freedreno/a4xx: frag-depth fixes
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_tgsi_soa.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007-2008 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * TGSI to LLVM IR translation -- SoA.
32 *
33 * @author Jose Fonseca <jfonseca@vmware.com>
34 *
35 * Based on tgsi_sse2.c code written by Michal Krol, Keith Whitwell,
36 * Brian Paul, and others.
37 */
38
39 #include "pipe/p_config.h"
40 #include "pipe/p_shader_tokens.h"
41 #include "util/u_debug.h"
42 #include "util/u_math.h"
43 #include "util/u_memory.h"
44 #include "tgsi/tgsi_dump.h"
45 #include "tgsi/tgsi_exec.h"
46 #include "tgsi/tgsi_info.h"
47 #include "tgsi/tgsi_parse.h"
48 #include "tgsi/tgsi_util.h"
49 #include "tgsi/tgsi_scan.h"
50 #include "tgsi/tgsi_strings.h"
51 #include "lp_bld_tgsi_action.h"
52 #include "lp_bld_type.h"
53 #include "lp_bld_const.h"
54 #include "lp_bld_arit.h"
55 #include "lp_bld_bitarit.h"
56 #include "lp_bld_gather.h"
57 #include "lp_bld_init.h"
58 #include "lp_bld_logic.h"
59 #include "lp_bld_swizzle.h"
60 #include "lp_bld_flow.h"
61 #include "lp_bld_quad.h"
62 #include "lp_bld_tgsi.h"
63 #include "lp_bld_limits.h"
64 #include "lp_bld_debug.h"
65 #include "lp_bld_printf.h"
66 #include "lp_bld_sample.h"
67 #include "lp_bld_struct.h"
68
69 /* SM 4.0 says that subroutines can nest 32 deep and
70 * we need one more for our main function */
71 #define LP_MAX_NUM_FUNCS 33
72
73 #define DUMP_GS_EMITS 0
74
75 /*
76 * If non-zero, the generated LLVM IR will print intermediate results on every TGSI
77 * instruction.
78 *
79 * TODO:
80 * - take execution masks in consideration
81 * - debug control-flow instructions
82 */
83 #define DEBUG_EXECUTION 0
84
85
86 /*
87 * Emit code to print a register value.
88 */
89 static void
90 emit_dump_reg(struct gallivm_state *gallivm,
91 unsigned file,
92 unsigned index,
93 unsigned chan,
94 LLVMValueRef value)
95 {
96 char buf[32];
97
98 util_snprintf(buf, sizeof buf, " %s[%u].%c = ",
99 tgsi_file_name(file),
100 index, "xyzw"[chan]);
101
102 lp_build_print_value(gallivm, buf, value);
103 }
104
105 /*
106 * Return the context for the current function.
107 * (always 'main', if shader doesn't do any function calls)
108 */
109 static INLINE struct function_ctx *
110 func_ctx(struct lp_exec_mask *mask)
111 {
112 assert(mask->function_stack_size > 0);
113 assert(mask->function_stack_size <= LP_MAX_NUM_FUNCS);
114 return &mask->function_stack[mask->function_stack_size - 1];
115 }
116
117 /*
118 * Returns true if we're in a loop.
119 * It's global, meaning that it returns true even if there's
120 * no loop inside the current function, but we were inside
121 * a loop inside another function, from which this one was called.
122 */
123 static INLINE boolean
124 mask_has_loop(struct lp_exec_mask *mask)
125 {
126 int i;
127 for (i = mask->function_stack_size - 1; i >= 0; --i) {
128 const struct function_ctx *ctx = &mask->function_stack[i];
129 if (ctx->loop_stack_size > 0)
130 return TRUE;
131 }
132 return FALSE;
133 }
134
135 /*
136 * Returns true if we're inside a switch statement.
137 * It's global, meaning that it returns true even if there's
138 * no switch in the current function, but we were inside
139 * a switch inside another function, from which this one was called.
140 */
141 static INLINE boolean
142 mask_has_switch(struct lp_exec_mask *mask)
143 {
144 int i;
145 for (i = mask->function_stack_size - 1; i >= 0; --i) {
146 const struct function_ctx *ctx = &mask->function_stack[i];
147 if (ctx->switch_stack_size > 0)
148 return TRUE;
149 }
150 return FALSE;
151 }
152
153 /*
154 * Returns true if we're inside a conditional.
155 * It's global, meaning that it returns true even if there's
156 * no conditional in the current function, but we were inside
157 * a conditional inside another function, from which this one was called.
158 */
159 static INLINE boolean
160 mask_has_cond(struct lp_exec_mask *mask)
161 {
162 int i;
163 for (i = mask->function_stack_size - 1; i >= 0; --i) {
164 const struct function_ctx *ctx = &mask->function_stack[i];
165 if (ctx->cond_stack_size > 0)
166 return TRUE;
167 }
168 return FALSE;
169 }
170
171
172 /*
173 * Initialize a function context at the specified index.
174 */
175 static void
176 lp_exec_mask_function_init(struct lp_exec_mask *mask, int function_idx)
177 {
178 LLVMTypeRef int_type = LLVMInt32TypeInContext(mask->bld->gallivm->context);
179 LLVMBuilderRef builder = mask->bld->gallivm->builder;
180 struct function_ctx *ctx = &mask->function_stack[function_idx];
181
182 ctx->cond_stack_size = 0;
183 ctx->loop_stack_size = 0;
184 ctx->switch_stack_size = 0;
185
186 if (function_idx == 0) {
187 ctx->ret_mask = mask->ret_mask;
188 }
189
190 ctx->loop_limiter = lp_build_alloca(mask->bld->gallivm,
191 int_type, "looplimiter");
192 LLVMBuildStore(
193 builder,
194 LLVMConstInt(int_type, LP_MAX_TGSI_LOOP_ITERATIONS, false),
195 ctx->loop_limiter);
196 }
197
198 static void lp_exec_mask_init(struct lp_exec_mask *mask, struct lp_build_context *bld)
199 {
200 mask->bld = bld;
201 mask->has_mask = FALSE;
202 mask->ret_in_main = FALSE;
203 /* For the main function */
204 mask->function_stack_size = 1;
205
206 mask->int_vec_type = lp_build_int_vec_type(bld->gallivm, mask->bld->type);
207 mask->exec_mask = mask->ret_mask = mask->break_mask = mask->cont_mask =
208 mask->cond_mask = mask->switch_mask =
209 LLVMConstAllOnes(mask->int_vec_type);
210
211 mask->function_stack = CALLOC(LP_MAX_NUM_FUNCS,
212 sizeof(mask->function_stack[0]));
213 lp_exec_mask_function_init(mask, 0);
214 }
215
216 static void
217 lp_exec_mask_fini(struct lp_exec_mask *mask)
218 {
219 FREE(mask->function_stack);
220 }
221
222 static void lp_exec_mask_update(struct lp_exec_mask *mask)
223 {
224 LLVMBuilderRef builder = mask->bld->gallivm->builder;
225 boolean has_loop_mask = mask_has_loop(mask);
226 boolean has_cond_mask = mask_has_cond(mask);
227 boolean has_switch_mask = mask_has_switch(mask);
228 boolean has_ret_mask = mask->function_stack_size > 1 ||
229 mask->ret_in_main;
230
231 if (has_loop_mask) {
232 /*for loops we need to update the entire mask at runtime */
233 LLVMValueRef tmp;
234 assert(mask->break_mask);
235 tmp = LLVMBuildAnd(builder,
236 mask->cont_mask,
237 mask->break_mask,
238 "maskcb");
239 mask->exec_mask = LLVMBuildAnd(builder,
240 mask->cond_mask,
241 tmp,
242 "maskfull");
243 } else
244 mask->exec_mask = mask->cond_mask;
245
246 if (has_switch_mask) {
247 mask->exec_mask = LLVMBuildAnd(builder,
248 mask->exec_mask,
249 mask->switch_mask,
250 "switchmask");
251 }
252
253 if (has_ret_mask) {
254 mask->exec_mask = LLVMBuildAnd(builder,
255 mask->exec_mask,
256 mask->ret_mask,
257 "callmask");
258 }
259
260 mask->has_mask = (has_cond_mask ||
261 has_loop_mask ||
262 has_switch_mask ||
263 has_ret_mask);
264 }
265
266 static void lp_exec_mask_cond_push(struct lp_exec_mask *mask,
267 LLVMValueRef val)
268 {
269 LLVMBuilderRef builder = mask->bld->gallivm->builder;
270 struct function_ctx *ctx = func_ctx(mask);
271
272 if (ctx->cond_stack_size >= LP_MAX_TGSI_NESTING) {
273 ctx->cond_stack_size++;
274 return;
275 }
276 if (ctx->cond_stack_size == 0 && mask->function_stack_size == 1) {
277 assert(mask->cond_mask == LLVMConstAllOnes(mask->int_vec_type));
278 }
279 ctx->cond_stack[ctx->cond_stack_size++] = mask->cond_mask;
280 assert(LLVMTypeOf(val) == mask->int_vec_type);
281 mask->cond_mask = LLVMBuildAnd(builder,
282 mask->cond_mask,
283 val,
284 "");
285 lp_exec_mask_update(mask);
286 }
287
288 static void lp_exec_mask_cond_invert(struct lp_exec_mask *mask)
289 {
290 LLVMBuilderRef builder = mask->bld->gallivm->builder;
291 struct function_ctx *ctx = func_ctx(mask);
292 LLVMValueRef prev_mask;
293 LLVMValueRef inv_mask;
294
295 assert(ctx->cond_stack_size);
296 if (ctx->cond_stack_size >= LP_MAX_TGSI_NESTING)
297 return;
298 prev_mask = ctx->cond_stack[ctx->cond_stack_size - 1];
299 if (ctx->cond_stack_size == 1 && mask->function_stack_size == 1) {
300 assert(prev_mask == LLVMConstAllOnes(mask->int_vec_type));
301 }
302
303 inv_mask = LLVMBuildNot(builder, mask->cond_mask, "");
304
305 mask->cond_mask = LLVMBuildAnd(builder,
306 inv_mask,
307 prev_mask, "");
308 lp_exec_mask_update(mask);
309 }
310
311 static void lp_exec_mask_cond_pop(struct lp_exec_mask *mask)
312 {
313 struct function_ctx *ctx = func_ctx(mask);
314 assert(ctx->cond_stack_size);
315 --ctx->cond_stack_size;
316 if (ctx->cond_stack_size >= LP_MAX_TGSI_NESTING)
317 return;
318 mask->cond_mask = ctx->cond_stack[ctx->cond_stack_size];
319 lp_exec_mask_update(mask);
320 }
321
322 static void lp_exec_bgnloop(struct lp_exec_mask *mask)
323 {
324 LLVMBuilderRef builder = mask->bld->gallivm->builder;
325 struct function_ctx *ctx = func_ctx(mask);
326
327 if (ctx->loop_stack_size >= LP_MAX_TGSI_NESTING) {
328 ++ctx->loop_stack_size;
329 return;
330 }
331
332 ctx->break_type_stack[ctx->loop_stack_size + ctx->switch_stack_size] =
333 ctx->break_type;
334 ctx->break_type = LP_EXEC_MASK_BREAK_TYPE_LOOP;
335
336 ctx->loop_stack[ctx->loop_stack_size].loop_block = ctx->loop_block;
337 ctx->loop_stack[ctx->loop_stack_size].cont_mask = mask->cont_mask;
338 ctx->loop_stack[ctx->loop_stack_size].break_mask = mask->break_mask;
339 ctx->loop_stack[ctx->loop_stack_size].break_var = ctx->break_var;
340 ++ctx->loop_stack_size;
341
342 ctx->break_var = lp_build_alloca(mask->bld->gallivm, mask->int_vec_type, "");
343 LLVMBuildStore(builder, mask->break_mask, ctx->break_var);
344
345 ctx->loop_block = lp_build_insert_new_block(mask->bld->gallivm, "bgnloop");
346
347 LLVMBuildBr(builder, ctx->loop_block);
348 LLVMPositionBuilderAtEnd(builder, ctx->loop_block);
349
350 mask->break_mask = LLVMBuildLoad(builder, ctx->break_var, "");
351
352 lp_exec_mask_update(mask);
353 }
354
355 static void lp_exec_break(struct lp_exec_mask *mask,
356 struct lp_build_tgsi_context * bld_base)
357 {
358 LLVMBuilderRef builder = mask->bld->gallivm->builder;
359 struct function_ctx *ctx = func_ctx(mask);
360
361 if (ctx->break_type == LP_EXEC_MASK_BREAK_TYPE_LOOP) {
362 LLVMValueRef exec_mask = LLVMBuildNot(builder,
363 mask->exec_mask,
364 "break");
365
366 mask->break_mask = LLVMBuildAnd(builder,
367 mask->break_mask,
368 exec_mask, "break_full");
369 }
370 else {
371 unsigned opcode = bld_base->instructions[bld_base->pc + 1].Instruction.Opcode;
372 boolean break_always = (opcode == TGSI_OPCODE_ENDSWITCH ||
373 opcode == TGSI_OPCODE_CASE);
374
375
376 if (ctx->switch_in_default) {
377 /*
378 * stop default execution but only if this is an unconditional switch.
379 * (The condition here is not perfect since dead code after break is
380 * allowed but should be sufficient since false negatives are just
381 * unoptimized - so we don't have to pre-evaluate that).
382 */
383 if(break_always && ctx->switch_pc) {
384 bld_base->pc = ctx->switch_pc;
385 return;
386 }
387 }
388
389 if (break_always) {
390 mask->switch_mask = LLVMConstNull(mask->bld->int_vec_type);
391 }
392 else {
393 LLVMValueRef exec_mask = LLVMBuildNot(builder,
394 mask->exec_mask,
395 "break");
396 mask->switch_mask = LLVMBuildAnd(builder,
397 mask->switch_mask,
398 exec_mask, "break_switch");
399 }
400 }
401
402 lp_exec_mask_update(mask);
403 }
404
405 static void lp_exec_break_condition(struct lp_exec_mask *mask,
406 LLVMValueRef cond)
407 {
408 LLVMBuilderRef builder = mask->bld->gallivm->builder;
409 struct function_ctx *ctx = func_ctx(mask);
410 LLVMValueRef cond_mask = LLVMBuildAnd(builder,
411 mask->exec_mask,
412 cond, "cond_mask");
413 cond_mask = LLVMBuildNot(builder, cond_mask, "break_cond");
414
415 if (ctx->break_type == LP_EXEC_MASK_BREAK_TYPE_LOOP) {
416 mask->break_mask = LLVMBuildAnd(builder,
417 mask->break_mask,
418 cond_mask, "breakc_full");
419 }
420 else {
421 mask->switch_mask = LLVMBuildAnd(builder,
422 mask->switch_mask,
423 cond_mask, "breakc_switch");
424 }
425
426 lp_exec_mask_update(mask);
427 }
428
429 static void lp_exec_continue(struct lp_exec_mask *mask)
430 {
431 LLVMBuilderRef builder = mask->bld->gallivm->builder;
432 LLVMValueRef exec_mask = LLVMBuildNot(builder,
433 mask->exec_mask,
434 "");
435
436 mask->cont_mask = LLVMBuildAnd(builder,
437 mask->cont_mask,
438 exec_mask, "");
439
440 lp_exec_mask_update(mask);
441 }
442
443
444 static void lp_exec_endloop(struct gallivm_state *gallivm,
445 struct lp_exec_mask *mask)
446 {
447 LLVMBuilderRef builder = mask->bld->gallivm->builder;
448 struct function_ctx *ctx = func_ctx(mask);
449 LLVMBasicBlockRef endloop;
450 LLVMTypeRef int_type = LLVMInt32TypeInContext(mask->bld->gallivm->context);
451 LLVMTypeRef reg_type = LLVMIntTypeInContext(gallivm->context,
452 mask->bld->type.width *
453 mask->bld->type.length);
454 LLVMValueRef i1cond, i2cond, icond, limiter;
455
456 assert(mask->break_mask);
457
458
459 assert(ctx->loop_stack_size);
460 if (ctx->loop_stack_size > LP_MAX_TGSI_NESTING) {
461 --ctx->loop_stack_size;
462 return;
463 }
464
465 /*
466 * Restore the cont_mask, but don't pop
467 */
468 mask->cont_mask = ctx->loop_stack[ctx->loop_stack_size - 1].cont_mask;
469 lp_exec_mask_update(mask);
470
471 /*
472 * Unlike the continue mask, the break_mask must be preserved across loop
473 * iterations
474 */
475 LLVMBuildStore(builder, mask->break_mask, ctx->break_var);
476
477 /* Decrement the loop limiter */
478 limiter = LLVMBuildLoad(builder, ctx->loop_limiter, "");
479
480 limiter = LLVMBuildSub(
481 builder,
482 limiter,
483 LLVMConstInt(int_type, 1, false),
484 "");
485
486 LLVMBuildStore(builder, limiter, ctx->loop_limiter);
487
488 /* i1cond = (mask != 0) */
489 i1cond = LLVMBuildICmp(
490 builder,
491 LLVMIntNE,
492 LLVMBuildBitCast(builder, mask->exec_mask, reg_type, ""),
493 LLVMConstNull(reg_type), "i1cond");
494
495 /* i2cond = (looplimiter > 0) */
496 i2cond = LLVMBuildICmp(
497 builder,
498 LLVMIntSGT,
499 limiter,
500 LLVMConstNull(int_type), "i2cond");
501
502 /* if( i1cond && i2cond ) */
503 icond = LLVMBuildAnd(builder, i1cond, i2cond, "");
504
505 endloop = lp_build_insert_new_block(mask->bld->gallivm, "endloop");
506
507 LLVMBuildCondBr(builder,
508 icond, ctx->loop_block, endloop);
509
510 LLVMPositionBuilderAtEnd(builder, endloop);
511
512 assert(ctx->loop_stack_size);
513 --ctx->loop_stack_size;
514 mask->cont_mask = ctx->loop_stack[ctx->loop_stack_size].cont_mask;
515 mask->break_mask = ctx->loop_stack[ctx->loop_stack_size].break_mask;
516 ctx->loop_block = ctx->loop_stack[ctx->loop_stack_size].loop_block;
517 ctx->break_var = ctx->loop_stack[ctx->loop_stack_size].break_var;
518 ctx->break_type = ctx->break_type_stack[ctx->loop_stack_size +
519 ctx->switch_stack_size];
520
521 lp_exec_mask_update(mask);
522 }
523
524 static void lp_exec_switch(struct lp_exec_mask *mask,
525 LLVMValueRef switchval)
526 {
527 struct function_ctx *ctx = func_ctx(mask);
528
529 if (ctx->switch_stack_size >= LP_MAX_TGSI_NESTING ||
530 ctx->loop_stack_size > LP_MAX_TGSI_NESTING) {
531 ctx->switch_stack_size++;
532 return;
533 }
534
535 ctx->break_type_stack[ctx->loop_stack_size + ctx->switch_stack_size] =
536 ctx->break_type;
537 ctx->break_type = LP_EXEC_MASK_BREAK_TYPE_SWITCH;
538
539 ctx->switch_stack[ctx->switch_stack_size].switch_mask = mask->switch_mask;
540 ctx->switch_stack[ctx->switch_stack_size].switch_val = ctx->switch_val;
541 ctx->switch_stack[ctx->switch_stack_size].switch_mask_default = ctx->switch_mask_default;
542 ctx->switch_stack[ctx->switch_stack_size].switch_in_default = ctx->switch_in_default;
543 ctx->switch_stack[ctx->switch_stack_size].switch_pc = ctx->switch_pc;
544 ctx->switch_stack_size++;
545
546 mask->switch_mask = LLVMConstNull(mask->int_vec_type);
547 ctx->switch_val = switchval;
548 ctx->switch_mask_default = LLVMConstNull(mask->int_vec_type);
549 ctx->switch_in_default = false;
550 ctx->switch_pc = 0;
551
552 lp_exec_mask_update(mask);
553 }
554
555 static void lp_exec_endswitch(struct lp_exec_mask *mask,
556 struct lp_build_tgsi_context * bld_base)
557 {
558 LLVMBuilderRef builder = mask->bld->gallivm->builder;
559 struct function_ctx *ctx = func_ctx(mask);
560
561 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
562 ctx->switch_stack_size--;
563 return;
564 }
565
566 /* check if there's deferred default if so do it now */
567 if (ctx->switch_pc && !ctx->switch_in_default) {
568 LLVMValueRef prevmask, defaultmask;
569 unsigned tmp_pc;
570 prevmask = ctx->switch_stack[ctx->switch_stack_size - 1].switch_mask;
571 defaultmask = LLVMBuildNot(builder, ctx->switch_mask_default, "sw_default_mask");
572 mask->switch_mask = LLVMBuildAnd(builder, prevmask, defaultmask, "sw_mask");
573 ctx->switch_in_default = true;
574
575 lp_exec_mask_update(mask);
576
577 assert(bld_base->instructions[ctx->switch_pc - 1].Instruction.Opcode ==
578 TGSI_OPCODE_DEFAULT);
579
580 tmp_pc = bld_base->pc;
581 bld_base->pc = ctx->switch_pc;
582 /*
583 * re-purpose switch_pc to point to here again, since we stop execution of
584 * the deferred default after next break.
