gallivm: Increase the TGSI translation limits and centralize them in a header.
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_tgsi_soa.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * TGSI to LLVM IR translation -- SoA.
32 *
33 * @author Jose Fonseca <jfonseca@vmware.com>
34 *
35 * Based on tgsi_sse2.c code written by Michal Krol, Keith Whitwell,
36 * Brian Paul, and others.
37 */
38
39 #include "pipe/p_config.h"
40 #include "pipe/p_shader_tokens.h"
41 #include "util/u_debug.h"
42 #include "util/u_math.h"
43 #include "util/u_memory.h"
44 #include "tgsi/tgsi_dump.h"
45 #include "tgsi/tgsi_info.h"
46 #include "tgsi/tgsi_parse.h"
47 #include "tgsi/tgsi_util.h"
48 #include "tgsi/tgsi_exec.h"
49 #include "tgsi/tgsi_scan.h"
50 #include "lp_bld_type.h"
51 #include "lp_bld_const.h"
52 #include "lp_bld_arit.h"
53 #include "lp_bld_logic.h"
54 #include "lp_bld_swizzle.h"
55 #include "lp_bld_flow.h"
56 #include "lp_bld_tgsi.h"
57 #include "lp_bld_limits.h"
58 #include "lp_bld_debug.h"
59
60
61 #define FOR_EACH_CHANNEL( CHAN )\
62 for (CHAN = 0; CHAN < NUM_CHANNELS; CHAN++)
63
64 #define IS_DST0_CHANNEL_ENABLED( INST, CHAN )\
65 ((INST)->Dst[0].Register.WriteMask & (1 << (CHAN)))
66
67 #define IF_IS_DST0_CHANNEL_ENABLED( INST, CHAN )\
68 if (IS_DST0_CHANNEL_ENABLED( INST, CHAN ))
69
70 #define FOR_EACH_DST0_ENABLED_CHANNEL( INST, CHAN )\
71 FOR_EACH_CHANNEL( CHAN )\
72 IF_IS_DST0_CHANNEL_ENABLED( INST, CHAN )
73
74 #define CHAN_X 0
75 #define CHAN_Y 1
76 #define CHAN_Z 2
77 #define CHAN_W 3
78
79 #define QUAD_TOP_LEFT 0
80 #define QUAD_TOP_RIGHT 1
81 #define QUAD_BOTTOM_LEFT 2
82 #define QUAD_BOTTOM_RIGHT 3
83
84
85 struct lp_exec_mask {
86 struct lp_build_context *bld;
87
88 boolean has_mask;
89
90 LLVMTypeRef int_vec_type;
91
92 LLVMValueRef cond_stack[LP_MAX_TGSI_NESTING];
93 int cond_stack_size;
94 LLVMValueRef cond_mask;
95
96 LLVMValueRef break_stack[LP_MAX_TGSI_NESTING];
97 int break_stack_size;
98 LLVMValueRef break_mask;
99
100 LLVMValueRef cont_stack[LP_MAX_TGSI_NESTING];
101 int cont_stack_size;
102 LLVMValueRef cont_mask;
103
104 LLVMBasicBlockRef loop_stack[LP_MAX_TGSI_NESTING];
105 int loop_stack_size;
106 LLVMBasicBlockRef loop_block;
107
108
109 LLVMValueRef exec_mask;
110 };
111
112 struct lp_build_tgsi_soa_context
113 {
114 struct lp_build_context base;
115
116 LLVMValueRef consts_ptr;
117 const LLVMValueRef *pos;
118 const LLVMValueRef (*inputs)[NUM_CHANNELS];
119 LLVMValueRef (*outputs)[NUM_CHANNELS];
120
121 struct lp_build_sampler_soa *sampler;
122
123 LLVMValueRef immediates[LP_MAX_TGSI_IMMEDIATES][NUM_CHANNELS];
124 LLVMValueRef temps[LP_MAX_TGSI_TEMPS][NUM_CHANNELS];
125 LLVMValueRef addr[LP_MAX_TGSI_ADDRS][NUM_CHANNELS];
126
127 /* we allocate an array of temps if we have indirect
128 * addressing and then the temps above is unused */
129 LLVMValueRef temps_array;
130 boolean has_indirect_addressing;
131
132 struct lp_build_mask_context *mask;
133 struct lp_exec_mask exec_mask;
134 };
135
136 static const unsigned char
137 swizzle_left[4] = {
138 QUAD_TOP_LEFT, QUAD_TOP_LEFT,
139 QUAD_BOTTOM_LEFT, QUAD_BOTTOM_LEFT
140 };
141
142 static const unsigned char
143 swizzle_right[4] = {
144 QUAD_TOP_RIGHT, QUAD_TOP_RIGHT,
145 QUAD_BOTTOM_RIGHT, QUAD_BOTTOM_RIGHT
146 };
147
148 static const unsigned char
149 swizzle_top[4] = {
150 QUAD_TOP_LEFT, QUAD_TOP_RIGHT,
151 QUAD_TOP_LEFT, QUAD_TOP_RIGHT
152 };
153
154 static const unsigned char
155 swizzle_bottom[4] = {
156 QUAD_BOTTOM_LEFT, QUAD_BOTTOM_RIGHT,
157 QUAD_BOTTOM_LEFT, QUAD_BOTTOM_RIGHT
158 };
159
160 static void lp_exec_mask_init(struct lp_exec_mask *mask, struct lp_build_context *bld)
161 {
162 mask->bld = bld;
163 mask->has_mask = FALSE;
164 mask->cond_stack_size = 0;
165 mask->loop_stack_size = 0;
166 mask->break_stack_size = 0;
167 mask->cont_stack_size = 0;
168
169 mask->int_vec_type = lp_build_int_vec_type(mask->bld->type);
170 }
171
172 static void lp_exec_mask_update(struct lp_exec_mask *mask)
173 {
174 if (mask->loop_stack_size) {
175 /*for loops we need to update the entire mask at runtime */
176 LLVMValueRef tmp;
177 assert(mask->break_mask);
178 tmp = LLVMBuildAnd(mask->bld->builder,
179 mask->cont_mask,
180 mask->break_mask,
181 "maskcb");
182 mask->exec_mask = LLVMBuildAnd(mask->bld->builder,
183 mask->cond_mask,
184 tmp,
185 "maskfull");
186 } else
187 mask->exec_mask = mask->cond_mask;
188
189
190 mask->has_mask = (mask->cond_stack_size > 0 ||
191 mask->loop_stack_size > 0);
192 }
193
194 static void lp_exec_mask_cond_push(struct lp_exec_mask *mask,
195 LLVMValueRef val)
196 {
197 assert(mask->cond_stack_size < LP_MAX_TGSI_NESTING);
198 mask->cond_stack[mask->cond_stack_size++] = mask->cond_mask;
199 mask->cond_mask = LLVMBuildBitCast(mask->bld->builder, val,
200 mask->int_vec_type, "");
201
202 lp_exec_mask_update(mask);
203 }
204
205 static void lp_exec_mask_cond_invert(struct lp_exec_mask *mask)
206 {
207 LLVMValueRef prev_mask = mask->cond_stack[mask->cond_stack_size - 1];
208 LLVMValueRef inv_mask = LLVMBuildNot(mask->bld->builder,
209 mask->cond_mask, "");
210
211 /* means that we didn't have any mask before and that
212 * we were fully enabled */
213 if (mask->cond_stack_size <= 1) {
214 prev_mask = LLVMConstAllOnes(mask->int_vec_type);
215 }
216
217 mask->cond_mask = LLVMBuildAnd(mask->bld->builder,
218 inv_mask,
219 prev_mask, "");
220 lp_exec_mask_update(mask);
221 }
222
223 static void lp_exec_mask_cond_pop(struct lp_exec_mask *mask)
224 {
225 mask->cond_mask = mask->cond_stack[--mask->cond_stack_size];
226 lp_exec_mask_update(mask);
227 }
228
229 static void lp_exec_bgnloop(struct lp_exec_mask *mask)
230 {
231
232 if (mask->cont_stack_size == 0)
233 mask->cont_mask = LLVMConstAllOnes(mask->int_vec_type);
234 if (mask->break_stack_size == 0)
235 mask->break_mask = LLVMConstAllOnes(mask->int_vec_type);
236 if (mask->cond_stack_size == 0)
237 mask->cond_mask = LLVMConstAllOnes(mask->int_vec_type);
238
239 assert(mask->break_stack_size < LP_MAX_TGSI_NESTING);
240 assert(mask->cont_stack_size < LP_MAX_TGSI_NESTING);
241 assert(mask->break_stack_size < LP_MAX_TGSI_NESTING);
242
243 mask->break_stack[mask->break_stack_size++] = mask->break_mask;
244 mask->cont_stack[mask->cont_stack_size++] = mask->cont_mask;
245 mask->loop_stack[mask->loop_stack_size++] = mask->loop_block;
246 mask->loop_block = lp_build_insert_new_block(mask->bld->builder, "bgnloop");
247 LLVMBuildBr(mask->bld->builder, mask->loop_block);
248 LLVMPositionBuilderAtEnd(mask->bld->builder, mask->loop_block);
249
250 lp_exec_mask_update(mask);
251 }
