gallium/tgsi_exec: Fix up NumOutputs counting
[mesa.git] / src / gallium / auxiliary / tgsi / tgsi_exec.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009-2010 VMware, Inc. All rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * TGSI interpreter/executor.
31 *
32 * Flow control information:
33 *
34 * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
35 * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
36 * care since a condition may be true for some quad components but false
37 * for other components.
38 *
39 * We basically execute all statements (even if they're in the part of
40 * an IF/ELSE clause that's "not taken") and use a special mask to
41 * control writing to destination registers. This is the ExecMask.
42 * See store_dest().
43 *
44 * The ExecMask is computed from three other masks (CondMask, LoopMask and
45 * ContMask) which are controlled by the flow control instructions (namely:
46 * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
47 *
48 *
49 * Authors:
50 * Michal Krol
51 * Brian Paul
52 */
53
54 #include "pipe/p_compiler.h"
55 #include "pipe/p_state.h"
56 #include "pipe/p_shader_tokens.h"
57 #include "tgsi/tgsi_dump.h"
58 #include "tgsi/tgsi_parse.h"
59 #include "tgsi/tgsi_util.h"
60 #include "tgsi_exec.h"
61 #include "util/u_half.h"
62 #include "util/u_memory.h"
63 #include "util/u_math.h"
64 #include "util/rounding.h"
65
66
67 #define DEBUG_EXECUTION 0
68
69
70 #define FAST_MATH 0
71
72 #define TILE_TOP_LEFT 0
73 #define TILE_TOP_RIGHT 1
74 #define TILE_BOTTOM_LEFT 2
75 #define TILE_BOTTOM_RIGHT 3
76
77 union tgsi_double_channel {
78 double d[TGSI_QUAD_SIZE];
79 unsigned u[TGSI_QUAD_SIZE][2];
80 uint64_t u64[TGSI_QUAD_SIZE];
81 int64_t i64[TGSI_QUAD_SIZE];
82 };
83
84 struct tgsi_double_vector {
85 union tgsi_double_channel xy;
86 union tgsi_double_channel zw;
87 };
88
89 static void
90 micro_abs(union tgsi_exec_channel *dst,
91 const union tgsi_exec_channel *src)
92 {
93 dst->f[0] = fabsf(src->f[0]);
94 dst->f[1] = fabsf(src->f[1]);
95 dst->f[2] = fabsf(src->f[2]);
96 dst->f[3] = fabsf(src->f[3]);
97 }
98
99 static void
100 micro_arl(union tgsi_exec_channel *dst,
101 const union tgsi_exec_channel *src)
102 {
103 dst->i[0] = (int)floorf(src->f[0]);
104 dst->i[1] = (int)floorf(src->f[1]);
105 dst->i[2] = (int)floorf(src->f[2]);
106 dst->i[3] = (int)floorf(src->f[3]);
107 }
108
109 static void
110 micro_arr(union tgsi_exec_channel *dst,
111 const union tgsi_exec_channel *src)
112 {
113 dst->i[0] = (int)floorf(src->f[0] + 0.5f);
114 dst->i[1] = (int)floorf(src->f[1] + 0.5f);
115 dst->i[2] = (int)floorf(src->f[2] + 0.5f);
116 dst->i[3] = (int)floorf(src->f[3] + 0.5f);
117 }
118
119 static void
120 micro_ceil(union tgsi_exec_channel *dst,
121 const union tgsi_exec_channel *src)
122 {
123 dst->f[0] = ceilf(src->f[0]);
124 dst->f[1] = ceilf(src->f[1]);
125 dst->f[2] = ceilf(src->f[2]);
126 dst->f[3] = ceilf(src->f[3]);
127 }
128
129 static void
130 micro_cmp(union tgsi_exec_channel *dst,
131 const union tgsi_exec_channel *src0,
132 const union tgsi_exec_channel *src1,
133 const union tgsi_exec_channel *src2)
134 {
135 dst->f[0] = src0->f[0] < 0.0f ? src1->f[0] : src2->f[0];
136 dst->f[1] = src0->f[1] < 0.0f ? src1->f[1] : src2->f[1];
137 dst->f[2] = src0->f[2] < 0.0f ? src1->f[2] : src2->f[2];
138 dst->f[3] = src0->f[3] < 0.0f ? src1->f[3] : src2->f[3];
139 }
140
141 static void
142 micro_cos(union tgsi_exec_channel *dst,
143 const union tgsi_exec_channel *src)
144 {
145 dst->f[0] = cosf(src->f[0]);
146 dst->f[1] = cosf(src->f[1]);
147 dst->f[2] = cosf(src->f[2]);
148 dst->f[3] = cosf(src->f[3]);
149 }
150
151 static void
152 micro_d2f(union tgsi_exec_channel *dst,
153 const union tgsi_double_channel *src)
154 {
155 dst->f[0] = (float)src->d[0];
156 dst->f[1] = (float)src->d[1];
157 dst->f[2] = (float)src->d[2];
158 dst->f[3] = (float)src->d[3];
159 }
160
161 static void
162 micro_d2i(union tgsi_exec_channel *dst,
163 const union tgsi_double_channel *src)
164 {
165 dst->i[0] = (int)src->d[0];
166 dst->i[1] = (int)src->d[1];
167 dst->i[2] = (int)src->d[2];
168 dst->i[3] = (int)src->d[3];
169 }
170
171 static void
172 micro_d2u(union tgsi_exec_channel *dst,
173 const union tgsi_double_channel *src)
174 {
175 dst->u[0] = (unsigned)src->d[0];
176 dst->u[1] = (unsigned)src->d[1];
177 dst->u[2] = (unsigned)src->d[2];
178 dst->u[3] = (unsigned)src->d[3];
179 }
180 static void
181 micro_dabs(union tgsi_double_channel *dst,
182 const union tgsi_double_channel *src)
183 {
184 dst->d[0] = src->d[0] >= 0.0 ? src->d[0] : -src->d[0];
185 dst->d[1] = src->d[1] >= 0.0 ? src->d[1] : -src->d[1];
186 dst->d[2] = src->d[2] >= 0.0 ? src->d[2] : -src->d[2];
187 dst->d[3] = src->d[3] >= 0.0 ? src->d[3] : -src->d[3];
188 }
189
190 static void
191 micro_dadd(union tgsi_double_channel *dst,
192 const union tgsi_double_channel *src)
193 {
194 dst->d[0] = src[0].d[0] + src[1].d[0];
195 dst->d[1] = src[0].d[1] + src[1].d[1];
196 dst->d[2] = src[0].d[2] + src[1].d[2];
197 dst->d[3] = src[0].d[3] + src[1].d[3];
198 }
199
200 static void
201 micro_ddiv(union tgsi_double_channel *dst,
202 const union tgsi_double_channel *src)
203 {
204 dst->d[0] = src[0].d[0] / src[1].d[0];
205 dst->d[1] = src[0].d[1] / src[1].d[1];
206 dst->d[2] = src[0].d[2] / src[1].d[2];
207 dst->d[3] = src[0].d[3] / src[1].d[3];
208 }
209
210 static void
211 micro_ddx(union tgsi_exec_channel *dst,
212 const union tgsi_exec_channel *src)
213 {
214 dst->f[0] =
215 dst->f[1] =
216 dst->f[2] =
217 dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
218 }
219
220 static void
221 micro_ddx_fine(union tgsi_exec_channel *dst,
222 const union tgsi_exec_channel *src)
223 {
224 dst->f[0] =
225 dst->f[1] = src->f[TILE_TOP_RIGHT] - src->f[TILE_TOP_LEFT];
226 dst->f[2] =
227 dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
228 }
229
230
231 static void
232 micro_ddy(union tgsi_exec_channel *dst,
233 const union tgsi_exec_channel *src)
234 {
235 dst->f[0] =
236 dst->f[1] =
237 dst->f[2] =
238 dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
239 }
240
241 static void
242 micro_ddy_fine(union tgsi_exec_channel *dst,
243 const union tgsi_exec_channel *src)
244 {
245 dst->f[0] =