585 */
586 ctx->switch_pc = tmp_pc - 1;
587
588 return;
589 }
590
591 else if (ctx->switch_pc && ctx->switch_in_default) {
592 assert(bld_base->pc == ctx->switch_pc + 1);
593 }
594
595 ctx->switch_stack_size--;
596 mask->switch_mask = ctx->switch_stack[ctx->switch_stack_size].switch_mask;
597 ctx->switch_val = ctx->switch_stack[ctx->switch_stack_size].switch_val;
598 ctx->switch_mask_default = ctx->switch_stack[ctx->switch_stack_size].switch_mask_default;
599 ctx->switch_in_default = ctx->switch_stack[ctx->switch_stack_size].switch_in_default;
600 ctx->switch_pc = ctx->switch_stack[ctx->switch_stack_size].switch_pc;
601
602 ctx->break_type = ctx->break_type_stack[ctx->loop_stack_size + ctx->switch_stack_size];
603
604 lp_exec_mask_update(mask);
605 }
606
607 static void lp_exec_case(struct lp_exec_mask *mask,
608 LLVMValueRef caseval)
609 {
610 LLVMBuilderRef builder = mask->bld->gallivm->builder;
611 struct function_ctx *ctx = func_ctx(mask);
612
613 LLVMValueRef casemask, prevmask;
614
615 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
616 return;
617 }
618
619 /* skipping case mask evaluation here is NOT optional (not in all cases anyway). */
620 if (!ctx->switch_in_default) {
621 prevmask = ctx->switch_stack[ctx->switch_stack_size - 1].switch_mask;
622 casemask = lp_build_cmp(mask->bld, PIPE_FUNC_EQUAL, caseval, ctx->switch_val);
623 ctx->switch_mask_default = LLVMBuildOr(builder, casemask,
624 ctx->switch_mask_default, "sw_default_mask");
625 casemask = LLVMBuildOr(builder, casemask, mask->switch_mask, "");
626 mask->switch_mask = LLVMBuildAnd(builder, casemask, prevmask, "sw_mask");
627
628 lp_exec_mask_update(mask);
629 }
630 }
631
632 /*
633 * Analyse default statement in a switch.
634 * \return true if default is last statement, false otherwise
635 * \param default_pc_start contains pc of instruction to jump to
636 * if default wasn't last but there's no
637 * fallthrough into default.
638 */
639 static boolean default_analyse_is_last(struct lp_exec_mask *mask,
640 struct lp_build_tgsi_context * bld_base,
641 int *default_pc_start)
642 {
643 unsigned pc = bld_base->pc;
644 struct function_ctx *ctx = func_ctx(mask);
645 unsigned curr_switch_stack = ctx->switch_stack_size;
646
647 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
648 return false;
649 }
650
651 /* skip over case statements which are together with default */
652 while (bld_base->instructions[pc].Instruction.Opcode == TGSI_OPCODE_CASE) {
653 pc++;
654 }
655
656 while (pc != -1 && pc < bld_base->num_instructions) {
657 unsigned opcode = bld_base->instructions[pc].Instruction.Opcode;
658 switch (opcode) {
659 case TGSI_OPCODE_CASE:
660 if (curr_switch_stack == ctx->switch_stack_size) {
661 *default_pc_start = pc - 1;
662 return false;
663 }
664 break;
665 case TGSI_OPCODE_SWITCH:
666 curr_switch_stack++;
667 break;
668 case TGSI_OPCODE_ENDSWITCH:
669 if (curr_switch_stack == ctx->switch_stack_size) {
670 *default_pc_start = pc - 1;
671 return true;
672 }
673 curr_switch_stack--;
674 break;
675 }
676 pc++;
677 }
678 /* should never arrive here */
679 assert(0);
680 return true;
681 }
682
683 static void lp_exec_default(struct lp_exec_mask *mask,
684 struct lp_build_tgsi_context * bld_base)
685 {
686 LLVMBuilderRef builder = mask->bld->gallivm->builder;
687 struct function_ctx *ctx = func_ctx(mask);
688
689 int default_exec_pc;
690 boolean default_is_last;
691
692 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
693 return;
694 }
695
696 /*
697 * This is a messy opcode, because it may not be always at the end and
698 * there can be fallthrough in and out of it.
699 */
700
701 default_is_last = default_analyse_is_last(mask, bld_base, &default_exec_pc);
702 /*
703 * If it is last statement in switch (note that case statements appearing
704 * "at the same time" as default don't change that) everything is just fine,
705 * update switch mask and go on. This means we can handle default with
706 * fallthrough INTO it without overhead, if it is last.
707 */
708 if (default_is_last) {
709 LLVMValueRef prevmask, defaultmask;
710 prevmask = ctx->switch_stack[ctx->switch_stack_size - 1].switch_mask;
711 defaultmask = LLVMBuildNot(builder, ctx->switch_mask_default, "sw_default_mask");
712 defaultmask = LLVMBuildOr(builder, defaultmask, mask->switch_mask, "");
713 mask->switch_mask = LLVMBuildAnd(builder, prevmask, defaultmask, "sw_mask");
714 ctx->switch_in_default = true;
715
716 lp_exec_mask_update(mask);
717 }
718 else {
719 /*
720 * Technically, "case" immediately before default isn't really a
721 * fallthrough, however we still have to count them as such as we
722 * already have updated the masks.
723 * If that happens in practice could add a switch optimizer pass
724 * which just gets rid of all case statements appearing together with
725 * default (or could do switch analysis at switch start time instead).
726 */
727 unsigned opcode = bld_base->instructions[bld_base->pc - 1].Instruction.Opcode;
728 boolean ft_into = (opcode != TGSI_OPCODE_BRK &&
729 opcode != TGSI_OPCODE_SWITCH);
730 /*
731 * If it is not last statement and there was no fallthrough into it,
732 * we record the PC and continue execution at next case (again, those
733 * case encountered at the same time don't count). At endswitch
734 * time, we update switchmask, and go back executing the code we skipped
735 * until the next break (possibly re-executing some code with changed mask
736 * if there was a fallthrough out of default).
737 * Finally, if it is not last statement and there was a fallthrough into it,
738 * do the same as with the former case, except instead of skipping the code
739 * just execute it without updating the mask, then go back and re-execute.
740 */
741 ctx->switch_pc = bld_base->pc;
742 if (!ft_into) {
743 bld_base->pc = default_exec_pc;
744 }
745 }
746 }
747
748
749 /* stores val into an address pointed to by dst_ptr.
750 * mask->exec_mask is used to figure out which bits of val
751 * should be stored into the address
752 * (0 means don't store this bit, 1 means do store).
753 */
754 static void lp_exec_mask_store(struct lp_exec_mask *mask,
755 struct lp_build_context *bld_store,
756 LLVMValueRef pred,
757 LLVMValueRef val,
758 LLVMValueRef dst_ptr)
759 {
760 LLVMBuilderRef builder = mask->bld->gallivm->builder;
761
762 assert(lp_check_value(bld_store->type, val));
763 assert(LLVMGetTypeKind(LLVMTypeOf(dst_ptr)) == LLVMPointerTypeKind);
764 assert(LLVMGetElementType(LLVMTypeOf(dst_ptr)) == LLVMTypeOf(val));
765
766 /* Mix the predicate and execution mask */
767 if (mask->has_mask) {
768 if (pred) {
769 pred = LLVMBuildAnd(builder, pred, mask->exec_mask, "");
770 } else {
771 pred = mask->exec_mask;
772 }
773 }
774
775 if (pred) {
776 LLVMValueRef res, dst;
777
778 dst = LLVMBuildLoad(builder, dst_ptr, "");
779 res = lp_build_select(bld_store, pred, val, dst);
780 LLVMBuildStore(builder, res, dst_ptr);
781 } else
782 LLVMBuildStore(builder, val, dst_ptr);
783 }
784
785 static void lp_exec_mask_call(struct lp_exec_mask *mask,
786 int func,
787 int *pc)
788 {
789 if (mask->function_stack_size >= LP_MAX_NUM_FUNCS) {
790 return;
791 }
792
793 lp_exec_mask_function_init(mask, mask->function_stack_size);
794 mask->function_stack[mask->function_stack_size].pc = *pc;
795 mask->function_stack[mask->function_stack_size].ret_mask = mask->ret_mask;
796 mask->function_stack_size++;
797 *pc = func;
798 }
799
800 static void lp_exec_mask_ret(struct lp_exec_mask *mask, int *pc)
801 {
802 LLVMBuilderRef builder = mask->bld->gallivm->builder;
803 struct function_ctx *ctx = func_ctx(mask);
804 LLVMValueRef exec_mask;
805
806 if (ctx->cond_stack_size == 0 &&
807 ctx->loop_stack_size == 0 &&
808 ctx->switch_stack_size == 0 &&
809 mask->function_stack_size == 1) {
810 /* returning from main() */
811 *pc = -1;
812 return;
813 }
814
815 if (mask->function_stack_size == 1) {
816 /*
817 * This requires special handling since we need to ensure
818 * we don't drop the mask even if we have no call stack
819 * (e.g. after a ret in a if clause after the endif)
820 */
821 mask->ret_in_main = TRUE;
822 }
823
824 exec_mask = LLVMBuildNot(builder,
825 mask->exec_mask,
826 "ret");
827
828 mask->ret_mask = LLVMBuildAnd(builder,
829 mask->ret_mask,
830 exec_mask, "ret_full");
831
832 lp_exec_mask_update(mask);
833 }
834
835 static void lp_exec_mask_bgnsub(struct lp_exec_mask *mask)
836 {
837 }
838
839 static void lp_exec_mask_endsub(struct lp_exec_mask *mask, int *pc)
840 {
841 struct function_ctx *ctx;
842
843 assert(mask->function_stack_size > 1);
844 assert(mask->function_stack_size <= LP_MAX_NUM_FUNCS);
845
846 ctx = func_ctx(mask);
847 mask->function_stack_size--;
848
849 *pc = ctx->pc;
850 mask->ret_mask = ctx->ret_mask;
851
852 lp_exec_mask_update(mask);
853 }
854
855
856 static LLVMValueRef
857 get_file_ptr(struct lp_build_tgsi_soa_context *bld,
858 unsigned file,
859 unsigned index,
860 unsigned chan)
861 {
862 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
863 LLVMValueRef (*array_of_vars)[TGSI_NUM_CHANNELS];
864 LLVMValueRef var_of_array;
865
866 switch (file) {
867 case TGSI_FILE_TEMPORARY:
868 array_of_vars = bld->temps;
869 var_of_array = bld->temps_array;
870 break;
871 case TGSI_FILE_OUTPUT:
872 array_of_vars = bld->outputs;
873 var_of_array = bld->outputs_array;
874 break;
875 default:
876 assert(0);
877 return NULL;
878 }
879
880 assert(chan < 4);
881
882 if (bld->indirect_files & (1 << file)) {
883 LLVMValueRef lindex = lp_build_const_int32(bld->bld_base.base.gallivm, index * 4 + chan);
884 return LLVMBuildGEP(builder, var_of_array, &lindex, 1, "");
885 }
886 else {
887 assert(index <= bld->bld_base.info->file_max[file]);
888 return array_of_vars[index][chan];
889 }
890 }
891
892
893 /**
894 * Return pointer to a temporary register channel (src or dest).
895 * Note that indirect addressing cannot be handled here.
896 * \param index which temporary register
897 * \param chan which channel of the temp register.
898 */
899 LLVMValueRef
900 lp_get_temp_ptr_soa(struct lp_build_tgsi_soa_context *bld,
901 unsigned index,
902 unsigned chan)
903 {
904 return get_file_ptr(bld, TGSI_FILE_TEMPORARY, index, chan);
905 }
906
907 /**
908 * Return pointer to a output register channel (src or dest).
909 * Note that indirect addressing cannot be handled here.
910 * \param index which output register
911 * \param chan which channel of the output register.
912 */
913 LLVMValueRef
914 lp_get_output_ptr(struct lp_build_tgsi_soa_context *bld,
915 unsigned index,
916 unsigned chan)
917 {
918 return get_file_ptr(bld, TGSI_FILE_OUTPUT, index, chan);
919 }
920
921 /*
922 * If we have indirect addressing in outputs copy our alloca array
923 * to the outputs slots specified by the caller to make sure
924 * our outputs are delivered consistently via the same interface.
925 */
926 static void
927 gather_outputs(struct lp_build_tgsi_soa_context * bld)
928 {
929 if ((bld->indirect_files & (1 << TGSI_FILE_OUTPUT))) {
930 unsigned index, chan;
931 assert(bld->bld_base.info->num_outputs <=
932 bld->bld_base.info->file_max[TGSI_FILE_OUTPUT] + 1);
933 for (index = 0; index < bld->bld_base.info->num_outputs; ++index) {
934 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
935 bld->outputs[index][chan] = lp_get_output_ptr(bld, index, chan);
936 }
937 }
938 }
939 }
940
941 /**
942 * Gather vector.
943 * XXX the lp_build_gather() function should be capable of doing this
944 * with a little work.
945 */
946 static LLVMValueRef
947 build_gather(struct lp_build_context *bld,
948 LLVMValueRef base_ptr,
949 LLVMValueRef indexes,
950 LLVMValueRef *overflow_mask)
951 {
952 LLVMBuilderRef builder = bld->gallivm->builder;
953 LLVMValueRef res = bld->undef;
954 unsigned i;
955 LLVMValueRef temp_ptr;
956
957 if (overflow_mask) {
958 temp_ptr = lp_build_alloca(
959 bld->gallivm,
960 lp_build_vec_type(bld->gallivm, bld->type), "");
961 }
962
963 /*
964 * Loop over elements of index_vec, load scalar value, insert it into 'res'.
965 */
966 for (i = 0; i < bld->type.length; i++) {
967 LLVMValueRef ii = lp_build_const_int32(bld->gallivm, i);
968 LLVMValueRef index = LLVMBuildExtractElement(builder,
969 indexes, ii, "");
970 LLVMValueRef scalar_ptr, scalar;
971 LLVMValueRef overflow;
972 struct lp_build_if_state if_ctx;
973
974 /*
975 * overflow_mask is a boolean vector telling us which channels
976 * in the vector overflowed. We use the overflow behavior for
977 * constant buffers which is defined as:
978 * Out of bounds access to constant buffer returns 0 in all
979 * componenets. Out of bounds behavior is always with respect
980 * to the size of the buffer bound at that slot.
