_base.int_bld.type;
2699 params.texture_unit = unit;
2700 params.target = pipe_target;
2701 params.context_ptr = bld->context_ptr;
2702 params.is_sviewinfo = TRUE;
2703 params.lod_property = lod_property;
2704 params.explicit_lod = explicit_lod;
2705 params.sizes_out = sizes_out;
2706
2707 bld->sampler->emit_size_query(bld->sampler,
2708 bld->bld_base.base.gallivm,
2709 &params);
2710 }
2711
2712 static boolean
2713 near_end_of_shader(struct lp_build_tgsi_soa_context *bld,
2714 int pc)
2715 {
2716 unsigned i;
2717
2718 for (i = 0; i < 5; i++) {
2719 unsigned opcode;
2720
2721 if (pc + i >= bld->bld_base.info->num_instructions)
2722 return TRUE;
2723
2724 opcode = bld->bld_base.instructions[pc + i].Instruction.Opcode;
2725
2726 if (opcode == TGSI_OPCODE_END)
2727 return TRUE;
2728
2729 if (opcode == TGSI_OPCODE_TEX ||
2730 opcode == TGSI_OPCODE_TXP ||
2731 opcode == TGSI_OPCODE_TXD ||
2732 opcode == TGSI_OPCODE_TXB ||
2733 opcode == TGSI_OPCODE_TXL ||
2734 opcode == TGSI_OPCODE_TXF ||
2735 opcode == TGSI_OPCODE_TXQ ||
2736 opcode == TGSI_OPCODE_TEX2 ||
2737 opcode == TGSI_OPCODE_TXB2 ||
2738 opcode == TGSI_OPCODE_TXL2 ||
2739 opcode == TGSI_OPCODE_SAMPLE ||
2740 opcode == TGSI_OPCODE_SAMPLE_B ||
2741 opcode == TGSI_OPCODE_SAMPLE_C ||
2742 opcode == TGSI_OPCODE_SAMPLE_C_LZ ||
2743 opcode == TGSI_OPCODE_SAMPLE_D ||
2744 opcode == TGSI_OPCODE_SAMPLE_I ||
2745 opcode == TGSI_OPCODE_SAMPLE_I_MS ||
2746 opcode == TGSI_OPCODE_SAMPLE_L ||
2747 opcode == TGSI_OPCODE_SVIEWINFO ||
2748 opcode == TGSI_OPCODE_CAL ||
2749 opcode == TGSI_OPCODE_CALLNZ ||
2750 opcode == TGSI_OPCODE_IF ||
2751 opcode == TGSI_OPCODE_UIF ||
2752 opcode == TGSI_OPCODE_BGNLOOP ||
2753 opcode == TGSI_OPCODE_SWITCH)
2754 return FALSE;
2755 }
2756
2757 return TRUE;
2758 }
2759
2760
2761
2762 /**
2763 * Kill fragment if any of the src register values are negative.
2764 */
2765 static void
2766 emit_kill_if(
2767 struct lp_build_tgsi_soa_context *bld,
2768 const struct tgsi_full_instruction *inst,
2769 int pc)
2770 {
2771 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
2772 const struct tgsi_full_src_register *reg = &inst->Src[0];
2773 LLVMValueRef terms[TGSI_NUM_CHANNELS];
2774 LLVMValueRef mask;
2775 unsigned chan_index;
2776
2777 memset(&terms, 0, sizeof terms);
2778
2779 TGSI_FOR_EACH_CHANNEL( chan_index ) {
2780 unsigned swizzle;
2781
2782 /* Unswizzle channel */
2783 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
2784
2785 /* Check if the component has not been already tested. */
2786 assert(swizzle < TGSI_NUM_CHANNELS);
2787 if( !terms[swizzle] )
2788 /* TODO: change the comparison operator instead of setting the sign */
2789 terms[swizzle] = lp_build_emit_fetch(&bld->bld_base, inst, 0, chan_index );
2790 }
2791
2792 mask = NULL;
2793 TGSI_FOR_EACH_CHANNEL( chan_index ) {
2794 if(terms[chan_index]) {
2795 LLVMValueRef chan_mask;
2796
2797 /*
2798 * If term < 0 then mask = 0 else mask = ~0.
2799 */
2800 chan_mask = lp_build_cmp(&bld->bld_base.base, PIPE_FUNC_GEQUAL, terms[chan_index], bld->bld_base.base.zero);
2801
2802 if(mask)
2803 mask = LLVMBuildAnd(builder, mask, chan_mask, "");
2804 else
2805 mask = chan_mask;
2806 }
2807 }
2808
2809 if (bld->exec_mask.has_mask) {
2810 LLVMValueRef invmask;
2811 invmask = LLVMBuildNot(builder, bld->exec_mask.exec_mask, "kilp");
2812 mask = LLVMBuildOr(builder, mask, invmask, "");
2813 }
2814
2815 lp_build_mask_update(bld->mask, mask);
2816 if (!near_end_of_shader(bld, pc))
2817 lp_build_mask_check(bld->mask);
2818 }
2819
2820
2821 /**
2822 * Unconditional fragment kill.
2823 * The only predication is the execution mask which will apply if
2824 * we're inside a loop or conditional.
2825 */
2826 static void
2827 emit_kill(struct lp_build_tgsi_soa_context *bld,
2828 int pc)
2829 {
2830 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
2831 LLVMValueRef mask;
2832
2833 /* For those channels which are "alive", disable fragment shader
2834 * execution.
2835 */
2836 if (bld->exec_mask.has_mask) {
2837 mask = LLVMBuildNot(builder, bld->exec_mask.exec_mask, "kilp");
2838 }
2839 else {
2840 LLVMValueRef zero = LLVMConstNull(bld->bld_base.base.int_vec_type);
2841 mask = zero;
2842 }
2843
2844 lp_build_mask_update(bld->mask, mask);
2845
2846 if (!near_end_of_shader(bld, pc))
2847 lp_build_mask_check(bld->mask);
2848 }
2849
2850
2851 /**
2852 * Emit code which will dump the value of all the temporary registers
2853 * to stdout.
2854 */
2855 static void
2856 emit_dump_file(struct lp_build_tgsi_soa_context *bld,
2857 unsigned file)
2858 {
2859 const struct tgsi_shader_info *info = bld->bld_base.info;
2860 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2861 LLVMBuilderRef builder = gallivm->builder;
2862 LLVMValueRef reg_ptr;
2863 int index;
2864 int max_index = info->file_max[file];
2865
2866 /*
2867 * Some register files, particularly constants, can be very large,
2868 * and dumping everything could make this unusably slow.