246 dst->f[2] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
247 dst->f[1] =
248 dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_TOP_RIGHT];
249 }
250
251 static void
252 micro_dmul(union tgsi_double_channel *dst,
253 const union tgsi_double_channel *src)
254 {
255 dst->d[0] = src[0].d[0] * src[1].d[0];
256 dst->d[1] = src[0].d[1] * src[1].d[1];
257 dst->d[2] = src[0].d[2] * src[1].d[2];
258 dst->d[3] = src[0].d[3] * src[1].d[3];
259 }
260
261 static void
262 micro_dmax(union tgsi_double_channel *dst,
263 const union tgsi_double_channel *src)
264 {
265 dst->d[0] = src[0].d[0] > src[1].d[0] ? src[0].d[0] : src[1].d[0];
266 dst->d[1] = src[0].d[1] > src[1].d[1] ? src[0].d[1] : src[1].d[1];
267 dst->d[2] = src[0].d[2] > src[1].d[2] ? src[0].d[2] : src[1].d[2];
268 dst->d[3] = src[0].d[3] > src[1].d[3] ? src[0].d[3] : src[1].d[3];
269 }
270
271 static void
272 micro_dmin(union tgsi_double_channel *dst,
273 const union tgsi_double_channel *src)
274 {
275 dst->d[0] = src[0].d[0] < src[1].d[0] ? src[0].d[0] : src[1].d[0];
276 dst->d[1] = src[0].d[1] < src[1].d[1] ? src[0].d[1] : src[1].d[1];
277 dst->d[2] = src[0].d[2] < src[1].d[2] ? src[0].d[2] : src[1].d[2];
278 dst->d[3] = src[0].d[3] < src[1].d[3] ? src[0].d[3] : src[1].d[3];
279 }
280
281 static void
282 micro_dneg(union tgsi_double_channel *dst,
283 const union tgsi_double_channel *src)
284 {
285 dst->d[0] = -src->d[0];
286 dst->d[1] = -src->d[1];
287 dst->d[2] = -src->d[2];
288 dst->d[3] = -src->d[3];
289 }
290
291 static void
292 micro_dslt(union tgsi_double_channel *dst,
293 const union tgsi_double_channel *src)
294 {
295 dst->u[0][0] = src[0].d[0] < src[1].d[0] ? ~0U : 0U;
296 dst->u[1][0] = src[0].d[1] < src[1].d[1] ? ~0U : 0U;
297 dst->u[2][0] = src[0].d[2] < src[1].d[2] ? ~0U : 0U;
298 dst->u[3][0] = src[0].d[3] < src[1].d[3] ? ~0U : 0U;
299 }
300
301 static void
302 micro_dsne(union tgsi_double_channel *dst,
303 const union tgsi_double_channel *src)
304 {
305 dst->u[0][0] = src[0].d[0] != src[1].d[0] ? ~0U : 0U;
306 dst->u[1][0] = src[0].d[1] != src[1].d[1] ? ~0U : 0U;
307 dst->u[2][0] = src[0].d[2] != src[1].d[2] ? ~0U : 0U;
308 dst->u[3][0] = src[0].d[3] != src[1].d[3] ? ~0U : 0U;
309 }
310
311 static void
312 micro_dsge(union tgsi_double_channel *dst,
313 const union tgsi_double_channel *src)
314 {
315 dst->u[0][0] = src[0].d[0] >= src[1].d[0] ? ~0U : 0U;
316 dst->u[1][0] = src[0].d[1] >= src[1].d[1] ? ~0U : 0U;
317 dst->u[2][0] = src[0].d[2] >= src[1].d[2] ? ~0U : 0U;
318 dst->u[3][0] = src[0].d[3] >= src[1].d[3] ? ~0U : 0U;
319 }
320
321 static void
322 micro_dseq(union tgsi_double_channel *dst,
323 const union tgsi_double_channel *src)
324 {
325 dst->u[0][0] = src[0].d[0] == src[1].d[0] ? ~0U : 0U;
326 dst->u[1][0] = src[0].d[1] == src[1].d[1] ? ~0U : 0U;
327 dst->u[2][0] = src[0].d[2] == src[1].d[2] ? ~0U : 0U;
328 dst->u[3][0] = src[0].d[3] == src[1].d[3] ? ~0U : 0U;
329 }
330
331 static void
332 micro_drcp(union tgsi_double_channel *dst,
333 const union tgsi_double_channel *src)
334 {
335 dst->d[0] = 1.0 / src->d[0];
336 dst->d[1] = 1.0 / src->d[1];
337 dst->d[2] = 1.0 / src->d[2];
338 dst->d[3] = 1.0 / src->d[3];
339 }
340
341 static void
342 micro_dsqrt(union tgsi_double_channel *dst,
343 const union tgsi_double_channel *src)
344 {
345 dst->d[0] = sqrt(src->d[0]);
346 dst->d[1] = sqrt(src->d[1]);
347 dst->d[2] = sqrt(src->d[2]);
348 dst->d[3] = sqrt(src->d[3]);
349 }
350
351 static void
352 micro_drsq(union tgsi_double_channel *dst,
353 const union tgsi_double_channel *src)
354 {
355 dst->d[0] = 1.0 / sqrt(src->d[0]);
356 dst->d[1] = 1.0 / sqrt(src->d[1]);
357 dst->d[2] = 1.0 / sqrt(src->d[2]);
358 dst->d[3] = 1.0 / sqrt(src->d[3]);
359 }
360
361 static void
362 micro_dmad(union tgsi_double_channel *dst,
363 const union tgsi_double_channel *src)
364 {
365 dst->d[0] = src[0].d[0] * src[1].d[0] + src[2].d[0];
366 dst->d[1] = src[0].d[1] * src[1].d[1] + src[2].d[1];
367 dst->d[2] = src[0].d[2] * src[1].d[2] + src[2].d[2];
368 dst->d[3] = src[0].d[3] * src[1].d[3] + src[2].d[3];
369 }
370
371 static void
372 micro_dfrac(union tgsi_double_channel *dst,
373 const union tgsi_double_channel *src)
374 {
375 dst->d[0] = src->d[0] - floor(src->d[0]);
376 dst->d[1] = src->d[1] - floor(src->d[1]);
377 dst->d[2] = src->d[2] - floor(src->d[2]);
378 dst->d[3] = src->d[3] - floor(src->d[3]);
379 }
380
381 static void
382 micro_dflr(union tgsi_double_channel *dst,
383 const union tgsi_double_channel *src)
384 {
385 dst->d[0] = floor(src->d[0]);
386 dst->d[1] = floor(src->d[1]);
387 dst->d[2] = floor(src->d[2]);
388 dst->d[3] = floor(src->d[3]);
389 }
390
391 static void
392 micro_dldexp(union tgsi_double_channel *dst,
393 const union tgsi_double_channel *src0,
394 union tgsi_exec_channel *src1)
395 {
396 dst->d[0] = ldexp(src0->d[0], src1->i[0]);
397 dst->d[1] = ldexp(src0->d[1], src1->i[1]);
398 dst->d[2] = ldexp(src0->d[2], src1->i[2]);
399 dst->d[3] = ldexp(src0->d[3], src1->i[3]);
400 }
401
402 static void
403 micro_dfracexp(union tgsi_double_channel *dst,
404 union tgsi_exec_channel *dst_exp,
405 const union tgsi_double_channel *src)
406 {
407 dst->d[0] = frexp(src->d[0], &dst_exp->i[0]);
408 dst->d[1] = frexp(src->d[1], &dst_exp->i[1]);
409 dst->d[2] = frexp(src->d[2], &dst_exp->i[2]);
410 dst->d[3] = frexp(src->d[3], &dst_exp->i[3]);
411 }
412
413 static void
414 micro_exp2(union tgsi_exec_channel *dst,
415 const union tgsi_exec_channel *src)
416 {
417 #if FAST_MATH
418 dst->f[0] = util_fast_exp2(src->f[0]);
419 dst->f[1] = util_fast_exp2(src->f[1]);
420 dst->f[2] = util_fast_exp2(src->f[2]);
421 dst->f[3] = util_fast_exp2(src->f[3]);
422 #else
423 #if DEBUG
424 /* Inf is okay for this instruction, so clamp it to silence assertions. */
425 uint i;
426 union tgsi_exec_channel clamped;
427
428 for (i = 0; i < 4; i++) {
429 if (src->f[i] > 127.99999f) {
430 clamped.f[i] = 127.99999f;
431 } else if (src->f[i] < -126.99999f) {
432 clamped.f[i] = -126.99999f;
433 } else {
434 clamped.f[i] = src->f[i];
435 }
436 }
437 src = &clamped;
438 #endif /* DEBUG */
439
440 dst->f[0] = powf(2.0f, src->f[0]);
441 dst->f[1] = powf(2.0f, src->f[1]);
442 dst->f[2] = powf(2.0f, src->f[2]);
443 dst->f[3] = powf(2.0f, src->f[3]);
