7d2cd9a9e7328860cca1414ea40ed3034f4c54a5
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_tgsi_soa.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007-2008 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * TGSI to LLVM IR translation -- SoA.
32 *
33 * @author Jose Fonseca <jfonseca@vmware.com>
34 *
35 * Based on tgsi_sse2.c code written by Michal Krol, Keith Whitwell,
36 * Brian Paul, and others.
37 */
38
39 #include "pipe/p_config.h"
40 #include "pipe/p_shader_tokens.h"
41 #include "util/u_debug.h"
42 #include "util/u_math.h"
43 #include "util/u_memory.h"
44 #include "tgsi/tgsi_dump.h"
45 #include "tgsi/tgsi_exec.h"
46 #include "tgsi/tgsi_info.h"
47 #include "tgsi/tgsi_parse.h"
48 #include "tgsi/tgsi_util.h"
49 #include "tgsi/tgsi_scan.h"
50 #include "tgsi/tgsi_strings.h"
51 #include "lp_bld_tgsi_action.h"
52 #include "lp_bld_type.h"
53 #include "lp_bld_const.h"
54 #include "lp_bld_arit.h"
55 #include "lp_bld_bitarit.h"
56 #include "lp_bld_gather.h"
57 #include "lp_bld_init.h"
58 #include "lp_bld_logic.h"
59 #include "lp_bld_swizzle.h"
60 #include "lp_bld_flow.h"
61 #include "lp_bld_quad.h"
62 #include "lp_bld_tgsi.h"
63 #include "lp_bld_limits.h"
64 #include "lp_bld_debug.h"
65 #include "lp_bld_printf.h"
66 #include "lp_bld_sample.h"
67 #include "lp_bld_struct.h"
68
69 /* SM 4.0 says that subroutines can nest 32 deep and
70 * we need one more for our main function */
71 #define LP_MAX_NUM_FUNCS 33
72
73 #define DUMP_GS_EMITS 0
74
75 /*
76 * If non-zero, the generated LLVM IR will print intermediate results on every TGSI
77 * instruction.
78 *
79 * TODO:
80 * - take execution masks in consideration
81 * - debug control-flow instructions
82 */
83 #define DEBUG_EXECUTION 0
84
85
86 /*
87 * Emit code to print a register value.
88 */
89 static void
90 emit_dump_reg(struct gallivm_state *gallivm,
91 unsigned file,
92 unsigned index,
93 unsigned chan,
94 LLVMValueRef value)
95 {
96 char buf[32];
97
98 util_snprintf(buf, sizeof buf, " %s[%u].%c = ",
99 tgsi_file_name(file),
100 index, "xyzw"[chan]);
101
102 lp_build_print_value(gallivm, buf, value);
103 }
104
105 /*
106 * Return the context for the current function.
107 * (always 'main', if shader doesn't do any function calls)
108 */
109 static inline struct function_ctx *
110 func_ctx(struct lp_exec_mask *mask)
111 {
112 assert(mask->function_stack_size > 0);
113 assert(mask->function_stack_size <= LP_MAX_NUM_FUNCS);
114 return &mask->function_stack[mask->function_stack_size - 1];
115 }
116
117 /*
118 * Returns true if we're in a loop.
119 * It's global, meaning that it returns true even if there's
120 * no loop inside the current function, but we were inside
121 * a loop inside another function, from which this one was called.
122 */
123 static inline boolean
124 mask_has_loop(struct lp_exec_mask *mask)
125 {
126 int i;
127 for (i = mask->function_stack_size - 1; i >= 0; --i) {
128 const struct function_ctx *ctx = &mask->function_stack[i];
129 if (ctx->loop_stack_size > 0)
130 return TRUE;
131 }
132 return FALSE;
133 }
134
135 /*
136 * Returns true if we're inside a switch statement.
137 * It's global, meaning that it returns true even if there's
138 * no switch in the current function, but we were inside
139 * a switch inside another function, from which this one was called.
140 */
141 static inline boolean
142 mask_has_switch(struct lp_exec_mask *mask)
143 {
144 int i;
145 for (i = mask->function_stack_size - 1; i >= 0; --i) {
146 const struct function_ctx *ctx = &mask->function_stack[i];
147 if (ctx->switch_stack_size > 0)
148 return TRUE;
149 }
150 return FALSE;
151 }
152
153 /*
154 * Returns true if we're inside a conditional.
155 * It's global, meaning that it returns true even if there's
156 * no conditional in the current function, but we were inside
157 * a conditional inside another function, from which this one was called.
158 */
159 static inline boolean
160 mask_has_cond(struct lp_exec_mask *mask)
161 {
162 int i;
163 for (i = mask->function_stack_size - 1; i >= 0; --i) {
164 const struct function_ctx *ctx = &mask->function_stack[i];
165 if (ctx->cond_stack_size > 0)
166 return TRUE;
167 }
168 return FALSE;
169 }
170
171
172 /*
173 * Initialize a function context at the specified index.
174 */
175 static void
176 lp_exec_mask_function_init(struct lp_exec_mask *mask, int function_idx)
177 {
178 LLVMTypeRef int_type = LLVMInt32TypeInContext(mask->bld->gallivm->context);
179 LLVMBuilderRef builder = mask->bld->gallivm->builder;
180 struct function_ctx *ctx = &mask->function_stack[function_idx];
181
182 ctx->cond_stack_size = 0;
183 ctx->loop_stack_size = 0;
184 ctx->switch_stack_size = 0;
185
186 if (function_idx == 0) {
187 ctx->ret_mask = mask->ret_mask;
188 }
189
190 ctx->loop_limiter = lp_build_alloca(mask->bld->gallivm,
191 int_type, "looplimiter");
192 LLVMBuildStore(
193 builder,
194 LLVMConstInt(int_type, LP_MAX_TGSI_LOOP_ITERATIONS, false),
195 ctx->loop_limiter);
196 }
197
198 static void lp_exec_mask_init(struct lp_exec_mask *mask, struct lp_build_context *bld)
199 {
200 mask->bld = bld;
201 mask->has_mask = FALSE;
202 mask->ret_in_main = FALSE;
203 /* For the main function */
204 mask->function_stack_size = 1;
205
206 mask->int_vec_type = lp_build_int_vec_type(bld->gallivm, mask->bld->type);
207 mask->exec_mask = mask->ret_mask = mask->break_mask = mask->cont_mask =
208 mask->cond_mask = mask->switch_mask =
209 LLVMConstAllOnes(mask->int_vec_type);
210
211 mask->function_stack = CALLOC(LP_MAX_NUM_FUNCS,
212 sizeof(mask->function_stack[0]));
213 lp_exec_mask_function_init(mask, 0);
214 }
215
216 static void
217 lp_exec_mask_fini(struct lp_exec_mask *mask)
218 {
219 FREE(mask->function_stack);
220 }
221
222 static void lp_exec_mask_update(struct lp_exec_mask *mask)
223 {
224 LLVMBuilderRef builder = mask->bld->gallivm->builder;
225 boolean has_loop_mask = mask_has_loop(mask);
226 boolean has_cond_mask = mask_has_cond(mask);
227 boolean has_switch_mask = mask_has_switch(mask);
228 boolean has_ret_mask = mask->function_stack_size > 1 ||
229 mask->ret_in_main;
230
231 if (has_loop_mask) {
232 /*for loops we need to update the entire mask at runtime */
233 LLVMValueRef tmp;
234 assert(mask->break_mask);
235 tmp = LLVMBuildAnd(builder,
236 mask->cont_mask,
237 mask->break_mask,
238 "maskcb");
239 mask->exec_mask = LLVMBuildAnd(builder,
240 mask->cond_mask,
241 tmp,
242 "maskfull");
243 } else
244 mask->exec_mask = mask->cond_mask;
245
246 if (has_switch_mask) {
247 mask->exec_mask = LLVMBuildAnd(builder,
248 mask->exec_mask,
249 mask->switch_mask,
250 "switchmask");
251 }
252
253 if (has_ret_mask) {
254 mask->exec_mask = LLVMBuildAnd(builder,
255 mask->exec_mask,
256 mask->ret_mask,
257 "callmask");
258 }
259
260 mask->has_mask = (has_cond_mask ||
261 has_loop_mask ||
262 has_switch_mask ||
263 has_ret_mask);
264 }
265
266 static void lp_exec_mask_cond_push(struct lp_exec_mask *mask,
267 LLVMValueRef val)
268 {
269 LLVMBuilderRef builder = mask->bld->gallivm->builder;
270 struct function_ctx *ctx = func_ctx(mask);
271
272 if (ctx->cond_stack_size >= LP_MAX_TGSI_NESTING) {
273 ctx->cond_stack_size++;
274 return;
275 }
276 if (ctx->cond_stack_size == 0 && mask->function_stack_size == 1) {
277 assert(mask->cond_mask == LLVMConstAllOnes(mask->int_vec_type));
278 }
279 ctx->cond_stack[ctx->cond_stack_size++] = mask->cond_mask;
280 assert(LLVMTypeOf(val) == mask->int_vec_type);
281 mask->cond_mask = LLVMBuildAnd(builder,
282 mask->cond_mask,
283 val,
284 "");
285 lp_exec_mask_update(mask);
286 }
287
288 static void lp_exec_mask_cond_invert(struct lp_exec_mask *mask)
289 {
290 LLVMBuilderRef builder = mask->bld->gallivm->builder;
291 struct function_ctx *ctx = func_ctx(mask);
292 LLVMValueRef prev_mask;
293 LLVMValueRef inv_mask;
294
295 assert(ctx->cond_stack_size);
296 if (ctx->cond_stack_size >= LP_MAX_TGSI_NESTING)
297 return;
298 prev_mask = ctx->cond_stack[ctx->cond_stack_size - 1];
299 if (ctx->cond_stack_size == 1 && mask->function_stack_size == 1) {
300 assert(prev_mask == LLVMConstAllOnes(mask->int_vec_type));
301 }
302
303 inv_mask = LLVMBuildNot(builder, mask->cond_mask, "");
304
305 mask->cond_mask = LLVMBuildAnd(builder,
306 inv_mask,
307 prev_mask, "");
308 lp_exec_mask_update(mask);
309 }
310
311 static void lp_exec_mask_cond_pop(struct lp_exec_mask *mask)
312 {
313 struct function_ctx *ctx = func_ctx(mask);
314 assert(ctx->cond_stack_size);
315 --ctx->cond_stack_size;
316 if (ctx->cond_stack_size >= LP_MAX_TGSI_NESTING)
317 return;
318 mask->cond_mask = ctx->cond_stack[ctx->cond_stack_size];
319 lp_exec_mask_update(mask);
320 }
321
322 static void lp_exec_bgnloop(struct lp_exec_mask *mask)
323 {
324 LLVMBuilderRef builder = mask->bld->gallivm->builder;
325 struct function_ctx *ctx = func_ctx(mask);
326
327 if (ctx->loop_stack_size >= LP_MAX_TGSI_NESTING) {
328 ++ctx->loop_stack_size;
329 return;
330 }
331
332 ctx->break_type_stack[ctx->loop_stack_size + ctx->switch_stack_size] =
333 ctx->break_type;
334 ctx->break_type = LP_EXEC_MASK_BREAK_TYPE_LOOP;
335
336 ctx->loop_stack[ctx->loop_stack_size].loop_block = ctx->loop_block;
337 ctx->loop_stack[ctx->loop_stack_size].cont_mask = mask->cont_mask;
338 ctx->loop_stack[ctx->loop_stack_size].break_mask = mask->break_mask;
339 ctx->loop_stack[ctx->loop_stack_size].break_var = ctx->break_var;
340 ++ctx->loop_stack_size;
341
342 ctx->break_var = lp_build_alloca(mask->bld->gallivm, mask->int_vec_type, "");
343 LLVMBuildStore(builder, mask->break_mask, ctx->break_var);
344
345 ctx->loop_block = lp_build_insert_new_block(mask->bld->gallivm, "bgnloop");
346
347 LLVMBuildBr(builder, ctx->loop_block);
348 LLVMPositionBuilderAtEnd(builder, ctx->loop_block);
349
350 mask->break_mask = LLVMBuildLoad(builder, ctx->break_var, "");
351
352 lp_exec_mask_update(mask);
353 }
354
355 static void lp_exec_break(struct lp_exec_mask *mask,
356 struct lp_build_tgsi_context * bld_base)
357 {
358 LLVMBuilderRef builder = mask->bld->gallivm->builder;
359 struct function_ctx *ctx = func_ctx(mask);
360
361 if (ctx->break_type == LP_EXEC_MASK_BREAK_TYPE_LOOP) {
362 LLVMValueRef exec_mask = LLVMBuildNot(builder,
363 mask->exec_mask,
364 "break");
365
366 mask->break_mask = LLVMBuildAnd(builder,
367 mask->break_mask,
368 exec_mask, "break_full");
369 }
370 else {
371 unsigned opcode = bld_base->instructions[bld_base->pc + 1].Instruction.Opcode;
372 boolean break_always = (opcode == TGSI_OPCODE_ENDSWITCH ||
373 opcode == TGSI_OPCODE_CASE);
374
375
376 if (ctx->switch_in_default) {
377 /*
378 * stop default execution but only if this is an unconditional switch.
379 * (The condition here is not perfect since dead code after break is
380 * allowed but should be sufficient since false negatives are just
381 * unoptimized - so we don't have to pre-evaluate that).
382 */
383 if(break_always && ctx->switch_pc) {
384 bld_base->pc = ctx->switch_pc;
385 return;
386 }
387 }
388
389 if (break_always) {
390 mask->switch_mask = LLVMConstNull(mask->bld->int_vec_type);
391 }
392 else {
393 LLVMValueRef exec_mask = LLVMBuildNot(builder,
394 mask->exec_mask,
395 "break");
396 mask->switch_mask = LLVMBuildAnd(builder,
397 mask->switch_mask,
398 exec_mask, "break_switch");
399 }
400 }
401
402 lp_exec_mask_update(mask);
403 }
404
405 static void lp_exec_break_condition(struct lp_exec_mask *mask,
406 LLVMValueRef cond)
407 {
408 LLVMBuilderRef builder = mask->bld->gallivm->builder;
409 struct function_ctx *ctx = func_ctx(mask);
410 LLVMValueRef cond_mask = LLVMBuildAnd(builder,
411 mask->exec_mask,
412 cond, "cond_mask");
413 cond_mask = LLVMBuildNot(builder, cond_mask, "break_cond");
414
415 if (ctx->break_type == LP_EXEC_MASK_BREAK_TYPE_LOOP) {
416 mask->break_mask = LLVMBuildAnd(builder,
417 mask->break_mask,
418 cond_mask, "breakc_full");
419 }
420 else {
421 mask->switch_mask = LLVMBuildAnd(builder,
422 mask->switch_mask,
423 cond_mask, "breakc_switch");
424 }
425
426 lp_exec_mask_update(mask);
427 }
428
429 static void lp_exec_continue(struct lp_exec_mask *mask)
430 {
431 LLVMBuilderRef builder = mask->bld->gallivm->builder;
432 LLVMValueRef exec_mask = LLVMBuildNot(builder,
433 mask->exec_mask,
434 "");
435
436 mask->cont_mask = LLVMBuildAnd(builder,
437 mask->cont_mask,
438 exec_mask, "");
439
440 lp_exec_mask_update(mask);
441 }
442
443
444 static void lp_exec_endloop(struct gallivm_state *gallivm,
445 struct lp_exec_mask *mask)
446 {
447 LLVMBuilderRef builder = mask->bld->gallivm->builder;
448 struct function_ctx *ctx = func_ctx(mask);
449 LLVMBasicBlockRef endloop;
450 LLVMTypeRef int_type = LLVMInt32TypeInContext(mask->bld->gallivm->context);
451 LLVMTypeRef reg_type = LLVMIntTypeInContext(gallivm->context,
452 mask->bld->type.width *
453 mask->bld->type.length);
454 LLVMValueRef i1cond, i2cond, icond, limiter;
455
456 assert(mask->break_mask);
457
458
459 assert(ctx->loop_stack_size);
460 if (ctx->loop_stack_size > LP_MAX_TGSI_NESTING) {
461 --ctx->loop_stack_size;
462 return;
463 }
464
465 /*
466 * Restore the cont_mask, but don't pop
467 */
468 mask->cont_mask = ctx->loop_stack[ctx->loop_stack_size - 1].cont_mask;
469 lp_exec_mask_update(mask);
470
471 /*
472 * Unlike the continue mask, the break_mask must be preserved across loop
473 * iterations
474 */
475 LLVMBuildStore(builder, mask->break_mask, ctx->break_var);
476
477 /* Decrement the loop limiter */
478 limiter = LLVMBuildLoad(builder, ctx->loop_limiter, "");
479
480 limiter = LLVMBuildSub(
481 builder,
482 limiter,
483 LLVMConstInt(int_type, 1, false),
484 "");
485
486 LLVMBuildStore(builder, limiter, ctx->loop_limiter);
487
488 /* i1cond = (mask != 0) */
489 i1cond = LLVMBuildICmp(
490 builder,
491 LLVMIntNE,
492 LLVMBuildBitCast(builder, mask->exec_mask, reg_type, ""),
493 LLVMConstNull(reg_type), "i1cond");
494
495 /* i2cond = (looplimiter > 0) */
496 i2cond = LLVMBuildICmp(
497 builder,
498 LLVMIntSGT,
499 limiter,
500 LLVMConstNull(int_type), "i2cond");
501
502 /* if( i1cond && i2cond ) */
503 icond = LLVMBuildAnd(builder, i1cond, i2cond, "");
504
505 endloop = lp_build_insert_new_block(mask->bld->gallivm, "endloop");
506
507 LLVMBuildCondBr(builder,
508 icond, ctx->loop_block, endloop);
509
510 LLVMPositionBuilderAtEnd(builder, endloop);
511
512 assert(ctx->loop_stack_size);
513 --ctx->loop_stack_size;
514 mask->cont_mask = ctx->loop_stack[ctx->loop_stack_size].cont_mask;
515 mask->break_mask = ctx->loop_stack[ctx->loop_stack_size].break_mask;
516 ctx->loop_block = ctx->loop_stack[ctx->loop_stack_size].loop_block;
517 ctx->break_var = ctx->loop_stack[ctx->loop_stack_size].break_var;
518 ctx->break_type = ctx->break_type_stack[ctx->loop_stack_size +
519 ctx->switch_stack_size];
520
521 lp_exec_mask_update(mask);
522 }
523
524 static void lp_exec_switch(struct lp_exec_mask *mask,
525 LLVMValueRef switchval)
526 {
527 struct function_ctx *ctx = func_ctx(mask);
528
529 if (ctx->switch_stack_size >= LP_MAX_TGSI_NESTING ||
530 ctx->loop_stack_size > LP_MAX_TGSI_NESTING) {
531 ctx->switch_stack_size++;
532 return;
533 }
534
535 ctx->break_type_stack[ctx->loop_stack_size + ctx->switch_stack_size] =
536 ctx->break_type;
537 ctx->break_type = LP_EXEC_MASK_BREAK_TYPE_SWITCH;
538
539 ctx->switch_stack[ctx->switch_stack_size].switch_mask = mask->switch_mask;
540 ctx->switch_stack[ctx->switch_stack_size].switch_val = ctx->switch_val;
541 ctx->switch_stack[ctx->switch_stack_size].switch_mask_default = ctx->switch_mask_default;
542 ctx->switch_stack[ctx->switch_stack_size].switch_in_default = ctx->switch_in_default;
543 ctx->switch_stack[ctx->switch_stack_size].switch_pc = ctx->switch_pc;
544 ctx->switch_stack_size++;
545
546 mask->switch_mask = LLVMConstNull(mask->int_vec_type);
547 ctx->switch_val = switchval;
548 ctx->switch_mask_default = LLVMConstNull(mask->int_vec_type);
549 ctx->switch_in_default = false;
550 ctx->switch_pc = 0;
551
552 lp_exec_mask_update(mask);
553 }
554
555 static void lp_exec_endswitch(struct lp_exec_mask *mask,
556 struct lp_build_tgsi_context * bld_base)
557 {
558 LLVMBuilderRef builder = mask->bld->gallivm->builder;
559 struct function_ctx *ctx = func_ctx(mask);
560
561 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
562 ctx->switch_stack_size--;
563 return;
564 }
565
566 /* check if there's deferred default if so do it now */
567 if (ctx->switch_pc && !ctx->switch_in_default) {
568 LLVMValueRef prevmask, defaultmask;
569 unsigned tmp_pc;
570 prevmask = ctx->switch_stack[ctx->switch_stack_size - 1].switch_mask;
571 defaultmask = LLVMBuildNot(builder, ctx->switch_mask_default, "sw_default_mask");
572 mask->switch_mask = LLVMBuildAnd(builder, prevmask, defaultmask, "sw_mask");
573 ctx->switch_in_default = true;
574
575 lp_exec_mask_update(mask);
576
577 assert(bld_base->instructions[ctx->switch_pc - 1].Instruction.Opcode ==
578 TGSI_OPCODE_DEFAULT);
579
580 tmp_pc = bld_base->pc;
581 bld_base->pc = ctx->switch_pc;
582 /*
583 * re-purpose switch_pc to point to here again, since we stop execution of
584 * the deferred default after next break.