252
253 static void lp_exec_break(struct lp_exec_mask *mask)
254 {
255 LLVMValueRef exec_mask = LLVMBuildNot(mask->bld->builder,
256 mask->exec_mask,
257 "break");
258
259 mask->break_mask = LLVMBuildAnd(mask->bld->builder,
260 mask->break_mask,
261 exec_mask, "break_full");
262
263 lp_exec_mask_update(mask);
264 }
265
266 static void lp_exec_continue(struct lp_exec_mask *mask)
267 {
268 LLVMValueRef exec_mask = LLVMBuildNot(mask->bld->builder,
269 mask->exec_mask,
270 "");
271
272 mask->cont_mask = LLVMBuildAnd(mask->bld->builder,
273 mask->cont_mask,
274 exec_mask, "");
275
276 lp_exec_mask_update(mask);
277 }
278
279
280 static void lp_exec_endloop(struct lp_exec_mask *mask)
281 {
282 LLVMBasicBlockRef endloop;
283 LLVMTypeRef reg_type = LLVMIntType(mask->bld->type.width*
284 mask->bld->type.length);
285 LLVMValueRef i1cond;
286
287 assert(mask->break_mask);
288
289 /* i1cond = (mask == 0) */
290 i1cond = LLVMBuildICmp(
291 mask->bld->builder,
292 LLVMIntNE,
293 LLVMBuildBitCast(mask->bld->builder, mask->break_mask, reg_type, ""),
294 LLVMConstNull(reg_type), "");
295
296 endloop = lp_build_insert_new_block(mask->bld->builder, "endloop");
297
298 LLVMBuildCondBr(mask->bld->builder,
299 i1cond, mask->loop_block, endloop);
300
301 LLVMPositionBuilderAtEnd(mask->bld->builder, endloop);
302
303 mask->loop_block = mask->loop_stack[--mask->loop_stack_size];
304 /* pop the cont mask */
305 if (mask->cont_stack_size) {
306 mask->cont_mask = mask->cont_stack[--mask->cont_stack_size];
307 }
308 /* pop the break mask */
309 if (mask->break_stack_size) {
310 mask->break_mask = mask->break_stack[--mask->break_stack_size];
311 }
312
313 lp_exec_mask_update(mask);
314 }
315
316 /* stores val into an address pointed to by dst.
317 * mask->exec_mask is used to figure out which bits of val
318 * should be stored into the address
319 * (0 means don't store this bit, 1 means do store).
320 */
321 static void lp_exec_mask_store(struct lp_exec_mask *mask,
322 LLVMValueRef val,
323 LLVMValueRef dst)
324 {
325 if (mask->has_mask) {
326 LLVMValueRef real_val, dst_val;
327
328 dst_val = LLVMBuildLoad(mask->bld->builder, dst, "");
329 real_val = lp_build_select(mask->bld,
330 mask->exec_mask,
331 val, dst_val);
332
333 LLVMBuildStore(mask->bld->builder, real_val, dst);
334 } else
335 LLVMBuildStore(mask->bld->builder, val, dst);
336 }
337
338
339 static LLVMValueRef
340 emit_ddx(struct lp_build_tgsi_soa_context *bld,
341 LLVMValueRef src)
342 {
343 LLVMValueRef src_left = lp_build_swizzle1_aos(&bld->base, src, swizzle_left);
344 LLVMValueRef src_right = lp_build_swizzle1_aos(&bld->base, src, swizzle_right);
345 return lp_build_sub(&bld->base, src_right, src_left);
346 }
347
348
349 static LLVMValueRef
350 emit_ddy(struct lp_build_tgsi_soa_context *bld,
351 LLVMValueRef src)
352 {
353 LLVMValueRef src_top = lp_build_swizzle1_aos(&bld->base, src, swizzle_top);
354 LLVMValueRef src_bottom = lp_build_swizzle1_aos(&bld->base, src, swizzle_bottom);
355 return lp_build_sub(&bld->base, src_top, src_bottom);
356 }
357
358 static LLVMValueRef
359 get_temp_ptr(struct lp_build_tgsi_soa_context *bld,
360 unsigned index,
361 unsigned swizzle,
362 boolean is_indirect,
363 LLVMValueRef addr)
364 {
365 if (!bld->has_indirect_addressing) {
366 return bld->temps[index][swizzle];
367 } else {
368 LLVMValueRef lindex =
369 LLVMConstInt(LLVMInt32Type(), index*4 + swizzle, 0);
370 if (is_indirect)
371 lindex = lp_build_add(&bld->base, lindex, addr);
372 return LLVMBuildGEP(bld->base.builder, bld->temps_array, &lindex, 1, "");
373 }
374 }
375
376 /**
377 * Register fetch.
378 */
379 static LLVMValueRef
380 emit_fetch(
381 struct lp_build_tgsi_soa_context *bld,
382 const struct tgsi_full_instruction *inst,
383 unsigned index,
384 const unsigned chan_index )
385 {
386 const struct tgsi_full_src_register *reg = &inst->Src[index];
387 unsigned swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
388 LLVMValueRef res;
389 LLVMValueRef addr;
390
391 switch (swizzle) {
392 case TGSI_SWIZZLE_X:
393 case TGSI_SWIZZLE_Y:
394 case TGSI_SWIZZLE_Z:
395 case TGSI_SWIZZLE_W:
396
397 if (reg->Register.Indirect) {
398 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->base.type);
399 unsigned swizzle = tgsi_util_get_src_register_swizzle( &reg->Indirect, chan_index );
400 addr = LLVMBuildLoad(bld->base.builder,
401 bld->addr[reg->Indirect.Index][swizzle],
402 "");
403 /* for indexing we want integers */
404 addr = LLVMBuildFPToSI(bld->base.builder, addr,
405 int_vec_type, "");
406 addr = LLVMBuildExtractElement(bld->base.builder,
407 addr, LLVMConstInt(LLVMInt32Type(), 0, 0),
408 "");
409 addr = lp_build_mul(&bld->base, addr, LLVMConstInt(LLVMInt32Type(), 4, 0));
410 }
411
412 switch (reg->Register.File) {
413 case TGSI_FILE_CONSTANT: {
414 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), reg->Register.Index*4 + swizzle, 0);
415 LLVMValueRef scalar, scalar_ptr;
416
417 if (reg->Register.Indirect) {
418 /*lp_build_printf(bld->base.builder,
419 "\taddr = %d\n", addr);*/
420 index = lp_build_add(&bld->base, index, addr);
421 }
422 scalar_ptr = LLVMBuildGEP(bld->base.builder, bld->consts_ptr, &index, 1, "");
423 scalar = LLVMBuildLoad(bld->base.builder, scalar_ptr, "");
424
425 res = lp_build_broadcast_scalar(&bld->base, scalar);
426 break;
427 }
428
429 case TGSI_FILE_IMMEDIATE:
430 res = bld->immediates[reg->Register.Index][swizzle];
431 assert(res);
432 break;
433
434 case TGSI_FILE_INPUT:
435 res = bld->inputs[reg->Register.Index][swizzle];
436 assert(res);
437 break;
438
439 case TGSI_FILE_TEMPORARY: {
440 LLVMValueRef temp_ptr = get_temp_ptr(bld, reg->Register.Index,
441 swizzle,
442 reg->Register.Indirect,
443 addr);
444 res = LLVMBuildLoad(bld->base.builder, temp_ptr, "");
445 if(!res)
446 return bld->base.undef;
447 break;
448 }
449
450 default:
451 assert( 0 );
452 return bld->base.undef;
453 }
454 break;
455
456 default:
457 assert( 0 );
458 return bld->base.undef;
459 }
460
461 switch( tgsi_util_get_full_src_register_sign_mode( reg, chan_index ) ) {
462 case TGSI_UTIL_SIGN_CLEAR:
463 res = lp_build_abs( &bld->base, res );
464 break;
465
466 case TGSI_UTIL_SIGN_SET:
467 /* TODO: Use bitwese OR for floating point */
468 res = lp_build_abs( &bld->base, res );
469 res = LLVMBuildNeg( bld->base.builder, res, "" );
470 break;
471
472 case TGSI_UTIL_SIGN_TOGGLE:
473 res = LLVMBuildNeg( bld->base.builder, res, "" );
474 break;
475
476 case TGSI_UTIL_SIGN_KEEP:
477 break;
478 }
479
480 return res;
481 }
482
483
484 /**
485 * Register fetch with derivatives.