2869 */
2870 max_index = MIN2(max_index, 32);
2871
2872 for (index = 0; index <= max_index; index++) {
2873 LLVMValueRef res;
2874 unsigned mask;
2875 int chan;
2876
2877 if (index < 8 * sizeof(unsigned) &&
2878 (info->file_mask[file] & (1u << index)) == 0) {
2879 /* This was not declared.*/
2880 continue;
2881 }
2882
2883 if (file == TGSI_FILE_INPUT) {
2884 mask = info->input_usage_mask[index];
2885 } else {
2886 mask = TGSI_WRITEMASK_XYZW;
2887 }
2888
2889 for (chan = 0; chan < 4; chan++) {
2890 if ((mask & (1 << chan)) == 0) {
2891 /* This channel is not used.*/
2892 continue;
2893 }
2894
2895 if (file == TGSI_FILE_CONSTANT) {
2896 struct tgsi_full_src_register reg;
2897 memset(&reg, 0, sizeof reg);
2898 reg.Register.File = file;
2899 reg.Register.Index = index;
2900 reg.Register.SwizzleX = 0;
2901 reg.Register.SwizzleY = 1;
2902 reg.Register.SwizzleZ = 2;
2903 reg.Register.SwizzleW = 3;
2904
2905 res = bld->bld_base.emit_fetch_funcs[file](&bld->bld_base, &reg, TGSI_TYPE_FLOAT, chan);
2906 if (!res) {
2907 continue;
2908 }
2909 } else if (file == TGSI_FILE_INPUT) {
2910 res = bld->inputs[index][chan];
2911 if (!res) {
2912 continue;
2913 }
2914 } else if (file == TGSI_FILE_TEMPORARY) {
2915 reg_ptr = lp_get_temp_ptr_soa(bld, index, chan);
2916 assert(reg_ptr);
2917 res = LLVMBuildLoad(builder, reg_ptr, "");
2918 } else if (file == TGSI_FILE_OUTPUT) {
2919 reg_ptr = lp_get_output_ptr(bld, index, chan);
2920 assert(reg_ptr);
2921 res = LLVMBuildLoad(builder, reg_ptr, "");
2922 } else {
2923 assert(0);
2924 continue;
2925 }
2926
2927 emit_dump_reg(gallivm, file, index, chan, res);
2928 }
2929 }
2930 }
2931
2932
2933
2934 void
2935 lp_emit_declaration_soa(
2936 struct lp_build_tgsi_context *bld_base,
2937 const struct tgsi_full_declaration *decl)
2938 {
2939 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
2940 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2941 LLVMTypeRef vec_type = bld->bld_base.base.vec_type;
2942 const unsigned first = decl->Range.First;
2943 const unsigned last = decl->Range.Last;
2944 unsigned idx, i;
2945
2946 assert(last <= bld->bld_base.info->file_max[decl->Declaration.File]);
2947
2948 switch (decl->Declaration.File) {
2949 case TGSI_FILE_TEMPORARY:
2950 if (!(bld->indirect_files & (1 << TGSI_FILE_TEMPORARY))) {
2951 assert(last < LP_MAX_INLINED_TEMPS);
2952 for (idx = first; idx <= last; ++idx) {
2953 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2954 bld->temps[idx][i] = lp_build_alloca(gallivm, vec_type, "temp");
2955 }
2956 }
2957 break;
2958
2959 case TGSI_FILE_OUTPUT:
2960 if (!(bld->indirect_files & (1 << TGSI_FILE_OUTPUT))) {
2961 for (idx = first; idx <= last; ++idx) {
2962 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2963 bld->outputs[idx][i] = lp_build_alloca(gallivm,
2964 vec_type, "output");
2965 }
2966 }
2967 break;
2968
2969 case TGSI_FILE_ADDRESS:
2970 /* ADDR registers are only allocated with an integer LLVM IR type,
2971 * as they are guaranteed to always have integers.
2972 * XXX: Not sure if this exception is worthwhile (or the whole idea of
2973 * an ADDR register for that matter).
2974 */
2975 assert(last < LP_MAX_TGSI_ADDRS);
2976 for (idx = first; idx <= last; ++idx) {
2977 assert(idx < LP_MAX_TGSI_ADDRS);
2978 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2979 bld->addr[idx][i] = lp_build_alloca(gallivm, bld_base->base.int_vec_type, "addr");
2980 }
2981 break;
2982
2983 case TGSI_FILE_PREDICATE:
2984 assert(last < LP_MAX_TGSI_PREDS);
2985 for (idx = first; idx <= last; ++idx) {
2986 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2987 bld->preds[idx][i] = lp_build_alloca(gallivm, vec_type,
2988 "predicate");
2989 }
2990 break;
2991
2992 case TGSI_FILE_SAMPLER_VIEW:
2993 /*
2994 * The target stored here MUST match whatever there actually
2995 * is in the set sampler views (what about return type?).
2996 */
2997 assert(last < PIPE_MAX_SHADER_SAMPLER_VIEWS);
2998 for (idx = first; idx <= last; ++idx) {
2999 bld->sv[idx] = decl->SamplerView;
3000 }
3001 break;
3002
3003 case TGSI_FILE_CONSTANT:
3004 {
3005 /*
3006 * We could trivially fetch the per-buffer pointer when fetching the
3007 * constant, relying on llvm to figure out it's always the same pointer
3008 * anyway. However, doing so results in a huge (more than factor of 10)
3009 * slowdown in llvm compilation times for some (but not all) shaders
3010 * (more specifically, the IR optimization spends way more time in
3011 * DominatorTree::dominates). At least with llvm versions 3.1, 3.3.