585 */
586 ctx->switch_pc = tmp_pc - 1;
587
588 return;
589 }
590
591 else if (ctx->switch_pc && ctx->switch_in_default) {
592 assert(bld_base->pc == ctx->switch_pc + 1);
593 }
594
595 ctx->switch_stack_size--;
596 mask->switch_mask = ctx->switch_stack[ctx->switch_stack_size].switch_mask;
597 ctx->switch_val = ctx->switch_stack[ctx->switch_stack_size].switch_val;
598 ctx->switch_mask_default = ctx->switch_stack[ctx->switch_stack_size].switch_mask_default;
599 ctx->switch_in_default = ctx->switch_stack[ctx->switch_stack_size].switch_in_default;
600 ctx->switch_pc = ctx->switch_stack[ctx->switch_stack_size].switch_pc;
601
602 ctx->break_type = ctx->break_type_stack[ctx->loop_stack_size + ctx->switch_stack_size];
603
604 lp_exec_mask_update(mask);
605 }
606
607 static void lp_exec_case(struct lp_exec_mask *mask,
608 LLVMValueRef caseval)
609 {
610 LLVMBuilderRef builder = mask->bld->gallivm->builder;
611 struct function_ctx *ctx = func_ctx(mask);
612
613 LLVMValueRef casemask, prevmask;
614
615 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
616 return;
617 }
618
619 /* skipping case mask evaluation here is NOT optional (not in all cases anyway). */
620 if (!ctx->switch_in_default) {
621 prevmask = ctx->switch_stack[ctx->switch_stack_size - 1].switch_mask;
622 casemask = lp_build_cmp(mask->bld, PIPE_FUNC_EQUAL, caseval, ctx->switch_val);
623 ctx->switch_mask_default = LLVMBuildOr(builder, casemask,
624 ctx->switch_mask_default, "sw_default_mask");
625 casemask = LLVMBuildOr(builder, casemask, mask->switch_mask, "");
626 mask->switch_mask = LLVMBuildAnd(builder, casemask, prevmask, "sw_mask");
627
628 lp_exec_mask_update(mask);
629 }
630 }
631
632 /*
633 * Analyse default statement in a switch.
634 * \return true if default is last statement, false otherwise
635 * \param default_pc_start contains pc of instruction to jump to
636 * if default wasn't last but there's no
637 * fallthrough into default.
638 */
639 static boolean default_analyse_is_last(struct lp_exec_mask *mask,
640 struct lp_build_tgsi_context * bld_base,
641 int *default_pc_start)
642 {
643 unsigned pc = bld_base->pc;
644 struct function_ctx *ctx = func_ctx(mask);
645 unsigned curr_switch_stack = ctx->switch_stack_size;
646
647 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
648 return false;
649 }
650
651 /* skip over case statements which are together with default */
652 while (bld_base->instructions[pc].Instruction.Opcode == TGSI_OPCODE_CASE) {
653 pc++;
654 }
655
656 while (pc != -1 && pc < bld_base->num_instructions) {
657 unsigned opcode = bld_base->instructions[pc].Instruction.Opcode;
658 switch (opcode) {
659 case TGSI_OPCODE_CASE:
660 if (curr_switch_stack == ctx->switch_stack_size) {
661 *default_pc_start = pc - 1;
662 return false;
663 }
664 break;
665 case TGSI_OPCODE_SWITCH:
666 curr_switch_stack++;
667 break;
668 case TGSI_OPCODE_ENDSWITCH:
669 if (curr_switch_stack == ctx->switch_stack_size) {
670 *default_pc_start = pc - 1;
671 return true;
672 }
673 curr_switch_stack--;
674 break;
675 }
676 pc++;
677 }
678 /* should never arrive here */
679 assert(0);
680 return true;
681 }
682
683 static void lp_exec_default(struct lp_exec_mask *mask,
684 struct lp_build_tgsi_context * bld_base)
685 {
686 LLVMBuilderRef builder = mask->bld->gallivm->builder;
687 struct function_ctx *ctx = func_ctx(mask);
688
689 int default_exec_pc;
690 boolean default_is_last;
691
692 if (ctx->switch_stack_size > LP_MAX_TGSI_NESTING) {
693 return;
694 }
695
696 /*
697 * This is a messy opcode, because it may not be always at the end and
698 * there can be fallthrough in and out of it.
699 */
700
701 default_is_last = default_analyse_is_last(mask, bld_base, &default_exec_pc);
702 /*
703 * If it is last statement in switch (note that case statements appearing
704 * "at the same time" as default don't change that) everything is just fine,
705 * update switch mask and go on. This means we can handle default with
706 * fallthrough INTO it without overhead, if it is last.
707 */
708 if (default_is_last) {
709 LLVMValueRef prevmask, defaultmask;
710 prevmask = ctx->switch_stack[ctx->switch_stack_size - 1].switch_mask;
711 defaultmask = LLVMBuildNot(builder, ctx->switch_mask_default, "sw_default_mask");
712 defaultmask = LLVMBuildOr(builder, defaultmask, mask->switch_mask, "");
713 mask->switch_mask = LLVMBuildAnd(builder, prevmask, defaultmask, "sw_mask");
714 ctx->switch_in_default = true;
715
716 lp_exec_mask_update(mask);
717 }
718 else {
719 /*
720 * Technically, "case" immediately before default isn't really a
721 * fallthrough, however we still have to count them as such as we
722 * already have updated the masks.
723 * If that happens in practice could add a switch optimizer pass
724 * which just gets rid of all case statements appearing together with
725 * default (or could do switch analysis at switch start time instead).
726 */
727 unsigned opcode = bld_base->instructions[bld_base->pc - 1].Instruction.Opcode;
728 boolean ft_into = (opcode != TGSI_OPCODE_BRK &&
729 opcode != TGSI_OPCODE_SWITCH);
730 /*
731 * If it is not last statement and there was no fallthrough into it,
732 * we record the PC and continue execution at next case (again, those
733 * case encountered at the same time don't count). At endswitch
734 * time, we update switchmask, and go back executing the code we skipped
735 * until the next break (possibly re-executing some code with changed mask
736 * if there was a fallthrough out of default).
737 * Finally, if it is not last statement and there was a fallthrough into it,
738 * do the same as with the former case, except instead of skipping the code
739 * just execute it without updating the mask, then go back and re-execute.
740 */
741 ctx->switch_pc = bld_base->pc;
742 if (!ft_into) {
743 bld_base->pc = default_exec_pc;
744 }
745 }
746 }
747
748
749 /* stores val into an address pointed to by dst_ptr.
750 * mask->exec_mask is used to figure out which bits of val
751 * should be stored into the address
752 * (0 means don't store this bit, 1 means do store).
753 */
754 static void lp_exec_mask_store(struct lp_exec_mask *mask,
755 struct lp_build_context *bld_store,
756 LLVMValueRef pred,
757 LLVMValueRef val,
758 LLVMValueRef dst_ptr)
759 {
760 LLVMBuilderRef builder = mask->bld->gallivm->builder;
761
762 assert(lp_check_value(bld_store->type, val));
763 assert(LLVMGetTypeKind(LLVMTypeOf(dst_ptr)) == LLVMPointerTypeKind);
764 assert(LLVMGetElementType(LLVMTypeOf(dst_ptr)) == LLVMTypeOf(val));
765
766 /* Mix the predicate and execution mask */
767 if (mask->has_mask) {
768 if (pred) {
769 pred = LLVMBuildAnd(builder, pred, mask->exec_mask, "");
770 } else {
771 pred = mask->exec_mask;
772 }
773 }
774
775 if (pred) {
776 LLVMValueRef res, dst;
777
778 dst = LLVMBuildLoad(builder, dst_ptr, "");
779 res = lp_build_select(bld_store, pred, val, dst);
780 LLVMBuildStore(builder, res, dst_ptr);
781 } else
782 LLVMBuildStore(builder, val, dst_ptr);
783 }
784
785 static void lp_exec_mask_call(struct lp_exec_mask *mask,
786 int func,
787 int *pc)
788 {
789 if (mask->function_stack_size >= LP_MAX_NUM_FUNCS) {
790 return;
791 }
792
793 lp_exec_mask_function_init(mask, mask->function_stack_size);
794 mask->function_stack[mask->function_stack_size].pc = *pc;
795 mask->function_stack[mask->function_stack_size].ret_mask = mask->ret_mask;
796 mask->function_stack_size++;
797 *pc = func;
798 }
799
800 static void lp_exec_mask_ret(struct lp_exec_mask *mask, int *pc)
801 {
802 LLVMBuilderRef builder = mask->bld->gallivm->builder;
803 struct function_ctx *ctx = func_ctx(mask);
804 LLVMValueRef exec_mask;
805
806 if (ctx->cond_stack_size == 0 &&
807 ctx->loop_stack_size == 0 &&
808 ctx->switch_stack_size == 0 &&
809 mask->function_stack_size == 1) {
810 /* returning from main() */
811 *pc = -1;
812 return;
813 }
814
815 if (mask->function_stack_size == 1) {
816 /*
817 * This requires special handling since we need to ensure
818 * we don't drop the mask even if we have no call stack
819 * (e.g. after a ret in a if clause after the endif)
820 */
821 mask->ret_in_main = TRUE;
822 }
823
824 exec_mask = LLVMBuildNot(builder,
825 mask->exec_mask,
826 "ret");
827
828 mask->ret_mask = LLVMBuildAnd(builder,
829 mask->ret_mask,
830 exec_mask, "ret_full");
831
832 lp_exec_mask_update(mask);
833 }
834
835 static void lp_exec_mask_bgnsub(struct lp_exec_mask *mask)
836 {
837 }
838
839 static void lp_exec_mask_endsub(struct lp_exec_mask *mask, int *pc)
840 {
841 struct function_ctx *ctx;
842
843 assert(mask->function_stack_size > 1);
844 assert(mask->function_stack_size <= LP_MAX_NUM_FUNCS);
845
846 ctx = func_ctx(mask);
847 mask->function_stack_size--;
848
849 *pc = ctx->pc;
850 mask->ret_mask = ctx->ret_mask;
851
852 lp_exec_mask_update(mask);
853 }
854
855
856 static LLVMValueRef
857 get_file_ptr(struct lp_build_tgsi_soa_context *bld,
858 unsigned file,
859 unsigned index,
860 unsigned chan)
861 {
862 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
863 LLVMValueRef (*array_of_vars)[TGSI_NUM_CHANNELS];
864 LLVMValueRef var_of_array;
865
866 switch (file) {
867 case TGSI_FILE_TEMPORARY:
868 array_of_vars = bld->temps;
869 var_of_array = bld->temps_array;
870 break;
871 case TGSI_FILE_OUTPUT:
872 array_of_vars = bld->outputs;
873 var_of_array = bld->outputs_array;
874 break;
875 default:
876 assert(0);
877 return NULL;
878 }
879
880 assert(chan < 4);
881
882 if (bld->indirect_files & (1 << file)) {
883 LLVMValueRef lindex = lp_build_const_int32(bld->bld_base.base.gallivm, index * 4 + chan);
884 return LLVMBuildGEP(builder, var_of_array, &lindex, 1, "");
885 }
886 else {
887 assert(index <= bld->bld_base.info->file_max[file]);
888 return array_of_vars[index][chan];
889 }
890 }
891
892
893 /**
894 * Return pointer to a temporary register channel (src or dest).
895 * Note that indirect addressing cannot be handled here.
896 * \param index which temporary register
897 * \param chan which channel of the temp register.
898 */
899 LLVMValueRef
900 lp_get_temp_ptr_soa(struct lp_build_tgsi_soa_context *bld,
901 unsigned index,
902 unsigned chan)
903 {
904 return get_file_ptr(bld, TGSI_FILE_TEMPORARY, index, chan);
905 }
906
907 /**
908 * Return pointer to a output register channel (src or dest).
909 * Note that indirect addressing cannot be handled here.
910 * \param index which output register
911 * \param chan which channel of the output register.
912 */
913 LLVMValueRef
914 lp_get_output_ptr(struct lp_build_tgsi_soa_context *bld,
915 unsigned index,
916 unsigned chan)
917 {
918 return get_file_ptr(bld, TGSI_FILE_OUTPUT, index, chan);
919 }
920
921 /*
922 * If we have indirect addressing in outputs copy our alloca array
923 * to the outputs slots specified by the caller to make sure
924 * our outputs are delivered consistently via the same interface.
925 */
926 static void
927 gather_outputs(struct lp_build_tgsi_soa_context * bld)
928 {
929 if ((bld->indirect_files & (1 << TGSI_FILE_OUTPUT))) {
930 unsigned index, chan;
931 assert(bld->bld_base.info->num_outputs <=
932 bld->bld_base.info->file_max[TGSI_FILE_OUTPUT] + 1);
933 for (index = 0; index < bld->bld_base.info->num_outputs; ++index) {
934 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
935 bld->outputs[index][chan] = lp_get_output_ptr(bld, index, chan);
936 }
937 }
938 }
939 }
940
941 /**
942 * Gather vector.
943 * XXX the lp_build_gather() function should be capable of doing this
944 * with a little work.
945 */
946 static LLVMValueRef
947 build_gather(struct lp_build_tgsi_context *bld_base,
948 LLVMValueRef base_ptr,
949 LLVMValueRef indexes,
950 LLVMValueRef overflow_mask,
951 LLVMValueRef indexes2)
952 {
953 struct gallivm_state *gallivm = bld_base->base.gallivm;
954 LLVMBuilderRef builder = gallivm->builder;
955 struct lp_build_context *uint_bld = &bld_base->uint_bld;
956 struct lp_build_context *bld = &bld_base->base;
957 LLVMValueRef res;
958 unsigned i;
959
960 if (indexes2)
961 res = LLVMGetUndef(LLVMVectorType(LLVMFloatTypeInContext(gallivm->context), bld_base->base.type.length * 2));
962 else
963 res = bld->undef;
964 /*
965 * overflow_mask is a vector telling us which channels
966 * in the vector overflowed. We use the overflow behavior for
967 * constant buffers which is defined as:
968 * Out of bounds access to constant buffer returns 0 in all
969 * components. Out of bounds behavior is always with respect
970 * to the size of the buffer bound at that slot.
971 */
972
973 if (overflow_mask) {
974 /*
975 * We avoid per-element control flow here (also due to llvm going crazy,
976 * though I suspect it's better anyway since overflow is likely rare).
977 * Note that since we still fetch from buffers even if num_elements was
978 * zero (in this case we'll fetch from index zero) the jit func callers
979 * MUST provide valid fake constant buffers of size 4x32 (the values do
980 * not matter), otherwise we'd still need (not per element though)
981 * control flow.
982 */
983 indexes = lp_build_select(uint_bld, overflow_mask, uint_bld->zero, indexes);
984 if (indexes2)
985 indexes2 = lp_build_select(uint_bld, overflow_mask, uint_bld->zero, indexes2);
986 }
987
988 /*
989 * Loop over elements of index_vec, load scalar value, insert it into 'res'.
990 */
991 for (i = 0; i < bld->type.length * (indexes2 ? 2 : 1); i++) {
992 LLVMValueRef si, di;
993 LLVMValueRef index;
994 LLVMValueRef scalar_ptr, scalar;
995
996 di = lp_build_const_int32(bld->gallivm, i);
997 if (indexes2)
998 si = lp_build_const_int32(bld->gallivm, i >> 1);
999 else
1000 si = di;
1001
1002 if (indexes2 && (i & 1)) {
1003 index = LLVMBuildExtractElement(builder,
1004 indexes2, si, "");
1005 } else {
1006 index = LLVMBuildExtractElement(builder,
1007 indexes, si, "");
1008 }
1009 scalar_ptr = LLVMBuildGEP(builder, base_ptr,
1010 &index, 1, "gather_ptr");
1011 scalar = LLVMBuildLoad(builder, scalar_ptr, "");
1012
1013 res = LLVMBuildInsertElement(builder, res, scalar, di, "");
1014 }
1015
1016 if (overflow_mask) {
1017 if (indexes2) {
1018 res = LLVMBuildBitCast(builder, res, bld_base->dbl_bld.vec_type, "");
1019 overflow_mask = LLVMBuildSExt(builder, overflow_mask,
1020 bld_base->dbl_bld.int_vec_type, "");
1021 res = lp_build_select(&bld_base->dbl_bld, overflow_mask,
1022 bld_base->dbl_bld.zero, res);
1023 } else
1024 res = lp_build_select(bld, overflow_mask, bld->zero, res);
1025 }
1026
1027 return res;
1028 }
1029
1030
1031 /**
1032 * Scatter/store vector.
1033 */
1034 static void
1035 emit_mask_scatter(struct lp_build_tgsi_soa_context *bld,
1036 LLVMValueRef base_ptr,
1037 LLVMValueRef indexes,
1038 LLVMValueRef values,
1039 struct lp_exec_mask *mask,
1040 LLVMValueRef pred)
1041 {
1042 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1043 LLVMBuilderRef builder = gallivm->builder;
1044 unsigned i;
1045
1046 /* Mix the predicate and execution mask */
1047 if (mask->has_mask) {
1048 if (pred) {
1049 pred = LLVMBuildAnd(builder, pred, mask->exec_mask, "");
1050 }
1051 else {
1052 pred = mask->exec_mask;
1053 }
1054 }
1055
1056 /*
1057 * Loop over elements of index_vec, store scalar value.
1058 */
1059 for (i = 0; i < bld->bld_base.base.type.length; i++) {
1060 LLVMValueRef ii = lp_build_const_int32(gallivm, i);
1061 LLVMValueRef index = LLVMBuildExtractElement(builder, indexes, ii, "");
1062 LLVMValueRef scalar_ptr = LLVMBuildGEP(builder, base_ptr, &index, 1, "scatter_ptr");
1063 LLVMValueRef val = LLVMBuildExtractElement(builder, values, ii, "scatter_val");
1064 LLVMValueRef scalar_pred = pred ?
1065 LLVMBuildExtractElement(builder, pred, ii, "scatter_pred") : NULL;
1066
1067 if (0)
1068 lp_build_printf(gallivm, "scatter %d: val %f at %d %p\n",
1069 ii, val, index, scalar_ptr);
1070
1071 if (scalar_pred) {
1072 LLVMValueRef real_val, dst_val;
1073 dst_val = LLVMBuildLoad(builder, scalar_ptr, "");
1074 real_val = lp_build_select(&bld->elem_bld, scalar_pred, val, dst_val);
1075 LLVMBuildStore(builder, real_val, scalar_ptr);
1076 }
1077 else {
1078 LLVMBuildStore(builder, val, scalar_ptr);
1079 }
1080 }
1081 }
1082
1083
1084 /**
1085 * Read the current value of the ADDR register, convert the floats to
1086 * ints, add the base index and return the vector of offsets.