486 */
487 static void
488 emit_fetch_deriv(
489 struct lp_build_tgsi_soa_context *bld,
490 const struct tgsi_full_instruction *inst,
491 unsigned index,
492 const unsigned chan_index,
493 LLVMValueRef *res,
494 LLVMValueRef *ddx,
495 LLVMValueRef *ddy)
496 {
497 LLVMValueRef src;
498
499 src = emit_fetch(bld, inst, index, chan_index);
500
501 if(res)
502 *res = src;
503
504 /* TODO: use interpolation coeffs for inputs */
505
506 if(ddx)
507 *ddx = emit_ddx(bld, src);
508
509 if(ddy)
510 *ddy = emit_ddy(bld, src);
511 }
512
513
514 /**
515 * Register store.
516 */
517 static void
518 emit_store(
519 struct lp_build_tgsi_soa_context *bld,
520 const struct tgsi_full_instruction *inst,
521 unsigned index,
522 unsigned chan_index,
523 LLVMValueRef value)
524 {
525 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
526 LLVMValueRef addr;
527
528 switch( inst->Instruction.Saturate ) {
529 case TGSI_SAT_NONE:
530 break;
531
532 case TGSI_SAT_ZERO_ONE:
533 value = lp_build_max(&bld->base, value, bld->base.zero);
534 value = lp_build_min(&bld->base, value, bld->base.one);
535 break;
536
537 case TGSI_SAT_MINUS_PLUS_ONE:
538 value = lp_build_max(&bld->base, value, lp_build_const_vec(bld->base.type, -1.0));
539 value = lp_build_min(&bld->base, value, bld->base.one);
540 break;
541
542 default:
543 assert(0);
544 }
545
546 if (reg->Register.Indirect) {
547 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->base.type);
548 unsigned swizzle = tgsi_util_get_src_register_swizzle( &reg->Indirect, chan_index );
549 addr = LLVMBuildLoad(bld->base.builder,
550 bld->addr[reg->Indirect.Index][swizzle],
551 "");
552 /* for indexing we want integers */
553 addr = LLVMBuildFPToSI(bld->base.builder, addr,
554 int_vec_type, "");
555 addr = LLVMBuildExtractElement(bld->base.builder,
556 addr, LLVMConstInt(LLVMInt32Type(), 0, 0),
557 "");
558 addr = lp_build_mul(&bld->base, addr, LLVMConstInt(LLVMInt32Type(), 4, 0));
559 }
560
561 switch( reg->Register.File ) {
562 case TGSI_FILE_OUTPUT:
563 lp_exec_mask_store(&bld->exec_mask, value,
564 bld->outputs[reg->Register.Index][chan_index]);
565 break;
566
567 case TGSI_FILE_TEMPORARY: {
568 LLVMValueRef temp_ptr = get_temp_ptr(bld, reg->Register.Index,
569 chan_index,
570 reg->Register.Indirect,
571 addr);
572 lp_exec_mask_store(&bld->exec_mask, value, temp_ptr);
573 break;
574 }
575
576 case TGSI_FILE_ADDRESS:
577 lp_exec_mask_store(&bld->exec_mask, value,
578 bld->addr[reg->Indirect.Index][chan_index]);
579 break;
580
581 case TGSI_FILE_PREDICATE:
582 /* FIXME */
583 break;
584
585 default:
586 assert( 0 );
587 }
588 }
589
590
591 /**
592 * High-level instruction translators.
593 */
594
595
596 static void
597 emit_tex( struct lp_build_tgsi_soa_context *bld,
598 const struct tgsi_full_instruction *inst,
599 boolean apply_lodbias,
600 boolean projected,
601 LLVMValueRef *texel)
602 {
603 const uint unit = inst->Src[1].Register.Index;
604 LLVMValueRef lodbias;
605 LLVMValueRef oow = NULL;
606 LLVMValueRef coords[3];
607 unsigned num_coords;
608 unsigned i;
609
610 if (!bld->sampler) {
611 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
612 for (i = 0; i < 4; i++) {
613 texel[i] = bld->base.undef;
614 }
615 return;
616 }
617
618 switch (inst->Texture.Texture) {
619 case TGSI_TEXTURE_1D:
620 num_coords = 1;
621 break;
622 case TGSI_TEXTURE_2D:
623 case TGSI_TEXTURE_RECT:
624 num_coords = 2;
625 break;
626 case TGSI_TEXTURE_SHADOW1D:
627 case TGSI_TEXTURE_SHADOW2D:
628 case TGSI_TEXTURE_SHADOWRECT:
629 case TGSI_TEXTURE_3D:
630 case TGSI_TEXTURE_CUBE:
631 num_coords = 3;
632 break;
633 default:
634 assert(0);
635 return;
636 }
637
638 if(apply_lodbias)
639 lodbias = emit_fetch( bld, inst, 0, 3 );
640 else
641 lodbias = bld->base.zero;
642
643 if (projected) {
644 oow = emit_fetch( bld, inst, 0, 3 );
645 oow = lp_build_rcp(&bld->base, oow);
646 }
647
648 for (i = 0; i < num_coords; i++) {
649 coords[i] = emit_fetch( bld, inst, 0, i );
650 if (projected)
651 coords[i] = lp_build_mul(&bld->base, coords[i], oow);
652 }
653 for (i = num_coords; i < 3; i++) {
654 coords[i] = bld->base.undef;
655 }
656
657 bld->sampler->emit_fetch_texel(bld->sampler,
658 bld->base.builder,
659 bld->base.type,
660 unit, num_coords, coords, lodbias,
661 texel);
662 }
663
664
665 /**
666 * Kill fragment if any of the src register values are negative.
667 */
668 static void
669 emit_kil(
670 struct lp_build_tgsi_soa_context *bld,
671 const struct tgsi_full_instruction *inst )
672 {
673 const struct tgsi_full_src_register *reg = &inst->Src[0];
674 LLVMValueRef terms[NUM_CHANNELS];
675 LLVMValueRef mask;
676 unsigned chan_index;
677
678 memset(&terms, 0, sizeof terms);
679
680 FOR_EACH_CHANNEL( chan_index ) {
681 unsigned swizzle;
682
683 /* Unswizzle channel */
684 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
685
686 /* Check if the component has not been already tested. */
687 assert(swizzle < NUM_CHANNELS);
688 if( !terms[swizzle] )
689 /* TODO: change the comparison operator instead of setting the sign */
690 terms[swizzle] = emit_fetch(bld, inst, 0, chan_index );
691 }
692
693 mask = NULL;
694 FOR_EACH_CHANNEL( chan_index ) {
695 if(terms[chan_index]) {
696 LLVMValueRef chan_mask;
697
698 /*
699 * If term < 0 then mask = 0 else mask = ~0.