3012 */
3013 unsigned idx2D = decl->Dim.Index2D;
3014 LLVMValueRef index2D = lp_build_const_int32(gallivm, idx2D);
3015 assert(idx2D < LP_MAX_TGSI_CONST_BUFFERS);
3016 bld->consts[idx2D] =
3017 lp_build_array_get(gallivm, bld->consts_ptr, index2D);
3018 bld->consts_sizes[idx2D] =
3019 lp_build_array_get(gallivm, bld->const_sizes_ptr, index2D);
3020 }
3021 break;
3022
3023 default:
3024 /* don't need to declare other vars */
3025 break;
3026 }
3027 }
3028
3029
3030 void lp_emit_immediate_soa(
3031 struct lp_build_tgsi_context *bld_base,
3032 const struct tgsi_full_immediate *imm)
3033 {
3034 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
3035 struct gallivm_state * gallivm = bld_base->base.gallivm;
3036 LLVMValueRef imms[4];
3037 unsigned i;
3038 const uint size = imm->Immediate.NrTokens - 1;
3039 assert(size <= 4);
3040 switch (imm->Immediate.DataType) {
3041 case TGSI_IMM_FLOAT32:
3042 for( i = 0; i < size; ++i )
3043 imms[i] =
3044 lp_build_const_vec(gallivm, bld_base->base.type, imm->u[i].Float);
3045
3046 break;
3047 case TGSI_IMM_FLOAT64:
3048 case TGSI_IMM_UINT32:
3049 for( i = 0; i < size; ++i ) {
3050 LLVMValueRef tmp = lp_build_const_vec(gallivm, bld_base->uint_bld.type, imm->u[i].Uint);
3051 imms[i] = LLVMConstBitCast(tmp, bld_base->base.vec_type);
3052 }
3053
3054 break;
3055 case TGSI_IMM_INT32:
3056 for( i = 0; i < size; ++i ) {
3057 LLVMValueRef tmp = lp_build_const_vec(gallivm, bld_base->int_bld.type, imm->u[i].Int);
3058 imms[i] = LLVMConstBitCast(tmp, bld_base->base.vec_type);
3059 }
3060
3061 break;
3062 }
3063 for( i = size; i < 4; ++i )
3064 imms[i] = bld_base->base.undef;
3065
3066 if (bld->use_immediates_array) {
3067 unsigned index = bld->num_immediates;
3068 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
3069 LLVMBuilderRef builder = gallivm->builder;
3070
3071 assert(bld->indirect_files & (1 << TGSI_FILE_IMMEDIATE));
3072 for (i = 0; i < 4; ++i ) {
3073 LLVMValueRef lindex = lp_build_const_int32(
3074 bld->bld_base.base.gallivm, index * 4 + i);
3075 LLVMValueRef imm_ptr = LLVMBuildGEP(builder,
3076 bld->imms_array, &lindex, 1, "");
3077 LLVMBuildStore(builder, imms[i], imm_ptr);
3078 }
3079 } else {
3080 /* simply copy the immediate values into the next immediates[] slot */
3081 unsigned i;
3082 assert(imm->Immediate.NrTokens - 1 <= 4);
3083 assert(bld->num_immediates < LP_MAX_INLINED_IMMEDIATES);
3084
3085 for(i = 0; i < 4; ++i )
3086 bld->immediates[bld->num_immediates][i] = imms[i];
3087
3088 if (bld->indirect_files & (1 << TGSI_FILE_IMMEDIATE)) {
3089 unsigned index = bld->num_immediates;
3090 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
3091 LLVMBuilderRef builder = gallivm->builder;
3092 for (i = 0; i < 4; ++i ) {
3093 LLVMValueRef lindex = lp_build_const_int32(
3094 bld->bld_base.base.gallivm, index * 4 + i);
3095 LLVMValueRef imm_ptr = LLVMBuildGEP(builder,
3096 bld->imms_array, &lindex, 1, "");
3097 LLVMBuildStore(builder,
3098 bld->immediates[index][i],
3099 imm_ptr);
3100 }
3101 }
3102 }
3103
3104 bld->num_immediates++;
3105 }
3106
3107 static void
3108 ddx_emit(
3109 const struct lp_build_tgsi_action * action,
3110 struct lp_build_tgsi_context * bld_base,
3111 struct lp_build_emit_data * emit_data)
3112 {
3113 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3114
3115 emit_fetch_deriv(bld, emit_data->args[0], NULL,
3116 &emit_data->output[emit_data->chan], NULL);
3117 }
3118
3119 static void
3120 ddy_emit(
3121 const struct lp_build_tgsi_action * action,
3122 struct lp_build_tgsi_context * bld_base,
3123 struct lp_build_emit_data * emit_data)
3124 {
3125 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3126
3127 emit_fetch_deriv(bld, emit_data->args[0], NULL, NULL,
3128 &emit_data->output[emit_data->chan]);
3129 }
3130
3131 static void
3132 kill_emit(
3133 const struct lp_build_tgsi_action * action,
3134 struct lp_build_tgsi_context * bld_base,
3135 struct lp_build_emit_data * emit_data)
3136 {
3137 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3138
3139 emit_kill(bld, bld_base->pc - 1);
3140 }
3141
3142 static void
3143 kill_if_emit(
3144 const struct lp_build_tgsi_action * action,
3145 struct lp_build_tgsi_context * bld_base,
3146 struct lp_build_emit_data * emit_data)
3147 {
3148 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3149
3150 emit_kill_if(bld, emit_data->inst, bld_base->pc - 1);
3151 }
3152
3153 static void
3154 tex_emit(
3155 const struct lp_build_tgsi_action * action,
3156 struct lp_build_tgsi_context * bld_base,
3157 struct lp_build_emit_data * emit_data)
3158 {
3159 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3160
3161 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
3162 emit_data->output, 1, LP_SAMPLER_OP_TEXTURE);
3163 }
3164
3165 static void
3166 tex2_emit(
3167 const struct lp_build_tgsi_action * action,
3168 struct lp_build_tgsi_context * bld_base,
3169 struct lp_build_emit_data * emit_data)
3170 {
3171 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3172
3173 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
3174 emit_data->output, 2, LP_SAMPLER_OP_TEXTURE);
3175 }
3176
3177 static void
3178 txb_emit(
3179 const struct lp_build_tgsi_action * action,
3180 struct lp_build_tgsi_context * bld_base,
3181 struct lp_build_emit_data * emit_data)
3182 {
3183 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3184
3185 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_BIAS,
3186 emit_data->output, 1, LP_SAMPLER_OP_TEXTURE);
3187 }
3188
3189 static void
3190 txb2_emit(
3191 const struct lp_build_tgsi_action * action,
3192 struct lp_build_tgsi_context * bld_base,
3193 struct lp_build_emit_data * emit_data)
3194 {
3195 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3196
3197 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_BIAS,
3198 emit_data->output, 2, LP_SAMPLER_OP_TEXTURE);