1087 * The offsets will be used to index into the constant buffer or
1088 * temporary register file.
1089 */
1090 static LLVMValueRef
1091 get_indirect_index(struct lp_build_tgsi_soa_context *bld,
1092 unsigned reg_file, unsigned reg_index,
1093 const struct tgsi_ind_register *indirect_reg)
1094 {
1095 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
1096 struct lp_build_context *uint_bld = &bld->bld_base.uint_bld;
1097 /* always use X component of address register */
1098 unsigned swizzle = indirect_reg->Swizzle;
1099 LLVMValueRef base;
1100 LLVMValueRef rel;
1101 LLVMValueRef max_index;
1102 LLVMValueRef index;
1103
1104 assert(bld->indirect_files & (1 << reg_file));
1105
1106 base = lp_build_const_int_vec(bld->bld_base.base.gallivm, uint_bld->type, reg_index);
1107
1108 assert(swizzle < 4);
1109 switch (indirect_reg->File) {
1110 case TGSI_FILE_ADDRESS:
1111 rel = LLVMBuildLoad(builder,
1112 bld->addr[indirect_reg->Index][swizzle],
1113 "load addr reg");
1114 /* ADDR LLVM values already have LLVM integer type. */
1115 break;
1116 case TGSI_FILE_TEMPORARY:
1117 rel = lp_get_temp_ptr_soa(bld, indirect_reg->Index, swizzle);
1118 rel = LLVMBuildLoad(builder, rel, "load temp reg");
1119 /* TEMP LLVM values always have LLVM float type, but for indirection, the
1120 * value actually stored is expected to be an integer */
1121 rel = LLVMBuildBitCast(builder, rel, uint_bld->vec_type, "");
1122 break;
1123 default:
1124 assert(0);
1125 rel = uint_bld->zero;
1126 }
1127
1128 index = lp_build_add(uint_bld, base, rel);
1129
1130 /*
1131 * emit_fetch_constant handles constant buffer overflow so this code
1132 * is pointless for them.
1133 * Furthermore the D3D10 spec in section 6.5 says:
1134 * If the constant buffer bound to a slot is larger than the size
1135 * declared in the shader for that slot, implementations are allowed
1136 * to return incorrect data (not necessarily 0) for indices that are
1137 * larger than the declared size but smaller than the buffer size.
1138 */
1139 if (reg_file != TGSI_FILE_CONSTANT) {
1140 max_index = lp_build_const_int_vec(bld->bld_base.base.gallivm,
1141 uint_bld->type,
1142 bld->bld_base.info->file_max[reg_file]);
1143
1144 assert(!uint_bld->type.sign);
1145 index = lp_build_min(uint_bld, index, max_index);
1146 }
1147
1148 return index;
1149 }
1150
1151 static struct lp_build_context *
1152 stype_to_fetch(struct lp_build_tgsi_context * bld_base,
1153 enum tgsi_opcode_type stype)
1154 {
1155 struct lp_build_context *bld_fetch;
1156
1157 switch (stype) {
1158 case TGSI_TYPE_FLOAT:
1159 case TGSI_TYPE_UNTYPED:
1160 bld_fetch = &bld_base->base;
1161 break;
1162 case TGSI_TYPE_UNSIGNED:
1163 bld_fetch = &bld_base->uint_bld;
1164 break;
1165 case TGSI_TYPE_SIGNED:
1166 bld_fetch = &bld_base->int_bld;
1167 break;
1168 case TGSI_TYPE_DOUBLE:
1169 bld_fetch = &bld_base->dbl_bld;
1170 break;
1171 case TGSI_TYPE_VOID:
1172 default:
1173 assert(0);
1174 bld_fetch = NULL;
1175 break;
1176 }
1177 return bld_fetch;
1178 }
1179
1180 static LLVMValueRef
1181 get_soa_array_offsets(struct lp_build_context *uint_bld,
1182 LLVMValueRef indirect_index,
1183 unsigned chan_index,
1184 boolean need_perelement_offset)
1185 {
1186 struct gallivm_state *gallivm = uint_bld->gallivm;
1187 LLVMValueRef chan_vec =
1188 lp_build_const_int_vec(uint_bld->gallivm, uint_bld->type, chan_index);
1189 LLVMValueRef length_vec =
1190 lp_build_const_int_vec(gallivm, uint_bld->type, uint_bld->type.length);
1191 LLVMValueRef index_vec;
1192
1193 /* index_vec = (indirect_index * 4 + chan_index) * length + offsets */
1194 index_vec = lp_build_shl_imm(uint_bld, indirect_index, 2);
1195 index_vec = lp_build_add(uint_bld, index_vec, chan_vec);
1196 index_vec = lp_build_mul(uint_bld, index_vec, length_vec);
1197
1198 if (need_perelement_offset) {
1199 LLVMValueRef pixel_offsets;
1200 int i;
1201 /* build pixel offset vector: {0, 1, 2, 3, ...} */
1202 pixel_offsets = uint_bld->undef;
1203 for (i = 0; i < uint_bld->type.length; i++) {
1204 LLVMValueRef ii = lp_build_const_int32(gallivm, i);
1205 pixel_offsets = LLVMBuildInsertElement(gallivm->builder, pixel_offsets,
1206 ii, ii, "");
1207 }
1208 index_vec = lp_build_add(uint_bld, index_vec, pixel_offsets);
1209 }
1210 return index_vec;
1211 }
1212
1213 static LLVMValueRef
1214 emit_fetch_constant(
1215 struct lp_build_tgsi_context * bld_base,
1216 const struct tgsi_full_src_register * reg,
1217 enum tgsi_opcode_type stype,
1218 unsigned swizzle)
1219 {
1220 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1221 struct gallivm_state *gallivm = bld_base->base.gallivm;
1222 LLVMBuilderRef builder = gallivm->builder;
1223 struct lp_build_context *uint_bld = &bld_base->uint_bld;
1224 unsigned dimension = 0;
1225 LLVMValueRef consts_ptr;
1226 LLVMValueRef num_consts;
1227 LLVMValueRef res;
1228
1229 /* XXX: Handle fetching xyzw components as a vector */
1230 assert(swizzle != ~0);
1231
1232 if (reg->Register.Dimension) {
1233 assert(!reg->Dimension.Indirect);
1234 dimension = reg->Dimension.Index;
1235 assert(dimension < LP_MAX_TGSI_CONST_BUFFERS);
1236 }
1237
1238 consts_ptr = bld->consts[dimension];
1239 num_consts = bld->consts_sizes[dimension];
1240
1241 if (reg->Register.Indirect) {
1242 LLVMValueRef indirect_index;
1243 LLVMValueRef swizzle_vec =
1244 lp_build_const_int_vec(gallivm, uint_bld->type, swizzle);
1245 LLVMValueRef index_vec; /* index into the const buffer */
1246 LLVMValueRef overflow_mask;
1247 LLVMValueRef index_vec2 = NULL;
1248
1249 indirect_index = get_indirect_index(bld,
1250 reg->Register.File,
1251 reg->Register.Index,
1252 &reg->Indirect);
1253
1254 /* All fetches are from the same constant buffer, so
1255 * we need to propagate the size to a vector to do a
1256 * vector comparison */
1257 num_consts = lp_build_broadcast_scalar(uint_bld, num_consts);
1258 /* Construct a boolean vector telling us which channels
1259 * overflow the bound constant buffer */
1260 overflow_mask = lp_build_compare(gallivm, uint_bld->type, PIPE_FUNC_GEQUAL,
1261 indirect_index, num_consts);
1262
1263 /* index_vec = indirect_index * 4 + swizzle */
1264 index_vec = lp_build_shl_imm(uint_bld, indirect_index, 2);
1265 index_vec = lp_build_add(uint_bld, index_vec, swizzle_vec);
1266
1267 if (stype == TGSI_TYPE_DOUBLE) {
1268 LLVMValueRef swizzle_vec2;
1269 swizzle_vec2 = lp_build_const_int_vec(gallivm, uint_bld->type, swizzle + 1);
1270 index_vec2 = lp_build_shl_imm(uint_bld, indirect_index, 2);
1271 index_vec2 = lp_build_add(uint_bld, index_vec2, swizzle_vec2);
1272 }
1273 /* Gather values from the constant buffer */
1274 res = build_gather(bld_base, consts_ptr, index_vec, overflow_mask, index_vec2);
1275 }
1276 else {
1277 LLVMValueRef index; /* index into the const buffer */
1278 LLVMValueRef scalar, scalar_ptr;
1279 struct lp_build_context *bld_broad = &bld_base->base;
1280 index = lp_build_const_int32(gallivm, reg->Register.Index * 4 + swizzle);
1281
1282 scalar_ptr = LLVMBuildGEP(builder, consts_ptr,
1283 &index, 1, "");
1284 if (stype == TGSI_TYPE_DOUBLE) {
1285 LLVMTypeRef dptr_type = LLVMPointerType(LLVMDoubleTypeInContext(gallivm->context), 0);
1286 scalar_ptr = LLVMBuildBitCast(builder, scalar_ptr, dptr_type, "");
1287 bld_broad = &bld_base->dbl_bld;
1288 }
1289 scalar = LLVMBuildLoad(builder, scalar_ptr, "");
1290 res = lp_build_broadcast_scalar(bld_broad, scalar);
1291 }
1292
1293 if (stype == TGSI_TYPE_SIGNED || stype == TGSI_TYPE_UNSIGNED || stype == TGSI_TYPE_DOUBLE) {
1294 struct lp_build_context *bld_fetch = stype_to_fetch(bld_base, stype);
1295 res = LLVMBuildBitCast(builder, res, bld_fetch->vec_type, "");
1296 }
1297
1298 return res;
1299 }
1300
1301 /**
1302 * Fetch double values from two separate channels.
1303 * Doubles are stored split across two channels, like xy and zw.
1304 * This function creates a set of 16 floats,
1305 * extracts the values from the two channels,
1306 * puts them in the correct place, then casts to 8 doubles.
1307 */
1308 static LLVMValueRef
1309 emit_fetch_double(
1310 struct lp_build_tgsi_context * bld_base,
1311 enum tgsi_opcode_type stype,
1312 LLVMValueRef input,
1313 LLVMValueRef input2)
1314 {
1315 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1316 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1317 LLVMBuilderRef builder = gallivm->builder;
1318 LLVMValueRef res;
1319 struct lp_build_context *bld_fetch = stype_to_fetch(bld_base, stype);
1320 int i;
1321 LLVMValueRef shuffles[16];
1322 int len = bld_base->base.type.length * 2;
1323 assert(len <= 16);
1324
1325 for (i = 0; i < bld_base->base.type.length * 2; i+=2) {
1326 shuffles[i] = lp_build_const_int32(gallivm, i / 2);
1327 shuffles[i + 1] = lp_build_const_int32(gallivm, i / 2 + bld_base->base.type.length);
1328 }
1329 res = LLVMBuildShuffleVector(builder, input, input2, LLVMConstVector(shuffles, len), "");
1330
1331 return LLVMBuildBitCast(builder, res, bld_fetch->vec_type, "");
1332 }
1333
1334 static LLVMValueRef
1335 emit_fetch_immediate(
1336 struct lp_build_tgsi_context * bld_base,
1337 const struct tgsi_full_src_register * reg,
1338 enum tgsi_opcode_type stype,
1339 unsigned swizzle)
1340 {
1341 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1342 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1343 LLVMBuilderRef builder = gallivm->builder;
1344 LLVMValueRef res = NULL;
1345
1346 if (bld->use_immediates_array || reg->Register.Indirect) {
1347 LLVMValueRef imms_array;
1348 LLVMTypeRef fptr_type;
1349
1350 /* cast imms_array pointer to float* */
1351 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1352 imms_array = LLVMBuildBitCast(builder, bld->imms_array, fptr_type, "");
1353
1354 if (reg->Register.Indirect) {
1355 LLVMValueRef indirect_index;
1356 LLVMValueRef index_vec; /* index into the immediate register array */
1357 LLVMValueRef index_vec2 = NULL;
1358 indirect_index = get_indirect_index(bld,
1359 reg->Register.File,
1360 reg->Register.Index,
1361 &reg->Indirect);
1362 /*
1363 * Unlike for other reg classes, adding pixel offsets is unnecessary -
1364 * immediates are stored as full vectors (FIXME??? - might be better
1365 * to store them the same as constants) but all elements are the same
1366 * in any case.
1367 */
1368 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1369 indirect_index,
1370 swizzle,
1371 FALSE);
1372 if (stype == TGSI_TYPE_DOUBLE)
1373 index_vec2 = get_soa_array_offsets(&bld_base->uint_bld,
1374 indirect_index,
1375 swizzle + 1,
1376 FALSE);
1377 /* Gather values from the immediate register array */
1378 res = build_gather(bld_base, imms_array, index_vec, NULL, index_vec2);
1379 } else {
1380 LLVMValueRef lindex = lp_build_const_int32(gallivm,
1381 reg->Register.Index * 4 + swizzle);
1382 LLVMValueRef imms_ptr = LLVMBuildGEP(builder,
1383 bld->imms_array, &lindex, 1, "");
1384 res = LLVMBuildLoad(builder, imms_ptr, "");
1385
1386 if (stype == TGSI_TYPE_DOUBLE) {
1387 LLVMValueRef lindex1;
1388 LLVMValueRef imms_ptr2;
1389 LLVMValueRef res2;
1390
1391 lindex1 = lp_build_const_int32(gallivm,
1392 reg->Register.Index * 4 + swizzle + 1);
1393 imms_ptr2 = LLVMBuildGEP(builder,
1394 bld->imms_array, &lindex1, 1, "");
1395 res2 = LLVMBuildLoad(builder, imms_ptr2, "");
1396 res = emit_fetch_double(bld_base, stype, res, res2);
1397 }
1398 }
1399 }
1400 else {
1401 res = bld->immediates[reg->Register.Index][swizzle];
1402 if (stype == TGSI_TYPE_DOUBLE)
1403 res = emit_fetch_double(bld_base, stype, res, bld->immediates[reg->Register.Index][swizzle + 1]);
1404 }
1405
1406 if (stype == TGSI_TYPE_UNSIGNED) {
1407 res = LLVMBuildBitCast(builder, res, bld_base->uint_bld.vec_type, "");
1408 } else if (stype == TGSI_TYPE_SIGNED) {
1409 res = LLVMBuildBitCast(builder, res, bld_base->int_bld.vec_type, "");
1410 } else if (stype == TGSI_TYPE_DOUBLE) {
1411 res = LLVMBuildBitCast(builder, res, bld_base->dbl_bld.vec_type, "");
1412 }
1413 return res;
1414 }
1415
1416 static LLVMValueRef
1417 emit_fetch_input(
1418 struct lp_build_tgsi_context * bld_base,
1419 const struct tgsi_full_src_register * reg,
1420 enum tgsi_opcode_type stype,
1421 unsigned swizzle)
1422 {
1423 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1424 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1425 LLVMBuilderRef builder = gallivm->builder;
1426 LLVMValueRef res;
1427
1428 if (reg->Register.Indirect) {
1429 LLVMValueRef indirect_index;
1430 LLVMValueRef index_vec; /* index into the input reg array */
1431 LLVMValueRef index_vec2 = NULL;
1432 LLVMValueRef inputs_array;
1433 LLVMTypeRef fptr_type;
1434
1435 indirect_index = get_indirect_index(bld,
1436 reg->Register.File,
1437 reg->Register.Index,
1438 &reg->Indirect);
1439
1440 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1441 indirect_index,
1442 swizzle,
1443 TRUE);
1444 if (stype == TGSI_TYPE_DOUBLE) {
1445 index_vec2 = get_soa_array_offsets(&bld_base->uint_bld,
1446 indirect_index,
1447 swizzle + 1,
1448 TRUE);
1449 }
1450 /* cast inputs_array pointer to float* */
1451 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1452 inputs_array = LLVMBuildBitCast(builder, bld->inputs_array, fptr_type, "");
1453
1454 /* Gather values from the input register array */
1455 res = build_gather(bld_base, inputs_array, index_vec, NULL, index_vec2);
1456 } else {
1457 if (bld->indirect_files & (1 << TGSI_FILE_INPUT)) {
1458 LLVMValueRef lindex = lp_build_const_int32(gallivm,
1459 reg->Register.Index * 4 + swizzle);
1460 LLVMValueRef input_ptr = LLVMBuildGEP(builder,
1461 bld->inputs_array, &lindex, 1, "");
1462
1463 res = LLVMBuildLoad(builder, input_ptr, "");
1464 if (stype == TGSI_TYPE_DOUBLE) {
1465 LLVMValueRef lindex1;
1466 LLVMValueRef input_ptr2;
1467 LLVMValueRef res2;
1468
1469 lindex1 = lp_build_const_int32(gallivm,
1470 reg->Register.Index * 4 + swizzle + 1);
1471 input_ptr2 = LLVMBuildGEP(builder,
1472 bld->inputs_array, &lindex1, 1, "");
1473 res2 = LLVMBuildLoad(builder, input_ptr2, "");
1474 res = emit_fetch_double(bld_base, stype, res, res2);
1475 }
1476 }
1477 else {
1478 res = bld->inputs[reg->Register.Index][swizzle];
1479 if (stype == TGSI_TYPE_DOUBLE)
1480 res = emit_fetch_double(bld_base, stype, res, bld->inputs[reg->Register.Index][swizzle + 1]);
1481 }
1482 }
1483
1484 assert(res);
1485
1486 if (stype == TGSI_TYPE_UNSIGNED) {
1487 res = LLVMBuildBitCast(builder, res, bld_base->uint_bld.vec_type, "");
1488 } else if (stype == TGSI_TYPE_SIGNED) {
1489 res = LLVMBuildBitCast(builder, res, bld_base->int_bld.vec_type, "");
1490 } else if (stype == TGSI_TYPE_DOUBLE) {
1491 res = LLVMBuildBitCast(builder, res, bld_base->dbl_bld.vec_type, "");
1492 }
1493
1494 return res;
1495 }
1496
1497
1498 static LLVMValueRef
1499 emit_fetch_gs_input(
1500 struct lp_build_tgsi_context * bld_base,
1501 const struct tgsi_full_src_register * reg,
1502 enum tgsi_opcode_type stype,
1503 unsigned swizzle)
1504 {
1505 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1506 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1507 const struct tgsi_shader_info *info = bld->bld_base.info;
1508 LLVMBuilderRef builder = gallivm->builder;
1509 LLVMValueRef attrib_index = NULL;
1510 LLVMValueRef vertex_index = NULL;
1511 LLVMValueRef swizzle_index = lp_build_const_int32(gallivm, swizzle);
1512 LLVMValueRef res;
1513