700 */
701 chan_mask = lp_build_cmp(&bld->base, PIPE_FUNC_GEQUAL, terms[chan_index], bld->base.zero);
702
703 if(mask)
704 mask = LLVMBuildAnd(bld->base.builder, mask, chan_mask, "");
705 else
706 mask = chan_mask;
707 }
708 }
709
710 if(mask)
711 lp_build_mask_update(bld->mask, mask);
712 }
713
714
715 /**
716 * Predicated fragment kill.
717 * XXX Actually, we do an unconditional kill (as in tgsi_exec.c).
718 * The only predication is the execution mask which will apply if
719 * we're inside a loop or conditional.
720 */
721 static void
722 emit_kilp(struct lp_build_tgsi_soa_context *bld,
723 const struct tgsi_full_instruction *inst)
724 {
725 LLVMValueRef mask;
726
727 /* For those channels which are "alive", disable fragment shader
728 * execution.
729 */
730 if (bld->exec_mask.has_mask) {
731 mask = LLVMBuildNot(bld->base.builder, bld->exec_mask.exec_mask, "kilp");
732 }
733 else {
734 mask = bld->base.zero;
735 }
736
737 lp_build_mask_update(bld->mask, mask);
738 }
739
740 static void
741 emit_declaration(
742 struct lp_build_tgsi_soa_context *bld,
743 const struct tgsi_full_declaration *decl)
744 {
745 LLVMTypeRef vec_type = lp_build_vec_type(bld->base.type);
746
747 unsigned first = decl->Range.First;
748 unsigned last = decl->Range.Last;
749 unsigned idx, i;
750
751 for (idx = first; idx <= last; ++idx) {
752 switch (decl->Declaration.File) {
753 case TGSI_FILE_TEMPORARY:
754 assert(idx < LP_MAX_TGSI_TEMPS);
755 if (bld->has_indirect_addressing) {
756 LLVMValueRef val = LLVMConstInt(LLVMInt32Type(),
757 last*4 + 4, 0);
758 bld->temps_array = lp_build_array_alloca(bld->base.builder,
759 vec_type, val, "");
760 } else {
761 for (i = 0; i < NUM_CHANNELS; i++)
762 bld->temps[idx][i] = lp_build_alloca(bld->base.builder,
763 vec_type, "");
764 }
765 break;
766
767 case TGSI_FILE_OUTPUT:
768 for (i = 0; i < NUM_CHANNELS; i++)
769 bld->outputs[idx][i] = lp_build_alloca(bld->base.builder,
770 vec_type, "");
771 break;
772
773 case TGSI_FILE_ADDRESS:
774 assert(idx < LP_MAX_TGSI_ADDRS);
775 for (i = 0; i < NUM_CHANNELS; i++)
776 bld->addr[idx][i] = lp_build_alloca(bld->base.builder,
777 vec_type, "");
778 break;
779
780 case TGSI_FILE_PREDICATE:
781 _debug_printf("warning: predicate registers not yet implemented\n");
782 break;
783
784 default:
785 /* don't need to declare other vars */
786 break;
787 }
788 }
789 }
790
791
792 /**
793 * Emit LLVM for one TGSI instruction.
794 * \param return TRUE for success, FALSE otherwise
795 */
796 static boolean
797 emit_instruction(
798 struct lp_build_tgsi_soa_context *bld,
799 const struct tgsi_full_instruction *inst,
800 const struct tgsi_opcode_info *info)
801 {
802 unsigned chan_index;
803 LLVMValueRef src0, src1, src2;
804 LLVMValueRef tmp0, tmp1, tmp2;
805 LLVMValueRef tmp3 = NULL;
806 LLVMValueRef tmp4 = NULL;
807 LLVMValueRef tmp5 = NULL;
808 LLVMValueRef tmp6 = NULL;
809 LLVMValueRef tmp7 = NULL;
810 LLVMValueRef res;
811 LLVMValueRef dst0[NUM_CHANNELS];
812
813 /*
814 * Stores and write masks are handled in a general fashion after the long
815 * instruction opcode switch statement.
816 *
817 * Although not stricitly necessary, we avoid generating instructions for
818 * channels which won't be stored, in cases where's that easy. For some
819 * complex instructions, like texture sampling, it is more convenient to
820 * assume a full writemask and then let LLVM optimization passes eliminate
821 * redundant code.
822 */
823
824 assert(info->num_dst <= 1);
825 if(info->num_dst) {
826 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
827 dst0[chan_index] = bld->base.undef;
828 }
829 }
830
831 switch (inst->Instruction.Opcode) {
832 case TGSI_OPCODE_ARL:
833 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
834 tmp0 = emit_fetch( bld, inst, 0, chan_index );
835 tmp0 = lp_build_floor(&bld->base, tmp0);
836 dst0[chan_index] = tmp0;
837 }
838 break;
839
840 case TGSI_OPCODE_MOV:
841 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
842 dst0[chan_index] = emit_fetch( bld, inst, 0, chan_index );
843 }
844 break;
845
846 case TGSI_OPCODE_LIT:
847 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ) {
848 dst0[CHAN_X] = bld->base.one;
849 }
850 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ) {
851 src0 = emit_fetch( bld, inst, 0, CHAN_X );
852 dst0[CHAN_Y] = lp_build_max( &bld->base, src0, bld->base.zero);
853 }
854 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) ) {
855 /* XMM[1] = SrcReg[0].yyyy */
856 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y );
857 /* XMM[1] = max(XMM[1], 0) */
858 tmp1 = lp_build_max( &bld->base, tmp1, bld->base.zero);
859 /* XMM[2] = SrcReg[0].wwww */
860 tmp2 = emit_fetch( bld, inst, 0, CHAN_W );
861 tmp1 = lp_build_pow( &bld->base, tmp1, tmp2);
862 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
863 tmp2 = lp_build_cmp(&bld->base, PIPE_FUNC_GREATER, tmp0, bld->base.zero);
864 dst0[CHAN_Z] = lp_build_select(&bld->base, tmp2, tmp1, bld->base.zero);
865 }
866 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_W ) ) {
867 dst0[CHAN_W] = bld->base.one;
868 }
869 break;
870
871 case TGSI_OPCODE_RCP:
872 /* TGSI_OPCODE_RECIP */
873 src0 = emit_fetch( bld, inst, 0, CHAN_X );
874 res = lp_build_rcp(&bld->base, src0);
875 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
876 dst0[chan_index] = res;
877 }
878 break;
879
880 case TGSI_OPCODE_RSQ:
881 /* TGSI_OPCODE_RECIPSQRT */
882 src0 = emit_fetch( bld, inst, 0, CHAN_X );
883 src0 = lp_build_abs(&bld->base, src0);
884 res = lp_build_rsqrt(&bld->base, src0);
885 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
886 dst0[chan_index] = res;
887 }
888 break;
889
890 case TGSI_OPCODE_EXP:
891 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ||
892 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ||
893 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z )) {
894 LLVMValueRef *p_exp2_int_part = NULL;
895 LLVMValueRef *p_frac_part = NULL;
896 LLVMValueRef *p_exp2 = NULL;
897
898 src0 = emit_fetch( bld, inst, 0, CHAN_X );
899
900 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ))
901 p_exp2_int_part = &tmp0;
902 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ))
903 p_frac_part = &tmp1;
904 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ))
905 p_exp2 = &tmp2;
906
907 lp_build_exp2_approx(&bld->base, src0, p_exp2_int_part, p_frac_part, p_exp2);
908
909 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ))
910 dst0[CHAN_X] = tmp0;
911 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ))
912 dst0[CHAN_Y] = tmp1;
913 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ))
914 dst0[CHAN_Z] = tmp2;
915 }
916 /* dst.w = 1.0 */
917 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_W )) {
918 dst0[CHAN_W] = bld->base.one;
919 }
920 break;
921
922 case TGSI_OPCODE_LOG:
923 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ||
924 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ||
925 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z )) {