981 */
982 if (overflow_mask) {
983 overflow = LLVMBuildExtractElement(builder, *overflow_mask,
984 ii, "");
985 lp_build_if(&if_ctx, bld->gallivm, overflow);
986 {
987 LLVMValueRef val = LLVMBuildLoad(builder, temp_ptr, "");
988 val = LLVMBuildInsertElement(
989 builder, val,
990 LLVMConstNull(LLVMFloatTypeInContext(bld->gallivm->context)),
991 ii, "");
992 LLVMBuildStore(builder, val, temp_ptr);
993 }
994 lp_build_else(&if_ctx);
995 {
996 LLVMValueRef val = LLVMBuildLoad(builder, temp_ptr, "");
997
998 scalar_ptr = LLVMBuildGEP(builder, base_ptr,
999 &index, 1, "gather_ptr");
1000 scalar = LLVMBuildLoad(builder, scalar_ptr, "");
1001
1002 val = LLVMBuildInsertElement(builder, val, scalar, ii, "");
1003
1004 LLVMBuildStore(builder, val, temp_ptr);
1005 }
1006 lp_build_endif(&if_ctx);
1007 } else {
1008 scalar_ptr = LLVMBuildGEP(builder, base_ptr,
1009 &index, 1, "gather_ptr");
1010 scalar = LLVMBuildLoad(builder, scalar_ptr, "");
1011
1012 res = LLVMBuildInsertElement(builder, res, scalar, ii, "");
1013 }
1014 }
1015
1016 if (overflow_mask) {
1017 res = LLVMBuildLoad(builder, temp_ptr, "gather_val");
1018 }
1019
1020 return res;
1021 }
1022
1023
1024 /**
1025 * Scatter/store vector.
1026 */
1027 static void
1028 emit_mask_scatter(struct lp_build_tgsi_soa_context *bld,
1029 LLVMValueRef base_ptr,
1030 LLVMValueRef indexes,
1031 LLVMValueRef values,
1032 struct lp_exec_mask *mask,
1033 LLVMValueRef pred)
1034 {
1035 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1036 LLVMBuilderRef builder = gallivm->builder;
1037 unsigned i;
1038
1039 /* Mix the predicate and execution mask */
1040 if (mask->has_mask) {
1041 if (pred) {
1042 pred = LLVMBuildAnd(builder, pred, mask->exec_mask, "");
1043 }
1044 else {
1045 pred = mask->exec_mask;
1046 }
1047 }
1048
1049 /*
1050 * Loop over elements of index_vec, store scalar value.
1051 */
1052 for (i = 0; i < bld->bld_base.base.type.length; i++) {
1053 LLVMValueRef ii = lp_build_const_int32(gallivm, i);
1054 LLVMValueRef index = LLVMBuildExtractElement(builder, indexes, ii, "");
1055 LLVMValueRef scalar_ptr = LLVMBuildGEP(builder, base_ptr, &index, 1, "scatter_ptr");
1056 LLVMValueRef val = LLVMBuildExtractElement(builder, values, ii, "scatter_val");
1057 LLVMValueRef scalar_pred = pred ?
1058 LLVMBuildExtractElement(builder, pred, ii, "scatter_pred") : NULL;
1059
1060 if (0)
1061 lp_build_printf(gallivm, "scatter %d: val %f at %d %p\n",
1062 ii, val, index, scalar_ptr);
1063
1064 if (scalar_pred) {
1065 LLVMValueRef real_val, dst_val;
1066 dst_val = LLVMBuildLoad(builder, scalar_ptr, "");
1067 real_val = lp_build_select(&bld->elem_bld, scalar_pred, val, dst_val);
1068 LLVMBuildStore(builder, real_val, scalar_ptr);
1069 }
1070 else {
1071 LLVMBuildStore(builder, val, scalar_ptr);
1072 }
1073 }
1074 }
1075
1076
1077 /**
1078 * Read the current value of the ADDR register, convert the floats to
1079 * ints, add the base index and return the vector of offsets.
1080 * The offsets will be used to index into the constant buffer or
1081 * temporary register file.
1082 */
1083 static LLVMValueRef
1084 get_indirect_index(struct lp_build_tgsi_soa_context *bld,
1085 unsigned reg_file, unsigned reg_index,
1086 const struct tgsi_ind_register *indirect_reg)
1087 {
1088 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
1089 struct lp_build_context *uint_bld = &bld->bld_base.uint_bld;
1090 /* always use X component of address register */
1091 unsigned swizzle = indirect_reg->Swizzle;
1092 LLVMValueRef base;
1093 LLVMValueRef rel;
1094 LLVMValueRef max_index;
1095 LLVMValueRef index;
1096
1097 assert(bld->indirect_files & (1 << reg_file));
1098
1099 base = lp_build_const_int_vec(bld->bld_base.base.gallivm, uint_bld->type, reg_index);
1100
1101 assert(swizzle < 4);
1102 switch (indirect_reg->File) {
1103 case TGSI_FILE_ADDRESS:
1104 rel = LLVMBuildLoad(builder,
1105 bld->addr[indirect_reg->Index][swizzle],
1106 "load addr reg");
1107 /* ADDR LLVM values already have LLVM integer type. */
1108 break;
1109 case TGSI_FILE_TEMPORARY:
1110 rel = lp_get_temp_ptr_soa(bld, indirect_reg->Index, swizzle);
1111 rel = LLVMBuildLoad(builder, rel, "load temp reg");
1112 /* TEMP LLVM values always have LLVM float type, but for indirection, the
1113 * value actually stored is expected to be an integer */
1114 rel = LLVMBuildBitCast(builder, rel, uint_bld->vec_type, "");
1115 break;
1116 default:
1117 assert(0);
1118 rel = uint_bld->zero;
1119 }
1120
1121 index = lp_build_add(uint_bld, base, rel);
1122
1123 /*
1124 * emit_fetch_constant handles constant buffer overflow so this code
1125 * is pointless for them.
1126 * Furthermore the D3D10 spec in section 6.5 says:
1127 * If the constant buffer bound to a slot is larger than the size
1128 * declared in the shader for that slot, implementations are allowed
1129 * to return incorrect data (not necessarily 0) for indices that are
1130 * larger than the declared size but smaller than the buffer size.
1131 */
1132 if (reg_file != TGSI_FILE_CONSTANT) {
1133 max_index = lp_build_const_int_vec(bld->bld_base.base.gallivm,
1134 uint_bld->type,
1135 bld->bld_base.info->file_max[reg_file]);
1136
1137 assert(!uint_bld->type.sign);
1138 index = lp_build_min(uint_bld, index, max_index);
1139 }
1140
1141 return index;
1142 }
1143
1144 static struct lp_build_context *
1145 stype_to_fetch(struct lp_build_tgsi_context * bld_base,
1146 enum tgsi_opcode_type stype)
1147 {
1148 struct lp_build_context *bld_fetch;
1149
1150 switch (stype) {
1151 case TGSI_TYPE_FLOAT:
1152 case TGSI_TYPE_UNTYPED:
1153 bld_fetch = &bld_base->base;
1154 break;
1155 case TGSI_TYPE_UNSIGNED:
1156 bld_fetch = &bld_base->uint_bld;
1157 break;
1158 case TGSI_TYPE_SIGNED:
1159 bld_fetch = &bld_base->int_bld;
1160 break;
1161 case TGSI_TYPE_VOID:
1162 case TGSI_TYPE_DOUBLE:
1163 default:
1164 assert(0);
1165 bld_fetch = NULL;
1166 break;
1167 }
1168 return bld_fetch;
1169 }
1170
1171 static LLVMValueRef
1172 get_soa_array_offsets(struct lp_build_context *uint_bld,
1173 LLVMValueRef indirect_index,
1174 unsigned chan_index,
1175 boolean need_perelement_offset)
1176 {
1177 struct gallivm_state *gallivm = uint_bld->gallivm;
1178 LLVMValueRef chan_vec =
1179 lp_build_const_int_vec(uint_bld->gallivm, uint_bld->type, chan_index);
1180 LLVMValueRef length_vec =
1181 lp_build_const_int_vec(gallivm, uint_bld->type, uint_bld->type.length);
1182 LLVMValueRef index_vec;
1183
1184 /* index_vec = (indirect_index * 4 + chan_index) * length + offsets */
1185 index_vec = lp_build_shl_imm(uint_bld, indirect_index, 2);
1186 index_vec = lp_build_add(uint_bld, index_vec, chan_vec);
1187 index_vec = lp_build_mul(uint_bld, index_vec, length_vec);
1188
1189 if (need_perelement_offset) {
1190 LLVMValueRef pixel_offsets;
1191 int i;
1192 /* build pixel offset vector: {0, 1, 2, 3, ...} */
1193 pixel_offsets = uint_bld->undef;
1194 for (i = 0; i < uint_bld->type.length; i++) {
1195 LLVMValueRef ii = lp_build_const_int32(gallivm, i);
1196 pixel_offsets = LLVMBuildInsertElement(gallivm->builder, pixel_offsets,
1197 ii, ii, "");
1198 }
1199 index_vec = lp_build_add(uint_bld, index_vec, pixel_offsets);
1200 }
1201 return index_vec;
1202 }
1203
1204 static LLVMValueRef
1205 emit_fetch_constant(
1206 struct lp_build_tgsi_context * bld_base,
1207 const struct tgsi_full_src_register * reg,
1208 enum tgsi_opcode_type stype,
1209 unsigned swizzle)
1210 {
1211 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1212 struct gallivm_state *gallivm = bld_base->base.gallivm;
1213 LLVMBuilderRef builder = gallivm->builder;
1214 struct lp_build_context *uint_bld = &bld_base->uint_bld;
1215 unsigned dimension = 0;
1216 LLVMValueRef consts_ptr;
1217 LLVMValueRef num_consts;
1218 LLVMValueRef res;
1219
1220 /* XXX: Handle fetching xyzw components as a vector */
1221 assert(swizzle != ~0);
1222
1223 if (reg->Register.Dimension) {
1224 assert(!reg->Dimension.Indirect);
1225 dimension = reg->Dimension.Index;
1226 assert(dimension < LP_MAX_TGSI_CONST_BUFFERS);
1227 }
1228
1229 consts_ptr = bld->consts[dimension];
1230 num_consts = bld->consts_sizes[dimension];
1231
1232 if (reg->Register.Indirect) {
1233 LLVMValueRef indirect_index;
1234 LLVMValueRef swizzle_vec =
1235 lp_build_const_int_vec(gallivm, uint_bld->type, swizzle);
1236 LLVMValueRef index_vec; /* index into the const buffer */
1237 LLVMValueRef overflow_mask;
1238
1239 indirect_index = get_indirect_index(bld,
1240 reg->Register.File,
1241 reg->Register.Index,
1242 &reg->Indirect);
1243
1244 /* All fetches are from the same constant buffer, so
1245 * we need to propagate the size to a vector to do a
1246 * vector comparison */
1247 num_consts = lp_build_broadcast_scalar(uint_bld, num_consts);
1248 /* Construct a boolean vector telling us which channels
1249 * overflow the bound constant buffer */
1250 overflow_mask = LLVMBuildICmp(builder, LLVMIntUGE,
1251 indirect_index,
1252 num_consts, "");
1253
1254 /* index_vec = indirect_index * 4 + swizzle */
1255 index_vec = lp_build_shl_imm(uint_bld, indirect_index, 2);
1256 index_vec = lp_build_add(uint_bld, index_vec, swizzle_vec);
1257
1258 /* Gather values from the constant buffer */
1259 res = build_gather(&bld_base->base, consts_ptr, index_vec,
1260 &overflow_mask);
1261 }
1262 else {
1263 LLVMValueRef index; /* index into the const buffer */
1264 LLVMValueRef scalar, scalar_ptr;
1265
1266 index = lp_build_const_int32(gallivm, reg->Register.Index * 4 + swizzle);
1267
1268 scalar_ptr = LLVMBuildGEP(builder, consts_ptr,
1269 &index, 1, "");
1270 scalar = LLVMBuildLoad(builder, scalar_ptr, "");
1271 res = lp_build_broadcast_scalar(&bld_base->base, scalar);
1272 }
1273
1274 if (stype == TGSI_TYPE_SIGNED || stype == TGSI_TYPE_UNSIGNED) {
1275 struct lp_build_context *bld_fetch = stype_to_fetch(bld_base, stype);
1276 res = LLVMBuildBitCast(builder, res, bld_fetch->vec_type, "");
1277 }
1278
1279 return res;
1280 }
1281
1282 static LLVMValueRef
1283 emit_fetch_immediate(
1284 struct lp_build_tgsi_context * bld_base,
1285 const struct tgsi_full_src_register * reg,
1286 enum tgsi_opcode_type stype,
1287 unsigned swizzle)
1288 {
1289 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1290 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1291 LLVMBuilderRef builder = gallivm->builder;
1292 LLVMValueRef res = NULL;
1293
1294 if (bld->use_immediates_array || reg->Register.Indirect) {
1295 LLVMValueRef imms_array;
1296 LLVMTypeRef fptr_type;
1297
1298 /* cast imms_array pointer to float* */
1299 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1300 imms_array = LLVMBuildBitCast(builder, bld->imms_array, fptr_type, "");
1301
1302 if (reg->Register.Indirect) {
1303 LLVMValueRef indirect_index;
1304 LLVMValueRef index_vec; /* index into the immediate register array */
1305
1306 indirect_index = get_indirect_index(bld,
1307 reg->Register.File,
1308 reg->Register.Index,
1309 &reg->Indirect);
1310 /*
1311 * Unlike for other reg classes, adding pixel offsets is unnecessary -
1312 * immediates are stored as full vectors (FIXME??? - might be better
1313 * to store them the same as constants) but all elements are the same
1314 * in any case.