444 #endif /* FAST_MATH */
445 }
446
447 static void
448 micro_f2d(union tgsi_double_channel *dst,
449 const union tgsi_exec_channel *src)
450 {
451 dst->d[0] = (double)src->f[0];
452 dst->d[1] = (double)src->f[1];
453 dst->d[2] = (double)src->f[2];
454 dst->d[3] = (double)src->f[3];
455 }
456
457 static void
458 micro_flr(union tgsi_exec_channel *dst,
459 const union tgsi_exec_channel *src)
460 {
461 dst->f[0] = floorf(src->f[0]);
462 dst->f[1] = floorf(src->f[1]);
463 dst->f[2] = floorf(src->f[2]);
464 dst->f[3] = floorf(src->f[3]);
465 }
466
467 static void
468 micro_frc(union tgsi_exec_channel *dst,
469 const union tgsi_exec_channel *src)
470 {
471 dst->f[0] = src->f[0] - floorf(src->f[0]);
472 dst->f[1] = src->f[1] - floorf(src->f[1]);
473 dst->f[2] = src->f[2] - floorf(src->f[2]);
474 dst->f[3] = src->f[3] - floorf(src->f[3]);
475 }
476
477 static void
478 micro_i2d(union tgsi_double_channel *dst,
479 const union tgsi_exec_channel *src)
480 {
481 dst->d[0] = (double)src->i[0];
482 dst->d[1] = (double)src->i[1];
483 dst->d[2] = (double)src->i[2];
484 dst->d[3] = (double)src->i[3];
485 }
486
487 static void
488 micro_iabs(union tgsi_exec_channel *dst,
489 const union tgsi_exec_channel *src)
490 {
491 dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0];
492 dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1];
493 dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2];
494 dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3];
495 }
496
497 static void
498 micro_ineg(union tgsi_exec_channel *dst,
499 const union tgsi_exec_channel *src)
500 {
501 dst->i[0] = -src->i[0];
502 dst->i[1] = -src->i[1];
503 dst->i[2] = -src->i[2];
504 dst->i[3] = -src->i[3];
505 }
506
507 static void
508 micro_lg2(union tgsi_exec_channel *dst,
509 const union tgsi_exec_channel *src)
510 {
511 #if FAST_MATH
512 dst->f[0] = util_fast_log2(src->f[0]);
513 dst->f[1] = util_fast_log2(src->f[1]);
514 dst->f[2] = util_fast_log2(src->f[2]);
515 dst->f[3] = util_fast_log2(src->f[3]);
516 #else
517 dst->f[0] = logf(src->f[0]) * 1.442695f;
518 dst->f[1] = logf(src->f[1]) * 1.442695f;
519 dst->f[2] = logf(src->f[2]) * 1.442695f;
520 dst->f[3] = logf(src->f[3]) * 1.442695f;
521 #endif
522 }
523
524 static void
525 micro_lrp(union tgsi_exec_channel *dst,
526 const union tgsi_exec_channel *src0,
527 const union tgsi_exec_channel *src1,
528 const union tgsi_exec_channel *src2)
529 {
530 dst->f[0] = src0->f[0] * (src1->f[0] - src2->f[0]) + src2->f[0];
531 dst->f[1] = src0->f[1] * (src1->f[1] - src2->f[1]) + src2->f[1];
532 dst->f[2] = src0->f[2] * (src1->f[2] - src2->f[2]) + src2->f[2];
533 dst->f[3] = src0->f[3] * (src1->f[3] - src2->f[3]) + src2->f[3];
534 }
535
536 static void
537 micro_mad(union tgsi_exec_channel *dst,
538 const union tgsi_exec_channel *src0,
539 const union tgsi_exec_channel *src1,
540 const union tgsi_exec_channel *src2)
541 {
542 dst->f[0] = src0->f[0] * src1->f[0] + src2->f[0];
543 dst->f[1] = src0->f[1] * src1->f[1] + src2->f[1];
544 dst->f[2] = src0->f[2] * src1->f[2] + src2->f[2];
545 dst->f[3] = src0->f[3] * src1->f[3] + src2->f[3];
546 }
547
548 static void
549 micro_mov(union tgsi_exec_channel *dst,
550 const union tgsi_exec_channel *src)
551 {
552 dst->u[0] = src->u[0];
553 dst->u[1] = src->u[1];
554 dst->u[2] = src->u[2];
555 dst->u[3] = src->u[3];
556 }
557
558 static void
559 micro_rcp(union tgsi_exec_channel *dst,
560 const union tgsi_exec_channel *src)
561 {
562 #if 0 /* for debugging */
563 assert(src->f[0] != 0.0f);
564 assert(src->f[1] != 0.0f);
565 assert(src->f[2] != 0.0f);
566 assert(src->f[3] != 0.0f);
567 #endif
568 dst->f[0] = 1.0f / src->f[0];
569 dst->f[1] = 1.0f / src->f[1];
570 dst->f[2] = 1.0f / src->f[2];
571 dst->f[3] = 1.0f / src->f[3];
572 }
573
574 static void
575 micro_rnd(union tgsi_exec_channel *dst,
576 const union tgsi_exec_channel *src)
577 {
578 dst->f[0] = _mesa_roundevenf(src->f[0]);
579 dst->f[1] = _mesa_roundevenf(src->f[1]);
580 dst->f[2] = _mesa_roundevenf(src->f[2]);
581 dst->f[3] = _mesa_roundevenf(src->f[3]);
582 }
583
584 static void
585 micro_rsq(union tgsi_exec_channel *dst,
586 const union tgsi_exec_channel *src)
587 {
588 #if 0 /* for debugging */
589 assert(src->f[0] != 0.0f);
590 assert(src->f[1] != 0.0f);
591 assert(src->f[2] != 0.0f);
592 assert(src->f[3] != 0.0f);
593 #endif
594 dst->f[0] = 1.0f / sqrtf(src->f[0]);
595 dst->f[1] = 1.0f / sqrtf(src->f[1]);
596 dst->f[2] = 1.0f / sqrtf(src->f[2]);
597 dst->f[3] = 1.0f / sqrtf(src->f[3]);
598 }
599
600 static void
601 micro_sqrt(union tgsi_exec_channel *dst,
602 const union tgsi_exec_channel *src)
603 {
604 dst->f[0] = sqrtf(src->f[0]);
605 dst->f[1] = sqrtf(src->f[1]);
606 dst->f[2] = sqrtf(src->f[2]);
607 dst->f[3] = sqrtf(src->f[3]);
608 }
609
610 static void
611 micro_seq(union tgsi_exec_channel *dst,
612 const union tgsi_exec_channel *src0,
613 const union tgsi_exec_channel *src1)
614 {
615 dst->f[0] = src0->f[0] == src1->f[0] ? 1.0f : 0.0f;
616 dst->f[1] = src0->f[1] == src1->f[1] ? 1.0f : 0.0f;
617 dst->f[2] = src0->f[2] == src1->f[2] ? 1.0f : 0.0f;
618 dst->f[3] = src0->f[3] == src1->f[3] ? 1.0f : 0.0f;
619 }
620
621 static void
622 micro_sge(union tgsi_exec_channel *dst,
623 const union tgsi_exec_channel *src0,
624 const union tgsi_exec_channel *src1)
625 {
626 dst->f[0] = src0->f[0] >= src1->f[0] ? 1.0f : 0.0f;
627 dst->f[1] = src0->f[1] >= src1->f[1] ? 1.0f : 0.0f;
628 dst->f[2] = src0->f[2] >= src1->f[2] ? 1.0f : 0.0f;
629 dst->f[3] = src0->f[3] >= src1->f[3] ? 1.0f : 0.0f;
630 }
631
632 static void
633 micro_sgn(union tgsi_exec_channel *dst,
634 const union tgsi_exec_channel *src)
635 {
636 dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f;
637 dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f;
638 dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f;
639 dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f;
640 }
641
642 static void
643 micro_isgn(union tgsi_exec_channel *dst,
644 const union tgsi_exec_channel *src)
645 {
646 dst->i[0] = src->i[0] < 0 ? -1 : src->i[0] > 0 ? 1 : 0;
647 dst->i[1] = src->i[1] < 0 ? -1 : src->i[1] > 0 ? 1 : 0;
648 dst->i[2] = src->i[2] < 0 ? -1 : src->i[2] > 0 ? 1 : 0;