926 LLVMValueRef *p_floor_log2 = NULL;
927 LLVMValueRef *p_exp = NULL;
928 LLVMValueRef *p_log2 = NULL;
929
930 src0 = emit_fetch( bld, inst, 0, CHAN_X );
931 src0 = lp_build_abs( &bld->base, src0 );
932
933 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ))
934 p_floor_log2 = &tmp0;
935 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ))
936 p_exp = &tmp1;
937 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ))
938 p_log2 = &tmp2;
939
940 lp_build_log2_approx(&bld->base, src0, p_exp, p_floor_log2, p_log2);
941
942 /* dst.x = floor(lg2(abs(src.x))) */
943 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ))
944 dst0[CHAN_X] = tmp0;
945 /* dst.y = abs(src)/ex2(floor(lg2(abs(src.x)))) */
946 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y )) {
947 dst0[CHAN_Y] = lp_build_div( &bld->base, src0, tmp1);
948 }
949 /* dst.z = lg2(abs(src.x)) */
950 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ))
951 dst0[CHAN_Z] = tmp2;
952 }
953 /* dst.w = 1.0 */
954 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_W )) {
955 dst0[CHAN_W] = bld->base.one;
956 }
957 break;
958
959 case TGSI_OPCODE_MUL:
960 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
961 src0 = emit_fetch( bld, inst, 0, chan_index );
962 src1 = emit_fetch( bld, inst, 1, chan_index );
963 dst0[chan_index] = lp_build_mul(&bld->base, src0, src1);
964 }
965 break;
966
967 case TGSI_OPCODE_ADD:
968 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
969 src0 = emit_fetch( bld, inst, 0, chan_index );
970 src1 = emit_fetch( bld, inst, 1, chan_index );
971 dst0[chan_index] = lp_build_add(&bld->base, src0, src1);
972 }
973 break;
974
975 case TGSI_OPCODE_DP3:
976 /* TGSI_OPCODE_DOT3 */
977 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
978 tmp1 = emit_fetch( bld, inst, 1, CHAN_X );
979 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1);
980 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y );
981 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y );
982 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
983 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
984 tmp1 = emit_fetch( bld, inst, 0, CHAN_Z );
985 tmp2 = emit_fetch( bld, inst, 1, CHAN_Z );
986 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
987 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
988 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
989 dst0[chan_index] = tmp0;
990 }
991 break;
992
993 case TGSI_OPCODE_DP4:
994 /* TGSI_OPCODE_DOT4 */
995 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
996 tmp1 = emit_fetch( bld, inst, 1, CHAN_X );
997 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1);
998 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y );
999 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y );
1000 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1001 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1002 tmp1 = emit_fetch( bld, inst, 0, CHAN_Z );
1003 tmp2 = emit_fetch( bld, inst, 1, CHAN_Z );
1004 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1005 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1006 tmp1 = emit_fetch( bld, inst, 0, CHAN_W );
1007 tmp2 = emit_fetch( bld, inst, 1, CHAN_W );
1008 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1009 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1010 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1011 dst0[chan_index] = tmp0;
1012 }
1013 break;
1014
1015 case TGSI_OPCODE_DST:
1016 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) {
1017 dst0[CHAN_X] = bld->base.one;
1018 }
1019 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) {
1020 tmp0 = emit_fetch( bld, inst, 0, CHAN_Y );
1021 tmp1 = emit_fetch( bld, inst, 1, CHAN_Y );
1022 dst0[CHAN_Y] = lp_build_mul( &bld->base, tmp0, tmp1);
1023 }
1024 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) {
1025 dst0[CHAN_Z] = emit_fetch( bld, inst, 0, CHAN_Z );
1026 }
1027 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_W ) {
1028 dst0[CHAN_W] = emit_fetch( bld, inst, 1, CHAN_W );
1029 }
1030 break;
1031
1032 case TGSI_OPCODE_MIN:
1033 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1034 src0 = emit_fetch( bld, inst, 0, chan_index );
1035 src1 = emit_fetch( bld, inst, 1, chan_index );
1036 dst0[chan_index] = lp_build_min( &bld->base, src0, src1 );
1037 }
1038 break;
1039
1040 case TGSI_OPCODE_MAX:
1041 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1042 src0 = emit_fetch( bld, inst, 0, chan_index );
1043 src1 = emit_fetch( bld, inst, 1, chan_index );
1044 dst0[chan_index] = lp_build_max( &bld->base, src0, src1 );
1045 }
1046 break;
1047
1048 case TGSI_OPCODE_SLT:
1049 /* TGSI_OPCODE_SETLT */
1050 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1051 src0 = emit_fetch( bld, inst, 0, chan_index );
1052 src1 = emit_fetch( bld, inst, 1, chan_index );
1053 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_LESS, src0, src1 );
1054 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1055 }
1056 break;
1057
1058 case TGSI_OPCODE_SGE:
1059 /* TGSI_OPCODE_SETGE */
1060 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1061 src0 = emit_fetch( bld, inst, 0, chan_index );
1062 src1 = emit_fetch( bld, inst, 1, chan_index );
1063 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_GEQUAL, src0, src1 );
1064 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1065 }
1066 break;
1067
1068 case TGSI_OPCODE_MAD:
1069 /* TGSI_OPCODE_MADD */
1070 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1071 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1072 tmp1 = emit_fetch( bld, inst, 1, chan_index );
1073 tmp2 = emit_fetch( bld, inst, 2, chan_index );
1074 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1);
1075 tmp0 = lp_build_add( &bld->base, tmp0, tmp2);
1076 dst0[chan_index] = tmp0;
1077 }
1078 break;
1079
1080 case TGSI_OPCODE_SUB:
1081 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1082 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1083 tmp1 = emit_fetch( bld, inst, 1, chan_index );
1084 dst0[chan_index] = lp_build_sub( &bld->base, tmp0, tmp1);
1085 }
1086 break;
1087
1088 case TGSI_OPCODE_LRP:
1089 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1090 src0 = emit_fetch( bld, inst, 0, chan_index );
1091 src1 = emit_fetch( bld, inst, 1, chan_index );
1092 src2 = emit_fetch( bld, inst, 2, chan_index );
1093 tmp0 = lp_build_sub( &bld->base, src1, src2 );
1094 tmp0 = lp_build_mul( &bld->base, src0, tmp0 );
1095 dst0[chan_index] = lp_build_add( &bld->base, tmp0, src2 );
1096 }
1097 break;
1098
1099 case TGSI_OPCODE_CND:
1100 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1101 src0 = emit_fetch( bld, inst, 0, chan_index );
1102 src1 = emit_fetch( bld, inst, 1, chan_index );
1103 src2 = emit_fetch( bld, inst, 2, chan_index );
1104 tmp1 = lp_build_const_vec(bld->base.type, 0.5);
1105 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_GREATER, src2, tmp1);
1106 dst0[chan_index] = lp_build_select( &bld->base, tmp0, src0, src1 );