3199 }
3200
3201 static void
3202 txd_emit(
3203 const struct lp_build_tgsi_action * action,
3204 struct lp_build_tgsi_context * bld_base,
3205 struct lp_build_emit_data * emit_data)
3206 {
3207 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3208
3209 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV,
3210 emit_data->output, 3, LP_SAMPLER_OP_TEXTURE);
3211 }
3212
3213 static void
3214 txl_emit(
3215 const struct lp_build_tgsi_action * action,
3216 struct lp_build_tgsi_context * bld_base,
3217 struct lp_build_emit_data * emit_data)
3218 {
3219 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3220
3221 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_LOD,
3222 emit_data->output, 1, LP_SAMPLER_OP_TEXTURE);
3223 }
3224
3225 static void
3226 txl2_emit(
3227 const struct lp_build_tgsi_action * action,
3228 struct lp_build_tgsi_context * bld_base,
3229 struct lp_build_emit_data * emit_data)
3230 {
3231 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3232
3233 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_LOD,
3234 emit_data->output, 2, LP_SAMPLER_OP_TEXTURE);
3235 }
3236
3237 static void
3238 txp_emit(
3239 const struct lp_build_tgsi_action * action,
3240 struct lp_build_tgsi_context * bld_base,
3241 struct lp_build_emit_data * emit_data)
3242 {
3243 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3244
3245 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_PROJECTED,
3246 emit_data->output, 1, LP_SAMPLER_OP_TEXTURE);
3247 }
3248
3249 static void
3250 tg4_emit(
3251 const struct lp_build_tgsi_action * action,
3252 struct lp_build_tgsi_context * bld_base,
3253 struct lp_build_emit_data * emit_data)
3254 {
3255 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3256
3257 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
3258 emit_data->output, 2, LP_SAMPLER_OP_GATHER);
3259 }
3260
3261 static void
3262 txq_emit(
3263 const struct lp_build_tgsi_action * action,
3264 struct lp_build_tgsi_context * bld_base,
3265 struct lp_build_emit_data * emit_data)
3266 {
3267 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3268
3269 emit_size_query(bld, emit_data->inst, emit_data->output, FALSE);
3270 }
3271
3272 static void
3273 txf_emit(
3274 const struct lp_build_tgsi_action * action,
3275 struct lp_build_tgsi_context * bld_base,
3276 struct lp_build_emit_data * emit_data)
3277 {
3278 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3279
3280 emit_fetch_texels(bld, emit_data->inst, emit_data->output, FALSE);
3281 }
3282
3283 static void
3284 sample_i_emit(
3285 const struct lp_build_tgsi_action * action,
3286 struct lp_build_tgsi_context * bld_base,
3287 struct lp_build_emit_data * emit_data)
3288 {
3289 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3290
3291 emit_fetch_texels(bld, emit_data->inst, emit_data->output, TRUE);
3292 }
3293
3294 static void
3295 sample_emit(
3296 const struct lp_build_tgsi_action * action,
3297 struct lp_build_tgsi_context * bld_base,
3298 struct lp_build_emit_data * emit_data)
3299 {
3300 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3301
3302 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
3303 FALSE, emit_data->output);
3304 }
3305
3306 static void
3307 sample_b_emit(
3308 const struct lp_build_tgsi_action * action,
3309 struct lp_build_tgsi_context * bld_base,
3310 struct lp_build_emit_data * emit_data)
3311 {
3312 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3313
3314 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_BIAS,
3315 FALSE, emit_data->output);
3316 }
3317
3318 static void
3319 sample_c_emit(
3320 const struct lp_build_tgsi_action * action,
3321 struct lp_build_tgsi_context * bld_base,
3322 struct lp_build_emit_data * emit_data)
3323 {
3324 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3325
3326 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
3327 TRUE, emit_data->output);
3328 }
3329
3330 static void
3331 sample_c_lz_emit(
3332 const struct lp_build_tgsi_action * action,
3333 struct lp_build_tgsi_context * bld_base,
3334 struct lp_build_emit_data * emit_data)
3335 {
3336 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3337
3338 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_ZERO,
3339 TRUE, emit_data->output);
3340 }
3341
3342 static void
3343 sample_d_emit(
3344 const struct lp_build_tgsi_action * action,
3345 struct lp_build_tgsi_context * bld_base,
3346 struct lp_build_emit_data * emit_data)
3347 {
3348 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3349
3350 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV,
3351 FALSE, emit_data->output);
3352 }
3353
3354 static void
3355 sample_l_emit(
3356 const struct lp_build_tgsi_action * action,
3357 struct lp_build_tgsi_context * bld_base,
3358 struct lp_build_emit_data * emit_data)
3359 {
3360 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3361
3362 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_LOD,
3363 FALSE, emit_data->output);
3364 }
3365
3366 static void
3367 sviewinfo_emit(
3368 const struct lp_build_tgsi_action * action,
3369 struct lp_build_tgsi_context * bld_base,
3370 struct lp_build_emit_data * emit_data)
3371 {
3372 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3373
3374 emit_size_query(bld, emit_data->inst, emit_data->output, TRUE);
3375 }
3376
3377 static LLVMValueRef
3378 mask_vec(struct lp_build_tgsi_context *bld_base)
3379 {
3380 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3381 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3382 struct lp_exec_mask *exec_mask = &bld->exec_mask;
3383
3384 if (!exec_mask->has_mask) {
3385 return lp_build_mask_value(bld->mask);
3386 }
3387 return LLVMBuildAnd(builder, lp_build_mask_value(bld->mask),
3388 exec_mask->exec_mask, "");
3389 }
3390
3391 static void
3392 increment_vec_ptr_by_mask(struct lp_build_tgsi_context * bld_base,
3393 LLVMValueRef ptr,