649 dst->i[3] = src->i[3] < 0 ? -1 : src->i[3] > 0 ? 1 : 0;
650 }
651
652 static void
653 micro_sgt(union tgsi_exec_channel *dst,
654 const union tgsi_exec_channel *src0,
655 const union tgsi_exec_channel *src1)
656 {
657 dst->f[0] = src0->f[0] > src1->f[0] ? 1.0f : 0.0f;
658 dst->f[1] = src0->f[1] > src1->f[1] ? 1.0f : 0.0f;
659 dst->f[2] = src0->f[2] > src1->f[2] ? 1.0f : 0.0f;
660 dst->f[3] = src0->f[3] > src1->f[3] ? 1.0f : 0.0f;
661 }
662
663 static void
664 micro_sin(union tgsi_exec_channel *dst,
665 const union tgsi_exec_channel *src)
666 {
667 dst->f[0] = sinf(src->f[0]);
668 dst->f[1] = sinf(src->f[1]);
669 dst->f[2] = sinf(src->f[2]);
670 dst->f[3] = sinf(src->f[3]);
671 }
672
673 static void
674 micro_sle(union tgsi_exec_channel *dst,
675 const union tgsi_exec_channel *src0,
676 const union tgsi_exec_channel *src1)
677 {
678 dst->f[0] = src0->f[0] <= src1->f[0] ? 1.0f : 0.0f;
679 dst->f[1] = src0->f[1] <= src1->f[1] ? 1.0f : 0.0f;
680 dst->f[2] = src0->f[2] <= src1->f[2] ? 1.0f : 0.0f;
681 dst->f[3] = src0->f[3] <= src1->f[3] ? 1.0f : 0.0f;
682 }
683
684 static void
685 micro_slt(union tgsi_exec_channel *dst,
686 const union tgsi_exec_channel *src0,
687 const union tgsi_exec_channel *src1)
688 {
689 dst->f[0] = src0->f[0] < src1->f[0] ? 1.0f : 0.0f;
690 dst->f[1] = src0->f[1] < src1->f[1] ? 1.0f : 0.0f;
691 dst->f[2] = src0->f[2] < src1->f[2] ? 1.0f : 0.0f;
692 dst->f[3] = src0->f[3] < src1->f[3] ? 1.0f : 0.0f;
693 }
694
695 static void
696 micro_sne(union tgsi_exec_channel *dst,
697 const union tgsi_exec_channel *src0,
698 const union tgsi_exec_channel *src1)
699 {
700 dst->f[0] = src0->f[0] != src1->f[0] ? 1.0f : 0.0f;
701 dst->f[1] = src0->f[1] != src1->f[1] ? 1.0f : 0.0f;
702 dst->f[2] = src0->f[2] != src1->f[2] ? 1.0f : 0.0f;
703 dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f;
704 }
705
706 static void
707 micro_trunc(union tgsi_exec_channel *dst,
708 const union tgsi_exec_channel *src)
709 {
710 dst->f[0] = truncf(src->f[0]);
711 dst->f[1] = truncf(src->f[1]);
712 dst->f[2] = truncf(src->f[2]);
713 dst->f[3] = truncf(src->f[3]);
714 }
715
716 static void
717 micro_u2d(union tgsi_double_channel *dst,
718 const union tgsi_exec_channel *src)
719 {
720 dst->d[0] = (double)src->u[0];
721 dst->d[1] = (double)src->u[1];
722 dst->d[2] = (double)src->u[2];
723 dst->d[3] = (double)src->u[3];
724 }
725
726 static void
727 micro_i64abs(union tgsi_double_channel *dst,
728 const union tgsi_double_channel *src)
729 {
730 dst->i64[0] = src->i64[0] >= 0.0 ? src->i64[0] : -src->i64[0];
731 dst->i64[1] = src->i64[1] >= 0.0 ? src->i64[1] : -src->i64[1];
732 dst->i64[2] = src->i64[2] >= 0.0 ? src->i64[2] : -src->i64[2];
733 dst->i64[3] = src->i64[3] >= 0.0 ? src->i64[3] : -src->i64[3];
734 }
735
736 static void
737 micro_i64sgn(union tgsi_double_channel *dst,
738 const union tgsi_double_channel *src)
739 {
740 dst->i64[0] = src->i64[0] < 0 ? -1 : src->i64[0] > 0 ? 1 : 0;
741 dst->i64[1] = src->i64[1] < 0 ? -1 : src->i64[1] > 0 ? 1 : 0;
742 dst->i64[2] = src->i64[2] < 0 ? -1 : src->i64[2] > 0 ? 1 : 0;
743 dst->i64[3] = src->i64[3] < 0 ? -1 : src->i64[3] > 0 ? 1 : 0;
744 }
745
746 static void
747 micro_i64neg(union tgsi_double_channel *dst,
748 const union tgsi_double_channel *src)
749 {
750 dst->i64[0] = -src->i64[0];
751 dst->i64[1] = -src->i64[1];
752 dst->i64[2] = -src->i64[2];
753 dst->i64[3] = -src->i64[3];
754 }
755
756 static void
757 micro_u64seq(union tgsi_double_channel *dst,
758 const union tgsi_double_channel *src)
759 {
760 dst->u[0][0] = src[0].u64[0] == src[1].u64[0] ? ~0U : 0U;
761 dst->u[1][0] = src[0].u64[1] == src[1].u64[1] ? ~0U : 0U;
762 dst->u[2][0] = src[0].u64[2] == src[1].u64[2] ? ~0U : 0U;
763 dst->u[3][0] = src[0].u64[3] == src[1].u64[3] ? ~0U : 0U;
764 }
765
766 static void
767 micro_u64sne(union tgsi_double_channel *dst,
768 const union tgsi_double_channel *src)
769 {
770 dst->u[0][0] = src[0].u64[0] != src[1].u64[0] ? ~0U : 0U;
771 dst->u[1][0] = src[0].u64[1] != src[1].u64[1] ? ~0U : 0U;
772 dst->u[2][0] = src[0].u64[2] != src[1].u64[2] ? ~0U : 0U;
773 dst->u[3][0] = src[0].u64[3] != src[1].u64[3] ? ~0U : 0U;
774 }
775
776 static void
777 micro_i64slt(union tgsi_double_channel *dst,
778 const union tgsi_double_channel *src)
779 {
780 dst->u[0][0] = src[0].i64[0] < src[1].i64[0] ? ~0U : 0U;
781 dst->u[1][0] = src[0].i64[1] < src[1].i64[1] ? ~0U : 0U;
782 dst->u[2][0] = src[0].i64[2] < src[1].i64[2] ? ~0U : 0U;
783 dst->u[3][0] = src[0].i64[3] < src[1].i64[3] ? ~0U : 0U;
784 }
785
786 static void
787 micro_u64slt(union tgsi_double_channel *dst,
788 const union tgsi_double_channel *src)
789 {
790 dst->u[0][0] = src[0].u64[0] < src[1].u64[0] ? ~0U : 0U;
791 dst->u[1][0] = src[0].u64[1] < src[1].u64[1] ? ~0U : 0U;
792 dst->u[2][0] = src[0].u64[2] < src[1].u64[2] ? ~0U : 0U;
793 dst->u[3][0] = src[0].u64[3] < src[1].u64[3] ? ~0U : 0U;
794 }
795
796 static void
797 micro_i64sge(union tgsi_double_channel *dst,
798 const union tgsi_double_channel *src)
799 {
800 dst->u[0][0] = src[0].i64[0] >= src[1].i64[0] ? ~0U : 0U;
801 dst->u[1][0] = src[0].i64[1] >= src[1].i64[1] ? ~0U : 0U;
802 dst->u[2][0] = src[0].i64[2] >= src[1].i64[2] ? ~0U : 0U;
803 dst->u[3][0] = src[0].i64[3] >= src[1].i64[3] ? ~0U : 0U;
804 }
805
806 static void
807 micro_u64sge(union tgsi_double_channel *dst,
808 const union tgsi_double_channel *src)
809 {
810 dst->u[0][0] = src[0].u64[0] >= src[1].u64[0] ? ~0U : 0U;
811 dst->u[1][0] = src[0].u64[1] >= src[1].u64[1] ? ~0U : 0U;
812 dst->u[2][0] = src[0].u64[2] >= src[1].u64[2] ? ~0U : 0U;
813 dst->u[3][0] = src[0].u64[3] >= src[1].u64[3] ? ~0U : 0U;
814 }
815
816 static void
817 micro_u64max(union tgsi_double_channel *dst,
818 const union tgsi_double_channel *src)
819 {
820 dst->u64[0] = src[0].u64[0] > src[1].u64[0] ? src[0].u64[0] : src[1].u64[0];
821 dst->u64[1] = src[0].u64[1] > src[1].u64[1] ? src[0].u64[1] : src[1].u64[1];
822 dst->u64[2] = src[0].u64[2] > src[1].u64[2] ? src[0].u64[2] : src[1].u64[2];
823 dst->u64[3] = src[0].u64[3] > src[1].u64[3] ? src[0].u64[3] : src[1].u64[3];
824 }
825
826 static void
827 micro_i64max(union tgsi_double_channel *dst,
828 const union tgsi_double_channel *src)
829 {