1514 if (info->input_semantic_name[reg->Register.Index] == TGSI_SEMANTIC_PRIMID) {
1515 /* This is really a system value not a regular input */
1516 assert(!reg->Register.Indirect);
1517 assert(!reg->Dimension.Indirect);
1518 res = bld->system_values.prim_id;
1519 if (stype != TGSI_TYPE_UNSIGNED && stype != TGSI_TYPE_SIGNED) {
1520 res = LLVMBuildBitCast(builder, res, bld_base->base.vec_type, "");
1521 }
1522 return res;
1523 }
1524
1525 if (reg->Register.Indirect) {
1526 attrib_index = get_indirect_index(bld,
1527 reg->Register.File,
1528 reg->Register.Index,
1529 &reg->Indirect);
1530 } else {
1531 attrib_index = lp_build_const_int32(gallivm, reg->Register.Index);
1532 }
1533
1534 if (reg->Dimension.Indirect) {
1535 vertex_index = get_indirect_index(bld,
1536 reg->Register.File,
1537 reg->Dimension.Index,
1538 &reg->DimIndirect);
1539 } else {
1540 vertex_index = lp_build_const_int32(gallivm, reg->Dimension.Index);
1541 }
1542
1543 res = bld->gs_iface->fetch_input(bld->gs_iface, bld_base,
1544 reg->Dimension.Indirect,
1545 vertex_index,
1546 reg->Register.Indirect,
1547 attrib_index,
1548 swizzle_index);
1549
1550 assert(res);
1551
1552 if (stype == TGSI_TYPE_UNSIGNED) {
1553 res = LLVMBuildBitCast(builder, res, bld_base->uint_bld.vec_type, "");
1554 } else if (stype == TGSI_TYPE_SIGNED) {
1555 res = LLVMBuildBitCast(builder, res, bld_base->int_bld.vec_type, "");
1556 } else if (stype == TGSI_TYPE_DOUBLE) {
1557 res = LLVMBuildBitCast(builder, res, bld_base->dbl_bld.vec_type, "");
1558 }
1559
1560 return res;
1561 }
1562
1563 static LLVMValueRef
1564 emit_fetch_temporary(
1565 struct lp_build_tgsi_context * bld_base,
1566 const struct tgsi_full_src_register * reg,
1567 enum tgsi_opcode_type stype,
1568 unsigned swizzle)
1569 {
1570 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1571 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1572 LLVMBuilderRef builder = gallivm->builder;
1573 LLVMValueRef res;
1574
1575 if (reg->Register.Indirect) {
1576 LLVMValueRef indirect_index;
1577 LLVMValueRef index_vec, index_vec2 = NULL; /* index into the temp reg array */
1578 LLVMValueRef temps_array;
1579 LLVMTypeRef fptr_type;
1580
1581 indirect_index = get_indirect_index(bld,
1582 reg->Register.File,
1583 reg->Register.Index,
1584 &reg->Indirect);
1585
1586 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1587 indirect_index,
1588 swizzle,
1589 TRUE);
1590 if (stype == TGSI_TYPE_DOUBLE) {
1591 index_vec2 = get_soa_array_offsets(&bld_base->uint_bld,
1592 indirect_index,
1593 swizzle + 1,
1594 TRUE);
1595 }
1596
1597 /* cast temps_array pointer to float* */
1598 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1599 temps_array = LLVMBuildBitCast(builder, bld->temps_array, fptr_type, "");
1600
1601 /* Gather values from the temporary register array */
1602 res = build_gather(bld_base, temps_array, index_vec, NULL, index_vec2);
1603 }
1604 else {
1605 LLVMValueRef temp_ptr;
1606 temp_ptr = lp_get_temp_ptr_soa(bld, reg->Register.Index, swizzle);
1607 res = LLVMBuildLoad(builder, temp_ptr, "");
1608
1609 if (stype == TGSI_TYPE_DOUBLE) {
1610 LLVMValueRef temp_ptr2, res2;
1611
1612 temp_ptr2 = lp_get_temp_ptr_soa(bld, reg->Register.Index, swizzle + 1);
1613 res2 = LLVMBuildLoad(builder, temp_ptr2, "");
1614 res = emit_fetch_double(bld_base, stype, res, res2);
1615 }
1616 }
1617
1618 if (stype == TGSI_TYPE_SIGNED || stype == TGSI_TYPE_UNSIGNED || stype == TGSI_TYPE_DOUBLE) {
1619 struct lp_build_context *bld_fetch = stype_to_fetch(bld_base, stype);
1620 res = LLVMBuildBitCast(builder, res, bld_fetch->vec_type, "");
1621 }
1622
1623 return res;
1624 }
1625
1626 static LLVMValueRef
1627 emit_fetch_system_value(
1628 struct lp_build_tgsi_context * bld_base,
1629 const struct tgsi_full_src_register * reg,
1630 enum tgsi_opcode_type stype,
1631 unsigned swizzle)
1632 {
1633 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1634 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
1635 const struct tgsi_shader_info *info = bld->bld_base.info;
1636 LLVMBuilderRef builder = gallivm->builder;
1637 LLVMValueRef res;
1638 enum tgsi_opcode_type atype; // Actual type of the value
1639
1640 assert(!reg->Register.Indirect);
1641
1642 switch (info->system_value_semantic_name[reg->Register.Index]) {
1643 case TGSI_SEMANTIC_INSTANCEID:
1644 res = lp_build_broadcast_scalar(&bld_base->uint_bld, bld->system_values.instance_id);
1645 atype = TGSI_TYPE_UNSIGNED;
1646 break;
1647
1648 case TGSI_SEMANTIC_VERTEXID:
1649 res = bld->system_values.vertex_id;
1650 atype = TGSI_TYPE_UNSIGNED;
1651 break;
1652
1653 case TGSI_SEMANTIC_VERTEXID_NOBASE:
1654 res = bld->system_values.vertex_id_nobase;
1655 atype = TGSI_TYPE_UNSIGNED;
1656 break;
1657
1658 case TGSI_SEMANTIC_BASEVERTEX:
1659 res = bld->system_values.basevertex;
1660 atype = TGSI_TYPE_UNSIGNED;
1661 break;
1662
1663 case TGSI_SEMANTIC_PRIMID:
1664 res = bld->system_values.prim_id;
1665 atype = TGSI_TYPE_UNSIGNED;
1666 break;
1667
1668 case TGSI_SEMANTIC_INVOCATIONID:
1669 res = lp_build_broadcast_scalar(&bld_base->uint_bld, bld->system_values.invocation_id);
1670 atype = TGSI_TYPE_UNSIGNED;
1671 break;
1672
1673 default:
1674 assert(!"unexpected semantic in emit_fetch_system_value");
1675 res = bld_base->base.zero;
1676 atype = TGSI_TYPE_FLOAT;
1677 break;
1678 }
1679
1680 if (atype != stype) {
1681 if (stype == TGSI_TYPE_FLOAT) {
1682 res = LLVMBuildBitCast(builder, res, bld_base->base.vec_type, "");
1683 } else if (stype == TGSI_TYPE_UNSIGNED) {
1684 res = LLVMBuildBitCast(builder, res, bld_base->uint_bld.vec_type, "");
1685 } else if (stype == TGSI_TYPE_SIGNED) {
1686 res = LLVMBuildBitCast(builder, res, bld_base->int_bld.vec_type, "");
1687 }
1688 }
1689
1690 return res;
1691 }
1692
1693 /**
1694 * Register fetch with derivatives.
1695 */
1696 static void
1697 emit_fetch_deriv(
1698 struct lp_build_tgsi_soa_context *bld,
1699 LLVMValueRef src,
1700 LLVMValueRef *res,
1701 LLVMValueRef *ddx,
1702 LLVMValueRef *ddy)
1703 {
1704 if(res)
1705 *res = src;
1706
1707 /* TODO: use interpolation coeffs for inputs */
1708
1709 if(ddx)
1710 *ddx = lp_build_ddx(&bld->bld_base.base, src);
1711
1712 if(ddy)
1713 *ddy = lp_build_ddy(&bld->bld_base.base, src);
1714 }
1715
1716
1717 /**
1718 * Predicate.
1719 */
1720 static void
1721 emit_fetch_predicate(
1722 struct lp_build_tgsi_soa_context *bld,
1723 const struct tgsi_full_instruction *inst,
1724 LLVMValueRef *pred)
1725 {
1726 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
1727 unsigned index;
1728 unsigned char swizzles[4];
1729 LLVMValueRef unswizzled[4] = {NULL, NULL, NULL, NULL};
1730 LLVMValueRef value;
1731 unsigned chan;
1732
1733 if (!inst->Instruction.Predicate) {
1734 TGSI_FOR_EACH_CHANNEL( chan ) {
1735 pred[chan] = NULL;
1736 }
1737 return;
1738 }
1739
1740 swizzles[0] = inst->Predicate.SwizzleX;
1741 swizzles[1] = inst->Predicate.SwizzleY;
1742 swizzles[2] = inst->Predicate.SwizzleZ;
1743 swizzles[3] = inst->Predicate.SwizzleW;
1744
1745 index = inst->Predicate.Index;
1746 assert(index < LP_MAX_TGSI_PREDS);
1747
1748 TGSI_FOR_EACH_CHANNEL( chan ) {
1749 unsigned swizzle = swizzles[chan];
1750
1751 /*
1752 * Only fetch the predicate register channels that are actually listed
1753 * in the swizzles
1754 */
1755 if (!unswizzled[swizzle]) {
1756 value = LLVMBuildLoad(builder,
1757 bld->preds[index][swizzle], "");
1758
1759 /*
1760 * Convert the value to an integer mask.
1761 *
1762 * TODO: Short-circuit this comparison -- a D3D setp_xx instructions
1763 * is needlessly causing two comparisons due to storing the intermediate
1764 * result as float vector instead of an integer mask vector.
1765 */
1766 value = lp_build_compare(bld->bld_base.base.gallivm,
1767 bld->bld_base.base.type,
1768 PIPE_FUNC_NOTEQUAL,
1769 value,
1770 bld->bld_base.base.zero);
1771 if (inst->Predicate.Negate) {
1772 value = LLVMBuildNot(builder, value, "");
1773 }
1774
1775 unswizzled[swizzle] = value;
1776 } else {
1777 value = unswizzled[swizzle];
1778 }
1779
1780 pred[chan] = value;
1781 }
1782 }
1783
1784 /**
1785 * store an array of 8 doubles into two arrays of 8 floats
1786 * i.e.
1787 * value is d0, d1, d2, d3 etc.
1788 * each double has high and low pieces x, y
1789 * so gets stored into the separate channels as:
1790 * chan_ptr = d0.x, d1.x, d2.x, d3.x
1791 * chan_ptr2 = d0.y, d1.y, d2.y, d3.y
1792 */
1793 static void
1794 emit_store_double_chan(struct lp_build_tgsi_context *bld_base,
1795 int dtype,
1796 LLVMValueRef chan_ptr, LLVMValueRef chan_ptr2,
1797 LLVMValueRef pred,
1798 LLVMValueRef value)
1799 {
1800 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1801 struct gallivm_state *gallivm = bld_base->base.gallivm;
1802 LLVMBuilderRef builder = gallivm->builder;
1803 struct lp_build_context *float_bld = &bld_base->base;
1804 int i;
1805 LLVMValueRef temp, temp2;
1806 LLVMValueRef shuffles[8];
1807 LLVMValueRef shuffles2[8];
1808
1809 for (i = 0; i < bld_base->base.type.length; i++) {
1810 shuffles[i] = lp_build_const_int32(gallivm, i * 2);
1811 shuffles2[i] = lp_build_const_int32(gallivm, (i * 2) + 1);
1812 }
1813
1814 temp = LLVMBuildShuffleVector(builder, value,
1815 LLVMGetUndef(LLVMTypeOf(value)),
1816 LLVMConstVector(shuffles,
1817 bld_base->base.type.length),
1818 "");
1819 temp2 = LLVMBuildShuffleVector(builder, value,
1820 LLVMGetUndef(LLVMTypeOf(value)),
1821 LLVMConstVector(shuffles2,
1822 bld_base->base.type.length),
1823 "");
1824
1825 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, temp, chan_ptr);
1826 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, temp2, chan_ptr2);
1827 }
1828
1829 /**
1830 * Register store.
1831 */
1832 static void
1833 emit_store_chan(
1834 struct lp_build_tgsi_context *bld_base,
1835 const struct tgsi_full_instruction *inst,
1836 unsigned index,
1837 unsigned chan_index,
1838 LLVMValueRef pred,
1839 LLVMValueRef value)
1840 {
1841 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1842 struct gallivm_state *gallivm = bld_base->base.gallivm;
1843 LLVMBuilderRef builder = gallivm->builder;
1844 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1845 struct lp_build_context *float_bld = &bld_base->base;
1846 struct lp_build_context *int_bld = &bld_base->int_bld;
1847 LLVMValueRef indirect_index = NULL;
1848 enum tgsi_opcode_type dtype = tgsi_opcode_infer_dst_type(inst->Instruction.Opcode);
1849
1850 /*
1851 * Apply saturation.
1852 *
1853 * It is always assumed to be float.
1854 */
1855 if (inst->Instruction.Saturate) {
1856 assert(dtype == TGSI_TYPE_FLOAT ||
1857 dtype == TGSI_TYPE_UNTYPED);
1858 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1859 value = lp_build_clamp_zero_one_nanzero(float_bld, value);
1860 }
1861
1862 if (reg->Register.Indirect) {
1863 /*
1864 * Currently the mesa/st doesn't generate indirect stores
1865 * to doubles, it normally uses MOV to do indirect stores.
1866 */
1867 assert(dtype != TGSI_TYPE_DOUBLE);
1868 indirect_index = get_indirect_index(bld,
1869 reg->Register.File,
1870 reg->Register.Index,
1871 &reg->Indirect);
1872 } else {
1873 assert(reg->Register.Index <=
1874 bld_base->info->file_max[reg->Register.File]);
1875 }
1876
1877 if (DEBUG_EXECUTION) {
1878 emit_dump_reg(gallivm, reg->Register.File, reg->Register.Index, chan_index, value);
1879 }
1880
1881 switch( reg->Register.File ) {
1882 case TGSI_FILE_OUTPUT:
1883 /* Outputs are always stored as floats */
1884 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1885
1886 if (reg->Register.Indirect) {
1887 LLVMValueRef index_vec; /* indexes into the output registers */
1888 LLVMValueRef outputs_array;
1889 LLVMTypeRef fptr_type;
1890
1891 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1892 indirect_index,
1893 chan_index,
1894 TRUE);
1895
1896 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1897 outputs_array = LLVMBuildBitCast(builder, bld->outputs_array, fptr_type, "");
1898
1899 /* Scatter store values into output registers */
1900 emit_mask_scatter(bld, outputs_array, index_vec, value,
1901 &bld->exec_mask, pred);
1902 }
1903 else {
1904 LLVMValueRef out_ptr = lp_get_output_ptr(bld, reg->Register.Index,
1905 chan_index);
1906
1907 if (dtype == TGSI_TYPE_DOUBLE) {
1908 LLVMValueRef out_ptr2 = lp_get_output_ptr(bld, reg->Register.Index,
1909 chan_index + 1);
1910 emit_store_double_chan(bld_base, dtype, out_ptr, out_ptr2,
1911 pred, value);
1912 } else
1913 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, value, out_ptr);
1914 }
1915 break;
1916
1917 case TGSI_FILE_TEMPORARY:
1918 /* Temporaries are always stored as floats */
1919 if (dtype != TGSI_TYPE_DOUBLE)
1920 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1921 else
1922 value = LLVMBuildBitCast(builder, value, LLVMVectorType(LLVMFloatTypeInContext(gallivm->context), bld_base->base.type.length * 2), "");
1923
1924 if (reg->Register.Indirect) {
1925 LLVMValueRef index_vec; /* indexes into the temp registers */
1926 LLVMValueRef temps_array;
1927 LLVMTypeRef fptr_type;
1928
1929 index_vec = get_soa_array_offsets(&bld_base->uint_bld,
1930 indirect_index,
1931 chan_index,
1932 TRUE);
1933
1934 fptr_type = LLVMPointerType(LLVMFloatTypeInContext(gallivm->context), 0);
1935 temps_array = LLVMBuildBitCast(builder, bld->temps_array, fptr_type, "");
1936
1937 /* Scatter store values into temp registers */
1938 emit_mask_scatter(bld, temps_array, index_vec, value,
1939 &bld->exec_mask, pred);
1940 }
1941 else {
1942 LLVMValueRef temp_ptr;
1943 temp_ptr = lp_get_temp_ptr_soa(bld, reg->Register.Index, chan_index);
1944
1945 if (dtype == TGSI_TYPE_DOUBLE) {
1946 LLVMValueRef temp_ptr2 = lp_get_temp_ptr_soa(bld,
1947 reg->Register.Index,
1948 chan_index + 1);
1949 emit_store_double_chan(bld_base, dtype, temp_ptr, temp_ptr2,
1950 pred, value);
1951 }
1952 else
1953 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, value, temp_ptr);
1954 }
1955 break;
1956
1957 case TGSI_FILE_ADDRESS:
1958 assert(dtype == TGSI_TYPE_SIGNED);
1959 assert(LLVMTypeOf(value) == int_bld->vec_type);
1960 value = LLVMBuildBitCast(builder, value, int_bld->vec_type, "");
1961 lp_exec_mask_store(&bld->exec_mask, int_bld, pred, value,
1962 bld->addr[reg->Register.Index][chan_index]);
1963 break;
1964
1965 case TGSI_FILE_PREDICATE:
1966 assert(LLVMTypeOf(value) == float_bld->vec_type);
1967 value = LLVMBuildBitCast(builder, value, float_bld->vec_type, "");
1968 lp_exec_mask_store(&bld->exec_mask, float_bld, pred, value,
1969 bld->preds[reg->Register.Index][chan_index]);
1970 break;
1971
1972 default:
1973 assert( 0 );
1974 }
1975
1976 (void)dtype;
1977 }
1978
1979 /*
1980 * Called at the beginning of the translation of each TGSI instruction, to
1981 * emit some debug code.
1982 */
1983 static void
1984 emit_debug(
1985 struct lp_build_tgsi_context * bld_base,
1986 const struct tgsi_full_instruction * inst,
1987 const struct tgsi_opcode_info * info)
1988
1989 {
1990 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
1991
1992 if (DEBUG_EXECUTION) {
1993 /*
1994 * Dump the TGSI instruction.
1995 */
1996
1997 struct gallivm_state *gallivm = bld_base->base.gallivm;
1998 char buf[512];
1999 buf[0] = '$';
2000 buf[1] = ' ';
2001 tgsi_dump_instruction_str(inst, bld_base->pc, &buf[2], sizeof buf - 2);
2002 lp_build_printf(gallivm, buf);
2003
2004 /* Dump the execution mask.