3394 LLVMValueRef mask)
3395 {
3396 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3397 LLVMValueRef current_vec = LLVMBuildLoad(builder, ptr, "");
3398
3399 current_vec = LLVMBuildSub(builder, current_vec, mask, "");
3400
3401 LLVMBuildStore(builder, current_vec, ptr);
3402 }
3403
3404 static void
3405 clear_uint_vec_ptr_from_mask(struct lp_build_tgsi_context * bld_base,
3406 LLVMValueRef ptr,
3407 LLVMValueRef mask)
3408 {
3409 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3410 LLVMValueRef current_vec = LLVMBuildLoad(builder, ptr, "");
3411
3412 current_vec = lp_build_select(&bld_base->uint_bld,
3413 mask,
3414 bld_base->uint_bld.zero,
3415 current_vec);
3416
3417 LLVMBuildStore(builder, current_vec, ptr);
3418 }
3419
3420 static LLVMValueRef
3421 clamp_mask_to_max_output_vertices(struct lp_build_tgsi_soa_context * bld,
3422 LLVMValueRef current_mask_vec,
3423 LLVMValueRef total_emitted_vertices_vec)
3424 {
3425 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3426 struct lp_build_context *int_bld = &bld->bld_base.int_bld;
3427 LLVMValueRef max_mask = lp_build_cmp(int_bld, PIPE_FUNC_LESS,
3428 total_emitted_vertices_vec,
3429 bld->max_output_vertices_vec);
3430
3431 return LLVMBuildAnd(builder, current_mask_vec, max_mask, "");
3432 }
3433
3434 static void
3435 emit_vertex(
3436 const struct lp_build_tgsi_action * action,
3437 struct lp_build_tgsi_context * bld_base,
3438 struct lp_build_emit_data * emit_data)
3439 {
3440 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3441 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3442
3443 if (bld->gs_iface->emit_vertex) {
3444 LLVMValueRef mask = mask_vec(bld_base);
3445 LLVMValueRef total_emitted_vertices_vec =
3446 LLVMBuildLoad(builder, bld->total_emitted_vertices_vec_ptr, "");
3447 mask = clamp_mask_to_max_output_vertices(bld, mask,
3448 total_emitted_vertices_vec);
3449 gather_outputs(bld);
3450 bld->gs_iface->emit_vertex(bld->gs_iface, &bld->bld_base,
3451 bld->outputs,
3452 total_emitted_vertices_vec);
3453 increment_vec_ptr_by_mask(bld_base, bld->emitted_vertices_vec_ptr,
3454 mask);
3455 increment_vec_ptr_by_mask(bld_base, bld->total_emitted_vertices_vec_ptr,
3456 mask);
3457 #if DUMP_GS_EMITS
3458 lp_build_print_value(bld->bld_base.base.gallivm,
3459 " +++ emit vertex masked ones = ",
3460 mask);
3461 lp_build_print_value(bld->bld_base.base.gallivm,
3462 " +++ emit vertex emitted = ",
3463 total_emitted_vertices_vec);
3464 #endif
3465 }
3466 }
3467
3468
3469 static void
3470 end_primitive_masked(struct lp_build_tgsi_context * bld_base,
3471 LLVMValueRef mask)
3472 {
3473 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3474 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3475
3476 if (bld->gs_iface->end_primitive) {
3477 struct lp_build_context *uint_bld = &bld_base->uint_bld;
3478 LLVMValueRef emitted_vertices_vec =
3479 LLVMBuildLoad(builder, bld->emitted_vertices_vec_ptr, "");
3480 LLVMValueRef emitted_prims_vec =
3481 LLVMBuildLoad(builder, bld->emitted_prims_vec_ptr, "");
3482
3483 LLVMValueRef emitted_mask = lp_build_cmp(uint_bld, PIPE_FUNC_NOTEQUAL,
3484 emitted_vertices_vec,
3485 uint_bld->zero);
3486 /* We need to combine the current execution mask with the mask
3487 telling us which, if any, execution slots actually have
3488 unemitted primitives, this way we make sure that end_primitives
3489 executes only on the paths that have unflushed vertices */
3490 mask = LLVMBuildAnd(builder, mask, emitted_mask, "");
3491
3492 bld->gs_iface->end_primitive(bld->gs_iface, &bld->bld_base,
3493 emitted_vertices_vec,
3494 emitted_prims_vec);
3495
3496 #if DUMP_GS_EMITS
3497 lp_build_print_value(bld->bld_base.base.gallivm,
3498 " +++ end prim masked ones = ",
3499 mask);
3500 lp_build_print_value(bld->bld_base.base.gallivm,
3501 " +++ end prim emitted verts1 = ",
3502 emitted_vertices_vec);
3503 lp_build_print_value(bld->bld_base.base.gallivm,
3504 " +++ end prim emitted prims1 = ",
3505 LLVMBuildLoad(builder,
3506 bld->emitted_prims_vec_ptr, ""));
3507 #endif
3508 increment_vec_ptr_by_mask(bld_base, bld->emitted_prims_vec_ptr,
3509 mask);
3510 clear_uint_vec_ptr_from_mask(bld_base, bld->emitted_vertices_vec_ptr,
3511 mask);
3512 #if DUMP_GS_EMITS
3513 lp_build_print_value(bld->bld_base.base.gallivm,
3514 " +++ end prim emitted verts2 = ",
3515 LLVMBuildLoad(builder,
3516 bld->emitted_vertices_vec_ptr, ""));
3517 #endif
3518 }
3519
3520 }
3521
3522 static void
3523 end_primitive(
3524 const struct lp_build_tgsi_action * action,
3525 struct lp_build_tgsi_context * bld_base,
3526 struct lp_build_emit_data * emit_data)
3527 {
3528 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3529
3530 if (bld->gs_iface->end_primitive) {
3531 LLVMValueRef mask = mask_vec(bld_base);
3532 end_primitive_masked(bld_base, mask);
3533 }
3534 }
3535
3536 static void
3537 cal_emit(
3538 const struct lp_build_tgsi_action * action,
3539 struct lp_build_tgsi_context * bld_base,
3540 struct lp_build_emit_data * emit_data)
3541 {
3542 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3543
3544 lp_exec_mask_call(&bld->exec_mask, emit_data->inst->Label.Label,
3545 &bld_base->pc);
3546 }
3547
3548 static void
3549 ret_emit(
3550 const struct lp_build_tgsi_action * action,
3551 struct lp_build_tgsi_context * bld_base,
3552 struct lp_build_emit_data * emit_data)
3553 {
3554 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3555
3556 lp_exec_mask_ret(&bld->exec_mask, &bld_base->pc);
3557 }
3558
3559 static void
3560 brk_emit(
3561 const struct lp_build_tgsi_action * action,
3562 struct lp_build_tgsi_context * bld_base,
3563 struct lp_build_emit_data * emit_data)
3564 {
3565 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3566
3567 lp_exec_break(&bld->exec_mask, bld_base);
3568 }
3569
3570 static void
3571 breakc_emit(