830 dst->i64[0] = src[0].i64[0] > src[1].i64[0] ? src[0].i64[0] : src[1].i64[0];
831 dst->i64[1] = src[0].i64[1] > src[1].i64[1] ? src[0].i64[1] : src[1].i64[1];
832 dst->i64[2] = src[0].i64[2] > src[1].i64[2] ? src[0].i64[2] : src[1].i64[2];
833 dst->i64[3] = src[0].i64[3] > src[1].i64[3] ? src[0].i64[3] : src[1].i64[3];
834 }
835
836 static void
837 micro_u64min(union tgsi_double_channel *dst,
838 const union tgsi_double_channel *src)
839 {
840 dst->u64[0] = src[0].u64[0] < src[1].u64[0] ? src[0].u64[0] : src[1].u64[0];
841 dst->u64[1] = src[0].u64[1] < src[1].u64[1] ? src[0].u64[1] : src[1].u64[1];
842 dst->u64[2] = src[0].u64[2] < src[1].u64[2] ? src[0].u64[2] : src[1].u64[2];
843 dst->u64[3] = src[0].u64[3] < src[1].u64[3] ? src[0].u64[3] : src[1].u64[3];
844 }
845
846 static void
847 micro_i64min(union tgsi_double_channel *dst,
848 const union tgsi_double_channel *src)
849 {
850 dst->i64[0] = src[0].i64[0] < src[1].i64[0] ? src[0].i64[0] : src[1].i64[0];
851 dst->i64[1] = src[0].i64[1] < src[1].i64[1] ? src[0].i64[1] : src[1].i64[1];
852 dst->i64[2] = src[0].i64[2] < src[1].i64[2] ? src[0].i64[2] : src[1].i64[2];
853 dst->i64[3] = src[0].i64[3] < src[1].i64[3] ? src[0].i64[3] : src[1].i64[3];
854 }
855
856 static void
857 micro_u64add(union tgsi_double_channel *dst,
858 const union tgsi_double_channel *src)
859 {
860 dst->u64[0] = src[0].u64[0] + src[1].u64[0];
861 dst->u64[1] = src[0].u64[1] + src[1].u64[1];
862 dst->u64[2] = src[0].u64[2] + src[1].u64[2];
863 dst->u64[3] = src[0].u64[3] + src[1].u64[3];
864 }
865
866 static void
867 micro_u64mul(union tgsi_double_channel *dst,
868 const union tgsi_double_channel *src)
869 {
870 dst->u64[0] = src[0].u64[0] * src[1].u64[0];
871 dst->u64[1] = src[0].u64[1] * src[1].u64[1];
872 dst->u64[2] = src[0].u64[2] * src[1].u64[2];
873 dst->u64[3] = src[0].u64[3] * src[1].u64[3];
874 }
875
876 static void
877 micro_u64div(union tgsi_double_channel *dst,
878 const union tgsi_double_channel *src)
879 {
880 dst->u64[0] = src[1].u64[0] ? src[0].u64[0] / src[1].u64[0] : ~0ull;
881 dst->u64[1] = src[1].u64[1] ? src[0].u64[1] / src[1].u64[1] : ~0ull;
882 dst->u64[2] = src[1].u64[2] ? src[0].u64[2] / src[1].u64[2] : ~0ull;
883 dst->u64[3] = src[1].u64[3] ? src[0].u64[3] / src[1].u64[3] : ~0ull;
884 }
885
886 static void
887 micro_i64div(union tgsi_double_channel *dst,
888 const union tgsi_double_channel *src)
889 {
890 dst->i64[0] = src[1].i64[0] ? src[0].i64[0] / src[1].i64[0] : 0;
891 dst->i64[1] = src[1].i64[1] ? src[0].i64[1] / src[1].i64[1] : 0;
892 dst->i64[2] = src[1].i64[2] ? src[0].i64[2] / src[1].i64[2] : 0;
893 dst->i64[3] = src[1].i64[3] ? src[0].i64[3] / src[1].i64[3] : 0;
894 }
895
896 static void
897 micro_u64mod(union tgsi_double_channel *dst,
898 const union tgsi_double_channel *src)
899 {
900 dst->u64[0] = src[1].u64[0] ? src[0].u64[0] % src[1].u64[0] : ~0ull;
901 dst->u64[1] = src[1].u64[1] ? src[0].u64[1] % src[1].u64[1] : ~0ull;
902 dst->u64[2] = src[1].u64[2] ? src[0].u64[2] % src[1].u64[2] : ~0ull;
903 dst->u64[3] = src[1].u64[3] ? src[0].u64[3] % src[1].u64[3] : ~0ull;
904 }
905
906 static void
907 micro_i64mod(union tgsi_double_channel *dst,
908 const union tgsi_double_channel *src)
909 {
910 dst->i64[0] = src[1].i64[0] ? src[0].i64[0] % src[1].i64[0] : ~0ll;
911 dst->i64[1] = src[1].i64[1] ? src[0].i64[1] % src[1].i64[1] : ~0ll;
912 dst->i64[2] = src[1].i64[2] ? src[0].i64[2] % src[1].i64[2] : ~0ll;
913 dst->i64[3] = src[1].i64[3] ? src[0].i64[3] % src[1].i64[3] : ~0ll;
914 }
915
916 static void
917 micro_u64shl(union tgsi_double_channel *dst,
918 const union tgsi_double_channel *src0,
919 union tgsi_exec_channel *src1)
920 {
921 unsigned masked_count;
922 masked_count = src1->u[0] & 0x3f;
923 dst->u64[0] = src0->u64[0] << masked_count;
924 masked_count = src1->u[1] & 0x3f;
925 dst->u64[1] = src0->u64[1] << masked_count;
926 masked_count = src1->u[2] & 0x3f;
927 dst->u64[2] = src0->u64[2] << masked_count;
928 masked_count = src1->u[3] & 0x3f;
929 dst->u64[3] = src0->u64[3] << masked_count;
930 }
931
932 static void
933 micro_i64shr(union tgsi_double_channel *dst,
934 const union tgsi_double_channel *src0,
935 union tgsi_exec_channel *src1)
936 {
937 unsigned masked_count;
938 masked_count = src1->u[0] & 0x3f;
939 dst->i64[0] = src0->i64[0] >> masked_count;
940 masked_count = src1->u[1] & 0x3f;
941 dst->i64[1] = src0->i64[1] >> masked_count;
942 masked_count = src1->u[2] & 0x3f;
943 dst->i64[2] = src0->i64[2] >> masked_count;
944 masked_count = src1->u[3] & 0x3f;
945 dst->i64[3] = src0->i64[3] >> masked_count;
946 }
947
948 static void
949 micro_u64shr(union tgsi_double_channel *dst,
950 const union tgsi_double_channel *src0,
951 union tgsi_exec_channel *src1)
952 {
953 unsigned masked_count;
954 masked_count = src1->u[0] & 0x3f;
955 dst->u64[0] = src0->u64[0] >> masked_count;
956 masked_count = src1->u[1] & 0x3f;
957 dst->u64[1] = src0->u64[1] >> masked_count;
958 masked_count = src1->u[2] & 0x3f;
959 dst->u64[2] = src0->u64[2] >> masked_count;
960 masked_count = src1->u[3] & 0x3f;
961 dst->u64[3] = src0->u64[3] >> masked_count;
962 }
963
964 enum tgsi_exec_datatype {
965 TGSI_EXEC_DATA_FLOAT,
966 TGSI_EXEC_DATA_INT,
967 TGSI_EXEC_DATA_UINT,
968 TGSI_EXEC_DATA_DOUBLE,
969 TGSI_EXEC_DATA_INT64,
970 TGSI_EXEC_DATA_UINT64,
971 };
972
973 /*
974 * Shorthand locations of various utility registers (_I = Index, _C = Channel)
975 */
976 #define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I
977 #define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C
978 #define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I
979 #define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C
980 #define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I
981 #define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C
982 #define TEMP_PRIMITIVE_S1_I TGSI_EXEC_TEMP_PRIMITIVE_S1_I
983 #define TEMP_PRIMITIVE_S1_C TGSI_EXEC_TEMP_PRIMITIVE_S1_C
984 #define TEMP_PRIMITIVE_S2_I TGSI_EXEC_TEMP_PRIMITIVE_S2_I
985 #define TEMP_PRIMITIVE_S2_C TGSI_EXEC_TEMP_PRIMITIVE_S2_C
986 #define TEMP_PRIMITIVE_S3_I TGSI_EXEC_TEMP_PRIMITIVE_S3_I
987 #define TEMP_PRIMITIVE_S3_C TGSI_EXEC_TEMP_PRIMITIVE_S3_C
988
989 static const struct {
990 int idx;
991 int chan;