1315 */
1316 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1317 indirect_index,
1318 swizzle,
1319 FALSE);
1320
1321 /* Gather values from the immediate register array */
1322 res = build_gather(&bld_base->base, imms_array, index_vec, NULL);
1323 } else {
1324 LLVMValueRef lindex = lp_build_const_int32(gallivm,
1325 reg->Register.Index * 4 + swizzle);
1326 LLVMValueRef imms_ptr = LLVMBuildGEP(builder,
1327 bld->imms_array, &lindex, 1, "");
1328 res = LLVMBuildLoad(builder, imms_ptr, "");
1329 }
1330 }
1331 else {
1332 res = bld->immediates[reg->Register.Index][swizzle];
1333 }
1334
1335 if (stype == TGSI_TYPE_UNSIGNED) {
1336 res = LLVMBuildBitCast(builder, res, bld_base->uint_bld.vec_type, "");
1337 } else if (stype == TGSI_TYPE_SIGNED) {
1338 res = LLVMBuildBitCast(builder, res, bld_base->int_bld.vec_type, "");
1339 }
1340 return res;
1341 }
1342
1343 static LLVMValueRef
1344 emit_fetch_input(
1345 struct lp_build_tgsi_context * bld_base,
1346 const struct tgsi_full_src_register * reg,
1347 enum tgsi_opcode_type stype,
1348 unsigned swizzle)
1349 {
1350 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1351 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1352 LLVMBuilderRef builder = gallivm->builder;
1353 LLVMValueRef res;
1354
1355 if (reg->Register.Indirect) {
1356 LLVMValueRef indirect_index;
1357 LLVMValueRef index_vec; /* index into the input reg array */
1358 LLVMValueRef inputs_array;
1359 LLVMTypeRef fptr_type;
1360
1361 indirect_index = get_indirect_index(bld,
1362 reg->Register.File,
1363 reg->Register.Index,
1364 &reg->Indirect);
1365
1366 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1367 indirect_index,
1368 swizzle,
1369 TRUE);
1370
1371 /* cast inputs_array pointer to float* */
1372 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1373 inputs_array = LLVMBuildBitCast(builder, bld->inputs_array, fptr_type, "");
1374
1375 /* Gather values from the input register array */
1376 res = build_gather(&bld_base->base, inputs_array, index_vec, NULL);
1377 } else {
1378 if (bld->indirect_files & (1 << TGSI_FILE_INPUT)) {
1379 LLVMValueRef lindex = lp_build_const_int32(gallivm,
1380 reg->Register.Index * 4 + swizzle);
1381 LLVMValueRef input_ptr = LLVMBuildGEP(builder,
1382 bld->inputs_array, &lindex, 1, "");
1383 res = LLVMBuildLoad(builder, input_ptr, "");
1384 }
1385 else {
1386 res = bld->inputs[reg->Register.Index][swizzle];
1387 }
1388 }
1389
1390 assert(res);
1391
1392 if (stype == TGSI_TYPE_UNSIGNED) {
1393 res = LLVMBuildBitCast(builder, res, bld_base->uint_bld.vec_type, "");
1394 } else if (stype == TGSI_TYPE_SIGNED) {
1395 res = LLVMBuildBitCast(builder, res, bld_base->int_bld.vec_type, "");
1396 }
1397
1398 return res;
1399 }
1400
1401
1402 static LLVMValueRef
1403 emit_fetch_gs_input(
1404 struct lp_build_tgsi_context * bld_base,
1405 const struct tgsi_full_src_register * reg,
1406 enum tgsi_opcode_type stype,
1407 unsigned swizzle)
1408 {
1409 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1410 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1411 const struct tgsi_shader_info *info = bld->bld_base.info;
1412 LLVMBuilderRef builder = gallivm->builder;
1413 LLVMValueRef attrib_index = NULL;
1414 LLVMValueRef vertex_index = NULL;
1415 LLVMValueRef swizzle_index = lp_build_const_int32(gallivm, swizzle);
1416 LLVMValueRef res;
1417
1418 if (info->input_semantic_name[reg->Register.Index] == TGSI_SEMANTIC_PRIMID) {
1419 /* This is really a system value not a regular input */
1420 assert(!reg->Register.Indirect);
1421 assert(!reg->Dimension.Indirect);
1422 res = bld->system_values.prim_id;
1423 if (stype != TGSI_TYPE_UNSIGNED && stype != TGSI_TYPE_SIGNED) {
1424 res = LLVMBuildBitCast(builder, res, bld_base->base.vec_type, "");
1425 }
1426 return res;
1427 }
1428
1429 if (reg->Register.Indirect) {
1430 attrib_index = get_indirect_index(bld,
1431 reg->Register.File,
1432 reg->Register.Index,
1433 &reg->Indirect);
1434 } else {
1435 attrib_index = lp_build_const_int32(gallivm, reg->Register.Index);
1436 }
1437
1438 if (reg->Dimension.Indirect) {
1439 vertex_index = get_indirect_index(bld,
1440 reg->Register.File,
1441 reg->Dimension.Index,
1442 &reg->DimIndirect);
1443 } else {
1444 vertex_index = lp_build_const_int32(gallivm, reg->Dimension.Index);
1445 }
1446
1447 res = bld->gs_iface->fetch_input(bld->gs_iface, bld_base,
1448 reg->Dimension.Indirect,
1449 vertex_index,
1450 reg->Register.Indirect,
1451 attrib_index,
1452 swizzle_index);
1453
1454 assert(res);
1455
1456 if (stype == TGSI_TYPE_UNSIGNED) {
1457 res = LLVMBuildBitCast(builder, res, bld_base->uint_bld.vec_type, "");
1458 } else if (stype == TGSI_TYPE_SIGNED) {
1459 res = LLVMBuildBitCast(builder, res, bld_base->int_bld.vec_type, "");
1460 }
1461
1462 return res;
1463 }
1464
1465 static LLVMValueRef
1466 emit_fetch_temporary(
1467 struct lp_build_tgsi_context * bld_base,
1468 const struct tgsi_full_src_register * reg,
1469 enum tgsi_opcode_type stype,
1470 unsigned swizzle)
1471 {
1472 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1473 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1474 LLVMBuilderRef builder = gallivm->builder;
1475 LLVMValueRef res;
1476
1477 if (reg->Register.Indirect) {
1478 LLVMValueRef indirect_index;
1479 LLVMValueRef index_vec; /* index into the temp reg array */
1480 LLVMValueRef temps_array;
1481 LLVMTypeRef fptr_type;
1482
1483 indirect_index = get_indirect_index(bld,
1484 reg->Register.File,
1485 reg->Register.Index,
1486 &reg->Indirect);
1487
1488 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1489 indirect_index,
1490 swizzle,
1491 TRUE);
1492
1493 /* cast temps_array pointer to float* */
1494 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1495 temps_array = LLVMBuildBitCast(builder, bld->temps_array, fptr_type, "");
1496
1497 /* Gather values from the temporary register array */
1498 res = build_gather(&bld_base->base, temps_array, index_vec, NULL);
1499 }
1500 else {
1501 LLVMValueRef temp_ptr;
1502 temp_ptr = lp_get_temp_ptr_soa(bld, reg->Register.Index, swizzle);
1503 res = LLVMBuildLoad(builder, temp_ptr, "");
1504 }
1505
1506 if (stype == TGSI_TYPE_SIGNED || stype == TGSI_TYPE_UNSIGNED) {
1507 struct lp_build_context *bld_fetch = stype_to_fetch(bld_base, stype);
1508 res = LLVMBuildBitCast(builder, res, bld_fetch->vec_type, "");
1509 }
1510
1511 return res;
1512 }
1513
1514 static LLVMValueRef
1515 emit_fetch_system_value(
1516 struct lp_build_tgsi_context * bld_base,
1517 const struct tgsi_full_src_register * reg,
1518 enum tgsi_opcode_type stype,
1519 unsigned swizzle)
1520 {
1521 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1522 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1523 const struct tgsi_shader_info *info = bld->bld_base.info;
1524 LLVMBuilderRef builder = gallivm->builder;
1525 LLVMValueRef res;
1526 enum tgsi_opcode_type atype; // Actual type of the value
1527
1528 assert(!reg->Register.Indirect);
1529
1530 switch (info->system_value_semantic_name[reg->Register.Index]) {
1531 case TGSI_SEMANTIC_INSTANCEID:
1532 res = lp_build_broadcast_scalar(&bld_base->uint_bld, bld->system_values.instance_id);
1533 atype = TGSI_TYPE_UNSIGNED;
1534 break;
1535
1536 case TGSI_SEMANTIC_VERTEXID:
1537 res = bld->system_values.vertex_id;
1538 atype = TGSI_TYPE_UNSIGNED;
1539 break;
1540
1541 case TGSI_SEMANTIC_PRIMID:
1542 res = bld->system_values.prim_id;
1543 atype = TGSI_TYPE_UNSIGNED;
1544 break;
1545
1546 default:
1547 assert(!"unexpected semantic in emit_fetch_system_value");
1548 res = bld_base->base.zero;
1549 atype = TGSI_TYPE_FLOAT;
1550 break;
1551 }
1552
1553 if (atype != stype) {
1554 if (stype == TGSI_TYPE_FLOAT) {
1555 res = LLVMBuildBitCast(builder, res, bld_base->base.vec_type, "");
1556 } else if (stype == TGSI_TYPE_UNSIGNED) {
1557 res = LLVMBuildBitCast(builder, res, bld_base->uint_bld.vec_type, "");
1558 } else if (stype == TGSI_TYPE_SIGNED) {
1559 res = LLVMBuildBitCast(builder, res, bld_base->int_bld.vec_type, "");
1560 }
1561 }
1562
1563 return res;
1564 }
1565
1566 /**
1567 * Register fetch with derivatives.
1568 */
1569 static void
1570 emit_fetch_deriv(
1571 struct lp_build_tgsi_soa_context *bld,
1572 LLVMValueRef src,
1573 LLVMValueRef *res,
1574 LLVMValueRef *ddx,
1575 LLVMValueRef *ddy)
1576 {
1577 if(res)
1578 *res = src;
1579
1580 /* TODO: use interpolation coeffs for inputs */
1581
1582 if(ddx)
1583 *ddx = lp_build_ddx(&bld->bld_base.base, src);
1584
1585 if(ddy)
1586 *ddy = lp_build_ddy(&bld->bld_base.base, src);
1587 }
1588
1589
1590 /**
1591 * Predicate.
1592 */
1593 static void
1594 emit_fetch_predicate(
1595 struct lp_build_tgsi_soa_context *bld,
1596 const struct tgsi_full_instruction *inst,
1597 LLVMValueRef *pred)
1598 {
1599 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
1600 unsigned index;
1601 unsigned char swizzles[4];
1602 LLVMValueRef unswizzled[4] = {NULL, NULL, NULL, NULL};
1603 LLVMValueRef value;
1604 unsigned chan;
1605
1606 if (!inst->Instruction.Predicate) {
1607 TGSI_FOR_EACH_CHANNEL( chan ) {
1608 pred[chan] = NULL;
1609 }
1610 return;
1611 }
1612
1613 swizzles[0] = inst->Predicate.SwizzleX;
1614 swizzles[1] = inst->Predicate.SwizzleY;
1615 swizzles[2] = inst->Predicate.SwizzleZ;
1616 swizzles[3] = inst->Predicate.SwizzleW;
1617
1618 index = inst->Predicate.Index;
1619 assert(index < LP_MAX_TGSI_PREDS);
1620
1621 TGSI_FOR_EACH_CHANNEL( chan ) {
1622 unsigned swizzle = swizzles[chan];
1623
1624 /*
1625 * Only fetch the predicate register channels that are actually listed
1626 * in the swizzles
1627 */
1628 if (!unswizzled[swizzle]) {
1629 value = LLVMBuildLoad(builder,
1630 bld->preds[index][swizzle], "");
1631
1632 /*
1633 * Convert the value to an integer mask.
1634 *
1635 * TODO: Short-circuit this comparison -- a D3D setp_xx instructions
1636 * is needlessly causing two comparisons due to storing the intermediate
1637 * result as float vector instead of an integer mask vector.
1638 */
1639 value = lp_build_compare(bld->bld_base.base.gallivm,
1640 bld->bld_base.base.type,
1641 PIPE_FUNC_NOTEQUAL,
1642 value,
1643 bld->bld_base.base.zero);
1644 if (inst->Predicate.Negate) {
1645 value = LLVMBuildNot(builder, value, "");
1646 }
1647
1648 unswizzled[swizzle] = value;
1649 } else {
1650 value = unswizzled[swizzle];
1651 }
1652
1653 pred[chan] = value;
1654 }
1655 }
1656
1657
1658 /**
1659 * Register store.
1660 */
1661 static void
1662 emit_store_chan(
1663 struct lp_build_tgsi_context *bld_base,
1664 const struct tgsi_full_instruction *inst,
1665 unsigned index,
1666 unsigned chan_index,
1667 LLVMValueRef pred,
1668 LLVMValueRef value)
1669 {
1670 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1671 struct gallivm_state *gallivm = bld_base->base.gallivm;
1672 LLVMBuilderRef builder = gallivm->builder;
1673 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1674 struct lp_build_context *float_bld = &bld_base->base;
1675 struct lp_build_context *int_bld = &bld_base->int_bld;
1676 LLVMValueRef indirect_index = NULL;
1677 enum tgsi_opcode_type dtype = tgsi_opcode_infer_dst_type(inst->Instruction.Opcode);
1678
1679 /*
1680 * Apply saturation.
1681 *
1682 * It is always assumed to be float.
1683 */
1684 switch( inst->Instruction.Saturate ) {
1685 case TGSI_SAT_NONE:
1686 break;
1687
1688 case TGSI_SAT_ZERO_ONE:
1689 assert(dtype == TGSI_TYPE_FLOAT ||
1690 dtype == TGSI_TYPE_UNTYPED);
1691 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1692 value = lp_build_clamp_zero_one_nanzero(float_bld, value);
1693 break;
1694
1695 case TGSI_SAT_MINUS_PLUS_ONE:
1696 assert(dtype == TGSI_TYPE_FLOAT ||
1697 dtype == TGSI_TYPE_UNTYPED);
1698 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1699 /* This will give -1.0 for NaN which is probably not what we want. */
1700 value = lp_build_max_ext(float_bld, value,
1701 lp_build_const_vec(gallivm, float_bld->type, -1.0),
1702 GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN);
1703 value = lp_build_min(float_bld, value, float_bld->one);
1704 break;
1705
1706 default:
1707 assert(0);
1708 }
1709
1710 if (reg->Register.Indirect) {
1711 indirect_index = get_indirect_index(bld,
1712 reg->Register.File,
1713 reg->Register.Index,
1714 &reg->Indirect);
1715 } else {
1716 assert(reg->Register.Index <=
1717 bld_base->info->file_max[reg->Register.File]);
1718 }
1719
1720 if (DEBUG_EXECUTION) {
1721 emit_dump_reg(gallivm, reg->Register.File, reg->Register.Index, chan_index, value);
1722 }
1723
1724 switch( reg->Register.File ) {
1725 case TGSI_FILE_OUTPUT:
1726 /* Outputs are always stored as floats */
1727 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1728
1729 if (reg->Register.Indirect) {
1730 LLVMValueRef index_vec; /* indexes into the output registers */
1731 LLVMValueRef outputs_array;
1732 LLVMTypeRef fptr_type;
1733
1734 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1735 indirect_index,
1736 chan_index,
1737 TRUE);
1738
1739 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1740 outputs_array = LLVMBuildBitCast(builder, bld->outputs_array, fptr_type, "");
1741
1742 /* Scatter store values into output registers */
1743 emit_mask_scatter(bld, outputs_array, index_vec, value,
1744 &bld->exec_mask, pred);
1745 }
1746 else {
1747 LLVMValueRef out_ptr = lp_get_output_ptr(bld, reg->Register.Index,
1748 chan_index);
1749 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, value, out_ptr);
1750 }
1751 break;
1752
1753 case TGSI_FILE_TEMPORARY:
1754 /* Temporaries are always stored as floats */
1755 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1756
1757 if (reg->Register.Indirect) {
1758 LLVMValueRef index_vec; /* indexes into the temp registers */
1759 LLVMValueRef temps_array;
1760 LLVMTypeRef fptr_type;
1761
1762 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1763 indirect_index,
1764 chan_index,
1765 TRUE);
1766
1767 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1768 temps_array = LLVMBuildBitCast(builder, bld->temps_array, fptr_type, "");
1769
1770 /* Scatter store values into temp registers */
1771 emit_mask_scatter(bld, temps_array, index_vec, value,
1772 &bld->exec_mask, pred);
1773 }
1774 else {
1775 LLVMValueRef temp_ptr;
1776 temp_ptr = lp_get_temp_ptr_soa(bld, reg->Register.Index, chan_index);
1777 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, value, temp_ptr);
1778 }
1779 break;
1780
1781 case TGSI_FILE_ADDRESS:
1782 assert(dtype == TGSI_TYPE_SIGNED);
1783 assert(LLVMTypeOf(value) == int_bld->vec_type);
1784 value = LLVMBuildBitCast(builder, value, int_bld->vec_type, "");
1785 lp_exec_mask_store(&bld->exec_mask, int_bld, pred, value,
1786 bld->addr[reg->Register.Index][chan_index]);
1787 break;
1788
1789 case TGSI_FILE_PREDICATE:
1790 assert(LLVMTypeOf(value) == float_bld->vec_type);
1791 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1792 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, value,
1793 bld->preds[reg->Register.Index][chan_index]);
1794 break;
1795
1796 default:
1797 assert( 0 );
1798 }
1799
1800 (void)dtype;
1801 }
1802
1803 /*
1804 * Called at the beginning of the translation of each TGSI instruction, to
1805 * emit some debug code.
1806 */
1807 static void
1808 emit_debug(
1809 struct lp_build_tgsi_context * bld_base,
1810 const struct tgsi_full_instruction * inst,
1811 const struct tgsi_opcode_info * info)
1812
1813 {
1814 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1815
1816 if (DEBUG_EXECUTION) {
1817 /*
1818 * Dump the TGSI instruction.
1819 */
1820
1821 struct gallivm_state *gallivm = bld_base->base.gallivm;
1822 char buf[512];
1823 buf[0] = '$';
1824 buf[1] = ' ';
1825 tgsi_dump_instruction_str(inst, bld_base->pc, &buf[2], sizeof buf - 2);
1826 lp_build_printf(gallivm, buf);
1827
1828 /* Dump the execution mask.
1829 */
1830 if (bld->exec_mask.has_mask) {
1831 lp_build_print_value(gallivm, " mask = ", bld->exec_mask.exec_mask);
1832 }
1833 }
1834 }
1835
1836 static void
1837 emit_store(
1838 struct lp_build_tgsi_context * bld_base,
1839 const struct tgsi_full_instruction * inst,
1840 const struct tgsi_opcode_info * info,
1841 LLVMValueRef dst[4])
1842
1843 {
1844 unsigned chan_index;
1845 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1846
1847 if(info->num_dst) {
1848 LLVMValueRef pred[TGSI_NUM_CHANNELS];
1849
1850 emit_fetch_predicate( bld, inst, pred );
1851
1852 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1853 emit_store_chan(bld_base, inst, 0, chan_index, pred[chan_index], dst[chan_index]);
1854 }
1855 }
1856 }
1857
1858 static unsigned
1859 tgsi_to_pipe_tex_target(unsigned tgsi_target)
1860 {
1861 switch (tgsi_target) {
1862 case TGSI_TEXTURE_BUFFER:
1863 return PIPE_BUFFER;
1864 case TGSI_TEXTURE_1D:
1865 case TGSI_TEXTURE_SHADOW1D:
1866 return PIPE_TEXTURE_1D;
1867 case TGSI_TEXTURE_2D:
1868 case TGSI_TEXTURE_SHADOW2D:
1869 case TGSI_TEXTURE_2D_MSAA:
1870 return PIPE_TEXTURE_2D;
1871 case TGSI_TEXTURE_3D:
1872 return PIPE_TEXTURE_3D;
1873 case TGSI_TEXTURE_CUBE:
1874 case TGSI_TEXTURE_SHADOWCUBE:
1875 return PIPE_TEXTURE_CUBE;
1876 case TGSI_TEXTURE_RECT:
1877 case TGSI_TEXTURE_SHADOWRECT:
1878 return PIPE_TEXTURE_RECT;
1879 case TGSI_TEXTURE_1D_ARRAY:
1880 case TGSI_TEXTURE_SHADOW1D_ARRAY:
1881 return PIPE_TEXTURE_1D_ARRAY;
1882 case TGSI_TEXTURE_2D_ARRAY:
1883 case TGSI_TEXTURE_SHADOW2D_ARRAY:
1884 case TGSI_TEXTURE_2D_ARRAY_MSAA:
1885 return PIPE_TEXTURE_2D_ARRAY;
1886 case TGSI_TEXTURE_CUBE_ARRAY:
1887 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
1888 return PIPE_TEXTURE_CUBE_ARRAY;
1889 default:
1890 assert(0);
1891 return PIPE_BUFFER;
1892 }
1893 }
1894
1895
1896 static enum lp_sampler_lod_property
1897 lp_build_lod_property(
1898 struct lp_build_tgsi_context *bld_base,
1899 const struct tgsi_full_instruction *inst,
1900 unsigned src_op)
1901 {
1902 const struct tgsi_full_src_register *reg = &inst->Src[src_op];
1903 enum lp_sampler_lod_property lod_property;
1904
1905 /*
1906 * Not much we can do here. We could try catching inputs declared
1907 * with constant interpolation but not sure it's worth it - since for
1908 * TEX opcodes as well as FETCH/LD the lod comes from same reg as
1909 * the coords, so it could only work for SAMPLE/TXQ/SVIEWINFO), just
1910 * like the constant/immediate recognition below.
1911 * What seems to be of more value would be to recognize temps holding
1912 * broadcasted scalars but no way we can do it.
1913 * Tried asking llvm but without any success (using LLVMIsConstant
1914 * even though this isn't exactly what we'd need), even as simple as
1915 * IMM[0] UINT32 (0,-1,0,0)
1916 * MOV TEMP[0] IMM[0].yyyy
1917 * SVIEWINFO TEMP[1], TEMP[0].xxxx, SVIEWINFO[0]
1918 * doesn't work.