1107 }
1108 break;
1109
1110 case TGSI_OPCODE_DP2A:
1111 tmp0 = emit_fetch( bld, inst, 0, CHAN_X ); /* xmm0 = src[0].x */
1112 tmp1 = emit_fetch( bld, inst, 1, CHAN_X ); /* xmm1 = src[1].x */
1113 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 * xmm1 */
1114 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y ); /* xmm1 = src[0].y */
1115 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y ); /* xmm2 = src[1].y */
1116 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2); /* xmm1 = xmm1 * xmm2 */
1117 tmp0 = lp_build_add( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 + xmm1 */
1118 tmp1 = emit_fetch( bld, inst, 2, CHAN_X ); /* xmm1 = src[2].x */
1119 tmp0 = lp_build_add( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 + xmm1 */
1120 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1121 dst0[chan_index] = tmp0; /* dest[ch] = xmm0 */
1122 }
1123 break;
1124
1125 case TGSI_OPCODE_FRC:
1126 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1127 src0 = emit_fetch( bld, inst, 0, chan_index );
1128 tmp0 = lp_build_floor(&bld->base, src0);
1129 tmp0 = lp_build_sub(&bld->base, src0, tmp0);
1130 dst0[chan_index] = tmp0;
1131 }
1132 break;
1133
1134 case TGSI_OPCODE_CLAMP:
1135 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1136 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1137 src1 = emit_fetch( bld, inst, 1, chan_index );
1138 src2 = emit_fetch( bld, inst, 2, chan_index );
1139 tmp0 = lp_build_max(&bld->base, tmp0, src1);
1140 tmp0 = lp_build_min(&bld->base, tmp0, src2);
1141 dst0[chan_index] = tmp0;
1142 }
1143 break;
1144
1145 case TGSI_OPCODE_FLR:
1146 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1147 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1148 dst0[chan_index] = lp_build_floor(&bld->base, tmp0);
1149 }
1150 break;
1151
1152 case TGSI_OPCODE_ROUND:
1153 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1154 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1155 dst0[chan_index] = lp_build_round(&bld->base, tmp0);
1156 }
1157 break;
1158
1159 case TGSI_OPCODE_EX2: {
1160 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1161 tmp0 = lp_build_exp2( &bld->base, tmp0);
1162 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1163 dst0[chan_index] = tmp0;
1164 }
1165 break;
1166 }
1167
1168 case TGSI_OPCODE_LG2:
1169 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1170 tmp0 = lp_build_log2( &bld->base, tmp0);
1171 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1172 dst0[chan_index] = tmp0;
1173 }
1174 break;
1175
1176 case TGSI_OPCODE_POW:
1177 src0 = emit_fetch( bld, inst, 0, CHAN_X );
1178 src1 = emit_fetch( bld, inst, 1, CHAN_X );
1179 res = lp_build_pow( &bld->base, src0, src1 );
1180 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1181 dst0[chan_index] = res;
1182 }
1183 break;
1184
1185 case TGSI_OPCODE_XPD:
1186 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ||
1187 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ) {
1188 tmp1 = emit_fetch( bld, inst, 1, CHAN_Z );
1189 tmp3 = emit_fetch( bld, inst, 0, CHAN_Z );
1190 }
1191 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ||
1192 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) ) {
1193 tmp0 = emit_fetch( bld, inst, 0, CHAN_Y );
1194 tmp4 = emit_fetch( bld, inst, 1, CHAN_Y );
1195 }
1196 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) {
1197 tmp2 = tmp0;
1198 tmp2 = lp_build_mul( &bld->base, tmp2, tmp1);
1199 tmp5 = tmp3;
1200 tmp5 = lp_build_mul( &bld->base, tmp5, tmp4);
1201 tmp2 = lp_build_sub( &bld->base, tmp2, tmp5);
1202 dst0[CHAN_X] = tmp2;
1203 }
1204 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ||
1205 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) ) {
1206 tmp2 = emit_fetch( bld, inst, 1, CHAN_X );
1207 tmp5 = emit_fetch( bld, inst, 0, CHAN_X );
1208 }
1209 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) {
1210 tmp3 = lp_build_mul( &bld->base, tmp3, tmp2);
1211 tmp1 = lp_build_mul( &bld->base, tmp1, tmp5);
1212 tmp3 = lp_build_sub( &bld->base, tmp3, tmp1);
1213 dst0[CHAN_Y] = tmp3;
1214 }
1215 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) {
1216 tmp5 = lp_build_mul( &bld->base, tmp5, tmp4);
1217 tmp0 = lp_build_mul( &bld->base, tmp0, tmp2);
1218 tmp5 = lp_build_sub( &bld->base, tmp5, tmp0);
1219 dst0[CHAN_Z] = tmp5;
1220 }
1221 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_W ) {
1222 dst0[CHAN_W] = bld->base.one;
1223 }
1224 break;
1225
1226 case TGSI_OPCODE_ABS:
1227 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1228 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1229 dst0[chan_index] = lp_build_abs( &bld->base, tmp0 );
1230 }
1231 break;
1232
1233 case TGSI_OPCODE_RCC:
1234 /* deprecated? */
1235 assert(0);
1236 return FALSE;
1237
1238 case TGSI_OPCODE_DPH:
1239 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1240 tmp1 = emit_fetch( bld, inst, 1, CHAN_X );
1241 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1);
1242 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y );
1243 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y );
1244 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1245 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1246 tmp1 = emit_fetch( bld, inst, 0, CHAN_Z );
1247 tmp2 = emit_fetch( bld, inst, 1, CHAN_Z );
1248 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1249 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1250 tmp1 = emit_fetch( bld, inst, 1, CHAN_W );
1251 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1252 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1253 dst0[chan_index] = tmp0;
1254 }
1255 break;
1256
1257 case TGSI_OPCODE_COS:
1258 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1259 tmp0 = lp_build_cos( &bld->base, tmp0 );
1260 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1261 dst0[chan_index] = tmp0;
1262 }
1263 break;
1264
1265 case TGSI_OPCODE_DDX:
1266 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1267 emit_fetch_deriv( bld, inst, 0, chan_index, NULL, &dst0[chan_index], NULL);
1268 }
1269 break;
1270
1271 case TGSI_OPCODE_DDY:
1272 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1273 emit_fetch_deriv( bld, inst, 0, chan_index, NULL, NULL, &dst0[chan_index]);
1274 }
1275 break;
1276
1277 case TGSI_OPCODE_KILP:
1278 /* predicated kill */
1279 emit_kilp( bld, inst );
1280 break;
1281
1282 case TGSI_OPCODE_KIL:
1283 /* conditional kill */
1284 emit_kil( bld, inst );
1285 break;
1286
1287 case TGSI_OPCODE_PK2H:
1288 return FALSE;
1289 break;
1290
1291 case TGSI_OPCODE_PK2US:
1292 return FALSE;
1293 break;
1294
1295 case TGSI_OPCODE_PK4B:
1296 return FALSE;
1297 break;
1298
1299 case TGSI_OPCODE_PK4UB:
1300 return FALSE;
1301 break;
1302
1303 case TGSI_OPCODE_RFL:
1304 return FALSE;
1305 break;
1306
1307 case TGSI_OPCODE_SEQ:
1308 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1309 src0 = emit_fetch( bld, inst, 0, chan_index );