992 } temp_prim_idxs[] = {
993 { TEMP_PRIMITIVE_I, TEMP_PRIMITIVE_C },
994 { TEMP_PRIMITIVE_S1_I, TEMP_PRIMITIVE_S1_C },
995 { TEMP_PRIMITIVE_S2_I, TEMP_PRIMITIVE_S2_C },
996 { TEMP_PRIMITIVE_S3_I, TEMP_PRIMITIVE_S3_C },
997 };
998
999 /** The execution mask depends on the conditional mask and the loop mask */
1000 #define UPDATE_EXEC_MASK(MACH) \
1001 MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
1002
1003
1004 static const union tgsi_exec_channel ZeroVec =
1005 { { 0.0, 0.0, 0.0, 0.0 } };
1006
1007 static const union tgsi_exec_channel OneVec = {
1008 {1.0f, 1.0f, 1.0f, 1.0f}
1009 };
1010
1011 static const union tgsi_exec_channel P128Vec = {
1012 {128.0f, 128.0f, 128.0f, 128.0f}
1013 };
1014
1015 static const union tgsi_exec_channel M128Vec = {
1016 {-128.0f, -128.0f, -128.0f, -128.0f}
1017 };
1018
1019
1020 /**
1021 * Assert that none of the float values in 'chan' are infinite or NaN.
1022 * NaN and Inf may occur normally during program execution and should
1023 * not lead to crashes, etc. But when debugging, it's helpful to catch
1024 * them.
1025 */
1026 static inline void
1027 check_inf_or_nan(const union tgsi_exec_channel *chan)
1028 {
1029 assert(!util_is_inf_or_nan((chan)->f[0]));
1030 assert(!util_is_inf_or_nan((chan)->f[1]));
1031 assert(!util_is_inf_or_nan((chan)->f[2]));
1032 assert(!util_is_inf_or_nan((chan)->f[3]));
1033 }
1034
1035
1036 #ifdef DEBUG
1037 static void
1038 print_chan(const char *msg, const union tgsi_exec_channel *chan)
1039 {
1040 debug_printf("%s = {%f, %f, %f, %f}\n",
1041 msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]);
1042 }
1043 #endif
1044
1045
1046 #ifdef DEBUG
1047 static void
1048 print_temp(const struct tgsi_exec_machine *mach, uint index)
1049 {
1050 const struct tgsi_exec_vector *tmp = &mach->Temps[index];
1051 int i;
1052 debug_printf("Temp[%u] =\n", index);
1053 for (i = 0; i < 4; i++) {
1054 debug_printf(" %c: { %f, %f, %f, %f }\n",
1055 "XYZW"[i],
1056 tmp->xyzw[i].f[0],
1057 tmp->xyzw[i].f[1],
1058 tmp->xyzw[i].f[2],
1059 tmp->xyzw[i].f[3]);
1060 }
1061 }
1062 #endif
1063
1064
1065 void
1066 tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach,
1067 unsigned num_bufs,
1068 const void **bufs,
1069 const unsigned *buf_sizes)
1070 {
1071 unsigned i;
1072
1073 for (i = 0; i < num_bufs; i++) {
1074 mach->Consts[i] = bufs[i];
1075 mach->ConstsSize[i] = buf_sizes[i];
1076 }
1077 }
1078
1079 /**
1080 * Initialize machine state by expanding tokens to full instructions,
1081 * allocating temporary storage, setting up constants, etc.
1082 * After this, we can call tgsi_exec_machine_run() many times.
1083 */
1084 void
1085 tgsi_exec_machine_bind_shader(
1086 struct tgsi_exec_machine *mach,
1087 const struct tgsi_token *tokens,
1088 struct tgsi_sampler *sampler,
1089 struct tgsi_image *image,
1090 struct tgsi_buffer *buffer)
1091 {
1092 uint k;
1093 struct tgsi_parse_context parse;
1094 struct tgsi_full_instruction *instructions;
1095 struct tgsi_full_declaration *declarations;
1096 uint maxInstructions = 10, numInstructions = 0;
1097 uint maxDeclarations = 10, numDeclarations = 0;
1098
1099 #if 0
1100 tgsi_dump(tokens, 0);
1101 #endif
1102
1103 util_init_math();
1104
1105
1106 mach->Tokens = tokens;
1107 mach->Sampler = sampler;
1108 mach->Image = image;
1109 mach->Buffer = buffer;
1110
1111 if (!tokens) {
1112 /* unbind and free all */
1113 FREE(mach->Declarations);
1114 mach->Declarations = NULL;
1115 mach->NumDeclarations = 0;
1116
1117 FREE(mach->Instructions);
1118 mach->Instructions = NULL;
1119 mach->NumInstructions = 0;
1120
1121 return;
1122 }
1123
1124 k = tgsi_parse_init (&parse, mach->Tokens);
1125 if (k != TGSI_PARSE_OK) {
1126 debug_printf( "Problem parsing!\n" );
1127 return;
1128 }
1129
1130 mach->ImmLimit = 0;
1131 mach->NumOutputs = 0;
1132
1133 for (k = 0; k < TGSI_SEMANTIC_COUNT; k++)
1134 mach->SysSemanticToIndex[k] = -1;
1135
1136 if (mach->ShaderType == PIPE_SHADER_GEOMETRY &&
1137 !mach->UsedGeometryShader) {
1138 struct tgsi_exec_vector *inputs;
1139 struct tgsi_exec_vector *outputs;
1140
1141 inputs = align_malloc(sizeof(struct tgsi_exec_vector) *
1142 TGSI_MAX_PRIM_VERTICES * PIPE_MAX_SHADER_INPUTS,
1143 16);
1144
1145 if (!inputs)
1146 return;
1147
1148 outputs = align_malloc(sizeof(struct tgsi_exec_vector) *
1149 TGSI_MAX_TOTAL_VERTICES, 16);
1150
1151 if (!outputs) {
1152 align_free(inputs);
1153 return;
1154 }
1155
1156 align_free(mach->Inputs);
1157 align_free(mach->Outputs);
1158
1159 mach->Inputs = inputs;
1160 mach->Outputs = outputs;
1161 mach->UsedGeometryShader = TRUE;
1162 }
1163
1164 declarations = (struct tgsi_full_declaration *)
1165 MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) );
1166
1167 if (!declarations) {
1168 return;
1169 }
1170
1171 instructions = (struct tgsi_full_instruction *)
1172 MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) );
1173
1174 if (!instructions) {
1175 FREE( declarations );
1176 return;
1177 }
1178
1179 while( !tgsi_parse_end_of_tokens( &parse ) ) {
1180 uint i;
1181
1182 tgsi_parse_token( &parse );
1183 switch( parse.FullToken.Token.Type ) {
1184 case TGSI_TOKEN_TYPE_DECLARATION:
1185 /* save expanded declaration */
1186 if (numDeclarations == maxDeclarations) {
1187 declarations = REALLOC(declarations,
1188 maxDeclarations
1189 * sizeof(struct tgsi_full_declaration),
1190 (maxDeclarations + 10)
1191 * sizeof(struct tgsi_full_declaration));
1192 maxDeclarations += 10;
1193 }
1194 if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT)
1195 mach->NumOutputs = MAX2(mach->NumOutputs, parse.FullToken.FullDeclaration.Range.Last + 1);
1196 else if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
1197 const struct tgsi_full_declaration *decl = &parse.FullToken.FullDeclaration;
1198 mach->SysSemanticToIndex[decl->Semantic.Name] = decl->Range.First;
1199 }
1200
1201 memcpy(declarations + numDeclarations,
1202 &parse.FullToken.FullDeclaration,
1203 sizeof(declarations[0]));
1204 numDeclarations++;
1205 break;
1206
1207 case TGSI_TOKEN_TYPE_IMMEDIATE:
1208 {
1209 uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
1210 assert( size <= 4 );
1211 if (mach->ImmLimit >= mach->ImmsReserved) {