1919 * This means there's ZERO chance this will ever catch a scalar lod
1920 * with traditional tex opcodes as well as texel fetches, since the lod
1921 * comes from the same reg as coords (except some test shaders using
1922 * constant coords maybe).
1923 * There's at least hope for sample opcodes as well as size queries.
1924 */
1925 if (reg->Register.File == TGSI_FILE_CONSTANT ||
1926 reg->Register.File == TGSI_FILE_IMMEDIATE) {
1927 lod_property = LP_SAMPLER_LOD_SCALAR;
1928 }
1929 else if (bld_base->info->processor == TGSI_PROCESSOR_FRAGMENT) {
1930 if (gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) {
1931 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
1932 }
1933 else {
1934 lod_property = LP_SAMPLER_LOD_PER_QUAD;
1935 }
1936 }
1937 else {
1938 /* never use scalar (per-quad) lod the results are just too wrong. */
1939 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
1940 }
1941 return lod_property;
1942 }
1943
1944
1945 /**
1946 * High-level instruction translators.
1947 */
1948
1949 static void
1950 emit_tex( struct lp_build_tgsi_soa_context *bld,
1951 const struct tgsi_full_instruction *inst,
1952 enum lp_build_tex_modifier modifier,
1953 LLVMValueRef *texel,
1954 unsigned sampler_reg)
1955 {
1956 unsigned unit = inst->Src[sampler_reg].Register.Index;
1957 LLVMValueRef lod_bias, explicit_lod;
1958 LLVMValueRef oow = NULL;
1959 LLVMValueRef coords[5];
1960 LLVMValueRef offsets[3] = { NULL };
1961 struct lp_derivatives derivs;
1962 struct lp_derivatives *deriv_ptr = NULL;
1963 enum lp_sampler_lod_property lod_property = LP_SAMPLER_LOD_SCALAR;
1964 unsigned num_derivs, num_offsets, i;
1965 unsigned shadow_coord = 0;
1966 unsigned layer_coord = 0;
1967
1968 if (!bld->sampler) {
1969 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
1970 for (i = 0; i < 4; i++) {
1971 texel[i] = bld->bld_base.base.undef;
1972 }
1973 return;
1974 }
1975
1976 switch (inst->Texture.Texture) {
1977 case TGSI_TEXTURE_1D_ARRAY:
1978 layer_coord = 1;
1979 /* fallthrough */
1980 case TGSI_TEXTURE_1D:
1981 num_offsets = 1;
1982 num_derivs = 1;
1983 break;
1984 case TGSI_TEXTURE_2D_ARRAY:
1985 layer_coord = 2;
1986 /* fallthrough */
1987 case TGSI_TEXTURE_2D:
1988 case TGSI_TEXTURE_RECT:
1989 num_offsets = 2;
1990 num_derivs = 2;
1991 break;
1992 case TGSI_TEXTURE_SHADOW1D_ARRAY:
1993 layer_coord = 1;
1994 /* fallthrough */
1995 case TGSI_TEXTURE_SHADOW1D:
1996 shadow_coord = 2;
1997 num_offsets = 1;
1998 num_derivs = 1;
1999 break;
2000 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2001 layer_coord = 2;
2002 shadow_coord = 3;
2003 num_offsets = 2;
2004 num_derivs = 2;
2005 break;
2006 case TGSI_TEXTURE_SHADOW2D:
2007 case TGSI_TEXTURE_SHADOWRECT:
2008 shadow_coord = 2;
2009 num_offsets = 2;
2010 num_derivs = 2;
2011 break;
2012 case TGSI_TEXTURE_CUBE:
2013 num_offsets = 2;
2014 num_derivs = 3;
2015 break;
2016 case TGSI_TEXTURE_3D:
2017 num_offsets = 3;
2018 num_derivs = 3;
2019 break;
2020 case TGSI_TEXTURE_SHADOWCUBE:
2021 shadow_coord = 3;
2022 num_offsets = 2;
2023 num_derivs = 3;
2024 break;
2025 case TGSI_TEXTURE_CUBE_ARRAY:
2026 num_offsets = 2;
2027 num_derivs = 3;
2028 layer_coord = 3;
2029 break;
2030 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
2031 num_offsets = 2;
2032 num_derivs = 3;
2033 layer_coord = 3;
2034 shadow_coord = 4; /* shadow coord special different reg */
2035 break;
2036 case TGSI_TEXTURE_2D_MSAA:
2037 case TGSI_TEXTURE_2D_ARRAY_MSAA:
2038 default:
2039 assert(0);
2040 return;
2041 }
2042
2043 /* Note lod and especially projected are illegal in a LOT of cases */
2044 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS ||
2045 modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2046 LLVMValueRef lod;
2047 if (inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE ||
2048 inst->Texture.Texture == TGSI_TEXTURE_CUBE_ARRAY) {
2049 /* note that shadow cube array with bias/explicit lod does not exist */
2050 lod = lp_build_emit_fetch(&bld->bld_base, inst, 1, 0);
2051 }
2052 else {
2053 lod = lp_build_emit_fetch(&bld->bld_base, inst, 0, 3);
2054 }
2055 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS) {
2056 lod_bias = lod;
2057 explicit_lod = NULL;
2058 }
2059 else if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2060 lod_bias = NULL;
2061 explicit_lod = lod;
2062 }
2063 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2064 }
2065 else {
2066 lod_bias = NULL;
2067 explicit_lod = NULL;
2068 }
2069
2070 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED) {
2071 oow = lp_build_emit_fetch(&bld->bld_base, inst, 0, 3);
2072 oow = lp_build_rcp(&bld->bld_base.base, oow);
2073 }
2074
2075 for (i = 0; i < num_derivs; i++) {
2076 coords[i] = lp_build_emit_fetch(&bld->bld_base, inst, 0, i);
2077 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED)
2078 coords[i] = lp_build_mul(&bld->bld_base.base, coords[i], oow);
2079 }
2080 for (i = num_derivs; i < 5; i++) {
2081 coords[i] = bld->bld_base.base.undef;
2082 }
2083
2084 /* Layer coord always goes into 3rd slot, except for cube map arrays */
2085 if (layer_coord) {
2086 if (layer_coord == 3) {
2087 coords[3] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2088 }
2089 else {
2090 coords[2] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2091 }
2092 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED)
2093 coords[2] = lp_build_mul(&bld->bld_base.base, coords[2], oow);
2094 }
2095 /* Shadow coord occupies always 5th slot. */
2096 if (shadow_coord) {
2097 if (shadow_coord == 4) {
2098 coords[4] = lp_build_emit_fetch(&bld->bld_base, inst, 1, 0);
2099 }
2100 else {
2101 coords[4] = lp_build_emit_fetch(&bld->bld_base, inst, 0, shadow_coord);
2102 }
2103 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED)
2104 coords[4] = lp_build_mul(&bld->bld_base.base, coords[4], oow);
2105 }
2106
2107 if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV) {
2108 unsigned dim;
2109 for (dim = 0; dim < num_derivs; ++dim) {
2110 derivs.ddx[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 1, dim);
2111 derivs.ddy[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 2, dim);
2112 }
2113 deriv_ptr = &derivs;
2114 /*
2115 * could also check all src regs if constant but I doubt such
2116 * cases exist in practice.
2117 */
2118 if (bld->bld_base.info->processor == TGSI_PROCESSOR_FRAGMENT) {
2119 if (gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) {
2120 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2121 }
2122 else {
2123 lod_property = LP_SAMPLER_LOD_PER_QUAD;
2124 }
2125 }
2126 else {
2127 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2128 }
2129 }
2130
2131 /* some advanced gather instructions (txgo) would require 4 offsets */
2132 if (inst->Texture.NumOffsets == 1) {
2133 unsigned dim;
2134 for (dim = 0; dim < num_offsets; dim++) {
2135 offsets[dim] = lp_build_emit_fetch_texoffset(&bld->bld_base, inst, 0, dim);
2136 }
2137 }
2138
2139 bld->sampler->emit_fetch_texel(bld->sampler,
2140 bld->bld_base.base.gallivm,
2141 bld->bld_base.base.type,
2142 FALSE,
2143 unit, unit,
2144 coords,
2145 offsets,
2146 deriv_ptr,
2147 lod_bias, explicit_lod, lod_property,
2148 texel);
2149 }
2150
2151 static void
2152 emit_sample(struct lp_build_tgsi_soa_context *bld,
2153 const struct tgsi_full_instruction *inst,
2154 enum lp_build_tex_modifier modifier,
2155 boolean compare,
2156 LLVMValueRef *texel)
2157 {
2158 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2159 unsigned texture_unit, sampler_unit;
2160 LLVMValueRef lod_bias, explicit_lod;
2161 LLVMValueRef coords[5];
2162 LLVMValueRef offsets[3] = { NULL };
2163 struct lp_derivatives derivs;
2164 struct lp_derivatives *deriv_ptr = NULL;
2165 enum lp_sampler_lod_property lod_property = LP_SAMPLER_LOD_SCALAR;
2166
2167 unsigned num_offsets, num_derivs, i;
2168 unsigned layer_coord = 0;
2169
2170 if (!bld->sampler) {
2171 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
2172 for (i = 0; i < 4; i++) {
2173 texel[i] = bld->bld_base.base.undef;
2174 }
2175 return;
2176 }
2177
2178 /*
2179 * unlike old-style tex opcodes the texture/sampler indices
2180 * always come from src1 and src2 respectively.
2181 */
2182 texture_unit = inst->Src[1].Register.Index;
2183 sampler_unit = inst->Src[2].Register.Index;
2184
2185 /*
2186 * Note inst->Texture.Texture will contain the number of offsets,
2187 * however the target information is NOT there and comes from the
2188 * declared sampler views instead.
2189 */
2190 switch (bld->sv[texture_unit].Resource) {
2191 case TGSI_TEXTURE_1D:
2192 num_offsets = 1;
2193 num_derivs = 1;
2194 break;
2195 case TGSI_TEXTURE_1D_ARRAY:
2196 layer_coord = 1;
2197 num_offsets = 1;
2198 num_derivs = 1;
2199 break;
2200 case TGSI_TEXTURE_2D:
2201 case TGSI_TEXTURE_RECT:
2202 num_offsets = 2;
2203 num_derivs = 2;
2204 break;
2205 case TGSI_TEXTURE_2D_ARRAY:
2206 layer_coord = 2;
2207 num_offsets = 2;
2208 num_derivs = 2;
2209 break;
2210 case TGSI_TEXTURE_CUBE:
2211 num_offsets = 2;
2212 num_derivs = 3;
2213 break;
2214 case TGSI_TEXTURE_3D:
2215 num_offsets = 3;
2216 num_derivs = 3;
2217 break;
2218 case TGSI_TEXTURE_CUBE_ARRAY:
2219 layer_coord = 3;
2220 num_offsets = 2;
2221 num_derivs = 3;
2222 break;
2223 default:
2224 assert(0);
2225 return;
2226 }
2227
2228 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS ||
2229 modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2230 LLVMValueRef lod = lp_build_emit_fetch(&bld->bld_base, inst, 3, 0);
2231 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS) {
2232 lod_bias = lod;
2233 explicit_lod = NULL;
2234 }
2235 else if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2236 lod_bias = NULL;
2237 explicit_lod = lod;
2238 }
2239 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2240 }
2241 else if (modifier == LP_BLD_TEX_MODIFIER_LOD_ZERO) {
2242 lod_bias = NULL;
2243 /* XXX might be better to explicitly pass the level zero information */
2244 explicit_lod = lp_build_const_vec(gallivm, bld->bld_base.base.type, 0.0F);
2245 }
2246 else {
2247 lod_bias = NULL;
2248 explicit_lod = NULL;
2249 }
2250
2251 for (i = 0; i < num_derivs; i++) {
2252 coords[i] = lp_build_emit_fetch(&bld->bld_base, inst, 0, i);
2253 }
2254 for (i = num_derivs; i < 5; i++) {
2255 coords[i] = bld->bld_base.base.undef;
2256 }
2257
2258 /* Layer coord always goes into 3rd slot, except for cube map arrays */
2259 if (layer_coord) {
2260 if (layer_coord == 3)
2261 coords[3] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2262 else
2263 coords[2] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2264 }
2265 /* Shadow coord occupies always 5th slot. */
2266 if (compare) {
2267 coords[4] = lp_build_emit_fetch(&bld->bld_base, inst, 3, 0);
2268 }
2269
2270 if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV) {
2271 unsigned dim;
2272 for (dim = 0; dim < num_derivs; ++dim) {
2273 derivs.ddx[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 3, dim);
2274 derivs.ddy[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 4, dim);
2275 }
2276 deriv_ptr = &derivs;
2277 /*
2278 * could also check all src regs if constant but I doubt such
2279 * cases exist in practice.
2280 */
2281 if (bld->bld_base.info->processor == TGSI_PROCESSOR_FRAGMENT) {
2282 if (gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) {
2283 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2284 }
2285 else {
2286 lod_property = LP_SAMPLER_LOD_PER_QUAD;
2287 }
2288 }
2289 else {
2290 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2291 }
2292 }
2293
2294 /* some advanced gather instructions (txgo) would require 4 offsets */
2295 if (inst->Texture.NumOffsets == 1) {
2296 unsigned dim;
2297 for (dim = 0; dim < num_offsets; dim++) {
2298 offsets[dim] = lp_build_emit_fetch_texoffset(&bld->bld_base, inst, 0, dim);
2299 }
2300 }
2301
2302 bld->sampler->emit_fetch_texel(bld->sampler,
2303 bld->bld_base.base.gallivm,
2304 bld->bld_base.base.type,
2305 FALSE,
2306 texture_unit, sampler_unit,
2307 coords,
2308 offsets,
2309 deriv_ptr,
2310 lod_bias, explicit_lod, lod_property,
2311 texel);
2312
2313 if (inst->Src[1].Register.SwizzleX != PIPE_SWIZZLE_RED ||
2314 inst->Src[1].Register.SwizzleY != PIPE_SWIZZLE_GREEN ||
2315 inst->Src[1].Register.SwizzleZ != PIPE_SWIZZLE_BLUE ||
2316 inst->Src[1].Register.SwizzleW != PIPE_SWIZZLE_ALPHA) {
2317 unsigned char swizzles[4];
2318 swizzles[0] = inst->Src[1].Register.SwizzleX;
2319 swizzles[1] = inst->Src[1].Register.SwizzleY;
2320 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2321 swizzles[3] = inst->Src[1].Register.SwizzleW;
2322
2323 lp_build_swizzle_soa_inplace(&bld->bld_base.base, texel, swizzles);
2324 }
2325 }
2326
2327 static void
2328 emit_fetch_texels( struct lp_build_tgsi_soa_context *bld,
2329 const struct tgsi_full_instruction *inst,
2330 LLVMValueRef *texel,
2331 boolean is_samplei)
2332 {
2333 unsigned unit, target;
2334 LLVMValueRef coord_undef = LLVMGetUndef(bld->bld_base.base.int_vec_type);
2335 LLVMValueRef explicit_lod = NULL;
2336 LLVMValueRef coords[5];
2337 LLVMValueRef offsets[3] = { NULL };
2338 enum lp_sampler_lod_property lod_property = LP_SAMPLER_LOD_SCALAR;
2339 unsigned dims, i;
2340 unsigned layer_coord = 0;
2341
2342 if (!bld->sampler) {
2343 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
2344 for (i = 0; i < 4; i++) {
2345 texel[i] = coord_undef;
2346 }
2347 return;
2348 }
2349
2350 unit = inst->Src[1].Register.Index;
2351
2352 if (is_samplei) {
2353 target = bld->sv[unit].Resource;
2354 }
2355 else {
2356 target = inst->Texture.Texture;
2357 }
2358
2359 switch (target) {
2360 case TGSI_TEXTURE_1D:
2361 case TGSI_TEXTURE_BUFFER:
2362 dims = 1;
2363 break;
2364 case TGSI_TEXTURE_1D_ARRAY:
2365 layer_coord = 1;
2366 dims = 1;
2367 break;
2368 case TGSI_TEXTURE_2D:
2369 case TGSI_TEXTURE_RECT:
2370 case TGSI_TEXTURE_2D_MSAA:
2371 dims = 2;
2372 break;
2373 case TGSI_TEXTURE_2D_ARRAY:
2374 case TGSI_TEXTURE_2D_ARRAY_MSAA:
2375 layer_coord = 2;
2376 dims = 2;
2377 break;
2378 case TGSI_TEXTURE_3D:
2379 dims = 3;
2380 break;
2381 default:
2382 assert(0);
2383 return;
2384 }
2385
2386 /* always have lod except for buffers and msaa targets ? */
2387 if (target != TGSI_TEXTURE_BUFFER &&
2388 target != TGSI_TEXTURE_2D_MSAA &&
2389 target != TGSI_TEXTURE_2D_ARRAY_MSAA) {
2390 explicit_lod = lp_build_emit_fetch(&bld->bld_base, inst, 0, 3);
2391 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2392 }
2393 /* XXX: for real msaa support, the w component would be the sample index. */
2394
2395 for (i = 0; i < dims; i++) {
2396 coords[i] = lp_build_emit_fetch(&bld->bld_base, inst, 0, i);
2397 }
2398 /* never use more than 3 coords here but emit_fetch_texel copies all 5 anyway */
2399 for (i = dims; i < 5; i++) {
2400 coords[i] = coord_undef;
2401 }
2402 if (layer_coord)
2403 coords[2] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2404
2405 if (inst->Texture.NumOffsets == 1) {
2406 unsigned dim;
2407 for (dim = 0; dim < dims; dim++) {
2408 offsets[dim] = lp_build_emit_fetch_texoffset(&bld->bld_base, inst, 0, dim);
2409 }
2410 }
2411
2412 bld->sampler->emit_fetch_texel(bld->sampler,
2413 bld->bld_base.base.gallivm,
2414 bld->bld_base.base.type,
2415 TRUE,
2416 unit, unit,
2417 coords,
2418 offsets,
2419 NULL,
2420 NULL, explicit_lod, lod_property,
2421 texel);
2422
2423 if (is_samplei &&
2424 (inst->Src[1].Register.SwizzleX != PIPE_SWIZZLE_RED ||
2425 inst->Src[1].Register.SwizzleY != PIPE_SWIZZLE_GREEN ||
2426 inst->Src[1].Register.SwizzleZ != PIPE_SWIZZLE_BLUE ||
2427 inst->Src[1].Register.SwizzleW != PIPE_SWIZZLE_ALPHA)) {
2428 unsigned char swizzles[4];
2429 swizzles[0] = inst->Src[1].Register.SwizzleX;
2430 swizzles[1] = inst->Src[1].Register.SwizzleY;
2431 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2432 swizzles[3] = inst->Src[1].Register.SwizzleW;
2433
2434 lp_build_swizzle_soa_inplace(&bld->bld_base.base, texel, swizzles);
2435 }
2436 }
2437
2438 static void
2439 emit_size_query( struct lp_build_tgsi_soa_context *bld,
2440 const struct tgsi_full_instruction *inst,
2441 LLVMValueRef *sizes_out,
2442 boolean is_sviewinfo)
2443 {
2444 LLVMValueRef explicit_lod;
2445 enum lp_sampler_lod_property lod_property;
2446 unsigned has_lod;
2447 unsigned i;
2448 unsigned unit = inst->Src[1].Register.Index;
2449 unsigned target, pipe_target;
2450
2451 if (is_sviewinfo) {
2452 target = bld->sv[unit].Resource;
2453 }
2454 else {
2455 target = inst->Texture.Texture;
2456 }
2457 switch (target) {
2458 case TGSI_TEXTURE_BUFFER:
2459 case TGSI_TEXTURE_RECT:
2460 case TGSI_TEXTURE_SHADOWRECT:
2461 has_lod = 0;
2462 break;
2463 default:
2464 has_lod = 1;
2465 break;
2466 }
2467
2468 if (!bld->sampler) {
2469 _debug_printf("warning: found texture query instruction but no sampler generator supplied\n");
2470 for (i = 0; i < 4; i++)
2471 sizes_out[i] = bld->bld_base.int_bld.undef;
2472 return;
2473 }
2474
2475 if (has_lod) {
2476 explicit_lod = lp_build_emit_fetch(&bld->bld_base, inst, 0, 0);
2477 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2478 }
2479 else {
2480 explicit_lod = NULL;
2481 lod_property = LP_SAMPLER_LOD_SCALAR;
2482 }
2483
2484
2485 pipe_target = tgsi_to_pipe_tex_target(target);
2486
2487 bld->sampler->emit_size_query(bld->sampler,
2488 bld->bld_base.base.gallivm,
2489 bld->bld_base.int_bld.type,
2490 unit, pipe_target,
2491 TRUE,
2492 lod_property,
2493 explicit_lod,
2494 sizes_out);
2495 }
2496
2497 static boolean
2498 near_end_of_shader(struct lp_build_tgsi_soa_context *bld,
2499 int pc)
2500 {
2501 int i;
2502
2503 for (i = 0; i < 5; i++) {
2504 unsigned opcode;
2505
2506 if (pc + i >= bld->bld_base.info->num_instructions)
2507 return TRUE;
2508
2509 opcode = bld->bld_base.instructions[pc + i].Instruction.Opcode;
2510
2511 if (opcode == TGSI_OPCODE_END)
2512 return TRUE;
2513
2514 if (opcode == TGSI_OPCODE_TEX ||
2515 opcode == TGSI_OPCODE_TXP ||
2516 opcode == TGSI_OPCODE_TXD ||
2517 opcode == TGSI_OPCODE_TXB ||
2518 opcode == TGSI_OPCODE_TXL ||
2519 opcode == TGSI_OPCODE_TXF ||
2520 opcode == TGSI_OPCODE_TXQ ||
2521 opcode == TGSI_OPCODE_TEX2 ||
2522 opcode == TGSI_OPCODE_TXB2 ||
2523 opcode == TGSI_OPCODE_TXL2 ||
2524 opcode == TGSI_OPCODE_SAMPLE ||
2525 opcode == TGSI_OPCODE_SAMPLE_B ||
2526 opcode == TGSI_OPCODE_SAMPLE_C ||
2527 opcode == TGSI_OPCODE_SAMPLE_C_LZ ||
2528 opcode == TGSI_OPCODE_SAMPLE_D ||
2529 opcode == TGSI_OPCODE_SAMPLE_I ||
2530 opcode == TGSI_OPCODE_SAMPLE_L ||
2531 opcode == TGSI_OPCODE_SVIEWINFO ||
2532 opcode == TGSI_OPCODE_CAL ||
2533 opcode == TGSI_OPCODE_CALLNZ ||
2534 opcode == TGSI_OPCODE_IF ||
2535 opcode == TGSI_OPCODE_UIF ||
2536 opcode == TGSI_OPCODE_BGNLOOP ||
2537 opcode == TGSI_OPCODE_SWITCH)
2538 return FALSE;
2539 }
2540
2541 return TRUE;
2542 }
2543
2544
2545
2546 /**
2547 * Kill fragment if any of the src register values are negative.