2005 */
2006 if (bld->exec_mask.has_mask) {
2007 lp_build_print_value(gallivm, " mask = ", bld->exec_mask.exec_mask);
2008 }
2009 }
2010 }
2011
2012 static void
2013 emit_store(
2014 struct lp_build_tgsi_context * bld_base,
2015 const struct tgsi_full_instruction * inst,
2016 const struct tgsi_opcode_info * info,
2017 LLVMValueRef dst[4])
2018
2019 {
2020 unsigned chan_index;
2021 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
2022 enum tgsi_opcode_type dtype = tgsi_opcode_infer_dst_type(inst->Instruction.Opcode);
2023 if(info->num_dst) {
2024 LLVMValueRef pred[TGSI_NUM_CHANNELS];
2025
2026 emit_fetch_predicate( bld, inst, pred );
2027
2028 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
2029
2030 if (dtype == TGSI_TYPE_DOUBLE && (chan_index == 1 || chan_index == 3))
2031 continue;
2032 emit_store_chan(bld_base, inst, 0, chan_index, pred[chan_index], dst[chan_index]);
2033 }
2034 }
2035 }
2036
2037 static unsigned
2038 tgsi_to_pipe_tex_target(unsigned tgsi_target)
2039 {
2040 switch (tgsi_target) {
2041 case TGSI_TEXTURE_BUFFER:
2042 return PIPE_BUFFER;
2043 case TGSI_TEXTURE_1D:
2044 case TGSI_TEXTURE_SHADOW1D:
2045 return PIPE_TEXTURE_1D;
2046 case TGSI_TEXTURE_2D:
2047 case TGSI_TEXTURE_SHADOW2D:
2048 case TGSI_TEXTURE_2D_MSAA:
2049 return PIPE_TEXTURE_2D;
2050 case TGSI_TEXTURE_3D:
2051 return PIPE_TEXTURE_3D;
2052 case TGSI_TEXTURE_CUBE:
2053 case TGSI_TEXTURE_SHADOWCUBE:
2054 return PIPE_TEXTURE_CUBE;
2055 case TGSI_TEXTURE_RECT:
2056 case TGSI_TEXTURE_SHADOWRECT:
2057 return PIPE_TEXTURE_RECT;
2058 case TGSI_TEXTURE_1D_ARRAY:
2059 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2060 return PIPE_TEXTURE_1D_ARRAY;
2061 case TGSI_TEXTURE_2D_ARRAY:
2062 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2063 case TGSI_TEXTURE_2D_ARRAY_MSAA:
2064 return PIPE_TEXTURE_2D_ARRAY;
2065 case TGSI_TEXTURE_CUBE_ARRAY:
2066 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
2067 return PIPE_TEXTURE_CUBE_ARRAY;
2068 default:
2069 assert(0);
2070 return PIPE_BUFFER;
2071 }
2072 }
2073
2074
2075 static enum lp_sampler_lod_property
2076 lp_build_lod_property(
2077 struct lp_build_tgsi_context *bld_base,
2078 const struct tgsi_full_instruction *inst,
2079 unsigned src_op)
2080 {
2081 const struct tgsi_full_src_register *reg = &inst->Src[src_op];
2082 enum lp_sampler_lod_property lod_property;
2083
2084 /*
2085 * Not much we can do here. We could try catching inputs declared
2086 * with constant interpolation but not sure it's worth it - since for
2087 * TEX opcodes as well as FETCH/LD the lod comes from same reg as
2088 * the coords, so it could only work for SAMPLE/TXQ/SVIEWINFO), just
2089 * like the constant/immediate recognition below.
2090 * What seems to be of more value would be to recognize temps holding
2091 * broadcasted scalars but no way we can do it.
2092 * Tried asking llvm but without any success (using LLVMIsConstant
2093 * even though this isn't exactly what we'd need), even as simple as
2094 * IMM[0] UINT32 (0,-1,0,0)
2095 * MOV TEMP[0] IMM[0].yyyy
2096 * SVIEWINFO TEMP[1], TEMP[0].xxxx, SVIEWINFO[0]
2097 * doesn't work.
2098 * This means there's ZERO chance this will ever catch a scalar lod
2099 * with traditional tex opcodes as well as texel fetches, since the lod
2100 * comes from the same reg as coords (except some test shaders using
2101 * constant coords maybe).
2102 * There's at least hope for sample opcodes as well as size queries.
2103 */
2104 if (reg->Register.File == TGSI_FILE_CONSTANT ||
2105 reg->Register.File == TGSI_FILE_IMMEDIATE) {
2106 lod_property = LP_SAMPLER_LOD_SCALAR;
2107 }
2108 else if (bld_base->info->processor == TGSI_PROCESSOR_FRAGMENT) {
2109 if (gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) {
2110 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2111 }
2112 else {
2113 lod_property = LP_SAMPLER_LOD_PER_QUAD;
2114 }
2115 }
2116 else {
2117 /* never use scalar (per-quad) lod the results are just too wrong. */
2118 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2119 }
2120 return lod_property;
2121 }
2122
2123
2124 /**
2125 * High-level instruction translators.
2126 */
2127
2128 static void
2129 emit_tex( struct lp_build_tgsi_soa_context *bld,
2130 const struct tgsi_full_instruction *inst,
2131 enum lp_build_tex_modifier modifier,
2132 LLVMValueRef *texel,
2133 unsigned sampler_reg,
2134 enum lp_sampler_op_type sampler_op)
2135 {
2136 unsigned unit = inst->Src[sampler_reg].Register.Index;
2137 LLVMValueRef oow = NULL;
2138 LLVMValueRef lod = NULL;
2139 LLVMValueRef coords[5];
2140 LLVMValueRef offsets[3] = { NULL };
2141 struct lp_derivatives derivs;
2142 struct lp_sampler_params params;
2143 enum lp_sampler_lod_property lod_property = LP_SAMPLER_LOD_SCALAR;
2144 unsigned num_derivs, num_offsets, i;
2145 unsigned shadow_coord = 0;
2146 unsigned layer_coord = 0;
2147 unsigned sample_key = sampler_op << LP_SAMPLER_OP_TYPE_SHIFT;
2148
2149 memset(&params, 0, sizeof(params));
2150
2151 if (!bld->sampler) {
2152 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
2153 for (i = 0; i < 4; i++) {
2154 texel[i] = bld->bld_base.base.undef;
2155 }
2156 return;
2157 }
2158
2159 switch (inst->Texture.Texture) {
2160 case TGSI_TEXTURE_1D_ARRAY:
2161 layer_coord = 1;
2162 /* fallthrough */
2163 case TGSI_TEXTURE_1D:
2164 num_offsets = 1;
2165 num_derivs = 1;
2166 break;
2167 case TGSI_TEXTURE_2D_ARRAY:
2168 layer_coord = 2;
2169 /* fallthrough */
2170 case TGSI_TEXTURE_2D:
2171 case TGSI_TEXTURE_RECT:
2172 num_offsets = 2;
2173 num_derivs = 2;
2174 break;
2175 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2176 layer_coord = 1;
2177 /* fallthrough */
2178 case TGSI_TEXTURE_SHADOW1D:
2179 shadow_coord = 2;
2180 num_offsets = 1;
2181 num_derivs = 1;
2182 break;
2183 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2184 layer_coord = 2;
2185 shadow_coord = 3;
2186 num_offsets = 2;
2187 num_derivs = 2;
2188 break;
2189 case TGSI_TEXTURE_SHADOW2D:
2190 case TGSI_TEXTURE_SHADOWRECT:
2191 shadow_coord = 2;
2192 num_offsets = 2;
2193 num_derivs = 2;
2194 break;
2195 case TGSI_TEXTURE_CUBE:
2196 num_offsets = 2;
2197 num_derivs = 3;
2198 break;
2199 case TGSI_TEXTURE_3D:
2200 num_offsets = 3;
2201 num_derivs = 3;
2202 break;
2203 case TGSI_TEXTURE_SHADOWCUBE:
2204 shadow_coord = 3;
2205 num_offsets = 2;
2206 num_derivs = 3;
2207 break;
2208 case TGSI_TEXTURE_CUBE_ARRAY:
2209 num_offsets = 2;
2210 num_derivs = 3;
2211 layer_coord = 3;
2212 break;
2213 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
2214 num_offsets = 2;
2215 num_derivs = 3;
2216 layer_coord = 3;
2217 shadow_coord = 4; /* shadow coord special different reg */
2218 break;
2219 case TGSI_TEXTURE_2D_MSAA:
2220 case TGSI_TEXTURE_2D_ARRAY_MSAA:
2221 default:
2222 assert(0);
2223 return;
2224 }
2225
2226 /* Note lod and especially projected are illegal in a LOT of cases */
2227 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS ||
2228 modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2229 if (inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE ||
2230 inst->Texture.Texture == TGSI_TEXTURE_CUBE_ARRAY) {
2231 /* note that shadow cube array with bias/explicit lod does not exist */
2232 lod = lp_build_emit_fetch(&bld->bld_base, inst, 1, 0);
2233 }
2234 else {
2235 lod = lp_build_emit_fetch(&bld->bld_base, inst, 0, 3);
2236 }
2237 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS) {
2238 sample_key |= LP_SAMPLER_LOD_BIAS << LP_SAMPLER_LOD_CONTROL_SHIFT;
2239 }
2240 else if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2241 sample_key |= LP_SAMPLER_LOD_EXPLICIT << LP_SAMPLER_LOD_CONTROL_SHIFT;
2242 }
2243 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2244 }
2245
2246 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED) {
2247 oow = lp_build_emit_fetch(&bld->bld_base, inst, 0, 3);
2248 oow = lp_build_rcp(&bld->bld_base.base, oow);
2249 }
2250
2251 for (i = 0; i < num_derivs; i++) {
2252 coords[i] = lp_build_emit_fetch(&bld->bld_base, inst, 0, i);
2253 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED)
2254 coords[i] = lp_build_mul(&bld->bld_base.base, coords[i], oow);
2255 }
2256 for (i = num_derivs; i < 5; i++) {
2257 coords[i] = bld->bld_base.base.undef;
2258 }
2259
2260 /* Layer coord always goes into 3rd slot, except for cube map arrays */
2261 if (layer_coord) {
2262 if (layer_coord == 3) {
2263 coords[3] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2264 }
2265 else {
2266 coords[2] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2267 }
2268 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED)
2269 coords[2] = lp_build_mul(&bld->bld_base.base, coords[2], oow);
2270 }
2271 /* Shadow coord occupies always 5th slot. */
2272 if (shadow_coord) {
2273 sample_key |= LP_SAMPLER_SHADOW;
2274 if (shadow_coord == 4) {
2275 coords[4] = lp_build_emit_fetch(&bld->bld_base, inst, 1, 0);
2276 }
2277 else {
2278 coords[4] = lp_build_emit_fetch(&bld->bld_base, inst, 0, shadow_coord);
2279 }
2280 if (modifier == LP_BLD_TEX_MODIFIER_PROJECTED)
2281 coords[4] = lp_build_mul(&bld->bld_base.base, coords[4], oow);
2282 }
2283
2284 if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV) {
2285 unsigned dim;
2286 sample_key |= LP_SAMPLER_LOD_DERIVATIVES << LP_SAMPLER_LOD_CONTROL_SHIFT;
2287 for (dim = 0; dim < num_derivs; ++dim) {
2288 derivs.ddx[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 1, dim);
2289 derivs.ddy[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 2, dim);
2290 }
2291 params.derivs = &derivs;
2292 /*
2293 * could also check all src regs if constant but I doubt such
2294 * cases exist in practice.
2295 */
2296 if (bld->bld_base.info->processor == TGSI_PROCESSOR_FRAGMENT) {
2297 if (gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) {
2298 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2299 }
2300 else {
2301 lod_property = LP_SAMPLER_LOD_PER_QUAD;
2302 }
2303 }
2304 else {
2305 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2306 }
2307 }
2308 sample_key |= lod_property << LP_SAMPLER_LOD_PROPERTY_SHIFT;
2309
2310 /* we don't handle the 4 offset version of tg4 */
2311 if (inst->Texture.NumOffsets == 1) {
2312 unsigned dim;
2313 sample_key |= LP_SAMPLER_OFFSETS;
2314 for (dim = 0; dim < num_offsets; dim++) {
2315 offsets[dim] = lp_build_emit_fetch_texoffset(&bld->bld_base, inst, 0, dim);
2316 }
2317 }
2318
2319 params.type = bld->bld_base.base.type;
2320 params.sample_key = sample_key;
2321 params.texture_index = unit;
2322 params.sampler_index = unit;
2323 params.context_ptr = bld->context_ptr;
2324 params.thread_data_ptr = bld->thread_data_ptr;
2325 params.coords = coords;
2326 params.offsets = offsets;
2327 params.lod = lod;
2328 params.texel = texel;
2329
2330 bld->sampler->emit_tex_sample(bld->sampler,
2331 bld->bld_base.base.gallivm,
2332 &params);
2333 }
2334
2335 static void
2336 emit_sample(struct lp_build_tgsi_soa_context *bld,
2337 const struct tgsi_full_instruction *inst,
2338 enum lp_build_tex_modifier modifier,
2339 boolean compare,
2340 LLVMValueRef *texel)
2341 {
2342 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2343 unsigned texture_unit, sampler_unit;
2344 LLVMValueRef lod = NULL;
2345 LLVMValueRef coords[5];
2346 LLVMValueRef offsets[3] = { NULL };
2347 struct lp_derivatives derivs;
2348 struct lp_sampler_params params;
2349 enum lp_sampler_lod_property lod_property = LP_SAMPLER_LOD_SCALAR;
2350
2351 unsigned num_offsets, num_derivs, i;
2352 unsigned layer_coord = 0;
2353 unsigned sample_key = LP_SAMPLER_OP_TEXTURE << LP_SAMPLER_OP_TYPE_SHIFT;
2354
2355 memset(&params, 0, sizeof(params));
2356
2357 if (!bld->sampler) {
2358 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
2359 for (i = 0; i < 4; i++) {
2360 texel[i] = bld->bld_base.base.undef;
2361 }
2362 return;
2363 }
2364
2365 /*
2366 * unlike old-style tex opcodes the texture/sampler indices
2367 * always come from src1 and src2 respectively.
2368 */
2369 texture_unit = inst->Src[1].Register.Index;
2370 sampler_unit = inst->Src[2].Register.Index;
2371
2372 /*
2373 * Note inst->Texture.Texture will contain the number of offsets,
2374 * however the target information is NOT there and comes from the
2375 * declared sampler views instead.
2376 */
2377 switch (bld->sv[texture_unit].Resource) {
2378 case TGSI_TEXTURE_1D:
2379 num_offsets = 1;
2380 num_derivs = 1;
2381 break;
2382 case TGSI_TEXTURE_1D_ARRAY:
2383 layer_coord = 1;
2384 num_offsets = 1;
2385 num_derivs = 1;
2386 break;
2387 case TGSI_TEXTURE_2D:
2388 case TGSI_TEXTURE_RECT:
2389 num_offsets = 2;
2390 num_derivs = 2;
2391 break;
2392 case TGSI_TEXTURE_2D_ARRAY:
2393 layer_coord = 2;
2394 num_offsets = 2;
2395 num_derivs = 2;
2396 break;
2397 case TGSI_TEXTURE_CUBE:
2398 num_offsets = 2;
2399 num_derivs = 3;
2400 break;
2401 case TGSI_TEXTURE_3D:
2402 num_offsets = 3;
2403 num_derivs = 3;
2404 break;
2405 case TGSI_TEXTURE_CUBE_ARRAY:
2406 layer_coord = 3;
2407 num_offsets = 2;
2408 num_derivs = 3;
2409 break;
2410 default:
2411 assert(0);
2412 return;
2413 }
2414
2415 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS ||
2416 modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2417 lod = lp_build_emit_fetch(&bld->bld_base, inst, 3, 0);
2418 if (modifier == LP_BLD_TEX_MODIFIER_LOD_BIAS) {
2419 sample_key |= LP_SAMPLER_LOD_BIAS << LP_SAMPLER_LOD_CONTROL_SHIFT;
2420 }
2421 else if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_LOD) {
2422 sample_key |= LP_SAMPLER_LOD_EXPLICIT << LP_SAMPLER_LOD_CONTROL_SHIFT;
2423 }
2424 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2425 }
2426 else if (modifier == LP_BLD_TEX_MODIFIER_LOD_ZERO) {
2427 /* XXX might be better to explicitly pass the level zero information */
2428 sample_key |= LP_SAMPLER_LOD_EXPLICIT << LP_SAMPLER_LOD_CONTROL_SHIFT;
2429 lod = lp_build_const_vec(gallivm, bld->bld_base.base.type, 0.0F);
2430 }
2431
2432 for (i = 0; i < num_derivs; i++) {
2433 coords[i] = lp_build_emit_fetch(&bld->bld_base, inst, 0, i);
2434 }
2435 for (i = num_derivs; i < 5; i++) {
2436 coords[i] = bld->bld_base.base.undef;
2437 }
2438
2439 /* Layer coord always goes into 3rd slot, except for cube map arrays */
2440 if (layer_coord) {
2441 if (layer_coord == 3)
2442 coords[3] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2443 else
2444 coords[2] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2445 }
2446 /* Shadow coord occupies always 5th slot. */
2447 if (compare) {
2448 sample_key |= LP_SAMPLER_SHADOW;
2449 coords[4] = lp_build_emit_fetch(&bld->bld_base, inst, 3, 0);
2450 }
2451
2452 if (modifier == LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV) {
2453 unsigned dim;
2454 sample_key |= LP_SAMPLER_LOD_DERIVATIVES << LP_SAMPLER_LOD_CONTROL_SHIFT;
2455 for (dim = 0; dim < num_derivs; ++dim) {
2456 derivs.ddx[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 3, dim);
2457 derivs.ddy[dim] = lp_build_emit_fetch(&bld->bld_base, inst, 4, dim);
2458 }
2459 params.derivs = &derivs;
2460 /*
2461 * could also check all src regs if constant but I doubt such
2462 * cases exist in practice.