1212 unsigned newReserved = mach->ImmsReserved ? 2 * mach->ImmsReserved : 128;
1213 float4 *imms = REALLOC(mach->Imms, mach->ImmsReserved, newReserved * sizeof(float4));
1214 if (imms) {
1215 mach->ImmsReserved = newReserved;
1216 mach->Imms = imms;
1217 } else {
1218 debug_printf("Unable to (re)allocate space for immidiate constants\n");
1219 break;
1220 }
1221 }
1222
1223 for( i = 0; i < size; i++ ) {
1224 mach->Imms[mach->ImmLimit][i] =
1225 parse.FullToken.FullImmediate.u[i].Float;
1226 }
1227 mach->ImmLimit += 1;
1228 }
1229 break;
1230
1231 case TGSI_TOKEN_TYPE_INSTRUCTION:
1232
1233 /* save expanded instruction */
1234 if (numInstructions == maxInstructions) {
1235 instructions = REALLOC(instructions,
1236 maxInstructions
1237 * sizeof(struct tgsi_full_instruction),
1238 (maxInstructions + 10)
1239 * sizeof(struct tgsi_full_instruction));
1240 maxInstructions += 10;
1241 }
1242
1243 memcpy(instructions + numInstructions,
1244 &parse.FullToken.FullInstruction,
1245 sizeof(instructions[0]));
1246
1247 numInstructions++;
1248 break;
1249
1250 case TGSI_TOKEN_TYPE_PROPERTY:
1251 if (mach->ShaderType == PIPE_SHADER_GEOMETRY) {
1252 if (parse.FullToken.FullProperty.Property.PropertyName == TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES) {
1253 mach->MaxOutputVertices = parse.FullToken.FullProperty.u[0].Data;
1254 }
1255 }
1256 break;
1257
1258 default:
1259 assert( 0 );
1260 }
1261 }
1262 tgsi_parse_free (&parse);
1263
1264 FREE(mach->Declarations);
1265 mach->Declarations = declarations;
1266 mach->NumDeclarations = numDeclarations;
1267
1268 FREE(mach->Instructions);
1269 mach->Instructions = instructions;
1270 mach->NumInstructions = numInstructions;
1271 }
1272
1273
1274 struct tgsi_exec_machine *
1275 tgsi_exec_machine_create(enum pipe_shader_type shader_type)
1276 {
1277 struct tgsi_exec_machine *mach;
1278
1279 mach = align_malloc( sizeof *mach, 16 );
1280 if (!mach)
1281 goto fail;
1282
1283 memset(mach, 0, sizeof(*mach));
1284
1285 mach->ShaderType = shader_type;
1286 mach->Addrs = &mach->Temps[TGSI_EXEC_TEMP_ADDR];
1287 mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES;
1288
1289 if (shader_type != PIPE_SHADER_COMPUTE) {
1290 mach->Inputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_INPUTS, 16);
1291 mach->Outputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_OUTPUTS, 16);
1292 if (!mach->Inputs || !mach->Outputs)
1293 goto fail;
1294 }
1295
1296 if (shader_type == PIPE_SHADER_FRAGMENT) {
1297 mach->InputSampleOffsetApply = align_malloc(sizeof(apply_sample_offset_func) * PIPE_MAX_SHADER_INPUTS, 16);
1298 if (!mach->InputSampleOffsetApply)
1299 goto fail;
1300 }
1301
1302 #ifdef DEBUG
1303 /* silence warnings */
1304 (void) print_chan;
1305 (void) print_temp;
1306 #endif
1307
1308 return mach;
1309
1310 fail:
1311 if (mach) {
1312 align_free(mach->InputSampleOffsetApply);
1313 align_free(mach->Inputs);
1314 align_free(mach->Outputs);
1315 align_free(mach);
1316 }
1317 return NULL;
1318 }
1319
1320
1321 void
1322 tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach)
1323 {
1324 if (mach) {
1325 FREE(mach->Instructions);
1326 FREE(mach->Declarations);
1327 FREE(mach->Imms);
1328
1329 align_free(mach->InputSampleOffsetApply);
1330 align_free(mach->Inputs);
1331 align_free(mach->Outputs);
1332
1333 align_free(mach);
1334 }
1335 }
1336
1337 static void
1338 micro_add(union tgsi_exec_channel *dst,
1339 const union tgsi_exec_channel *src0,
1340 const union tgsi_exec_channel *src1)
1341 {
1342 dst->f[0] = src0->f[0] + src1->f[0];
1343 dst->f[1] = src0->f[1] + src1->f[1];
1344 dst->f[2] = src0->f[2] + src1->f[2];
1345 dst->f[3] = src0->f[3] + src1->f[3];
1346 }
1347
1348 static void
1349 micro_div(
1350 union tgsi_exec_channel *dst,
1351 const union tgsi_exec_channel *src0,
1352 const union tgsi_exec_channel *src1 )
1353 {
1354 if (src1->f[0] != 0) {
1355 dst->f[0] = src0->f[0] / src1->f[0];
1356 }
1357 if (src1->f[1] != 0) {
1358 dst->f[1] = src0->f[1] / src1->f[1];
1359 }
1360 if (src1->f[2] != 0) {
1361 dst->f[2] = src0->f[2] / src1->f[2];
1362 }
1363 if (src1->f[3] != 0) {
1364 dst->f[3] = src0->f[3] / src1->f[3];
1365 }
1366 }
1367
1368 static void
1369 micro_lt(
1370 union tgsi_exec_channel *dst,
1371 const union tgsi_exec_channel *src0,
1372 const union tgsi_exec_channel *src1,
1373 const union tgsi_exec_channel *src2,
1374 const union tgsi_exec_channel *src3 )
1375 {
1376 dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
1377 dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
1378 dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
1379 dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
1380 }
1381
1382 static void
1383 micro_max(union tgsi_exec_channel *dst,
1384 const union tgsi_exec_channel *src0,
1385 const union tgsi_exec_channel *src1)
1386 {
1387 dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0];
1388 dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1];
1389 dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2];
1390 dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3];
1391 }
1392
1393 static void
1394 micro_min(union tgsi_exec_channel *dst,
1395 const union tgsi_exec_channel *src0,
1396 const union tgsi_exec_channel *src1)
1397 {
1398 dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0];
1399 dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1];
1400 dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2];
1401 dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3];
1402 }
1403
1404 static void
1405 micro_mul(union tgsi_exec_channel *dst,
1406 const union tgsi_exec_channel *src0,
1407 const union tgsi_exec_channel *src1)
1408 {
1409 dst->f[0] = src0->f[0] * src1->f[0];
1410 dst->f[1] = src0->f[1] * src1->f[1];
1411 dst->f[2] = src0->f[2] * src1->f[2];
1412 dst->f[3] = src0->f[3] * src1->f[3];
1413 }
1414
1415 static void
1416 micro_neg(
1417 union tgsi_exec_channel *dst,
1418 const union tgsi_exec_channel *src )
1419 {
1420 dst->f[0] = -src->f[0];
1421 dst->f[1] = -src->f[1];
1422 dst->f[2] = -src->f[2];
1423 dst->f[3] = -src->f[3];
1424 }
1425
1426 static void
1427 micro_pow(
1428 union tgsi_exec_channel *dst,
1429 const union tgsi_exec_channel *src0,
1430 const union tgsi_exec_channel *src1 )