2548 */
2549 static void
2550 emit_kill_if(
2551 struct lp_build_tgsi_soa_context *bld,
2552 const struct tgsi_full_instruction *inst,
2553 int pc)
2554 {
2555 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
2556 const struct tgsi_full_src_register *reg = &inst->Src[0];
2557 LLVMValueRef terms[TGSI_NUM_CHANNELS];
2558 LLVMValueRef mask;
2559 unsigned chan_index;
2560
2561 memset(&terms, 0, sizeof terms);
2562
2563 TGSI_FOR_EACH_CHANNEL( chan_index ) {
2564 unsigned swizzle;
2565
2566 /* Unswizzle channel */
2567 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
2568
2569 /* Check if the component has not been already tested. */
2570 assert(swizzle < TGSI_NUM_CHANNELS);
2571 if( !terms[swizzle] )
2572 /* TODO: change the comparison operator instead of setting the sign */
2573 terms[swizzle] = lp_build_emit_fetch(&bld->bld_base, inst, 0, chan_index );
2574 }
2575
2576 mask = NULL;
2577 TGSI_FOR_EACH_CHANNEL( chan_index ) {
2578 if(terms[chan_index]) {
2579 LLVMValueRef chan_mask;
2580
2581 /*
2582 * If term < 0 then mask = 0 else mask = ~0.
2583 */
2584 chan_mask = lp_build_cmp(&bld->bld_base.base, PIPE_FUNC_GEQUAL, terms[chan_index], bld->bld_base.base.zero);
2585
2586 if(mask)
2587 mask = LLVMBuildAnd(builder, mask, chan_mask, "");
2588 else
2589 mask = chan_mask;
2590 }
2591 }
2592
2593 if (bld->exec_mask.has_mask) {
2594 LLVMValueRef invmask;
2595 invmask = LLVMBuildNot(builder, bld->exec_mask.exec_mask, "kilp");
2596 mask = LLVMBuildOr(builder, mask, invmask, "");
2597 }
2598
2599 lp_build_mask_update(bld->mask, mask);
2600 if (!near_end_of_shader(bld, pc))
2601 lp_build_mask_check(bld->mask);
2602 }
2603
2604
2605 /**
2606 * Unconditional fragment kill.
2607 * The only predication is the execution mask which will apply if
2608 * we're inside a loop or conditional.
2609 */
2610 static void
2611 emit_kill(struct lp_build_tgsi_soa_context *bld,
2612 int pc)
2613 {
2614 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
2615 LLVMValueRef mask;
2616
2617 /* For those channels which are "alive", disable fragment shader
2618 * execution.
2619 */
2620 if (bld->exec_mask.has_mask) {
2621 mask = LLVMBuildNot(builder, bld->exec_mask.exec_mask, "kilp");
2622 }
2623 else {
2624 LLVMValueRef zero = LLVMConstNull(bld->bld_base.base.int_vec_type);
2625 mask = zero;
2626 }
2627
2628 lp_build_mask_update(bld->mask, mask);
2629
2630 if (!near_end_of_shader(bld, pc))
2631 lp_build_mask_check(bld->mask);
2632 }
2633
2634
2635 /**
2636 * Emit code which will dump the value of all the temporary registers
2637 * to stdout.
2638 */
2639 static void
2640 emit_dump_file(struct lp_build_tgsi_soa_context *bld,
2641 unsigned file)
2642 {
2643 const struct tgsi_shader_info *info = bld->bld_base.info;
2644 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2645 LLVMBuilderRef builder = gallivm->builder;
2646 LLVMValueRef reg_ptr;
2647 int index;
2648 int max_index = info->file_max[file];
2649
2650 /*
2651 * Some register files, particularly constants, can be very large,
2652 * and dumping everything could make this unusably slow.
2653 */
2654 max_index = MIN2(max_index, 32);
2655
2656 for (index = 0; index <= max_index; index++) {
2657 LLVMValueRef res;
2658 unsigned mask;
2659 int chan;
2660
2661 if (index < 8 * sizeof(unsigned) &&
2662 (info->file_mask[file] & (1 << index)) == 0) {
2663 /* This was not declared.*/
2664 continue;
2665 }
2666
2667 if (file == TGSI_FILE_INPUT) {
2668 mask = info->input_usage_mask[index];
2669 } else {
2670 mask = TGSI_WRITEMASK_XYZW;
2671 }
2672
2673 for (chan = 0; chan < 4; chan++) {
2674 if ((mask & (1 << chan)) == 0) {
2675 /* This channel is not used.*/
2676 continue;
2677 }
2678
2679 if (file == TGSI_FILE_CONSTANT) {
2680 struct tgsi_full_src_register reg;
2681 memset(&reg, 0, sizeof reg);
2682 reg.Register.File = file;
2683 reg.Register.Index = index;
2684 reg.Register.SwizzleX = 0;
2685 reg.Register.SwizzleY = 1;
2686 reg.Register.SwizzleZ = 2;
2687 reg.Register.SwizzleW = 3;
2688
2689 res = bld->bld_base.emit_fetch_funcs[file](&bld->bld_base, &reg, TGSI_TYPE_FLOAT, chan);
2690 if (!res) {
2691 continue;
2692 }
2693 } else if (file == TGSI_FILE_INPUT) {
2694 res = bld->inputs[index][chan];
2695 if (!res) {
2696 continue;
2697 }
2698 } else if (file == TGSI_FILE_TEMPORARY) {
2699 reg_ptr = lp_get_temp_ptr_soa(bld, index, chan);
2700 assert(reg_ptr);
2701 res = LLVMBuildLoad(builder, reg_ptr, "");
2702 } else if (file == TGSI_FILE_OUTPUT) {
2703 reg_ptr = lp_get_output_ptr(bld, index, chan);
2704 assert(reg_ptr);
2705 res = LLVMBuildLoad(builder, reg_ptr, "");
2706 } else {
2707 assert(0);
2708 continue;
2709 }
2710
2711 emit_dump_reg(gallivm, file, index, chan, res);
2712 }
2713 }
2714 }
2715
2716
2717
2718 void
2719 lp_emit_declaration_soa(
2720 struct lp_build_tgsi_context *bld_base,
2721 const struct tgsi_full_declaration *decl)
2722 {
2723 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
2724 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2725 LLVMTypeRef vec_type = bld->bld_base.base.vec_type;
2726 const unsigned first = decl->Range.First;
2727 const unsigned last = decl->Range.Last;
2728 unsigned idx, i;
2729
2730 assert(last <= bld->bld_base.info->file_max[decl->Declaration.File]);
2731
2732 switch (decl->Declaration.File) {
2733 case TGSI_FILE_TEMPORARY:
2734 if (!(bld->indirect_files & (1 << TGSI_FILE_TEMPORARY))) {
2735 assert(last < LP_MAX_INLINED_TEMPS);
2736 for (idx = first; idx <= last; ++idx) {
2737 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2738 bld->temps[idx][i] = lp_build_alloca(gallivm, vec_type, "temp");
2739 }
2740 }
2741 break;
2742
2743 case TGSI_FILE_OUTPUT:
2744 if (!(bld->indirect_files & (1 << TGSI_FILE_OUTPUT))) {
2745 for (idx = first; idx <= last; ++idx) {
2746 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2747 bld->outputs[idx][i] = lp_build_alloca(gallivm,
2748 vec_type, "output");
2749 }
2750 }
2751 break;
2752
2753 case TGSI_FILE_ADDRESS:
2754 /* ADDR registers are only allocated with an integer LLVM IR type,
2755 * as they are guaranteed to always have integers.
2756 * XXX: Not sure if this exception is worthwhile (or the whole idea of
2757 * an ADDR register for that matter).
2758 */
2759 assert(last < LP_MAX_TGSI_ADDRS);
2760 for (idx = first; idx <= last; ++idx) {
2761 assert(idx < LP_MAX_TGSI_ADDRS);
2762 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2763 bld->addr[idx][i] = lp_build_alloca(gallivm, bld_base->base.int_vec_type, "addr");
2764 }
2765 break;
2766
2767 case TGSI_FILE_PREDICATE:
2768 assert(last < LP_MAX_TGSI_PREDS);
2769 for (idx = first; idx <= last; ++idx) {
2770 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2771 bld->preds[idx][i] = lp_build_alloca(gallivm, vec_type,
2772 "predicate");
2773 }
2774 break;
2775
2776 case TGSI_FILE_SAMPLER_VIEW:
2777 /*
2778 * The target stored here MUST match whatever there actually
2779 * is in the set sampler views (what about return type?).
2780 */
2781 assert(last < PIPE_MAX_SHADER_SAMPLER_VIEWS);
2782 for (idx = first; idx <= last; ++idx) {
2783 bld->sv[idx] = decl->SamplerView;
2784 }
2785 break;
2786
2787 case TGSI_FILE_CONSTANT:
2788 {
2789 /*
2790 * We could trivially fetch the per-buffer pointer when fetching the
2791 * constant, relying on llvm to figure out it's always the same pointer
2792 * anyway. However, doing so results in a huge (more than factor of 10)
2793 * slowdown in llvm compilation times for some (but not all) shaders
2794 * (more specifically, the IR optimization spends way more time in
2795 * DominatorTree::dominates). At least with llvm versions 3.1, 3.3.