2463 */
2464 if (bld->bld_base.info->processor == TGSI_PROCESSOR_FRAGMENT) {
2465 if (gallivm_debug & GALLIVM_DEBUG_NO_QUAD_LOD) {
2466 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2467 }
2468 else {
2469 lod_property = LP_SAMPLER_LOD_PER_QUAD;
2470 }
2471 }
2472 else {
2473 lod_property = LP_SAMPLER_LOD_PER_ELEMENT;
2474 }
2475 }
2476
2477 /* some advanced gather instructions (txgo) would require 4 offsets */
2478 if (inst->Texture.NumOffsets == 1) {
2479 unsigned dim;
2480 sample_key |= LP_SAMPLER_OFFSETS;
2481 for (dim = 0; dim < num_offsets; dim++) {
2482 offsets[dim] = lp_build_emit_fetch_texoffset(&bld->bld_base, inst, 0, dim);
2483 }
2484 }
2485 sample_key |= lod_property << LP_SAMPLER_LOD_PROPERTY_SHIFT;
2486
2487 params.type = bld->bld_base.base.type;
2488 params.sample_key = sample_key;
2489 params.texture_index = texture_unit;
2490 params.sampler_index = sampler_unit;
2491 params.context_ptr = bld->context_ptr;
2492 params.thread_data_ptr = bld->thread_data_ptr;
2493 params.coords = coords;
2494 params.offsets = offsets;
2495 params.lod = lod;
2496 params.texel = texel;
2497
2498 bld->sampler->emit_tex_sample(bld->sampler,
2499 bld->bld_base.base.gallivm,
2500 &params);
2501
2502 if (inst->Src[1].Register.SwizzleX != PIPE_SWIZZLE_RED ||
2503 inst->Src[1].Register.SwizzleY != PIPE_SWIZZLE_GREEN ||
2504 inst->Src[1].Register.SwizzleZ != PIPE_SWIZZLE_BLUE ||
2505 inst->Src[1].Register.SwizzleW != PIPE_SWIZZLE_ALPHA) {
2506 unsigned char swizzles[4];
2507 swizzles[0] = inst->Src[1].Register.SwizzleX;
2508 swizzles[1] = inst->Src[1].Register.SwizzleY;
2509 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2510 swizzles[3] = inst->Src[1].Register.SwizzleW;
2511
2512 lp_build_swizzle_soa_inplace(&bld->bld_base.base, texel, swizzles);
2513 }
2514 }
2515
2516 static void
2517 emit_fetch_texels( struct lp_build_tgsi_soa_context *bld,
2518 const struct tgsi_full_instruction *inst,
2519 LLVMValueRef *texel,
2520 boolean is_samplei)
2521 {
2522 unsigned unit, target;
2523 LLVMValueRef coord_undef = LLVMGetUndef(bld->bld_base.base.int_vec_type);
2524 LLVMValueRef explicit_lod = NULL;
2525 LLVMValueRef coords[5];
2526 LLVMValueRef offsets[3] = { NULL };
2527 struct lp_sampler_params params;
2528 enum lp_sampler_lod_property lod_property = LP_SAMPLER_LOD_SCALAR;
2529 unsigned dims, i;
2530 unsigned layer_coord = 0;
2531 unsigned sample_key = LP_SAMPLER_OP_FETCH << LP_SAMPLER_OP_TYPE_SHIFT;
2532
2533 memset(&params, 0, sizeof(params));
2534
2535 if (!bld->sampler) {
2536 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
2537 for (i = 0; i < 4; i++) {
2538 texel[i] = coord_undef;
2539 }
2540 return;
2541 }
2542
2543 unit = inst->Src[1].Register.Index;
2544
2545 if (is_samplei) {
2546 target = bld->sv[unit].Resource;
2547 }
2548 else {
2549 target = inst->Texture.Texture;
2550 }
2551
2552 switch (target) {
2553 case TGSI_TEXTURE_1D:
2554 case TGSI_TEXTURE_BUFFER:
2555 dims = 1;
2556 break;
2557 case TGSI_TEXTURE_1D_ARRAY:
2558 layer_coord = 1;
2559 dims = 1;
2560 break;
2561 case TGSI_TEXTURE_2D:
2562 case TGSI_TEXTURE_RECT:
2563 case TGSI_TEXTURE_2D_MSAA:
2564 dims = 2;
2565 break;
2566 case TGSI_TEXTURE_2D_ARRAY:
2567 case TGSI_TEXTURE_2D_ARRAY_MSAA:
2568 layer_coord = 2;
2569 dims = 2;
2570 break;
2571 case TGSI_TEXTURE_3D:
2572 dims = 3;
2573 break;
2574 default:
2575 assert(0);
2576 return;
2577 }
2578
2579 /* always have lod except for buffers and msaa targets ? */
2580 if (target != TGSI_TEXTURE_BUFFER &&
2581 target != TGSI_TEXTURE_2D_MSAA &&
2582 target != TGSI_TEXTURE_2D_ARRAY_MSAA) {
2583 sample_key |= LP_SAMPLER_LOD_EXPLICIT << LP_SAMPLER_LOD_CONTROL_SHIFT;
2584 explicit_lod = lp_build_emit_fetch(&bld->bld_base, inst, 0, 3);
2585 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2586 }
2587 /* XXX: for real msaa support, the w component would be the sample index. */
2588
2589 for (i = 0; i < dims; i++) {
2590 coords[i] = lp_build_emit_fetch(&bld->bld_base, inst, 0, i);
2591 }
2592 /* never use more than 3 coords here but emit_fetch_texel copies all 5 anyway */
2593 for (i = dims; i < 5; i++) {
2594 coords[i] = coord_undef;
2595 }
2596 if (layer_coord)
2597 coords[2] = lp_build_emit_fetch(&bld->bld_base, inst, 0, layer_coord);
2598
2599 if (inst->Texture.NumOffsets == 1) {
2600 unsigned dim;
2601 sample_key |= LP_SAMPLER_OFFSETS;
2602 for (dim = 0; dim < dims; dim++) {
2603 offsets[dim] = lp_build_emit_fetch_texoffset(&bld->bld_base, inst, 0, dim);
2604 }
2605 }
2606 sample_key |= lod_property << LP_SAMPLER_LOD_PROPERTY_SHIFT;
2607
2608 params.type = bld->bld_base.base.type;
2609 params.sample_key = sample_key;
2610 params.texture_index = unit;
2611 params.sampler_index = unit;
2612 params.context_ptr = bld->context_ptr;
2613 params.thread_data_ptr = bld->thread_data_ptr;
2614 params.coords = coords;
2615 params.offsets = offsets;
2616 params.derivs = NULL;
2617 params.lod = explicit_lod;
2618 params.texel = texel;
2619
2620 bld->sampler->emit_tex_sample(bld->sampler,
2621 bld->bld_base.base.gallivm,
2622 &params);
2623
2624 if (is_samplei &&
2625 (inst->Src[1].Register.SwizzleX != PIPE_SWIZZLE_RED ||
2626 inst->Src[1].Register.SwizzleY != PIPE_SWIZZLE_GREEN ||
2627 inst->Src[1].Register.SwizzleZ != PIPE_SWIZZLE_BLUE ||
2628 inst->Src[1].Register.SwizzleW != PIPE_SWIZZLE_ALPHA)) {
2629 unsigned char swizzles[4];
2630 swizzles[0] = inst->Src[1].Register.SwizzleX;
2631 swizzles[1] = inst->Src[1].Register.SwizzleY;
2632 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2633 swizzles[3] = inst->Src[1].Register.SwizzleW;
2634
2635 lp_build_swizzle_soa_inplace(&bld->bld_base.base, texel, swizzles);
2636 }
2637 }
2638
2639 static void
2640 emit_size_query( struct lp_build_tgsi_soa_context *bld,
2641 const struct tgsi_full_instruction *inst,
2642 LLVMValueRef *sizes_out,
2643 boolean is_sviewinfo)
2644 {
2645 LLVMValueRef explicit_lod;
2646 enum lp_sampler_lod_property lod_property;
2647 unsigned has_lod;
2648 unsigned i;
2649 unsigned unit = inst->Src[1].Register.Index;
2650 unsigned target, pipe_target;
2651
2652 if (is_sviewinfo) {
2653 target = bld->sv[unit].Resource;
2654 }
2655 else {
2656 target = inst->Texture.Texture;
2657 }
2658 switch (target) {
2659 case TGSI_TEXTURE_BUFFER:
2660 case TGSI_TEXTURE_RECT:
2661 case TGSI_TEXTURE_SHADOWRECT:
2662 has_lod = 0;
2663 break;
2664 default:
2665 has_lod = 1;
2666 break;
2667 }
2668
2669 if (!bld->sampler) {
2670 _debug_printf("warning: found texture query instruction but no sampler generator supplied\n");
2671 for (i = 0; i < 4; i++)
2672 sizes_out[i] = bld->bld_base.int_bld.undef;
2673 return;
2674 }
2675
2676 if (has_lod) {
2677 explicit_lod = lp_build_emit_fetch(&bld->bld_base, inst, 0, 0);
2678 lod_property = lp_build_lod_property(&bld->bld_base, inst, 0);
2679 }
2680 else {
2681 explicit_lod = NULL;
2682 lod_property = LP_SAMPLER_LOD_SCALAR;
2683 }
2684
2685
2686 pipe_target = tgsi_to_pipe_tex_target(target);
2687
2688 bld->sampler->emit_size_query(bld->sampler,
2689 bld->bld_base.base.gallivm,
2690 bld->bld_base.int_bld.type,
2691 unit, pipe_target,
2692 bld->context_ptr,
2693 TRUE,
2694 lod_property,
2695 explicit_lod,
2696 sizes_out);
2697 }
2698
2699 static boolean
2700 near_end_of_shader(struct lp_build_tgsi_soa_context *bld,
2701 int pc)
2702 {
2703 int i;
2704
2705 for (i = 0; i < 5; i++) {
2706 unsigned opcode;
2707
2708 if (pc + i >= bld->bld_base.info->num_instructions)
2709 return TRUE;
2710
2711 opcode = bld->bld_base.instructions[pc + i].Instruction.Opcode;
2712
2713 if (opcode == TGSI_OPCODE_END)
2714 return TRUE;
2715
2716 if (opcode == TGSI_OPCODE_TEX ||
2717 opcode == TGSI_OPCODE_TXP ||
2718 opcode == TGSI_OPCODE_TXD ||
2719 opcode == TGSI_OPCODE_TXB ||
2720 opcode == TGSI_OPCODE_TXL ||
2721 opcode == TGSI_OPCODE_TXF ||
2722 opcode == TGSI_OPCODE_TXQ ||
2723 opcode == TGSI_OPCODE_TEX2 ||
2724 opcode == TGSI_OPCODE_TXB2 ||
2725 opcode == TGSI_OPCODE_TXL2 ||
2726 opcode == TGSI_OPCODE_SAMPLE ||
2727 opcode == TGSI_OPCODE_SAMPLE_B ||
2728 opcode == TGSI_OPCODE_SAMPLE_C ||
2729 opcode == TGSI_OPCODE_SAMPLE_C_LZ ||
2730 opcode == TGSI_OPCODE_SAMPLE_D ||
2731 opcode == TGSI_OPCODE_SAMPLE_I ||
2732 opcode == TGSI_OPCODE_SAMPLE_L ||
2733 opcode == TGSI_OPCODE_SVIEWINFO ||
2734 opcode == TGSI_OPCODE_CAL ||
2735 opcode == TGSI_OPCODE_CALLNZ ||
2736 opcode == TGSI_OPCODE_IF ||
2737 opcode == TGSI_OPCODE_UIF ||
2738 opcode == TGSI_OPCODE_BGNLOOP ||
2739 opcode == TGSI_OPCODE_SWITCH)
2740 return FALSE;
2741 }
2742
2743 return TRUE;
2744 }
2745
2746
2747
2748 /**
2749 * Kill fragment if any of the src register values are negative.
2750 */
2751 static void
2752 emit_kill_if(
2753 struct lp_build_tgsi_soa_context *bld,
2754 const struct tgsi_full_instruction *inst,
2755 int pc)
2756 {
2757 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
2758 const struct tgsi_full_src_register *reg = &inst->Src[0];
2759 LLVMValueRef terms[TGSI_NUM_CHANNELS];
2760 LLVMValueRef mask;
2761 unsigned chan_index;
2762
2763 memset(&terms, 0, sizeof terms);
2764
2765 TGSI_FOR_EACH_CHANNEL( chan_index ) {
2766 unsigned swizzle;
2767
2768 /* Unswizzle channel */
2769 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
2770
2771 /* Check if the component has not been already tested. */
2772 assert(swizzle < TGSI_NUM_CHANNELS);
2773 if( !terms[swizzle] )
2774 /* TODO: change the comparison operator instead of setting the sign */
2775 terms[swizzle] = lp_build_emit_fetch(&bld->bld_base, inst, 0, chan_index );
2776 }
2777
2778 mask = NULL;
2779 TGSI_FOR_EACH_CHANNEL( chan_index ) {
2780 if(terms[chan_index]) {
2781 LLVMValueRef chan_mask;
2782
2783 /*
2784 * If term < 0 then mask = 0 else mask = ~0.
2785 */
2786 chan_mask = lp_build_cmp(&bld->bld_base.base, PIPE_FUNC_GEQUAL, terms[chan_index], bld->bld_base.base.zero);
2787
2788 if(mask)
2789 mask = LLVMBuildAnd(builder, mask, chan_mask, "");
2790 else
2791 mask = chan_mask;
2792 }
2793 }
2794
2795 if (bld->exec_mask.has_mask) {
2796 LLVMValueRef invmask;
2797 invmask = LLVMBuildNot(builder, bld->exec_mask.exec_mask, "kilp");
2798 mask = LLVMBuildOr(builder, mask, invmask, "");
2799 }
2800
2801 lp_build_mask_update(bld->mask, mask);
2802 if (!near_end_of_shader(bld, pc))
2803 lp_build_mask_check(bld->mask);
2804 }
2805
2806
2807 /**
2808 * Unconditional fragment kill.
2809 * The only predication is the execution mask which will apply if
2810 * we're inside a loop or conditional.
2811 */
2812 static void
2813 emit_kill(struct lp_build_tgsi_soa_context *bld,
2814 int pc)
2815 {
2816 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
2817 LLVMValueRef mask;
2818
2819 /* For those channels which are "alive", disable fragment shader
2820 * execution.
2821 */
2822 if (bld->exec_mask.has_mask) {
2823 mask = LLVMBuildNot(builder, bld->exec_mask.exec_mask, "kilp");
2824 }
2825 else {
2826 LLVMValueRef zero = LLVMConstNull(bld->bld_base.base.int_vec_type);
2827 mask = zero;
2828 }
2829
2830 lp_build_mask_update(bld->mask, mask);
2831
2832 if (!near_end_of_shader(bld, pc))
2833 lp_build_mask_check(bld->mask);
2834 }
2835
2836
2837 /**
2838 * Emit code which will dump the value of all the temporary registers
2839 * to stdout.
2840 */
2841 static void
2842 emit_dump_file(struct lp_build_tgsi_soa_context *bld,
2843 unsigned file)
2844 {
2845 const struct tgsi_shader_info *info = bld->bld_base.info;
2846 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2847 LLVMBuilderRef builder = gallivm->builder;
2848 LLVMValueRef reg_ptr;
2849 int index;
2850 int max_index = info->file_max[file];
2851
2852 /*
2853 * Some register files, particularly constants, can be very large,
2854 * and dumping everything could make this unusably slow.
2855 */
2856 max_index = MIN2(max_index, 32);
2857
2858 for (index = 0; index <= max_index; index++) {
2859 LLVMValueRef res;
2860 unsigned mask;
2861 int chan;
2862
2863 if (index < 8 * sizeof(unsigned) &&
2864 (info->file_mask[file] & (1 << index)) == 0) {
2865 /* This was not declared.*/
2866 continue;
2867 }
2868
2869 if (file == TGSI_FILE_INPUT) {
2870 mask = info->input_usage_mask[index];
2871 } else {
2872 mask = TGSI_WRITEMASK_XYZW;
2873 }
2874
2875 for (chan = 0; chan < 4; chan++) {
2876 if ((mask & (1 << chan)) == 0) {
2877 /* This channel is not used.*/
2878 continue;
2879 }
2880
2881 if (file == TGSI_FILE_CONSTANT) {
2882 struct tgsi_full_src_register reg;
2883 memset(&reg, 0, sizeof reg);
2884 reg.Register.File = file;
2885 reg.Register.Index = index;
2886 reg.Register.SwizzleX = 0;
2887 reg.Register.SwizzleY = 1;
2888 reg.Register.SwizzleZ = 2;
2889 reg.Register.SwizzleW = 3;
2890
2891 res = bld->bld_base.emit_fetch_funcs[file](&bld->bld_base, &reg, TGSI_TYPE_FLOAT, chan);
2892 if (!res) {
2893 continue;
2894 }
2895 } else if (file == TGSI_FILE_INPUT) {
2896 res = bld->inputs[index][chan];
2897 if (!res) {
2898 continue;
2899 }
2900 } else if (file == TGSI_FILE_TEMPORARY) {
2901 reg_ptr = lp_get_temp_ptr_soa(bld, index, chan);
2902 assert(reg_ptr);
2903 res = LLVMBuildLoad(builder, reg_ptr, "");
2904 } else if (file == TGSI_FILE_OUTPUT) {
2905 reg_ptr = lp_get_output_ptr(bld, index, chan);
2906 assert(reg_ptr);
2907 res = LLVMBuildLoad(builder, reg_ptr, "");
2908 } else {
2909 assert(0);
2910 continue;
2911 }
2912
2913 emit_dump_reg(gallivm, file, index, chan, res);
2914 }
2915 }
2916 }
2917
2918
2919
2920 void
2921 lp_emit_declaration_soa(
2922 struct lp_build_tgsi_context *bld_base,
2923 const struct tgsi_full_declaration *decl)
2924 {
2925 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
2926 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
2927 LLVMTypeRef vec_type = bld->bld_base.base.vec_type;
2928 const unsigned first = decl->Range.First;
2929 const unsigned last = decl->Range.Last;
2930 unsigned idx, i;
2931
2932 assert(last <= bld->bld_base.info->file_max[decl->Declaration.File]);
2933
2934 switch (decl->Declaration.File) {
2935 case TGSI_FILE_TEMPORARY:
2936 if (!(bld->indirect_files & (1 << TGSI_FILE_TEMPORARY))) {
2937 assert(last < LP_MAX_INLINED_TEMPS);
2938 for (idx = first; idx <= last; ++idx) {
2939 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2940 bld->temps[idx][i] = lp_build_alloca(gallivm, vec_type, "temp");
2941 }
2942 }
2943 break;
2944
2945 case TGSI_FILE_OUTPUT:
2946 if (!(bld->indirect_files & (1 << TGSI_FILE_OUTPUT))) {
2947 for (idx = first; idx <= last; ++idx) {
2948 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2949 bld->outputs[idx][i] = lp_build_alloca(gallivm,
2950 vec_type, "output");
2951 }
2952 }
2953 break;
2954
2955 case TGSI_FILE_ADDRESS:
2956 /* ADDR registers are only allocated with an integer LLVM IR type,
2957 * as they are guaranteed to always have integers.
2958 * XXX: Not sure if this exception is worthwhile (or the whole idea of
2959 * an ADDR register for that matter).
2960 */
2961 assert(last < LP_MAX_TGSI_ADDRS);
2962 for (idx = first; idx <= last; ++idx) {
2963 assert(idx < LP_MAX_TGSI_ADDRS);
2964 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2965 bld->addr[idx][i] = lp_build_alloca(gallivm, bld_base->base.int_vec_type, "addr");
2966 }
2967 break;
2968
2969 case TGSI_FILE_PREDICATE:
2970 assert(last < LP_MAX_TGSI_PREDS);
2971 for (idx = first; idx <= last; ++idx) {
2972 for (i = 0; i < TGSI_NUM_CHANNELS; i++)
2973 bld->preds[idx][i] = lp_build_alloca(gallivm, vec_type,
2974 "predicate");
2975 }
2976 break;
2977
2978 case TGSI_FILE_SAMPLER_VIEW:
2979 /*
2980 * The target stored here MUST match whatever there actually
2981 * is in the set sampler views (what about return type?).
2982 */
2983 assert(last < PIPE_MAX_SHADER_SAMPLER_VIEWS);
2984 for (idx = first; idx <= last; ++idx) {
2985 bld->sv[idx] = decl->SamplerView;
2986 }
2987 break;
2988
2989 case TGSI_FILE_CONSTANT:
2990 {
2991 /*
2992 * We could trivially fetch the per-buffer pointer when fetching the
2993 * constant, relying on llvm to figure out it's always the same pointer
2994 * anyway. However, doing so results in a huge (more than factor of 10)
2995 * slowdown in llvm compilation times for some (but not all) shaders
2996 * (more specifically, the IR optimization spends way more time in
2997 * DominatorTree::dominates). At least with llvm versions 3.1, 3.3.