1310 src1 = emit_fetch( bld, inst, 1, chan_index );
1311 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_EQUAL, src0, src1 );
1312 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1313 }
1314 break;
1315
1316 case TGSI_OPCODE_SFL:
1317 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1318 dst0[chan_index] = bld->base.zero;
1319 }
1320 break;
1321
1322 case TGSI_OPCODE_SGT:
1323 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1324 src0 = emit_fetch( bld, inst, 0, chan_index );
1325 src1 = emit_fetch( bld, inst, 1, chan_index );
1326 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_GREATER, src0, src1 );
1327 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1328 }
1329 break;
1330
1331 case TGSI_OPCODE_SIN:
1332 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1333 tmp0 = lp_build_sin( &bld->base, tmp0 );
1334 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1335 dst0[chan_index] = tmp0;
1336 }
1337 break;
1338
1339 case TGSI_OPCODE_SLE:
1340 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1341 src0 = emit_fetch( bld, inst, 0, chan_index );
1342 src1 = emit_fetch( bld, inst, 1, chan_index );
1343 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_LEQUAL, src0, src1 );
1344 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1345 }
1346 break;
1347
1348 case TGSI_OPCODE_SNE:
1349 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1350 src0 = emit_fetch( bld, inst, 0, chan_index );
1351 src1 = emit_fetch( bld, inst, 1, chan_index );
1352 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_NOTEQUAL, src0, src1 );
1353 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1354 }
1355 break;
1356
1357 case TGSI_OPCODE_STR:
1358 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1359 dst0[chan_index] = bld->base.one;
1360 }
1361 break;
1362
1363 case TGSI_OPCODE_TEX:
1364 emit_tex( bld, inst, FALSE, FALSE, dst0 );
1365 break;
1366
1367 case TGSI_OPCODE_TXD:
1368 /* FIXME */
1369 return FALSE;
1370 break;
1371
1372 case TGSI_OPCODE_UP2H:
1373 /* deprecated */
1374 assert (0);
1375 return FALSE;
1376 break;
1377
1378 case TGSI_OPCODE_UP2US:
1379 /* deprecated */
1380 assert(0);
1381 return FALSE;
1382 break;
1383
1384 case TGSI_OPCODE_UP4B:
1385 /* deprecated */
1386 assert(0);
1387 return FALSE;
1388 break;
1389
1390 case TGSI_OPCODE_UP4UB:
1391 /* deprecated */
1392 assert(0);
1393 return FALSE;
1394 break;
1395
1396 case TGSI_OPCODE_X2D:
1397 /* deprecated? */
1398 assert(0);
1399 return FALSE;
1400 break;
1401
1402 case TGSI_OPCODE_ARA:
1403 /* deprecated */
1404 assert(0);
1405 return FALSE;
1406 break;
1407
1408 case TGSI_OPCODE_ARR:
1409 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1410 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1411 tmp0 = lp_build_round(&bld->base, tmp0);
1412 dst0[chan_index] = tmp0;
1413 }
1414 break;
1415
1416 case TGSI_OPCODE_BRA:
1417 /* deprecated */
1418 assert(0);
1419 return FALSE;
1420 break;
1421
1422 case TGSI_OPCODE_CAL:
1423 /* FIXME */
1424 return FALSE;
1425 break;
1426
1427 case TGSI_OPCODE_RET:
1428 /* FIXME */
1429 return FALSE;
1430 break;
1431
1432 case TGSI_OPCODE_END:
1433 break;
1434
1435 case TGSI_OPCODE_SSG:
1436 /* TGSI_OPCODE_SGN */
1437 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1438 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1439 dst0[chan_index] = lp_build_sgn( &bld->base, tmp0 );
1440 }
1441 break;
1442
1443 case TGSI_OPCODE_CMP:
1444 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1445 src0 = emit_fetch( bld, inst, 0, chan_index );
1446 src1 = emit_fetch( bld, inst, 1, chan_index );
1447 src2 = emit_fetch( bld, inst, 2, chan_index );
1448 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_LESS, src0, bld->base.zero );
1449 dst0[chan_index] = lp_build_select( &bld->base, tmp0, src1, src2);
1450 }
1451 break;
1452
1453 case TGSI_OPCODE_SCS:
1454 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) {
1455 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1456 dst0[CHAN_X] = lp_build_cos( &bld->base, tmp0 );
1457 }
1458 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) {
1459 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1460 dst0[CHAN_Y] = lp_build_sin( &bld->base, tmp0 );
1461 }
1462 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) {
1463 dst0[CHAN_Z] = bld->base.zero;
1464 }
1465 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_W ) {
1466 dst0[CHAN_W] = bld->base.one;
1467 }
1468 break;
1469
1470 case TGSI_OPCODE_TXB:
1471 emit_tex( bld, inst, TRUE, FALSE, dst0 );
1472 break;
1473
1474 case TGSI_OPCODE_NRM:
1475 /* fall-through */
1476 case TGSI_OPCODE_NRM4:
1477 /* 3 or 4-component normalization */
1478 {
1479 uint dims = (inst->Instruction.Opcode == TGSI_OPCODE_NRM) ? 3 : 4;
1480
1481 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_X) ||
1482 IS_DST0_CHANNEL_ENABLED(inst, CHAN_Y) ||
1483 IS_DST0_CHANNEL_ENABLED(inst, CHAN_Z) ||
1484 (IS_DST0_CHANNEL_ENABLED(inst, CHAN_W) && dims == 4)) {
1485
1486 /* NOTE: Cannot use xmm regs 2/3 here (see emit_rsqrt() above). */
1487
1488 /* xmm4 = src.x */
1489 /* xmm0 = src.x * src.x */
1490 tmp0 = emit_fetch(bld, inst, 0, CHAN_X);
1491 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_X)) {
1492 tmp4 = tmp0;
1493 }
1494 tmp0 = lp_build_mul( &bld->base, tmp0, tmp0);
1495
1496 /* xmm5 = src.y */
1497 /* xmm0 = xmm0 + src.y * src.y */
1498 tmp1 = emit_fetch(bld, inst, 0, CHAN_Y);
1499 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_Y)) {
1500 tmp5 = tmp1;
1501 }
1502 tmp1 = lp_build_mul( &bld->base, tmp1, tmp1);
1503 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1504
1505 /* xmm6 = src.z */
1506 /* xmm0 = xmm0 + src.z * src.z */
1507 tmp1 = emit_fetch(bld, inst, 0, CHAN_Z);
1508 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_Z)) {
1509 tmp6 = tmp1;
1510 }
1511 tmp1 = lp_build_mul( &bld->base, tmp1, tmp1);
1512 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1513
1514 if (dims == 4) {
1515 /* xmm7 = src.w */
1516 /* xmm0 = xmm0 + src.w * src.w */
1517 tmp1 = emit_fetch(bld, inst, 0, CHAN_W);
1518 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_W)) {
1519 tmp7 = tmp1;
1520 }
1521 tmp1 = lp_build_mul( &bld->base, tmp1, tmp1);
1522 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1523 }
1524
1525 /* xmm1 = 1 / sqrt(xmm0) */
1526 tmp1 = lp_build_rsqrt( &bld->base, tmp0);
1527
1528 /* dst.x = xmm1 * src.x */
1529 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_X)) {
1530 dst0[CHAN_X] = lp_build_mul( &bld->base, tmp4, tmp1);
1531 }
1532
1533 /* dst.y = xmm1 * src.y */
1534 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_Y)) {
1535 dst0[CHAN_Y] = lp_build_mul( &bld->base, tmp5, tmp1);
1536 }
1537
1538 /* dst.z = xmm1 * src.z */
1539 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_Z)) {
1540 dst0[CHAN_Z] = lp_build_mul( &bld->base, tmp6, tmp1);
1541 }
1542
1543 /* dst.w = xmm1 * src.w */
1544 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_X) && dims == 4) {