2796 */
2797 unsigned idx2D = decl->Dim.Index2D;
2798 LLVMValueRef index2D = lp_build_const_int32(gallivm, idx2D);
2799 assert(idx2D < LP_MAX_TGSI_CONST_BUFFERS);
2800 bld->consts[idx2D] =
2801 lp_build_array_get(gallivm, bld->consts_ptr, index2D);
2802 bld->consts_sizes[idx2D] =
2803 lp_build_array_get(gallivm, bld->const_sizes_ptr, index2D);
2804 }
2805 break;
2806
2807 default:
2808 /* don't need to declare other vars */
2809 break;
2810 }
2811 }
2812
2813
2814 void lp_emit_immediate_soa(
2815 struct lp_build_tgsi_context *bld_base,
2816 const struct tgsi_full_immediate *imm)
2817 {
2818 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
2819 struct gallivm_state * gallivm = bld_base->base.gallivm;
2820 LLVMValueRef imms[4];
2821 unsigned i;
2822 const uint size = imm->Immediate.NrTokens - 1;
2823 assert(size <= 4);
2824 switch (imm->Immediate.DataType) {
2825 case TGSI_IMM_FLOAT32:
2826 for( i = 0; i < size; ++i )
2827 imms[i] =
2828 lp_build_const_vec(gallivm, bld_base->base.type, imm->u[i].Float);
2829
2830 break;
2831 case TGSI_IMM_UINT32:
2832 for( i = 0; i < size; ++i ) {
2833 LLVMValueRef tmp = lp_build_const_vec(gallivm, bld_base->uint_bld.type, imm->u[i].Uint);
2834 imms[i] = LLVMConstBitCast(tmp, bld_base->base.vec_type);
2835 }
2836
2837 break;
2838 case TGSI_IMM_INT32:
2839 for( i = 0; i < size; ++i ) {
2840 LLVMValueRef tmp = lp_build_const_vec(gallivm, bld_base->int_bld.type, imm->u[i].Int);
2841 imms[i] = LLVMConstBitCast(tmp, bld_base->base.vec_type);
2842 }
2843
2844 break;
2845 }
2846 for( i = size; i < 4; ++i )
2847 imms[i] = bld_base->base.undef;
2848
2849 if (bld->use_immediates_array) {
2850 unsigned index = bld->num_immediates;
2851 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2852 LLVMBuilderRef builder = gallivm->builder;
2853
2854 assert(bld->indirect_files & (1 << TGSI_FILE_IMMEDIATE));
2855 for (i = 0; i < 4; ++i ) {
2856 LLVMValueRef lindex = lp_build_const_int32(
2857 bld->bld_base.base.gallivm, index * 4 + i);
2858 LLVMValueRef imm_ptr = LLVMBuildGEP(builder,
2859 bld->imms_array, &lindex, 1, "");
2860 LLVMBuildStore(builder, imms[i], imm_ptr);
2861 }
2862 } else {
2863 /* simply copy the immediate values into the next immediates[] slot */
2864 unsigned i;
2865 const uint size = imm->Immediate.NrTokens - 1;
2866 assert(size <= 4);
2867 assert(bld->num_immediates < LP_MAX_INLINED_IMMEDIATES);
2868
2869 for(i = 0; i < 4; ++i )
2870 bld->immediates[bld->num_immediates][i] = imms[i];
2871
2872 if (bld->indirect_files & (1 << TGSI_FILE_IMMEDIATE)) {
2873 unsigned index = bld->num_immediates;
2874 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2875 LLVMBuilderRef builder = gallivm->builder;
2876 for (i = 0; i < 4; ++i ) {
2877 LLVMValueRef lindex = lp_build_const_int32(
2878 bld->bld_base.base.gallivm, index * 4 + i);
2879 LLVMValueRef imm_ptr = LLVMBuildGEP(builder,
2880 bld->imms_array, &lindex, 1, "");
2881 LLVMBuildStore(builder,
2882 bld->immediates[index][i],
2883 imm_ptr);
2884 }
2885 }
2886 }
2887
2888 bld->num_immediates++;
2889 }
2890
2891 static void
2892 ddx_emit(
2893 const struct lp_build_tgsi_action * action,
2894 struct lp_build_tgsi_context * bld_base,
2895 struct lp_build_emit_data * emit_data)
2896 {
2897 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2898
2899 emit_fetch_deriv(bld, emit_data->args[0], NULL,
2900 &emit_data->output[emit_data->chan], NULL);
2901 }
2902
2903 static void
2904 ddy_emit(
2905 const struct lp_build_tgsi_action * action,
2906 struct lp_build_tgsi_context * bld_base,
2907 struct lp_build_emit_data * emit_data)
2908 {
2909 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2910
2911 emit_fetch_deriv(bld, emit_data->args[0], NULL, NULL,
2912 &emit_data->output[emit_data->chan]);
2913 }
2914
2915 static void
2916 kill_emit(
2917 const struct lp_build_tgsi_action * action,
2918 struct lp_build_tgsi_context * bld_base,
2919 struct lp_build_emit_data * emit_data)
2920 {
2921 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2922
2923 emit_kill(bld, bld_base->pc - 1);
2924 }
2925
2926 static void
2927 kill_if_emit(
2928 const struct lp_build_tgsi_action * action,
2929 struct lp_build_tgsi_context * bld_base,
2930 struct lp_build_emit_data * emit_data)
2931 {
2932 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2933
2934 emit_kill_if(bld, emit_data->inst, bld_base->pc - 1);
2935 }
2936
2937 static void
2938 tex_emit(
2939 const struct lp_build_tgsi_action * action,
2940 struct lp_build_tgsi_context * bld_base,
2941 struct lp_build_emit_data * emit_data)
2942 {
2943 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2944
2945 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
2946 emit_data->output, 1);
2947 }
2948
2949 static void
2950 tex2_emit(
2951 const struct lp_build_tgsi_action * action,
2952 struct lp_build_tgsi_context * bld_base,
2953 struct lp_build_emit_data * emit_data)
2954 {
2955 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2956
2957 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
2958 emit_data->output, 2);
2959 }
2960
2961 static void
2962 txb_emit(
2963 const struct lp_build_tgsi_action * action,
2964 struct lp_build_tgsi_context * bld_base,
2965 struct lp_build_emit_data * emit_data)
2966 {
2967 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2968
2969 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_BIAS,
2970 emit_data->output, 1);
2971 }
2972
2973 static void
2974 txb2_emit(
2975 const struct lp_build_tgsi_action * action,
2976 struct lp_build_tgsi_context * bld_base,
2977 struct lp_build_emit_data * emit_data)
2978 {
2979 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2980
2981 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_BIAS,
2982 emit_data->output, 2);
2983 }
2984
2985 static void
2986 txd_emit(
2987 const struct lp_build_tgsi_action * action,
2988 struct lp_build_tgsi_context * bld_base,
2989 struct lp_build_emit_data * emit_data)
2990 {
2991 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2992
2993 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV,
2994 emit_data->output, 3);
2995 }
2996
2997 static void
2998 txl_emit(
2999 const struct lp_build_tgsi_action * action,
3000 struct lp_build_tgsi_context * bld_base,
3001 struct lp_build_emit_data * emit_data)
3002 {
3003 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3004
3005 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_LOD,
3006 emit_data->output, 1);
3007 }
3008
3009 static void
3010 txl2_emit(
3011 const struct lp_build_tgsi_action * action,
3012 struct lp_build_tgsi_context * bld_base,
3013 struct lp_build_emit_data * emit_data)
3014 {
3015 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3016
3017 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_LOD,
3018 emit_data->output, 2);
3019 }
3020
3021 static void
3022 txp_emit(
3023 const struct lp_build_tgsi_action * action,
3024 struct lp_build_tgsi_context * bld_base,
3025 struct lp_build_emit_data * emit_data)
3026 {
3027 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3028
3029 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_PROJECTED,
3030 emit_data->output, 1);
3031 }
3032
3033 static void
3034 txq_emit(
3035 const struct lp_build_tgsi_action * action,
3036 struct lp_build_tgsi_context * bld_base,
3037 struct lp_build_emit_data * emit_data)
3038 {
3039 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3040
3041 emit_size_query(bld, emit_data->inst, emit_data->output, FALSE);
3042 }
3043
3044 static void
3045 txf_emit(
3046 const struct lp_build_tgsi_action * action,
3047 struct lp_build_tgsi_context * bld_base,
3048 struct lp_build_emit_data * emit_data)
3049 {
3050 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3051
3052 emit_fetch_texels(bld, emit_data->inst, emit_data->output, FALSE);
3053 }
3054
3055 static void
3056 sample_i_emit(
3057 const struct lp_build_tgsi_action * action,
3058 struct lp_build_tgsi_context * bld_base,
3059 struct lp_build_emit_data * emit_data)
3060 {
3061 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3062
3063 emit_fetch_texels(bld, emit_data->inst, emit_data->output, TRUE);
3064 }
3065
3066 static void
3067 sample_emit(
3068 const struct lp_build_tgsi_action * action,
3069 struct lp_build_tgsi_context * bld_base,
3070 struct lp_build_emit_data * emit_data)
3071 {
3072 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3073
3074 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
3075 FALSE, emit_data->output);
3076 }
3077
3078 static void
3079 sample_b_emit(
3080 const struct lp_build_tgsi_action * action,
3081 struct lp_build_tgsi_context * bld_base,
3082 struct lp_build_emit_data * emit_data)
3083 {
3084 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3085
3086 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_BIAS,
3087 FALSE, emit_data->output);
3088 }
3089
3090 static void
3091 sample_c_emit(
3092 const struct lp_build_tgsi_action * action,
3093 struct lp_build_tgsi_context * bld_base,
3094 struct lp_build_emit_data * emit_data)
3095 {
3096 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3097
3098 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
3099 TRUE, emit_data->output);
3100 }
3101
3102 static void
3103 sample_c_lz_emit(
3104 const struct lp_build_tgsi_action * action,
3105 struct lp_build_tgsi_context * bld_base,
3106 struct lp_build_emit_data * emit_data)
3107 {
3108 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3109
3110 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_ZERO,
3111 TRUE, emit_data->output);
3112 }
3113
3114 static void
3115 sample_d_emit(
3116 const struct lp_build_tgsi_action * action,
3117 struct lp_build_tgsi_context * bld_base,
3118 struct lp_build_emit_data * emit_data)
3119 {
3120 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3121
3122 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV,
3123 FALSE, emit_data->output);
3124 }
3125
3126 static void
3127 sample_l_emit(
3128 const struct lp_build_tgsi_action * action,
3129 struct lp_build_tgsi_context * bld_base,
3130 struct lp_build_emit_data * emit_data)
3131 {
3132 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3133
3134 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_LOD,
3135 FALSE, emit_data->output);
3136 }
3137
3138 static void
3139 sviewinfo_emit(
3140 const struct lp_build_tgsi_action * action,
3141 struct lp_build_tgsi_context * bld_base,
3142 struct lp_build_emit_data * emit_data)
3143 {
3144 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3145
3146 emit_size_query(bld, emit_data->inst, emit_data->output, TRUE);
3147 }
3148
3149 static LLVMValueRef
3150 mask_vec(struct lp_build_tgsi_context *bld_base)
3151 {
3152 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3153 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3154 struct lp_exec_mask *exec_mask = &bld->exec_mask;
3155
3156 if (!exec_mask->has_mask) {
3157 return lp_build_mask_value(bld->mask);
3158 }
3159 return LLVMBuildAnd(builder, lp_build_mask_value(bld->mask),
3160 exec_mask->exec_mask, "");
3161 }
3162
3163 static void
3164 increment_vec_ptr_by_mask(struct lp_build_tgsi_context * bld_base,
3165 LLVMValueRef ptr,
3166 LLVMValueRef mask)
3167 {
3168 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3169 LLVMValueRef current_vec = LLVMBuildLoad(builder, ptr, "");
3170
3171 current_vec = LLVMBuildSub(builder, current_vec, mask, "");
3172
3173 LLVMBuildStore(builder, current_vec, ptr);
3174 }
3175
3176 static void
3177 clear_uint_vec_ptr_from_mask(struct lp_build_tgsi_context * bld_base,
3178 LLVMValueRef ptr,
3179 LLVMValueRef mask)
3180 {
3181 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3182 LLVMValueRef current_vec = LLVMBuildLoad(builder, ptr, "");
3183
3184 current_vec = lp_build_select(&bld_base->uint_bld,
3185 mask,
3186 bld_base->uint_bld.zero,
3187 current_vec);
3188
3189 LLVMBuildStore(builder, current_vec, ptr);
3190 }
3191
3192 static LLVMValueRef
3193 clamp_mask_to_max_output_vertices(struct lp_build_tgsi_soa_context * bld,
3194 LLVMValueRef current_mask_vec,
3195 LLVMValueRef total_emitted_vertices_vec)
3196 {
3197 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3198 struct lp_build_context *int_bld = &bld->bld_base.int_bld;
3199 LLVMValueRef max_mask = lp_build_cmp(int_bld, PIPE_FUNC_LESS,
3200 total_emitted_vertices_vec,
3201 bld->max_output_vertices_vec);
3202
3203 return LLVMBuildAnd(builder, current_mask_vec, max_mask, "");
3204 }
3205
3206 static void
3207 emit_vertex(
3208 const struct lp_build_tgsi_action * action,
3209 struct lp_build_tgsi_context * bld_base,
3210 struct lp_build_emit_data * emit_data)
3211 {
3212 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3213 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3214
3215 if (bld->gs_iface->emit_vertex) {
3216 LLVMValueRef mask = mask_vec(bld_base);
3217 LLVMValueRef total_emitted_vertices_vec =
3218 LLVMBuildLoad(builder, bld->total_emitted_vertices_vec_ptr, "");
3219 mask = clamp_mask_to_max_output_vertices(bld, mask,
3220 total_emitted_vertices_vec);
3221 gather_outputs(bld);
3222 bld->gs_iface->emit_vertex(bld->gs_iface, &bld->bld_base,
3223 bld->outputs,
3224 total_emitted_vertices_vec);
3225 increment_vec_ptr_by_mask(bld_base, bld->emitted_vertices_vec_ptr,
3226 mask);
3227 increment_vec_ptr_by_mask(bld_base, bld->total_emitted_vertices_vec_ptr,
3228 mask);
3229 #if DUMP_GS_EMITS
3230 lp_build_print_value(bld->bld_base.base.gallivm,
3231 " +++ emit vertex masked ones = ",
3232 mask);
3233 lp_build_print_value(bld->bld_base.base.gallivm,
3234 " +++ emit vertex emitted = ",
3235 total_emitted_vertices_vec);
3236 #endif
3237 }
3238 }
3239
3240
3241 static void
3242 end_primitive_masked(struct lp_build_tgsi_context * bld_base,
3243 LLVMValueRef mask)
3244 {
3245 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3246 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3247
3248 if (bld->gs_iface->end_primitive) {
3249 struct lp_build_context *uint_bld = &bld_base->uint_bld;
3250 LLVMValueRef emitted_vertices_vec =
3251 LLVMBuildLoad(builder, bld->emitted_vertices_vec_ptr, "");
3252 LLVMValueRef emitted_prims_vec =
3253 LLVMBuildLoad(builder, bld->emitted_prims_vec_ptr, "");
3254
3255 LLVMValueRef emitted_mask = lp_build_cmp(uint_bld, PIPE_FUNC_NOTEQUAL,
3256 emitted_vertices_vec,
3257 uint_bld->zero);
3258 /* We need to combine the current execution mask with the mask
3259 telling us which, if any, execution slots actually have
3260 unemitted primitives, this way we make sure that end_primitives
3261 executes only on the paths that have unflushed vertices */
3262 mask = LLVMBuildAnd(builder, mask, emitted_mask, "");
3263
3264 bld->gs_iface->end_primitive(bld->gs_iface, &bld->bld_base,
3265 emitted_vertices_vec,
3266 emitted_prims_vec);
3267
3268 #if DUMP_GS_EMITS
3269 lp_build_print_value(bld->bld_base.base.gallivm,
3270 " +++ end prim masked ones = ",
3271 mask);
3272 lp_build_print_value(bld->bld_base.base.gallivm,
3273 " +++ end prim emitted verts1 = ",
3274 emitted_vertices_vec);
3275 lp_build_print_value(bld->bld_base.base.gallivm,
3276 " +++ end prim emitted prims1 = ",
3277 LLVMBuildLoad(builder,
3278 bld->emitted_prims_vec_ptr, ""));
3279 #endif
3280 increment_vec_ptr_by_mask(bld_base, bld->emitted_prims_vec_ptr,
3281 mask);
3282 clear_uint_vec_ptr_from_mask(bld_base, bld->emitted_vertices_vec_ptr,
3283 mask);
3284 #if DUMP_GS_EMITS
3285 lp_build_print_value(bld->bld_base.base.gallivm,
3286 " +++ end prim emitted verts2 = ",
3287 LLVMBuildLoad(builder,
3288 bld->emitted_vertices_vec_ptr, ""));
3289 #endif
3290 }
3291
3292 }
3293
3294 static void
3295 end_primitive(
3296 const struct lp_build_tgsi_action * action,
3297 struct lp_build_tgsi_context * bld_base,
3298 struct lp_build_emit_data * emit_data)
3299 {
3300 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3301
3302 if (bld->gs_iface->end_primitive) {
3303 LLVMValueRef mask = mask_vec(bld_base);
3304 end_primitive_masked(bld_base, mask);
3305 }
3306 }
3307
3308 static void
3309 cal_emit(
3310 const struct lp_build_tgsi_action * action,
3311 struct lp_build_tgsi_context * bld_base,
3312 struct lp_build_emit_data * emit_data)
3313 {
3314 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3315
3316 lp_exec_mask_call(&bld->exec_mask, emit_data->inst->Label.Label,
3317 &bld_base->pc);
3318 }
3319
3320 static void
3321 ret_emit(
3322 const struct lp_build_tgsi_action * action,
3323 struct lp_build_tgsi_context * bld_base,
3324 struct lp_build_emit_data * emit_data)
3325 {
3326 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3327
3328 lp_exec_mask_ret(&bld->exec_mask, &bld_base->pc);
3329 }
3330
3331 static void
3332 brk_emit(
3333 const struct lp_build_tgsi_action * action,
3334 struct lp_build_tgsi_context * bld_base,
3335 struct lp_build_emit_data * emit_data)
3336 {
3337 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3338
3339 lp_exec_break(&bld->exec_mask, bld_base);
3340 }
3341
3342 static void