3572 const struct lp_build_tgsi_action * action,
3573 struct lp_build_tgsi_context * bld_base,
3574 struct lp_build_emit_data * emit_data)
3575 {
3576 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3577 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3578 struct lp_build_context *uint_bld = &bld_base->uint_bld;
3579 LLVMValueRef unsigned_cond =
3580 LLVMBuildBitCast(builder, emit_data->args[0], uint_bld->vec_type, "");
3581 LLVMValueRef cond = lp_build_cmp(uint_bld, PIPE_FUNC_NOTEQUAL,
3582 unsigned_cond,
3583 uint_bld->zero);
3584
3585 lp_exec_break_condition(&bld->exec_mask, cond);
3586 }
3587
3588 static void
3589 if_emit(
3590 const struct lp_build_tgsi_action * action,
3591 struct lp_build_tgsi_context * bld_base,
3592 struct lp_build_emit_data * emit_data)
3593 {
3594 LLVMValueRef tmp;
3595 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3596
3597 tmp = lp_build_cmp(&bld_base->base, PIPE_FUNC_NOTEQUAL,
3598 emit_data->args[0], bld->bld_base.base.zero);
3599 lp_exec_mask_cond_push(&bld->exec_mask, tmp);
3600 }
3601
3602 static void
3603 uif_emit(
3604 const struct lp_build_tgsi_action * action,
3605 struct lp_build_tgsi_context * bld_base,
3606 struct lp_build_emit_data * emit_data)
3607 {
3608 LLVMValueRef tmp;
3609 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3610 struct lp_build_context *uint_bld = &bld_base->uint_bld;
3611
3612 tmp = lp_build_cmp(uint_bld, PIPE_FUNC_NOTEQUAL,
3613 emit_data->args[0], uint_bld->zero);
3614 lp_exec_mask_cond_push(&bld->exec_mask, tmp);
3615 }
3616
3617 static void
3618 case_emit(
3619 const struct lp_build_tgsi_action * action,
3620 struct lp_build_tgsi_context * bld_base,
3621 struct lp_build_emit_data * emit_data)
3622 {
3623 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3624
3625 lp_exec_case(&bld->exec_mask, emit_data->args[0]);
3626 }
3627
3628 static void
3629 default_emit(
3630 const struct lp_build_tgsi_action * action,
3631 struct lp_build_tgsi_context * bld_base,
3632 struct lp_build_emit_data * emit_data)
3633 {
3634 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3635
3636 lp_exec_default(&bld->exec_mask, bld_base);
3637 }
3638
3639 static void
3640 switch_emit(
3641 const struct lp_build_tgsi_action * action,
3642 struct lp_build_tgsi_context * bld_base,
3643 struct lp_build_emit_data * emit_data)
3644 {
3645 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3646
3647 lp_exec_switch(&bld->exec_mask, emit_data->args[0]);
3648 }
3649
3650 static void
3651 endswitch_emit(
3652 const struct lp_build_tgsi_action * action,
3653 struct lp_build_tgsi_context * bld_base,
3654 struct lp_build_emit_data * emit_data)
3655 {
3656 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3657
3658 lp_exec_endswitch(&bld->exec_mask, bld_base);
3659 }
3660
3661 static void
3662 bgnloop_emit(
3663 const struct lp_build_tgsi_action * action,
3664 struct lp_build_tgsi_context * bld_base,
3665 struct lp_build_emit_data * emit_data)
3666 {
3667 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3668
3669 lp_exec_bgnloop(&bld->exec_mask);
3670 }
3671
3672 static void
3673 bgnsub_emit(
3674 const struct lp_build_tgsi_action * action,
3675 struct lp_build_tgsi_context * bld_base,
3676 struct lp_build_emit_data * emit_data)
3677 {
3678 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3679
3680 lp_exec_mask_bgnsub(&bld->exec_mask);
3681 }
3682
3683 static void
3684 else_emit(
3685 const struct lp_build_tgsi_action * action,
3686 struct lp_build_tgsi_context * bld_base,
3687 struct lp_build_emit_data * emit_data)
3688 {
3689 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3690
3691 lp_exec_mask_cond_invert(&bld->exec_mask);
3692 }
3693
3694 static void
3695 endif_emit(
3696 const struct lp_build_tgsi_action * action,
3697 struct lp_build_tgsi_context * bld_base,
3698 struct lp_build_emit_data * emit_data)
3699 {
3700 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3701
3702 lp_exec_mask_cond_pop(&bld->exec_mask);
3703 }
3704
3705 static void
3706 endloop_emit(
3707 const struct lp_build_tgsi_action * action,
3708 struct lp_build_tgsi_context * bld_base,
3709 struct lp_build_emit_data * emit_data)
3710 {
3711 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3712
3713 lp_exec_endloop(bld_base->base.gallivm, &bld->exec_mask);
3714 }
3715
3716 static void
3717 endsub_emit(
3718 const struct lp_build_tgsi_action * action,
3719 struct lp_build_tgsi_context * bld_base,
3720 struct lp_build_emit_data * emit_data)
3721 {
3722 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3723
3724 lp_exec_mask_endsub(&bld->exec_mask, &bld_base->pc);
3725 }
3726
3727 static void
3728 cont_emit(
3729 const struct lp_build_tgsi_action * action,
3730 struct lp_build_tgsi_context * bld_base,
3731 struct lp_build_emit_data * emit_data)
3732 {
3733 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3734
3735 lp_exec_continue(&bld->exec_mask);
3736 }
3737
3738 static void emit_prologue(struct lp_build_tgsi_context * bld_base)
3739 {
3740 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3741 struct gallivm_state * gallivm = bld_base->base.gallivm;
3742
3743 if (bld->indirect_files & (1 << TGSI_FILE_TEMPORARY)) {
3744 LLVMValueRef array_size =
3745 lp_build_const_int32(gallivm,
3746 bld_base->info->file_max[TGSI_FILE_TEMPORARY] * 4 + 4);
3747 bld->temps_array = lp_build_array_alloca(gallivm,
3748 bld_base->base.vec_type, array_size,
3749 "temp_array");
3750 }
3751
3752 if (bld->indirect_files & (1 << TGSI_FILE_OUTPUT)) {
3753 LLVMValueRef array_size =
3754 lp_build_const_int32(gallivm,
3755 bld_base->info->file_max[TGSI_FILE_OUTPUT] * 4 + 4);
3756 bld->outputs_array = lp_build_array_alloca(gallivm,
3757 bld_base->base.vec_type, array_size,
3758 "output_array");
3759 }
3760
3761 if (bld->indirect_files & (1 << TGSI_FILE_IMMEDIATE)) {
3762 LLVMValueRef array_size =