1545 dst0[CHAN_W] = lp_build_mul( &bld->base, tmp7, tmp1);
1546 }
1547 }
1548
1549 /* dst.w = 1.0 */
1550 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_W) && dims == 3) {
1551 dst0[CHAN_W] = bld->base.one;
1552 }
1553 }
1554 break;
1555
1556 case TGSI_OPCODE_DIV:
1557 /* deprecated */
1558 assert( 0 );
1559 return FALSE;
1560 break;
1561
1562 case TGSI_OPCODE_DP2:
1563 tmp0 = emit_fetch( bld, inst, 0, CHAN_X ); /* xmm0 = src[0].x */
1564 tmp1 = emit_fetch( bld, inst, 1, CHAN_X ); /* xmm1 = src[1].x */
1565 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 * xmm1 */
1566 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y ); /* xmm1 = src[0].y */
1567 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y ); /* xmm2 = src[1].y */
1568 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2); /* xmm1 = xmm1 * xmm2 */
1569 tmp0 = lp_build_add( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 + xmm1 */
1570 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1571 dst0[chan_index] = tmp0; /* dest[ch] = xmm0 */
1572 }
1573 break;
1574
1575 case TGSI_OPCODE_TXL:
1576 emit_tex( bld, inst, TRUE, FALSE, dst0 );
1577 break;
1578
1579 case TGSI_OPCODE_TXP:
1580 emit_tex( bld, inst, FALSE, TRUE, dst0 );
1581 break;
1582
1583 case TGSI_OPCODE_BRK:
1584 lp_exec_break(&bld->exec_mask);
1585 break;
1586
1587 case TGSI_OPCODE_IF:
1588 tmp0 = emit_fetch(bld, inst, 0, CHAN_X);
1589 tmp0 = lp_build_cmp(&bld->base, PIPE_FUNC_NOTEQUAL,
1590 tmp0, bld->base.zero);
1591 lp_exec_mask_cond_push(&bld->exec_mask, tmp0);
1592 break;
1593
1594 case TGSI_OPCODE_BGNLOOP:
1595 lp_exec_bgnloop(&bld->exec_mask);
1596 break;
1597
1598 case TGSI_OPCODE_ELSE:
1599 lp_exec_mask_cond_invert(&bld->exec_mask);
1600 break;
1601
1602 case TGSI_OPCODE_ENDIF:
1603 lp_exec_mask_cond_pop(&bld->exec_mask);
1604 break;
1605
1606 case TGSI_OPCODE_ENDLOOP:
1607 lp_exec_endloop(&bld->exec_mask);
1608 break;
1609
1610 case TGSI_OPCODE_PUSHA:
1611 /* deprecated? */
1612 assert(0);
1613 return FALSE;
1614 break;
1615
1616 case TGSI_OPCODE_POPA:
1617 /* deprecated? */
1618 assert(0);
1619 return FALSE;
1620 break;
1621
1622 case TGSI_OPCODE_CEIL:
1623 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1624 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1625 dst0[chan_index] = lp_build_ceil(&bld->base, tmp0);
1626 }
1627 break;
1628
1629 case TGSI_OPCODE_I2F:
1630 /* deprecated? */
1631 assert(0);
1632 return FALSE;
1633 break;
1634
1635 case TGSI_OPCODE_NOT:
1636 /* deprecated? */
1637 assert(0);
1638 return FALSE;
1639 break;
1640
1641 case TGSI_OPCODE_TRUNC:
1642 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1643 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1644 dst0[chan_index] = lp_build_trunc(&bld->base, tmp0);
1645 }
1646 break;
1647
1648 case TGSI_OPCODE_SHL:
1649 /* deprecated? */
1650 assert(0);
1651 return FALSE;
1652 break;
1653
1654 case TGSI_OPCODE_ISHR:
1655 /* deprecated? */
1656 assert(0);
1657 return FALSE;
1658 break;
1659
1660 case TGSI_OPCODE_AND:
1661 /* deprecated? */
1662 assert(0);
1663 return FALSE;
1664 break;
1665
1666 case TGSI_OPCODE_OR:
1667 /* deprecated? */
1668 assert(0);
1669 return FALSE;
1670 break;
1671
1672 case TGSI_OPCODE_MOD:
1673 /* deprecated? */
1674 assert(0);
1675 return FALSE;
1676 break;
1677
1678 case TGSI_OPCODE_XOR:
1679 /* deprecated? */
1680 assert(0);
1681 return FALSE;
1682 break;
1683
1684 case TGSI_OPCODE_SAD:
1685 /* deprecated? */
1686 assert(0);
1687 return FALSE;
1688 break;
1689
1690 case TGSI_OPCODE_TXF:
1691 /* deprecated? */
1692 assert(0);
1693 return FALSE;
1694 break;
1695
1696 case TGSI_OPCODE_TXQ:
1697 /* deprecated? */
1698 assert(0);
1699 return FALSE;
1700 break;
1701
1702 case TGSI_OPCODE_CONT:
1703 lp_exec_continue(&bld->exec_mask);
1704 break;
1705
1706 case TGSI_OPCODE_EMIT:
1707 return FALSE;
1708 break;
1709
1710 case TGSI_OPCODE_ENDPRIM:
1711 return FALSE;
1712 break;
1713
1714 case TGSI_OPCODE_NOP:
1715 break;
1716
1717 default:
1718 return FALSE;
1719 }
1720
1721 if(info->num_dst) {
1722 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1723 emit_store( bld, inst, 0, chan_index, dst0[chan_index]);
1724 }
1725 }
1726
1727 return TRUE;
1728 }
1729
1730
1731 void
1732 lp_build_tgsi_soa(LLVMBuilderRef builder,
1733 const struct tgsi_token *tokens,
1734 struct lp_type type,
1735 struct lp_build_mask_context *mask,
1736 LLVMValueRef consts_ptr,
1737 const LLVMValueRef *pos,
1738 const LLVMValueRef (*inputs)[NUM_CHANNELS],
1739 LLVMValueRef (*outputs)[NUM_CHANNELS],
1740 struct lp_build_sampler_soa *sampler,
1741 struct tgsi_shader_info *info)
1742 {
1743 struct lp_build_tgsi_soa_context bld;
1744 struct tgsi_parse_context parse;
1745 uint num_immediates = 0;
1746 unsigned i;
1747
1748 /* Setup build context */
1749 memset(&bld, 0, sizeof bld);
1750 lp_build_context_init(&bld.base, builder, type);
1751 bld.mask = mask;
1752 bld.pos = pos;
1753 bld.inputs = inputs;
1754 bld.outputs = outputs;
1755 bld.consts_ptr = consts_ptr;
1756 bld.sampler = sampler;
1757 bld.has_indirect_addressing = info->opcode_count[TGSI_OPCODE_ARR] > 0 ||
1758 info->opcode_count[TGSI_OPCODE_ARL] > 0;
1759
1760 lp_exec_mask_init(&bld.exec_mask, &bld.base);
1761
1762 tgsi_parse_init( &parse, tokens );
1763
1764 while( !tgsi_parse_end_of_tokens( &parse ) ) {
1765 tgsi_parse_token( &parse );
1766
1767 switch( parse.FullToken.Token.Type ) {
1768 case TGSI_TOKEN_TYPE_DECLARATION:
1769 /* Inputs already interpolated */
1770 emit_declaration( &bld, &parse.FullToken.FullDeclaration );
1771 break;
1772
1773 case TGSI_TOKEN_TYPE_INSTRUCTION:
1774 {
1775 unsigned opcode = parse.FullToken.FullInstruction.Instruction.Opcode;
1776 const struct tgsi_opcode_info *opcode_info = tgsi_get_opcode_info(opcode);
1777 if (!emit_instruction( &bld, &parse.FullToken.FullInstruction, opcode_info ))
1778 _debug_printf("warning: failed to translate tgsi opcode %s to LLVM\n",
1779 opcode_info->mnemonic);
1780 }
1781
1782 break;
1783
1784 case TGSI_TOKEN_TYPE_IMMEDIATE:
1785 /* simply copy the immediate values into the next immediates[] slot */
1786 {
1787 const uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
1788 assert(size <= 4);
1789 assert(num_immediates < LP_MAX_TGSI_IMMEDIATES);
1790 for( i = 0; i < size; ++i )
1791 bld.immediates[num_immediates][i] =
1792 lp_build_const_vec(type, parse.FullToken.FullImmediate.u[i].Float);
1793 for( i = size; i < 4; ++i )
1794 bld.immediates[num_immediates][i] = bld.base.undef;
1795 num_immediates++;
1796 }
1797 break;
1798
1799 case TGSI_TOKEN_TYPE_PROPERTY:
1800 break;
1801
1802 default:
1803 assert( 0 );
1804 }
1805 }
1806 if (0) {
1807 LLVMBasicBlockRef block = LLVMGetInsertBlock(builder);
1808 LLVMValueRef function = LLVMGetBasicBlockParent(block);
1809 debug_printf("11111111111111111111111111111 \n");
1810 tgsi_dump(tokens, 0);
1811 LLVMDumpValue(function);
1812 debug_printf("2222222222222222222222222222 \n");
1813 }
1814 tgsi_parse_free( &parse );
1815 }
1816