3343 breakc_emit(
3344 const struct lp_build_tgsi_action * action,
3345 struct lp_build_tgsi_context * bld_base,
3346 struct lp_build_emit_data * emit_data)
3347 {
3348 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3349 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3350 struct lp_build_context *uint_bld = &bld_base->uint_bld;
3351 LLVMValueRef unsigned_cond =
3352 LLVMBuildBitCast(builder, emit_data->args[0], uint_bld->vec_type, "");
3353 LLVMValueRef cond = lp_build_cmp(uint_bld, PIPE_FUNC_NOTEQUAL,
3354 unsigned_cond,
3355 uint_bld->zero);
3356
3357 lp_exec_break_condition(&bld->exec_mask, cond);
3358 }
3359
3360 static void
3361 if_emit(
3362 const struct lp_build_tgsi_action * action,
3363 struct lp_build_tgsi_context * bld_base,
3364 struct lp_build_emit_data * emit_data)
3365 {
3366 LLVMValueRef tmp;
3367 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3368
3369 tmp = lp_build_cmp(&bld_base->base, PIPE_FUNC_NOTEQUAL,
3370 emit_data->args[0], bld->bld_base.base.zero);
3371 lp_exec_mask_cond_push(&bld->exec_mask, tmp);
3372 }
3373
3374 static void
3375 uif_emit(
3376 const struct lp_build_tgsi_action * action,
3377 struct lp_build_tgsi_context * bld_base,
3378 struct lp_build_emit_data * emit_data)
3379 {
3380 LLVMValueRef tmp;
3381 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3382 struct lp_build_context *uint_bld = &bld_base->uint_bld;
3383
3384 tmp = lp_build_cmp(uint_bld, PIPE_FUNC_NOTEQUAL,
3385 emit_data->args[0], uint_bld->zero);
3386 lp_exec_mask_cond_push(&bld->exec_mask, tmp);
3387 }
3388
3389 static void
3390 case_emit(
3391 const struct lp_build_tgsi_action * action,
3392 struct lp_build_tgsi_context * bld_base,
3393 struct lp_build_emit_data * emit_data)
3394 {
3395 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3396
3397 lp_exec_case(&bld->exec_mask, emit_data->args[0]);
3398 }
3399
3400 static void
3401 default_emit(
3402 const struct lp_build_tgsi_action * action,
3403 struct lp_build_tgsi_context * bld_base,
3404 struct lp_build_emit_data * emit_data)
3405 {
3406 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3407
3408 lp_exec_default(&bld->exec_mask, bld_base);
3409 }
3410
3411 static void
3412 switch_emit(
3413 const struct lp_build_tgsi_action * action,
3414 struct lp_build_tgsi_context * bld_base,
3415 struct lp_build_emit_data * emit_data)
3416 {
3417 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3418
3419 lp_exec_switch(&bld->exec_mask, emit_data->args[0]);
3420 }
3421
3422 static void
3423 endswitch_emit(
3424 const struct lp_build_tgsi_action * action,
3425 struct lp_build_tgsi_context * bld_base,
3426 struct lp_build_emit_data * emit_data)
3427 {
3428 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3429
3430 lp_exec_endswitch(&bld->exec_mask, bld_base);
3431 }
3432
3433 static void
3434 bgnloop_emit(
3435 const struct lp_build_tgsi_action * action,
3436 struct lp_build_tgsi_context * bld_base,
3437 struct lp_build_emit_data * emit_data)
3438 {
3439 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3440
3441 lp_exec_bgnloop(&bld->exec_mask);
3442 }
3443
3444 static void
3445 bgnsub_emit(
3446 const struct lp_build_tgsi_action * action,
3447 struct lp_build_tgsi_context * bld_base,
3448 struct lp_build_emit_data * emit_data)
3449 {
3450 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3451
3452 lp_exec_mask_bgnsub(&bld->exec_mask);
3453 }
3454
3455 static void
3456 else_emit(
3457 const struct lp_build_tgsi_action * action,
3458 struct lp_build_tgsi_context * bld_base,
3459 struct lp_build_emit_data * emit_data)
3460 {
3461 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3462
3463 lp_exec_mask_cond_invert(&bld->exec_mask);
3464 }
3465
3466 static void
3467 endif_emit(
3468 const struct lp_build_tgsi_action * action,
3469 struct lp_build_tgsi_context * bld_base,
3470 struct lp_build_emit_data * emit_data)
3471 {
3472 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3473
3474 lp_exec_mask_cond_pop(&bld->exec_mask);
3475 }
3476
3477 static void
3478 endloop_emit(
3479 const struct lp_build_tgsi_action * action,
3480 struct lp_build_tgsi_context * bld_base,
3481 struct lp_build_emit_data * emit_data)
3482 {
3483 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3484
3485 lp_exec_endloop(bld_base->base.gallivm, &bld->exec_mask);
3486 }
3487
3488 static void
3489 endsub_emit(
3490 const struct lp_build_tgsi_action * action,
3491 struct lp_build_tgsi_context * bld_base,
3492 struct lp_build_emit_data * emit_data)
3493 {
3494 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3495
3496 lp_exec_mask_endsub(&bld->exec_mask, &bld_base->pc);
3497 }
3498
3499 static void
3500 cont_emit(
3501 const struct lp_build_tgsi_action * action,
3502 struct lp_build_tgsi_context * bld_base,
3503 struct lp_build_emit_data * emit_data)
3504 {
3505 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3506
3507 lp_exec_continue(&bld->exec_mask);
3508 }
3509
3510 static void emit_prologue(struct lp_build_tgsi_context * bld_base)
3511 {
3512 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3513 struct gallivm_state * gallivm = bld_base->base.gallivm;
3514
3515 if (bld->indirect_files & (1 << TGSI_FILE_TEMPORARY)) {
3516 LLVMValueRef array_size =
3517 lp_build_const_int32(gallivm,
3518 bld_base->info->file_max[TGSI_FILE_TEMPORARY] * 4 + 4);
3519 bld->temps_array = lp_build_array_alloca(gallivm,
3520 bld_base->base.vec_type, array_size,
3521 "temp_array");
3522 }
3523
3524 if (bld->indirect_files & (1 << TGSI_FILE_OUTPUT)) {
3525 LLVMValueRef array_size =
3526 lp_build_const_int32(gallivm,
3527 bld_base->info->file_max[TGSI_FILE_OUTPUT] * 4 + 4);
3528 bld->outputs_array = lp_build_array_alloca(gallivm,
3529 bld_base->base.vec_type, array_size,
3530 "output_array");
3531 }
3532
3533 if (bld->indirect_files & (1 << TGSI_FILE_IMMEDIATE)) {
3534 LLVMValueRef array_size =
3535 lp_build_const_int32(gallivm,
3536 bld_base->info->file_max[TGSI_FILE_IMMEDIATE] * 4 + 4);
3537 bld->imms_array = lp_build_array_alloca(gallivm,
3538 bld_base->base.vec_type, array_size,
3539 "imms_array");
3540 }
3541
3542 /* If we have indirect addressing in inputs we need to copy them into
3543 * our alloca array to be able to iterate over them */
3544 if (bld->indirect_files & (1 << TGSI_FILE_INPUT) && !bld->gs_iface) {
3545 unsigned index, chan;
3546 LLVMTypeRef vec_type = bld_base->base.vec_type;
3547 LLVMValueRef array_size = lp_build_const_int32(gallivm,
3548 bld_base->info->file_max[TGSI_FILE_INPUT]*4 + 4);
3549 bld->inputs_array = lp_build_array_alloca(gallivm,
3550 vec_type, array_size,
3551 "input_array");
3552
3553 assert(bld_base->info->num_inputs
3554 <= bld_base->info->file_max[TGSI_FILE_INPUT] + 1);
3555
3556 for (index = 0; index < bld_base->info->num_inputs; ++index) {
3557 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
3558 LLVMValueRef lindex =
3559 lp_build_const_int32(gallivm, index * 4 + chan);
3560 LLVMValueRef input_ptr =
3561 LLVMBuildGEP(gallivm->builder, bld->inputs_array,
3562 &lindex, 1, "");
3563 LLVMValueRef value = bld->inputs[index][chan];
3564 if (value)
3565 LLVMBuildStore(gallivm->builder, value, input_ptr);
3566 }
3567 }
3568 }
3569
3570 if (bld->gs_iface) {
3571 struct lp_build_context *uint_bld = &bld->bld_base.uint_bld;
3572 bld->emitted_prims_vec_ptr =
3573 lp_build_alloca(gallivm,
3574 uint_bld->vec_type,
3575 "emitted_prims_ptr");
3576 bld->emitted_vertices_vec_ptr =
3577 lp_build_alloca(gallivm,
3578 uint_bld->vec_type,
3579 "emitted_vertices_ptr");
3580 bld->total_emitted_vertices_vec_ptr =
3581 lp_build_alloca(gallivm,
3582 uint_bld->vec_type,
3583 "total_emitted_vertices_ptr");
3584
3585 LLVMBuildStore(gallivm->builder, uint_bld->zero,
3586 bld->emitted_prims_vec_ptr);
3587 LLVMBuildStore(gallivm->builder, uint_bld->zero,
3588 bld->emitted_vertices_vec_ptr);
3589 LLVMBuildStore(gallivm->builder, uint_bld->zero,
3590 bld->total_emitted_vertices_vec_ptr);
3591 }
3592
3593 if (DEBUG_EXECUTION) {
3594 lp_build_printf(gallivm, "\n");
3595 emit_dump_file(bld, TGSI_FILE_CONSTANT);
3596 if (!bld->gs_iface)
3597 emit_dump_file(bld, TGSI_FILE_INPUT);
3598 }
3599 }
3600
3601 static void emit_epilogue(struct lp_build_tgsi_context * bld_base)
3602 {
3603 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3604 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3605
3606 if (DEBUG_EXECUTION) {
3607 /* for debugging */
3608 if (0) {
3609 emit_dump_file(bld, TGSI_FILE_TEMPORARY);
3610 }
3611 emit_dump_file(bld, TGSI_FILE_OUTPUT);
3612 lp_build_printf(bld_base->base.gallivm, "\n");
3613 }
3614
3615 /* If we have indirect addressing in outputs we need to copy our alloca array
3616 * to the outputs slots specified by the caller */
3617 if (bld->gs_iface) {
3618 LLVMValueRef total_emitted_vertices_vec;
3619 LLVMValueRef emitted_prims_vec;
3620 /* implicit end_primitives, needed in case there are any unflushed
3621 vertices in the cache. Note must not call end_primitive here
3622 since the exec_mask is not valid at this point. */
3623 end_primitive_masked(bld_base, lp_build_mask_value(bld->mask));
3624
3625 total_emitted_vertices_vec =
3626 LLVMBuildLoad(builder, bld->total_emitted_vertices_vec_ptr, "");
3627 emitted_prims_vec =
3628 LLVMBuildLoad(builder, bld->emitted_prims_vec_ptr, "");
3629
3630 bld->gs_iface->gs_epilogue(bld->gs_iface,
3631 &bld->bld_base,
3632 total_emitted_vertices_vec,
3633 emitted_prims_vec);
3634 } else {
3635 gather_outputs(bld);
3636 }
3637 }
3638
3639 void
3640 lp_build_tgsi_soa(struct gallivm_state *gallivm,
3641 const struct tgsi_token *tokens,
3642 struct lp_type type,
3643 struct lp_build_mask_context *mask,
3644 LLVMValueRef consts_ptr,
3645 LLVMValueRef const_sizes_ptr,
3646 const struct lp_bld_tgsi_system_values *system_values,
3647 const LLVMValueRef (*inputs)[TGSI_NUM_CHANNELS],
3648 LLVMValueRef (*outputs)[TGSI_NUM_CHANNELS],
3649 struct lp_build_sampler_soa *sampler,
3650 const struct tgsi_shader_info *info,
3651 const struct lp_build_tgsi_gs_iface *gs_iface)
3652 {
3653 struct lp_build_tgsi_soa_context bld;
3654
3655 struct lp_type res_type;
3656
3657 assert(type.length <= LP_MAX_VECTOR_LENGTH);
3658 memset(&res_type, 0, sizeof res_type);
3659 res_type.width = type.width;
3660 res_type.length = type.length;
3661 res_type.sign = 1;
3662
3663 /* Setup build context */
3664 memset(&bld, 0, sizeof bld);
3665 lp_build_context_init(&bld.bld_base.base, gallivm, type);
3666 lp_build_context_init(&bld.bld_base.uint_bld, gallivm, lp_uint_type(type));
3667 lp_build_context_init(&bld.bld_base.int_bld, gallivm, lp_int_type(type));
3668 lp_build_context_init(&bld.elem_bld, gallivm, lp_elem_type(type));
3669 bld.mask = mask;
3670 bld.inputs = inputs;
3671 bld.outputs = outputs;
3672 bld.consts_ptr = consts_ptr;
3673 bld.const_sizes_ptr = const_sizes_ptr;
3674 bld.sampler = sampler;
3675 bld.bld_base.info = info;
3676 bld.indirect_files = info->indirect_files;
3677
3678 /*
3679 * If the number of temporaries is rather large then we just
3680 * allocate them as an array right from the start and treat
3681 * like indirect temporaries.
3682 */
3683 if (info->file_max[TGSI_FILE_TEMPORARY] >= LP_MAX_INLINED_TEMPS) {
3684 bld.indirect_files |= (1 << TGSI_FILE_TEMPORARY);
3685 }
3686 /*
3687 * For performance reason immediates are always backed in a static
3688 * array, but if their number is too great, we have to use just
3689 * a dynamically allocated array.
3690 */
3691 bld.use_immediates_array =
3692 (info->file_max[TGSI_FILE_IMMEDIATE] >= LP_MAX_INLINED_IMMEDIATES);
3693 if (bld.use_immediates_array) {
3694 bld.indirect_files |= (1 << TGSI_FILE_IMMEDIATE);
3695 }
3696
3697
3698 bld.bld_base.soa = TRUE;
3699 bld.bld_base.emit_debug = emit_debug;
3700 bld.bld_base.emit_fetch_funcs[TGSI_FILE_CONSTANT] = emit_fetch_constant;
3701 bld.bld_base.emit_fetch_funcs[TGSI_FILE_IMMEDIATE] = emit_fetch_immediate;
3702 bld.bld_base.emit_fetch_funcs[TGSI_FILE_INPUT] = emit_fetch_input;
3703 bld.bld_base.emit_fetch_funcs[TGSI_FILE_TEMPORARY] = emit_fetch_temporary;
3704 bld.bld_base.emit_fetch_funcs[TGSI_FILE_SYSTEM_VALUE] = emit_fetch_system_value;
3705 bld.bld_base.emit_store = emit_store;
3706
3707 bld.bld_base.emit_declaration = lp_emit_declaration_soa;
3708 bld.bld_base.emit_immediate = lp_emit_immediate_soa;
3709
3710 bld.bld_base.emit_prologue = emit_prologue;
3711 bld.bld_base.emit_epilogue = emit_epilogue;
3712
3713 /* Set opcode actions */
3714 lp_set_default_actions_cpu(&bld.bld_base);
3715
3716 bld.bld_base.op_actions[TGSI_OPCODE_BGNLOOP].emit = bgnloop_emit;
3717 bld.bld_base.op_actions[TGSI_OPCODE_BGNSUB].emit = bgnsub_emit;
3718 bld.bld_base.op_actions[TGSI_OPCODE_BRK].emit = brk_emit;
3719 bld.bld_base.op_actions[TGSI_OPCODE_BREAKC].emit = breakc_emit;
3720 bld.bld_base.op_actions[TGSI_OPCODE_CAL].emit = cal_emit;
3721 bld.bld_base.op_actions[TGSI_OPCODE_CASE].emit = case_emit;
3722 bld.bld_base.op_actions[TGSI_OPCODE_CONT].emit = cont_emit;
3723 bld.bld_base.op_actions[TGSI_OPCODE_DDX].emit = ddx_emit;
3724 bld.bld_base.op_actions[TGSI_OPCODE_DDY].emit = ddy_emit;
3725 bld.bld_base.op_actions[TGSI_OPCODE_DEFAULT].emit = default_emit;
3726 bld.bld_base.op_actions[TGSI_OPCODE_ELSE].emit = else_emit;
3727 bld.bld_base.op_actions[TGSI_OPCODE_ENDIF].emit = endif_emit;
3728 bld.bld_base.op_actions[TGSI_OPCODE_ENDLOOP].emit = endloop_emit;
3729 bld.bld_base.op_actions[TGSI_OPCODE_ENDSUB].emit = endsub_emit;
3730 bld.bld_base.op_actions[TGSI_OPCODE_ENDSWITCH].emit = endswitch_emit;
3731 bld.bld_base.op_actions[TGSI_OPCODE_IF].emit = if_emit;
3732 bld.bld_base.op_actions[TGSI_OPCODE_UIF].emit = uif_emit;
3733 bld.bld_base.op_actions[TGSI_OPCODE_KILL_IF].emit = kill_if_emit;
3734 bld.bld_base.op_actions[TGSI_OPCODE_KILL].emit = kill_emit;
3735 bld.bld_base.op_actions[TGSI_OPCODE_RET].emit = ret_emit;
3736 bld.bld_base.op_actions[TGSI_OPCODE_SWITCH].emit = switch_emit;
3737 bld.bld_base.op_actions[TGSI_OPCODE_TEX].emit = tex_emit;
3738 bld.bld_base.op_actions[TGSI_OPCODE_TXB].emit = txb_emit;
3739 bld.bld_base.op_actions[TGSI_OPCODE_TXD].emit = txd_emit;
3740 bld.bld_base.op_actions[TGSI_OPCODE_TXL].emit = txl_emit;
3741 bld.bld_base.op_actions[TGSI_OPCODE_TXP].emit = txp_emit;
3742 bld.bld_base.op_actions[TGSI_OPCODE_TXQ].emit = txq_emit;
3743 bld.bld_base.op_actions[TGSI_OPCODE_TXF].emit = txf_emit;
3744 bld.bld_base.op_actions[TGSI_OPCODE_TEX2].emit = tex2_emit;
3745 bld.bld_base.op_actions[TGSI_OPCODE_TXB2].emit = txb2_emit;
3746 bld.bld_base.op_actions[TGSI_OPCODE_TXL2].emit = txl2_emit;
3747 /* DX10 sampling ops */
3748 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE].emit = sample_emit;
3749 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_B].emit = sample_b_emit;
3750 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_C].emit = sample_c_emit;
3751 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_C_LZ].emit = sample_c_lz_emit;
3752 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_D].emit = sample_d_emit;
3753 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_I].emit = sample_i_emit;
3754 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_L].emit = sample_l_emit;
3755 bld.bld_base.op_actions[TGSI_OPCODE_SVIEWINFO].emit = sviewinfo_emit;
3756
3757 if (gs_iface) {
3758 /* There's no specific value for this because it should always
3759 * be set, but apps using ext_geometry_shader4 quite often
3760 * were forgetting so we're using MAX_VERTEX_VARYING from
3761 * that spec even though we could debug_assert if it's not
3762 * set, but that's a lot uglier. */
3763 uint max_output_vertices;
3764
3765 /* inputs are always indirect with gs */
3766 bld.indirect_files |= (1 << TGSI_FILE_INPUT);
3767 bld.gs_iface = gs_iface;
3768 bld.bld_base.emit_fetch_funcs[TGSI_FILE_INPUT] = emit_fetch_gs_input;
3769 bld.bld_base.op_actions[TGSI_OPCODE_EMIT].emit = emit_vertex;
3770 bld.bld_base.op_actions[TGSI_OPCODE_ENDPRIM].emit = end_primitive;
3771
3772 max_output_vertices =
3773 info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
3774 if (!max_output_vertices)
3775 max_output_vertices = 32;
3776
3777 bld.max_output_vertices_vec =
3778 lp_build_const_int_vec(gallivm, bld.bld_base.int_bld.type,
3779 max_output_vertices);
3780 }
3781
3782 lp_exec_mask_init(&bld.exec_mask, &bld.bld_base.int_bld);
3783
3784 bld.system_values = *system_values;
3785
3786 lp_build_tgsi_llvm(&bld.bld_base, tokens);
3787
3788 if (0) {
3789 LLVMBasicBlockRef block = LLVMGetInsertBlock(gallivm->builder);
3790 LLVMValueRef function = LLVMGetBasicBlockParent(block);
3791 debug_printf("11111111111111111111111111111 \n");
3792 tgsi_dump(tokens, 0);
3793 lp_debug_dump_value(function);
3794 debug_printf("2222222222222222222222222222 \n");
3795 }
3796
3797 if (0) {
3798 LLVMModuleRef module = LLVMGetGlobalParent(
3799 LLVMGetBasicBlockParent(LLVMGetInsertBlock(gallivm->builder)));
3800 LLVMDumpModule(module);
3801
3802 }
3803 lp_exec_mask_fini(&bld.exec_mask);
3804 }