2998 */
2999 unsigned idx2D = decl->Dim.Index2D;
3000 LLVMValueRef index2D = lp_build_const_int32(gallivm, idx2D);
3001 assert(idx2D < LP_MAX_TGSI_CONST_BUFFERS);
3002 bld->consts[idx2D] =
3003 lp_build_array_get(gallivm, bld->consts_ptr, index2D);
3004 bld->consts_sizes[idx2D] =
3005 lp_build_array_get(gallivm, bld->const_sizes_ptr, index2D);
3006 }
3007 break;
3008
3009 default:
3010 /* don't need to declare other vars */
3011 break;
3012 }
3013 }
3014
3015
3016 void lp_emit_immediate_soa(
3017 struct lp_build_tgsi_context *bld_base,
3018 const struct tgsi_full_immediate *imm)
3019 {
3020 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
3021 struct gallivm_state * gallivm = bld_base->base.gallivm;
3022 LLVMValueRef imms[4];
3023 unsigned i;
3024 const uint size = imm->Immediate.NrTokens - 1;
3025 assert(size <= 4);
3026 switch (imm->Immediate.DataType) {
3027 case TGSI_IMM_FLOAT32:
3028 for( i = 0; i < size; ++i )
3029 imms[i] =
3030 lp_build_const_vec(gallivm, bld_base->base.type, imm->u[i].Float);
3031
3032 break;
3033 case TGSI_IMM_FLOAT64:
3034 case TGSI_IMM_UINT32:
3035 for( i = 0; i < size; ++i ) {
3036 LLVMValueRef tmp = lp_build_const_vec(gallivm, bld_base->uint_bld.type, imm->u[i].Uint);
3037 imms[i] = LLVMConstBitCast(tmp, bld_base->base.vec_type);
3038 }
3039
3040 break;
3041 case TGSI_IMM_INT32:
3042 for( i = 0; i < size; ++i ) {
3043 LLVMValueRef tmp = lp_build_const_vec(gallivm, bld_base->int_bld.type, imm->u[i].Int);
3044 imms[i] = LLVMConstBitCast(tmp, bld_base->base.vec_type);
3045 }
3046
3047 break;
3048 }
3049 for( i = size; i < 4; ++i )
3050 imms[i] = bld_base->base.undef;
3051
3052 if (bld->use_immediates_array) {
3053 unsigned index = bld->num_immediates;
3054 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
3055 LLVMBuilderRef builder = gallivm->builder;
3056
3057 assert(bld->indirect_files & (1 << TGSI_FILE_IMMEDIATE));
3058 for (i = 0; i < 4; ++i ) {
3059 LLVMValueRef lindex = lp_build_const_int32(
3060 bld->bld_base.base.gallivm, index * 4 + i);
3061 LLVMValueRef imm_ptr = LLVMBuildGEP(builder,
3062 bld->imms_array, &lindex, 1, "");
3063 LLVMBuildStore(builder, imms[i], imm_ptr);
3064 }
3065 } else {
3066 /* simply copy the immediate values into the next immediates[] slot */
3067 unsigned i;
3068 assert(imm->Immediate.NrTokens - 1 <= 4);
3069 assert(bld->num_immediates < LP_MAX_INLINED_IMMEDIATES);
3070
3071 for(i = 0; i < 4; ++i )
3072 bld->immediates[bld->num_immediates][i] = imms[i];
3073
3074 if (bld->indirect_files & (1 << TGSI_FILE_IMMEDIATE)) {
3075 unsigned index = bld->num_immediates;
3076 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
3077 LLVMBuilderRef builder = gallivm->builder;
3078 for (i = 0; i < 4; ++i ) {
3079 LLVMValueRef lindex = lp_build_const_int32(
3080 bld->bld_base.base.gallivm, index * 4 + i);
3081 LLVMValueRef imm_ptr = LLVMBuildGEP(builder,
3082 bld->imms_array, &lindex, 1, "");
3083 LLVMBuildStore(builder,
3084 bld->immediates[index][i],
3085 imm_ptr);
3086 }
3087 }
3088 }
3089
3090 bld->num_immediates++;
3091 }
3092
3093 static void
3094 ddx_emit(
3095 const struct lp_build_tgsi_action * action,
3096 struct lp_build_tgsi_context * bld_base,
3097 struct lp_build_emit_data * emit_data)
3098 {
3099 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3100
3101 emit_fetch_deriv(bld, emit_data->args[0], NULL,
3102 &emit_data->output[emit_data->chan], NULL);
3103 }
3104
3105 static void
3106 ddy_emit(
3107 const struct lp_build_tgsi_action * action,
3108 struct lp_build_tgsi_context * bld_base,
3109 struct lp_build_emit_data * emit_data)
3110 {
3111 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3112
3113 emit_fetch_deriv(bld, emit_data->args[0], NULL, NULL,
3114 &emit_data->output[emit_data->chan]);
3115 }
3116
3117 static void
3118 kill_emit(
3119 const struct lp_build_tgsi_action * action,
3120 struct lp_build_tgsi_context * bld_base,
3121 struct lp_build_emit_data * emit_data)
3122 {
3123 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3124
3125 emit_kill(bld, bld_base->pc - 1);
3126 }
3127
3128 static void
3129 kill_if_emit(
3130 const struct lp_build_tgsi_action * action,
3131 struct lp_build_tgsi_context * bld_base,
3132 struct lp_build_emit_data * emit_data)
3133 {
3134 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3135
3136 emit_kill_if(bld, emit_data->inst, bld_base->pc - 1);
3137 }
3138
3139 static void
3140 tex_emit(
3141 const struct lp_build_tgsi_action * action,
3142 struct lp_build_tgsi_context * bld_base,
3143 struct lp_build_emit_data * emit_data)
3144 {
3145 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3146
3147 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
3148 emit_data->output, 1, LP_SAMPLER_OP_TEXTURE);
3149 }
3150
3151 static void
3152 tex2_emit(
3153 const struct lp_build_tgsi_action * action,
3154 struct lp_build_tgsi_context * bld_base,
3155 struct lp_build_emit_data * emit_data)
3156 {
3157 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3158
3159 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
3160 emit_data->output, 2, LP_SAMPLER_OP_TEXTURE);
3161 }
3162
3163 static void
3164 txb_emit(
3165 const struct lp_build_tgsi_action * action,
3166 struct lp_build_tgsi_context * bld_base,
3167 struct lp_build_emit_data * emit_data)
3168 {
3169 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3170
3171 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_BIAS,
3172 emit_data->output, 1, LP_SAMPLER_OP_TEXTURE);
3173 }
3174
3175 static void
3176 txb2_emit(
3177 const struct lp_build_tgsi_action * action,
3178 struct lp_build_tgsi_context * bld_base,
3179 struct lp_build_emit_data * emit_data)
3180 {
3181 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3182
3183 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_BIAS,
3184 emit_data->output, 2, LP_SAMPLER_OP_TEXTURE);
3185 }
3186
3187 static void
3188 txd_emit(
3189 const struct lp_build_tgsi_action * action,
3190 struct lp_build_tgsi_context * bld_base,
3191 struct lp_build_emit_data * emit_data)
3192 {
3193 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3194
3195 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV,
3196 emit_data->output, 3, LP_SAMPLER_OP_TEXTURE);
3197 }
3198
3199 static void
3200 txl_emit(
3201 const struct lp_build_tgsi_action * action,
3202 struct lp_build_tgsi_context * bld_base,
3203 struct lp_build_emit_data * emit_data)
3204 {
3205 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3206
3207 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_LOD,
3208 emit_data->output, 1, LP_SAMPLER_OP_TEXTURE);
3209 }
3210
3211 static void
3212 txl2_emit(
3213 const struct lp_build_tgsi_action * action,
3214 struct lp_build_tgsi_context * bld_base,
3215 struct lp_build_emit_data * emit_data)
3216 {
3217 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3218
3219 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_LOD,
3220 emit_data->output, 2, LP_SAMPLER_OP_TEXTURE);
3221 }
3222
3223 static void
3224 txp_emit(
3225 const struct lp_build_tgsi_action * action,
3226 struct lp_build_tgsi_context * bld_base,
3227 struct lp_build_emit_data * emit_data)
3228 {
3229 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3230
3231 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_PROJECTED,
3232 emit_data->output, 1, LP_SAMPLER_OP_TEXTURE);
3233 }
3234
3235 static void
3236 tg4_emit(
3237 const struct lp_build_tgsi_action * action,
3238 struct lp_build_tgsi_context * bld_base,
3239 struct lp_build_emit_data * emit_data)
3240 {
3241 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3242
3243 emit_tex(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
3244 emit_data->output, 2, LP_SAMPLER_OP_GATHER);
3245 }
3246
3247 static void
3248 txq_emit(
3249 const struct lp_build_tgsi_action * action,
3250 struct lp_build_tgsi_context * bld_base,
3251 struct lp_build_emit_data * emit_data)
3252 {
3253 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3254
3255 emit_size_query(bld, emit_data->inst, emit_data->output, FALSE);
3256 }
3257
3258 static void
3259 txf_emit(
3260 const struct lp_build_tgsi_action * action,
3261 struct lp_build_tgsi_context * bld_base,
3262 struct lp_build_emit_data * emit_data)
3263 {
3264 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3265
3266 emit_fetch_texels(bld, emit_data->inst, emit_data->output, FALSE);
3267 }
3268
3269 static void
3270 sample_i_emit(
3271 const struct lp_build_tgsi_action * action,
3272 struct lp_build_tgsi_context * bld_base,
3273 struct lp_build_emit_data * emit_data)
3274 {
3275 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3276
3277 emit_fetch_texels(bld, emit_data->inst, emit_data->output, TRUE);
3278 }
3279
3280 static void
3281 sample_emit(
3282 const struct lp_build_tgsi_action * action,
3283 struct lp_build_tgsi_context * bld_base,
3284 struct lp_build_emit_data * emit_data)
3285 {
3286 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3287
3288 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
3289 FALSE, emit_data->output);
3290 }
3291
3292 static void
3293 sample_b_emit(
3294 const struct lp_build_tgsi_action * action,
3295 struct lp_build_tgsi_context * bld_base,
3296 struct lp_build_emit_data * emit_data)
3297 {
3298 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3299
3300 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_BIAS,
3301 FALSE, emit_data->output);
3302 }
3303
3304 static void
3305 sample_c_emit(
3306 const struct lp_build_tgsi_action * action,
3307 struct lp_build_tgsi_context * bld_base,
3308 struct lp_build_emit_data * emit_data)
3309 {
3310 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3311
3312 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_NONE,
3313 TRUE, emit_data->output);
3314 }
3315
3316 static void
3317 sample_c_lz_emit(
3318 const struct lp_build_tgsi_action * action,
3319 struct lp_build_tgsi_context * bld_base,
3320 struct lp_build_emit_data * emit_data)
3321 {
3322 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3323
3324 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_LOD_ZERO,
3325 TRUE, emit_data->output);
3326 }
3327
3328 static void
3329 sample_d_emit(
3330 const struct lp_build_tgsi_action * action,
3331 struct lp_build_tgsi_context * bld_base,
3332 struct lp_build_emit_data * emit_data)
3333 {
3334 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3335
3336 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV,
3337 FALSE, emit_data->output);
3338 }
3339
3340 static void
3341 sample_l_emit(
3342 const struct lp_build_tgsi_action * action,
3343 struct lp_build_tgsi_context * bld_base,
3344 struct lp_build_emit_data * emit_data)
3345 {
3346 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3347
3348 emit_sample(bld, emit_data->inst, LP_BLD_TEX_MODIFIER_EXPLICIT_LOD,
3349 FALSE, emit_data->output);
3350 }
3351
3352 static void
3353 sviewinfo_emit(
3354 const struct lp_build_tgsi_action * action,
3355 struct lp_build_tgsi_context * bld_base,
3356 struct lp_build_emit_data * emit_data)
3357 {
3358 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3359
3360 emit_size_query(bld, emit_data->inst, emit_data->output, TRUE);
3361 }
3362
3363 static LLVMValueRef
3364 mask_vec(struct lp_build_tgsi_context *bld_base)
3365 {
3366 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3367 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3368 struct lp_exec_mask *exec_mask = &bld->exec_mask;
3369
3370 if (!exec_mask->has_mask) {
3371 return lp_build_mask_value(bld->mask);
3372 }
3373 return LLVMBuildAnd(builder, lp_build_mask_value(bld->mask),
3374 exec_mask->exec_mask, "");
3375 }
3376
3377 static void
3378 increment_vec_ptr_by_mask(struct lp_build_tgsi_context * bld_base,
3379 LLVMValueRef ptr,
3380 LLVMValueRef mask)
3381 {
3382 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3383 LLVMValueRef current_vec = LLVMBuildLoad(builder, ptr, "");
3384
3385 current_vec = LLVMBuildSub(builder, current_vec, mask, "");
3386
3387 LLVMBuildStore(builder, current_vec, ptr);
3388 }
3389
3390 static void
3391 clear_uint_vec_ptr_from_mask(struct lp_build_tgsi_context * bld_base,
3392 LLVMValueRef ptr,
3393 LLVMValueRef mask)
3394 {
3395 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3396 LLVMValueRef current_vec = LLVMBuildLoad(builder, ptr, "");
3397
3398 current_vec = lp_build_select(&bld_base->uint_bld,
3399 mask,
3400 bld_base->uint_bld.zero,
3401 current_vec);
3402
3403 LLVMBuildStore(builder, current_vec, ptr);
3404 }
3405
3406 static LLVMValueRef
3407 clamp_mask_to_max_output_vertices(struct lp_build_tgsi_soa_context * bld,
3408 LLVMValueRef current_mask_vec,
3409 LLVMValueRef total_emitted_vertices_vec)
3410 {
3411 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3412 struct lp_build_context *int_bld = &bld->bld_base.int_bld;
3413 LLVMValueRef max_mask = lp_build_cmp(int_bld, PIPE_FUNC_LESS,
3414 total_emitted_vertices_vec,
3415 bld->max_output_vertices_vec);
3416
3417 return LLVMBuildAnd(builder, current_mask_vec, max_mask, "");
3418 }
3419
3420 static void
3421 emit_vertex(
3422 const struct lp_build_tgsi_action * action,
3423 struct lp_build_tgsi_context * bld_base,
3424 struct lp_build_emit_data * emit_data)
3425 {
3426 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3427 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3428
3429 if (bld->gs_iface->emit_vertex) {
3430 LLVMValueRef mask = mask_vec(bld_base);
3431 LLVMValueRef total_emitted_vertices_vec =
3432 LLVMBuildLoad(builder, bld->total_emitted_vertices_vec_ptr, "");
3433 mask = clamp_mask_to_max_output_vertices(bld, mask,
3434 total_emitted_vertices_vec);
3435 gather_outputs(bld);
3436 bld->gs_iface->emit_vertex(bld->gs_iface, &bld->bld_base,
3437 bld->outputs,
3438 total_emitted_vertices_vec);
3439 increment_vec_ptr_by_mask(bld_base, bld->emitted_vertices_vec_ptr,
3440 mask);
3441 increment_vec_ptr_by_mask(bld_base, bld->total_emitted_vertices_vec_ptr,
3442 mask);
3443 #if DUMP_GS_EMITS
3444 lp_build_print_value(bld->bld_base.base.gallivm,
3445 " +++ emit vertex masked ones = ",
3446 mask);
3447 lp_build_print_value(bld->bld_base.base.gallivm,
3448 " +++ emit vertex emitted = ",
3449 total_emitted_vertices_vec);
3450 #endif
3451 }
3452 }
3453
3454
3455 static void
3456 end_primitive_masked(struct lp_build_tgsi_context * bld_base,
3457 LLVMValueRef mask)
3458 {
3459 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3460 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
3461
3462 if (bld->gs_iface->end_primitive) {
3463 struct lp_build_context *uint_bld = &bld_base->uint_bld;
3464 LLVMValueRef emitted_vertices_vec =
3465 LLVMBuildLoad(builder, bld->emitted_vertices_vec_ptr, "");
3466 LLVMValueRef emitted_prims_vec =
3467 LLVMBuildLoad(builder, bld->emitted_prims_vec_ptr, "");
3468
3469 LLVMValueRef emitted_mask = lp_build_cmp(uint_bld, PIPE_FUNC_NOTEQUAL,
3470 emitted_vertices_vec,
3471 uint_bld->zero);
3472 /* We need to combine the current execution mask with the mask
3473 telling us which, if any, execution slots actually have
3474 unemitted primitives, this way we make sure that end_primitives
3475 executes only on the paths that have unflushed vertices */
3476 mask = LLVMBuildAnd(builder, mask, emitted_mask, "");
3477
3478 bld->gs_iface->end_primitive(bld->gs_iface, &bld->bld_base,
3479 emitted_vertices_vec,
3480 emitted_prims_vec);
3481
3482 #if DUMP_GS_EMITS
3483 lp_build_print_value(bld->bld_base.base.gallivm,
3484 " +++ end prim masked ones = ",
3485 mask);
3486 lp_build_print_value(bld->bld_base.base.gallivm,
3487 " +++ end prim emitted verts1 = ",
3488 emitted_vertices_vec);
3489 lp_build_print_value(bld->bld_base.base.gallivm,
3490 " +++ end prim emitted prims1 = ",
3491 LLVMBuildLoad(builder,
3492 bld->emitted_prims_vec_ptr, ""));
3493 #endif
3494 increment_vec_ptr_by_mask(bld_base, bld->emitted_prims_vec_ptr,
3495 mask);
3496 clear_uint_vec_ptr_from_mask(bld_base, bld->emitted_vertices_vec_ptr,
3497 mask);
3498 #if DUMP_GS_EMITS
3499 lp_build_print_value(bld->bld_base.base.gallivm,
3500 " +++ end prim emitted verts2 = ",
3501 LLVMBuildLoad(builder,
3502 bld->emitted_vertices_vec_ptr, ""));
3503 #endif
3504 }
3505
3506 }
3507
3508 static void
3509 end_primitive(
3510 const struct lp_build_tgsi_action * action,
3511 struct lp_build_tgsi_context * bld_base,
3512 struct lp_build_emit_data * emit_data)
3513 {
3514 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3515
3516 if (bld->gs_iface->end_primitive) {
3517 LLVMValueRef mask = mask_vec(bld_base);
3518 end_primitive_masked(bld_base, mask);
3519 }
3520 }
3521
3522 static void
3523 cal_emit(
3524 const struct lp_build_tgsi_action * action,
3525 struct lp_build_tgsi_context * bld_base,
3526 struct lp_build_emit_data * emit_data)
3527 {
3528 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3529
3530 lp_exec_mask_call(&bld->exec_mask, emit_data->inst->Label.Label,
3531 &bld_base->pc);
3532 }
3533
3534 static void
3535 ret_emit(
3536 const struct lp_build_tgsi_action * action,
3537 struct lp_build_tgsi_context * bld_base,
3538 struct lp_build_emit_data * emit_data)
3539 {
3540 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3541
3542 lp_exec_mask_ret(&bld->exec_mask, &bld_base->pc);
3543 }
3544
3545 static void
3546 brk_emit(
3547 const struct lp_build_tgsi_action * action,
3548 struct lp_build_tgsi_context * bld_base,
3549 struct lp_build_emit_data * emit_data)
3550 {
3551 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3552