3763 lp_build_const_int32(gallivm,
3764 bld_base->info->file_max[TGSI_FILE_IMMEDIATE] * 4 + 4);
3765 bld->imms_array = lp_build_array_alloca(gallivm,
3766 bld_base->base.vec_type, array_size,
3767 "imms_array");
3768 }
3769
3770 /* If we have indirect addressing in inputs we need to copy them into
3771 * our alloca array to be able to iterate over them */
3772 if (bld->indirect_files & (1 << TGSI_FILE_INPUT) && !bld->gs_iface) {
3773 unsigned index, chan;
3774 LLVMTypeRef vec_type = bld_base->base.vec_type;
3775 LLVMValueRef array_size = lp_build_const_int32(gallivm,
3776 bld_base->info->file_max[TGSI_FILE_INPUT]*4 + 4);
3777 bld->inputs_array = lp_build_array_alloca(gallivm,
3778 vec_type, array_size,
3779 "input_array");
3780
3781 assert(bld_base->info->num_inputs
3782 <= bld_base->info->file_max[TGSI_FILE_INPUT] + 1);
3783
3784 for (index = 0; index < bld_base->info->num_inputs; ++index) {
3785 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
3786 LLVMValueRef lindex =
3787 lp_build_const_int32(gallivm, index * 4 + chan);
3788 LLVMValueRef input_ptr =
3789 LLVMBuildGEP(gallivm->builder, bld->inputs_array,
3790 &lindex, 1, "");
3791 LLVMValueRef value = bld->inputs[index][chan];
3792 if (value)
3793 LLVMBuildStore(gallivm->builder, value, input_ptr);
3794 }
3795 }
3796 }
3797
3798 if (bld->gs_iface) {
3799 struct lp_build_context *uint_bld = &bld->bld_base.uint_bld;
3800 bld->emitted_prims_vec_ptr =
3801 lp_build_alloca(gallivm,
3802 uint_bld->vec_type,
3803 "emitted_prims_ptr");
3804 bld->emitted_vertices_vec_ptr =
3805 lp_build_alloca(gallivm,
3806 uint_bld->vec_type,
3807 "emitted_vertices_ptr");
3808 bld->total_emitted_vertices_vec_ptr =
3809 lp_build_alloca(gallivm,
3810 uint_bld->vec_type,
3811 "total_emitted_vertices_ptr");
3812
3813 LLVMBuildStore(gallivm->builder, uint_bld->zero,
3814 bld->emitted_prims_vec_ptr);
3815 LLVMBuildStore(gallivm->builder, uint_bld->zero,
3816 bld->emitted_vertices_vec_ptr);
3817 LLVMBuildStore(gallivm->builder, uint_bld->zero,
3818 bld->total_emitted_vertices_vec_ptr);
3819 }
3820
3821 if (DEBUG_EXECUTION) {
3822 lp_build_printf(gallivm, "\n");
3823 emit_dump_file(bld, TGSI_FILE_CONSTANT);
3824 if (!bld->gs_iface)
3825 emit_dump_file(bld, TGSI_FILE_INPUT);
3826 }
3827 }
3828
3829 static void emit_epilogue(struct lp_build_tgsi_context * bld_base)
3830 {
3831 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3832 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3833
3834 if (DEBUG_EXECUTION) {
3835 /* for debugging */
3836 if (0) {
3837 emit_dump_file(bld, TGSI_FILE_TEMPORARY);
3838 }
3839 emit_dump_file(bld, TGSI_FILE_OUTPUT);
3840 lp_build_printf(bld_base->base.gallivm, "\n");
3841 }
3842
3843 /* If we have indirect addressing in outputs we need to copy our alloca array
3844 * to the outputs slots specified by the caller */
3845 if (bld->gs_iface) {
3846 LLVMValueRef total_emitted_vertices_vec;
3847 LLVMValueRef emitted_prims_vec;
3848 /* implicit end_primitives, needed in case there are any unflushed
3849 vertices in the cache. Note must not call end_primitive here
3850 since the exec_mask is not valid at this point. */
3851 end_primitive_masked(bld_base, lp_build_mask_value(bld->mask));
3852
3853 total_emitted_vertices_vec =
3854 LLVMBuildLoad(builder, bld->total_emitted_vertices_vec_ptr, "");
3855 emitted_prims_vec =
3856 LLVMBuildLoad(builder, bld->emitted_prims_vec_ptr, "");
3857
3858 bld->gs_iface->gs_epilogue(bld->gs_iface,
3859 &bld->bld_base,
3860 total_emitted_vertices_vec,
3861 emitted_prims_vec);
3862 } else {
3863 gather_outputs(bld);
3864 }
3865 }
3866
3867 void
3868 lp_build_tgsi_soa(struct gallivm_state *gallivm,
3869 const struct tgsi_token *tokens,
3870 struct lp_type type,
3871 struct lp_build_mask_context *mask,
3872 LLVMValueRef consts_ptr,
3873 LLVMValueRef const_sizes_ptr,
3874 const struct lp_bld_tgsi_system_values *system_values,
3875 const LLVMValueRef (*inputs)[TGSI_NUM_CHANNELS],
3876 LLVMValueRef (*outputs)[TGSI_NUM_CHANNELS],
3877 LLVMValueRef context_ptr,
3878 LLVMValueRef thread_data_ptr,
3879 struct lp_build_sampler_soa *sampler,
3880 const struct tgsi_shader_info *info,
3881 const struct lp_build_tgsi_gs_iface *gs_iface)
3882 {
3883 struct lp_build_tgsi_soa_context bld;
3884
3885 struct lp_type res_type;
3886
3887 assert(type.length <= LP_MAX_VECTOR_LENGTH);
3888 memset(&res_type, 0, sizeof res_type);
3889 res_type.width = type.width;
3890 res_type.length = type.length;
3891 res_type.sign = 1;
3892
3893 /* Setup build context */
3894 memset(&bld, 0, sizeof bld);
3895 lp_build_context_init(&bld.bld_base.base, gallivm, type);
3896 lp_build_context_init(&bld.bld_base.uint_bld, gallivm, lp_uint_type(type));
3897 lp_build_context_init(&bld.bld_base.int_bld, gallivm, lp_int_type(type));
3898 lp_build_context_init(&bld.elem_bld, gallivm, lp_elem_type(type));
3899 {
3900 struct lp_type dbl_type;
3901 dbl_type = type;
3902 dbl_type.width *= 2;
3903 lp_build_context_init(&bld.bld_base.dbl_bld, gallivm, dbl_type);
3904 }
3905 bld.mask = mask;
3906 bld.inputs = inputs;
3907 bld.outputs = outputs;
3908 bld.consts_ptr = consts_ptr;
3909 bld.const_sizes_ptr = const_sizes_ptr;
3910 bld.sampler = sampler;
3911 bld.bld_base.info = info;
3912 bld.indirect_files = info->indirect_files;
3913 bld.context_ptr = context_ptr;
3914 bld.thread_data_ptr = thread_data_ptr;
3915
3916 /*
3917 * If the number of temporaries is rather large then we just
3918 * allocate them as an array right from the start and treat
3919 * like indirect temporaries.
3920 */
3921 if (info->file_max[TGSI_FILE_TEMPORARY] >= LP_MAX_INLINED_TEMPS) {
3922 bld.indirect_files |= (1 << TGSI_FILE_TEMPORARY);
3923 }
3924 /*
3925 * For performance reason immediates are always backed in a static
3926 * array, but if their number is too great, we have to use just
3927 * a dynamically allocated array.