3553 lp_exec_break(&bld->exec_mask, bld_base);
3554 }
3555
3556 static void
3557 breakc_emit(
3558 const struct lp_build_tgsi_action * action,
3559 struct lp_build_tgsi_context * bld_base,
3560 struct lp_build_emit_data * emit_data)
3561 {
3562 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3563 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3564 struct lp_build_context *uint_bld = &bld_base->uint_bld;
3565 LLVMValueRef unsigned_cond =
3566 LLVMBuildBitCast(builder, emit_data->args[0], uint_bld->vec_type, "");
3567 LLVMValueRef cond = lp_build_cmp(uint_bld, PIPE_FUNC_NOTEQUAL,
3568 unsigned_cond,
3569 uint_bld->zero);
3570
3571 lp_exec_break_condition(&bld->exec_mask, cond);
3572 }
3573
3574 static void
3575 if_emit(
3576 const struct lp_build_tgsi_action * action,
3577 struct lp_build_tgsi_context * bld_base,
3578 struct lp_build_emit_data * emit_data)
3579 {
3580 LLVMValueRef tmp;
3581 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3582
3583 tmp = lp_build_cmp(&bld_base->base, PIPE_FUNC_NOTEQUAL,
3584 emit_data->args[0], bld->bld_base.base.zero);
3585 lp_exec_mask_cond_push(&bld->exec_mask, tmp);
3586 }
3587
3588 static void
3589 uif_emit(
3590 const struct lp_build_tgsi_action * action,
3591 struct lp_build_tgsi_context * bld_base,
3592 struct lp_build_emit_data * emit_data)
3593 {
3594 LLVMValueRef tmp;
3595 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3596 struct lp_build_context *uint_bld = &bld_base->uint_bld;
3597
3598 tmp = lp_build_cmp(uint_bld, PIPE_FUNC_NOTEQUAL,
3599 emit_data->args[0], uint_bld->zero);
3600 lp_exec_mask_cond_push(&bld->exec_mask, tmp);
3601 }
3602
3603 static void
3604 case_emit(
3605 const struct lp_build_tgsi_action * action,
3606 struct lp_build_tgsi_context * bld_base,
3607 struct lp_build_emit_data * emit_data)
3608 {
3609 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3610
3611 lp_exec_case(&bld->exec_mask, emit_data->args[0]);
3612 }
3613
3614 static void
3615 default_emit(
3616 const struct lp_build_tgsi_action * action,
3617 struct lp_build_tgsi_context * bld_base,
3618 struct lp_build_emit_data * emit_data)
3619 {
3620 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3621
3622 lp_exec_default(&bld->exec_mask, bld_base);
3623 }
3624
3625 static void
3626 switch_emit(
3627 const struct lp_build_tgsi_action * action,
3628 struct lp_build_tgsi_context * bld_base,
3629 struct lp_build_emit_data * emit_data)
3630 {
3631 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3632
3633 lp_exec_switch(&bld->exec_mask, emit_data->args[0]);
3634 }
3635
3636 static void
3637 endswitch_emit(
3638 const struct lp_build_tgsi_action * action,
3639 struct lp_build_tgsi_context * bld_base,
3640 struct lp_build_emit_data * emit_data)
3641 {
3642 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3643
3644 lp_exec_endswitch(&bld->exec_mask, bld_base);
3645 }
3646
3647 static void
3648 bgnloop_emit(
3649 const struct lp_build_tgsi_action * action,
3650 struct lp_build_tgsi_context * bld_base,
3651 struct lp_build_emit_data * emit_data)
3652 {
3653 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3654
3655 lp_exec_bgnloop(&bld->exec_mask);
3656 }
3657
3658 static void
3659 bgnsub_emit(
3660 const struct lp_build_tgsi_action * action,
3661 struct lp_build_tgsi_context * bld_base,
3662 struct lp_build_emit_data * emit_data)
3663 {
3664 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3665
3666 lp_exec_mask_bgnsub(&bld->exec_mask);
3667 }
3668
3669 static void
3670 else_emit(
3671 const struct lp_build_tgsi_action * action,
3672 struct lp_build_tgsi_context * bld_base,
3673 struct lp_build_emit_data * emit_data)
3674 {
3675 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3676
3677 lp_exec_mask_cond_invert(&bld->exec_mask);
3678 }
3679
3680 static void
3681 endif_emit(
3682 const struct lp_build_tgsi_action * action,
3683 struct lp_build_tgsi_context * bld_base,
3684 struct lp_build_emit_data * emit_data)
3685 {
3686 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3687
3688 lp_exec_mask_cond_pop(&bld->exec_mask);
3689 }
3690
3691 static void
3692 endloop_emit(
3693 const struct lp_build_tgsi_action * action,
3694 struct lp_build_tgsi_context * bld_base,
3695 struct lp_build_emit_data * emit_data)
3696 {
3697 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3698
3699 lp_exec_endloop(bld_base->base.gallivm, &bld->exec_mask);
3700 }
3701
3702 static void
3703 endsub_emit(
3704 const struct lp_build_tgsi_action * action,
3705 struct lp_build_tgsi_context * bld_base,
3706 struct lp_build_emit_data * emit_data)
3707 {
3708 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3709
3710 lp_exec_mask_endsub(&bld->exec_mask, &bld_base->pc);
3711 }
3712
3713 static void
3714 cont_emit(
3715 const struct lp_build_tgsi_action * action,
3716 struct lp_build_tgsi_context * bld_base,
3717 struct lp_build_emit_data * emit_data)
3718 {
3719 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3720
3721 lp_exec_continue(&bld->exec_mask);
3722 }
3723
3724 static void emit_prologue(struct lp_build_tgsi_context * bld_base)
3725 {
3726 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3727 struct gallivm_state * gallivm = bld_base->base.gallivm;
3728
3729 if (bld->indirect_files & (1 << TGSI_FILE_TEMPORARY)) {
3730 LLVMValueRef array_size =
3731 lp_build_const_int32(gallivm,
3732 bld_base->info->file_max[TGSI_FILE_TEMPORARY] * 4 + 4);
3733 bld->temps_array = lp_build_array_alloca(gallivm,
3734 bld_base->base.vec_type, array_size,
3735 "temp_array");
3736 }
3737
3738 if (bld->indirect_files & (1 << TGSI_FILE_OUTPUT)) {
3739 LLVMValueRef array_size =
3740 lp_build_const_int32(gallivm,
3741 bld_base->info->file_max[TGSI_FILE_OUTPUT] * 4 + 4);
3742 bld->outputs_array = lp_build_array_alloca(gallivm,
3743 bld_base->base.vec_type, array_size,
3744 "output_array");
3745 }
3746
3747 if (bld->indirect_files & (1 << TGSI_FILE_IMMEDIATE)) {
3748 LLVMValueRef array_size =
3749 lp_build_const_int32(gallivm,
3750 bld_base->info->file_max[TGSI_FILE_IMMEDIATE] * 4 + 4);
3751 bld->imms_array = lp_build_array_alloca(gallivm,
3752 bld_base->base.vec_type, array_size,
3753 "imms_array");
3754 }
3755
3756 /* If we have indirect addressing in inputs we need to copy them into
3757 * our alloca array to be able to iterate over them */
3758 if (bld->indirect_files & (1 << TGSI_FILE_INPUT) && !bld->gs_iface) {
3759 unsigned index, chan;
3760 LLVMTypeRef vec_type = bld_base->base.vec_type;
3761 LLVMValueRef array_size = lp_build_const_int32(gallivm,
3762 bld_base->info->file_max[TGSI_FILE_INPUT]*4 + 4);
3763 bld->inputs_array = lp_build_array_alloca(gallivm,
3764 vec_type, array_size,
3765 "input_array");
3766
3767 assert(bld_base->info->num_inputs
3768 <= bld_base->info->file_max[TGSI_FILE_INPUT] + 1);
3769
3770 for (index = 0; index < bld_base->info->num_inputs; ++index) {
3771 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
3772 LLVMValueRef lindex =
3773 lp_build_const_int32(gallivm, index * 4 + chan);
3774 LLVMValueRef input_ptr =
3775 LLVMBuildGEP(gallivm->builder, bld->inputs_array,
3776 &lindex, 1, "");
3777 LLVMValueRef value = bld->inputs[index][chan];
3778 if (value)
3779 LLVMBuildStore(gallivm->builder, value, input_ptr);
3780 }
3781 }
3782 }
3783
3784 if (bld->gs_iface) {
3785 struct lp_build_context *uint_bld = &bld->bld_base.uint_bld;
3786 bld->emitted_prims_vec_ptr =
3787 lp_build_alloca(gallivm,
3788 uint_bld->vec_type,
3789 "emitted_prims_ptr");
3790 bld->emitted_vertices_vec_ptr =
3791 lp_build_alloca(gallivm,
3792 uint_bld->vec_type,
3793 "emitted_vertices_ptr");
3794 bld->total_emitted_vertices_vec_ptr =
3795 lp_build_alloca(gallivm,
3796 uint_bld->vec_type,
3797 "total_emitted_vertices_ptr");
3798
3799 LLVMBuildStore(gallivm->builder, uint_bld->zero,
3800 bld->emitted_prims_vec_ptr);
3801 LLVMBuildStore(gallivm->builder, uint_bld->zero,
3802 bld->emitted_vertices_vec_ptr);
3803 LLVMBuildStore(gallivm->builder, uint_bld->zero,
3804 bld->total_emitted_vertices_vec_ptr);
3805 }
3806
3807 if (DEBUG_EXECUTION) {
3808 lp_build_printf(gallivm, "\n");
3809 emit_dump_file(bld, TGSI_FILE_CONSTANT);
3810 if (!bld->gs_iface)
3811 emit_dump_file(bld, TGSI_FILE_INPUT);
3812 }
3813 }
3814
3815 static void emit_epilogue(struct lp_build_tgsi_context * bld_base)
3816 {
3817 struct lp_build_tgsi_soa_context * bld = lp_soa_context(bld_base);
3818 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
3819
3820 if (DEBUG_EXECUTION) {
3821 /* for debugging */
3822 if (0) {
3823 emit_dump_file(bld, TGSI_FILE_TEMPORARY);
3824 }
3825 emit_dump_file(bld, TGSI_FILE_OUTPUT);
3826 lp_build_printf(bld_base->base.gallivm, "\n");
3827 }
3828
3829 /* If we have indirect addressing in outputs we need to copy our alloca array
3830 * to the outputs slots specified by the caller */
3831 if (bld->gs_iface) {
3832 LLVMValueRef total_emitted_vertices_vec;
3833 LLVMValueRef emitted_prims_vec;
3834 /* implicit end_primitives, needed in case there are any unflushed
3835 vertices in the cache. Note must not call end_primitive here
3836 since the exec_mask is not valid at this point. */
3837 end_primitive_masked(bld_base, lp_build_mask_value(bld->mask));
3838
3839 total_emitted_vertices_vec =
3840 LLVMBuildLoad(builder, bld->total_emitted_vertices_vec_ptr, "");
3841 emitted_prims_vec =
3842 LLVMBuildLoad(builder, bld->emitted_prims_vec_ptr, "");
3843
3844 bld->gs_iface->gs_epilogue(bld->gs_iface,
3845 &bld->bld_base,
3846 total_emitted_vertices_vec,
3847 emitted_prims_vec);
3848 } else {
3849 gather_outputs(bld);
3850 }
3851 }
3852
3853 void
3854 lp_build_tgsi_soa(struct gallivm_state *gallivm,
3855 const struct tgsi_token *tokens,
3856 struct lp_type type,
3857 struct lp_build_mask_context *mask,
3858 LLVMValueRef consts_ptr,
3859 LLVMValueRef const_sizes_ptr,
3860 const struct lp_bld_tgsi_system_values *system_values,
3861 const LLVMValueRef (*inputs)[TGSI_NUM_CHANNELS],
3862 LLVMValueRef (*outputs)[TGSI_NUM_CHANNELS],
3863 LLVMValueRef context_ptr,
3864 LLVMValueRef thread_data_ptr,
3865 struct lp_build_sampler_soa *sampler,
3866 const struct tgsi_shader_info *info,
3867 const struct lp_build_tgsi_gs_iface *gs_iface)
3868 {
3869 struct lp_build_tgsi_soa_context bld;
3870
3871 struct lp_type res_type;
3872
3873 assert(type.length <= LP_MAX_VECTOR_LENGTH);
3874 memset(&res_type, 0, sizeof res_type);
3875 res_type.width = type.width;
3876 res_type.length = type.length;
3877 res_type.sign = 1;
3878
3879 /* Setup build context */
3880 memset(&bld, 0, sizeof bld);
3881 lp_build_context_init(&bld.bld_base.base, gallivm, type);
3882 lp_build_context_init(&bld.bld_base.uint_bld, gallivm, lp_uint_type(type));
3883 lp_build_context_init(&bld.bld_base.int_bld, gallivm, lp_int_type(type));
3884 lp_build_context_init(&bld.elem_bld, gallivm, lp_elem_type(type));
3885 {
3886 struct lp_type dbl_type;
3887 dbl_type = type;
3888 dbl_type.width *= 2;
3889 lp_build_context_init(&bld.bld_base.dbl_bld, gallivm, dbl_type);
3890 }
3891 bld.mask = mask;
3892 bld.inputs = inputs;
3893 bld.outputs = outputs;
3894 bld.consts_ptr = consts_ptr;
3895 bld.const_sizes_ptr = const_sizes_ptr;
3896 bld.sampler = sampler;
3897 bld.bld_base.info = info;
3898 bld.indirect_files = info->indirect_files;
3899 bld.context_ptr = context_ptr;
3900 bld.thread_data_ptr = thread_data_ptr;
3901
3902 /*
3903 * If the number of temporaries is rather large then we just
3904 * allocate them as an array right from the start and treat
3905 * like indirect temporaries.
3906 */
3907 if (info->file_max[TGSI_FILE_TEMPORARY] >= LP_MAX_INLINED_TEMPS) {
3908 bld.indirect_files |= (1 << TGSI_FILE_TEMPORARY);
3909 }
3910 /*
3911 * For performance reason immediates are always backed in a static
3912 * array, but if their number is too great, we have to use just
3913 * a dynamically allocated array.
3914 */
3915 bld.use_immediates_array =
3916 (info->file_max[TGSI_FILE_IMMEDIATE] >= LP_MAX_INLINED_IMMEDIATES);
3917 if (bld.use_immediates_array) {
3918 bld.indirect_files |= (1 << TGSI_FILE_IMMEDIATE);
3919 }
3920
3921
3922 bld.bld_base.soa = TRUE;
3923 bld.bld_base.emit_debug = emit_debug;
3924 bld.bld_base.emit_fetch_funcs[TGSI_FILE_CONSTANT] = emit_fetch_constant;
3925 bld.bld_base.emit_fetch_funcs[TGSI_FILE_IMMEDIATE] = emit_fetch_immediate;
3926 bld.bld_base.emit_fetch_funcs[TGSI_FILE_INPUT] = emit_fetch_input;
3927 bld.bld_base.emit_fetch_funcs[TGSI_FILE_TEMPORARY] = emit_fetch_temporary;
3928 bld.bld_base.emit_fetch_funcs[TGSI_FILE_SYSTEM_VALUE] = emit_fetch_system_value;
3929 bld.bld_base.emit_store = emit_store;
3930
3931 bld.bld_base.emit_declaration = lp_emit_declaration_soa;
3932 bld.bld_base.emit_immediate = lp_emit_immediate_soa;
3933
3934 bld.bld_base.emit_prologue = emit_prologue;
3935 bld.bld_base.emit_epilogue = emit_epilogue;
3936
3937 /* Set opcode actions */
3938 lp_set_default_actions_cpu(&bld.bld_base);
3939
3940 bld.bld_base.op_actions[TGSI_OPCODE_BGNLOOP].emit = bgnloop_emit;
3941 bld.bld_base.op_actions[TGSI_OPCODE_BGNSUB].emit = bgnsub_emit;
3942 bld.bld_base.op_actions[TGSI_OPCODE_BRK].emit = brk_emit;
3943 bld.bld_base.op_actions[TGSI_OPCODE_BREAKC].emit = breakc_emit;
3944 bld.bld_base.op_actions[TGSI_OPCODE_CAL].emit = cal_emit;
3945 bld.bld_base.op_actions[TGSI_OPCODE_CASE].emit = case_emit;
3946 bld.bld_base.op_actions[TGSI_OPCODE_CONT].emit = cont_emit;
3947 bld.bld_base.op_actions[TGSI_OPCODE_DDX].emit = ddx_emit;
3948 bld.bld_base.op_actions[TGSI_OPCODE_DDY].emit = ddy_emit;
3949 bld.bld_base.op_actions[TGSI_OPCODE_DEFAULT].emit = default_emit;
3950 bld.bld_base.op_actions[TGSI_OPCODE_ELSE].emit = else_emit;
3951 bld.bld_base.op_actions[TGSI_OPCODE_ENDIF].emit = endif_emit;
3952 bld.bld_base.op_actions[TGSI_OPCODE_ENDLOOP].emit = endloop_emit;
3953 bld.bld_base.op_actions[TGSI_OPCODE_ENDSUB].emit = endsub_emit;
3954 bld.bld_base.op_actions[TGSI_OPCODE_ENDSWITCH].emit = endswitch_emit;
3955 bld.bld_base.op_actions[TGSI_OPCODE_IF].emit = if_emit;
3956 bld.bld_base.op_actions[TGSI_OPCODE_UIF].emit = uif_emit;
3957 bld.bld_base.op_actions[TGSI_OPCODE_KILL_IF].emit = kill_if_emit;
3958 bld.bld_base.op_actions[TGSI_OPCODE_KILL].emit = kill_emit;
3959 bld.bld_base.op_actions[TGSI_OPCODE_RET].emit = ret_emit;
3960 bld.bld_base.op_actions[TGSI_OPCODE_SWITCH].emit = switch_emit;
3961 bld.bld_base.op_actions[TGSI_OPCODE_TEX].emit = tex_emit;
3962 bld.bld_base.op_actions[TGSI_OPCODE_TXB].emit = txb_emit;
3963 bld.bld_base.op_actions[TGSI_OPCODE_TXD].emit = txd_emit;
3964 bld.bld_base.op_actions[TGSI_OPCODE_TXL].emit = txl_emit;
3965 bld.bld_base.op_actions[TGSI_OPCODE_TXP].emit = txp_emit;
3966 bld.bld_base.op_actions[TGSI_OPCODE_TXQ].emit = txq_emit;
3967 bld.bld_base.op_actions[TGSI_OPCODE_TXF].emit = txf_emit;
3968 bld.bld_base.op_actions[TGSI_OPCODE_TEX2].emit = tex2_emit;
3969 bld.bld_base.op_actions[TGSI_OPCODE_TXB2].emit = txb2_emit;
3970 bld.bld_base.op_actions[TGSI_OPCODE_TXL2].emit = txl2_emit;
3971 bld.bld_base.op_actions[TGSI_OPCODE_TG4].emit = tg4_emit;
3972 /* DX10 sampling ops */
3973 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE].emit = sample_emit;
3974 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_B].emit = sample_b_emit;
3975 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_C].emit = sample_c_emit;
3976 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_C_LZ].emit = sample_c_lz_emit;
3977 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_D].emit = sample_d_emit;
3978 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_I].emit = sample_i_emit;
3979 bld.bld_base.op_actions[TGSI_OPCODE_SAMPLE_L].emit = sample_l_emit;
3980 bld.bld_base.op_actions[TGSI_OPCODE_SVIEWINFO].emit = sviewinfo_emit;
3981
3982 if (gs_iface) {
3983 /* There's no specific value for this because it should always
3984 * be set, but apps using ext_geometry_shader4 quite often
3985 * were forgetting so we're using MAX_VERTEX_VARYING from
3986 * that spec even though we could debug_assert if it's not
3987 * set, but that's a lot uglier. */
3988 uint max_output_vertices;
3989
3990 /* inputs are always indirect with gs */
3991 bld.indirect_files |= (1 << TGSI_FILE_INPUT);
3992 bld.gs_iface = gs_iface;
3993 bld.bld_base.emit_fetch_funcs[TGSI_FILE_INPUT] = emit_fetch_gs_input;
3994 bld.bld_base.op_actions[TGSI_OPCODE_EMIT].emit = emit_vertex;
3995 bld.bld_base.op_actions[TGSI_OPCODE_ENDPRIM].emit = end_primitive;
3996
3997 max_output_vertices =
3998 info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
3999 if (!max_output_vertices)
4000 max_output_vertices = 32;
4001
4002 bld.max_output_vertices_vec =
4003 lp_build_const_int_vec(gallivm, bld.bld_base.int_bld.type,
4004 max_output_vertices);
4005 }
4006
4007 lp_exec_mask_init(&bld.exec_mask, &bld.bld_base.int_bld);
4008
4009 bld.system_values = *system_values;
4010
4011 lp_build_tgsi_llvm(&bld.bld_base, tokens);
4012
4013 if (0) {
4014 LLVMBasicBlockRef block = LLVMGetInsertBlock(gallivm->builder);
4015 LLVMValueRef function = LLVMGetBasicBlockParent(block);
4016 debug_printf("11111111111111111111111111111 \n");
4017 tgsi_dump(tokens, 0);
4018 lp_debug_dump_value(function);
4019 debug_printf("2222222222222222222222222222 \n");
4020 }
4021
4022 if (0) {
4023 LLVMModuleRef module = LLVMGetGlobalParent(
4024 LLVMGetBasicBlockParent(LLVMGetInsertBlock(gallivm->builder)));
4025 LLVMDumpModule(module);
4026
4027 }
4028 lp_exec_mask_fini(&bld.exec_mask);
4029 }