3928 */
3929 bld.use_immediates_array =
3930 (info->file_max[TGSI_FILE_IMMEDIATE] >= LP_MAX_INLINED_IMMEDIATES);
3931 if (bld.use_immediates_array) {
3932 bld.indirect_files |= (1 << TGSI_FILE_IMMEDIATE);
3933 }
3934
3935
3936 bld.bld_base.soa = TRUE;
3937 bld.bld_base.emit_debug = emit_debug;
3938 bld.bld_base.emit_fetch_funcs[TGSI_FILE_CONSTANT] = emit_fetch_constant;
3939 bld.bld_base.emit_fetch_funcs[TGSI_FILE_IMMEDIATE] = emit_fetch_immediate;
3940 bld.bld_base.emit_fetch_funcs[TGSI_FILE_INPUT] = emit_fetch_input;
3941 bld.bld_base.emit_fetch_funcs[TGSI_FILE_TEMPORARY] = emit_fetch_temporary;
3942 bld.bld_base.emit_fetch_funcs[TGSI_FILE_SYSTEM_VALUE] = emit_fetch_system_value;
3943 bld.bld_base.emit_store = emit_store;
3944
3945 bld.bld_base.emit_declaration = lp_emit_declaration_soa;
3946 bld.bld_base.emit_immediate = lp_emit_immediate_soa;
3947
3948 bld.bld_base.emit_prologue = emit_prologue;
3949 bld.bld_base.emit_epilogue = emit_epilogue;
3950
3951 /* Set opcode actions */
3952 lp_set_default_actions_cpu(&bld.bld_base);
3953
3954 bld.bld_base.op_actions[TGSI_OPCODE_BGNLOOP].emit = bgnloop_emit;
3955 bld.bld_base.op_actions[TGSI_OPCODE_BGNSUB].emit = bgnsub_emit;
3956 bld.bld_base.op_actions[TGSI_OPCODE_BRK].emit = brk_emit;
3957 bld.bld_base.op_actions[TGSI_OPCODE_BREAKC].emit = breakc_emit;
3958 bld.bld_base.op_actions[TGSI_OPCODE_CAL].emit = cal_emit;
3959 bld.bld_base.op_actions[TGSI_OPCODE_CASE].emit = case_emit;
3960 bld.bld_base.op_actions[TGSI_OPCODE_CONT].emit = cont_emit;
3961 bld.bld_base.op_actions[TGSI_OPCODE_DDX].emit = ddx_emit;
3962 bld.bld_base.op_actions[TGSI_OPCODE_DDY].emit = ddy_emit;
3963 bld.bld_base.op_actions[TGSI_OPCODE_DEFAULT].emit = default_emit;
3964 bld.bld_base.op_actions[TGSI_OPCODE_ELSE].emit = else_emit;
3965 bld.bld_base.op_actions[TGSI_OPCODE_ENDIF].emit = endif_emit;
3966 bld.bld_base.op_actions[TGSI_OPCODE_ENDLOOP].emit = endloop_emit;
3967 bld.bld_base.op_actions[TGSI_OPCODE_ENDSUB].emit = endsub_emit;
3968 bld.bld_base.op_actions[TGSI_OPCODE_ENDSWITCH].emit = endswitch_emit;
3969 bld.bld_base.op_actions[TGSI_OPCODE_IF].emit = if_emit;
3970 bld.bld_base.op_actions[TGSI_OPCODE_UIF].emit = uif_emit;
3971 bld.bld_base.op_actions[TGSI_OPCODE_KILL_IF].emit = kill_if_emit;
3972 bld.bld_base.op_actions[TGSI_OPCODE_KILL].emit = kill_emit;
3973 bld.bld_base.op_actions[TGSI_OPCODE_RET].emit = ret_emit;
3974 bld.bld_base.op_actions[TGSI_OPCODE_SWITCH].emit = switch_emit;
3975 bld.bld_base.op_actions[TGSI_OPCODE_TEX].emit = tex_emit;
3976 bld.bld_base.op_actions[TGSI_OPCODE_TXB].emit = txb_emit;
3977 bld.bld_base.op_actions[TGSI_OPCODE_TXD].emit = txd_emit;
3978 bld.bld_base.op_actions[TGSI_OPCODE_TXL].emit = txl_emit;
3979 bld.bld_base.op_actions[TGSI_OPCODE_TXP].emit = txp_emit;
3980 bld.bld_base.op_actions[TGSI_OPCODE_TXQ].emit = txq_emit;
3981 bld.bld_base.op_actions[TGSI_OPCODE_TXF].emit = txf_emit;
3982 bld.bld_base.op_actions[TGSI_OPCODE_TEX2].emit = tex2_emit;
3983 bld.bld_base.op_actions[TGSI_OPCODE_TXB2].emit = txb2_emit;
3984 bld.bld_base.op_actions[TGSI_OPCODE_TXL2].emit = txl2_emit;
3985 bld.bld_base.op_actions[TGSI_OPCODE_TG4].emit = tg4_emit;
3986 /* DX10 sampling ops */
3987 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE].emit = sample_emit;
3988 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_B].emit = sample_b_emit;
3989 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_C].emit = sample_c_emit;
3990 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_C_LZ].emit = sample_c_lz_emit;
3991 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_D].emit = sample_d_emit;
3992 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_I].emit = sample_i_emit;
3993 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_I_MS].emit = sample_i_emit;
3994 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_L].emit = sample_l_emit;
3995 bld.bld_base.op_actions[TGSI_OPCODE_SVIEWINFO].emit = sviewinfo_emit;
3996
3997 if (gs_iface) {
3998 /* There's no specific value for this because it should always
3999 * be set, but apps using ext_geometry_shader4 quite often
4000 * were forgetting so we're using MAX_VERTEX_VARYING from
4001 * that spec even though we could debug_assert if it's not
4002 * set, but that's a lot uglier. */
4003 uint max_output_vertices;
4004
4005 /* inputs are always indirect with gs */
4006 bld.indirect_files |= (1 << TGSI_FILE_INPUT);
4007 bld.gs_iface = gs_iface;
4008 bld.bld_base.emit_fetch_funcs[TGSI_FILE_INPUT] = emit_fetch_gs_input;
4009 bld.bld_base.op_actions[TGSI_OPCODE_EMIT].emit = emit_vertex;
4010 bld.bld_base.op_actions[TGSI_OPCODE_ENDPRIM].emit = end_primitive;
4011
4012 max_output_vertices =
4013 info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
4014 if (!max_output_vertices)
4015 max_output_vertices = 32;
4016
4017 bld.max_output_vertices_vec =
4018 lp_build_const_int_vec(gallivm, bld.bld_base.int_bld.type,
4019 max_output_vertices);
4020 }
4021
4022 lp_exec_mask_init(&bld.exec_mask, &bld.bld_base.int_bld);
4023
4024 bld.system_values = *system_values;
4025
4026 lp_build_tgsi_llvm(&bld.bld_base, tokens);
4027
4028 if (0) {
4029 LLVMBasicBlockRef block = LLVMGetInsertBlock(gallivm->builder);
4030 LLVMValueRef function = LLVMGetBasicBlockParent(block);
4031 debug_printf("11111111111111111111111111111 \n");
4032 tgsi_dump(tokens, 0);
4033 lp_debug_dump_value(function);
4034 debug_printf("2222222222222222222222222222 \n");
4035 }
4036
4037 if (0) {
4038 LLVMModuleRef module = LLVMGetGlobalParent(
4039 LLVMGetBasicBlockParent(LLVMGetInsertBlock(gallivm->builder)));
4040 LLVMDumpModule(module);
4041
4042 }
4043 lp_exec_mask_fini(&bld.exec_mask);
4044 }