1431 {
1432 #if FAST_MATH
1433 dst->f[0] = util_fast_pow( src0->f[0], src1->f[0] );
1434 dst->f[1] = util_fast_pow( src0->f[1], src1->f[1] );
1435 dst->f[2] = util_fast_pow( src0->f[2], src1->f[2] );
1436 dst->f[3] = util_fast_pow( src0->f[3], src1->f[3] );
1437 #else
1438 dst->f[0] = powf( src0->f[0], src1->f[0] );
1439 dst->f[1] = powf( src0->f[1], src1->f[1] );
1440 dst->f[2] = powf( src0->f[2], src1->f[2] );
1441 dst->f[3] = powf( src0->f[3], src1->f[3] );
1442 #endif
1443 }
1444
1445 static void
1446 micro_ldexp(union tgsi_exec_channel *dst,
1447 const union tgsi_exec_channel *src0,
1448 const union tgsi_exec_channel *src1)
1449 {
1450 dst->f[0] = ldexpf(src0->f[0], src1->i[0]);
1451 dst->f[1] = ldexpf(src0->f[1], src1->i[1]);
1452 dst->f[2] = ldexpf(src0->f[2], src1->i[2]);
1453 dst->f[3] = ldexpf(src0->f[3], src1->i[3]);
1454 }
1455
1456 static void
1457 micro_sub(union tgsi_exec_channel *dst,
1458 const union tgsi_exec_channel *src0,
1459 const union tgsi_exec_channel *src1)
1460 {
1461 dst->f[0] = src0->f[0] - src1->f[0];
1462 dst->f[1] = src0->f[1] - src1->f[1];
1463 dst->f[2] = src0->f[2] - src1->f[2];
1464 dst->f[3] = src0->f[3] - src1->f[3];
1465 }
1466
1467 static void
1468 fetch_src_file_channel(const struct tgsi_exec_machine *mach,
1469 const uint file,
1470 const uint swizzle,
1471 const union tgsi_exec_channel *index,
1472 const union tgsi_exec_channel *index2D,
1473 union tgsi_exec_channel *chan)
1474 {
1475 uint i;
1476
1477 assert(swizzle < 4);
1478
1479 switch (file) {
1480 case TGSI_FILE_CONSTANT:
1481 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1482 assert(index2D->i[i] >= 0 && index2D->i[i] < PIPE_MAX_CONSTANT_BUFFERS);
1483 assert(mach->Consts[index2D->i[i]]);
1484
1485 if (index->i[i] < 0) {
1486 chan->u[i] = 0;
1487 } else {
1488 /* NOTE: copying the const value as a uint instead of float */
1489 const uint constbuf = index2D->i[i];
1490 const uint *buf = (const uint *)mach->Consts[constbuf];
1491 const int pos = index->i[i] * 4 + swizzle;
1492 /* const buffer bounds check */
1493 if (pos < 0 || pos >= (int) mach->ConstsSize[constbuf]) {
1494 if (0) {
1495 /* Debug: print warning */
1496 static int count = 0;
1497 if (count++ < 100)
1498 debug_printf("TGSI Exec: const buffer index %d"
1499 " out of bounds\n", pos);
1500 }
1501 chan->u[i] = 0;
1502 }
1503 else
1504 chan->u[i] = buf[pos];
1505 }
1506 }
1507 break;
1508
1509 case TGSI_FILE_INPUT:
1510 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1511 /*
1512 if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
1513 debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n",
1514 index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i],
1515 index2D->i[i], index->i[i]);
1516 }*/
1517 int pos = index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i];
1518 assert(pos >= 0);
1519 assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS);
1520 chan->u[i] = mach->Inputs[pos].xyzw[swizzle].u[i];
1521 }
1522 break;
1523
1524 case TGSI_FILE_SYSTEM_VALUE:
1525 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1526 chan->u[i] = mach->SystemValue[index->i[i]].xyzw[swizzle].u[i];
1527 }
1528 break;
1529
1530 case TGSI_FILE_TEMPORARY:
1531 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1532 assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1533 assert(index2D->i[i] == 0);
1534
1535 chan->u[i] = mach->Temps[index->i[i]].xyzw[swizzle].u[i];
1536 }
1537 break;
1538
1539 case TGSI_FILE_IMMEDIATE:
1540 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1541 assert(index->i[i] >= 0 && index->i[i] < (int)mach->ImmLimit);
1542 assert(index2D->i[i] == 0);
1543
1544 chan->f[i] = mach->Imms[index->i[i]][swizzle];
1545 }
1546 break;
1547
1548 case TGSI_FILE_ADDRESS:
1549 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1550 assert(index->i[i] >= 0);
1551 assert(index2D->i[i] == 0);
1552
1553 chan->u[i] = mach->Addrs[index->i[i]].xyzw[swizzle].u[i];
1554 }
1555 break;
1556
1557 case TGSI_FILE_OUTPUT:
1558 /* vertex/fragment output vars can be read too */
1559 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1560 assert(index->i[i] >= 0);
1561 assert(index2D->i[i] == 0);
1562
1563 chan->u[i] = mach->Outputs[index->i[i]].xyzw[swizzle].u[i];
1564 }
1565 break;
1566
1567 default:
1568 assert(0);
1569 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1570 chan->u[i] = 0;
1571 }
1572 }
1573 }
1574
1575 static void
1576 get_index_registers(const struct tgsi_exec_machine *mach,
1577 const struct tgsi_full_src_register *reg,
1578 union tgsi_exec_channel *index,
1579 union tgsi_exec_channel *index2D)
1580 {
1581 uint swizzle;
1582
1583 /* We start with a direct index into a register file.
1584 *
1585 * file[1],
1586 * where:
1587 * file = Register.File
1588 * [1] = Register.Index
1589 */
1590 index->i[0] =
1591 index->i[1] =
1592 index->i[2] =
1593 index->i[3] = reg->Register.Index;
1594
1595 /* There is an extra source register that indirectly subscripts
1596 * a register file. The direct index now becomes an offset
1597 * that is being added to the indirect register.
1598 *
1599 * file[ind[2].x+1],
1600 * where:
1601 * ind = Indirect.File
1602 * [2] = Indirect.Index
1603 * .x = Indirect.SwizzleX
1604 */
1605 if (reg->Register.Indirect) {
1606 union tgsi_exec_channel index2;
1607 union tgsi_exec_channel indir_index;
1608 const uint execmask = mach->ExecMask;
1609 uint i;
1610
1611 /* which address register (always zero now) */
1612 index2.i[0] =
1613 index2.i[1] =
1614 index2.i[2] =
1615 index2.i[3] = reg->Indirect.Index;
1616 /* get current value of address register[swizzle] */
1617 swizzle = reg->Indirect.Swizzle;
1618 fetch_src_file_channel(mach,
1619 reg->Indirect.File,
1620 swizzle,
1621 &index2,
1622 &ZeroVec,
1623 &indir_index);
1624
1625 /* add value of address register to the offset */
1626 index->i[0] += indir_index.i[0];
1627 index->i[1] += indir_index.i[1];
1628 index->i[2] += indir_index.i[2];
1629 index->i[3] += indir_index.i[3];
1630
1631 /* for disabled execution channels, zero-out the index to
1632 * avoid using a potential garbage value.
1633 */
1634 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1635 if ((execmask & (1 << i)) == 0)
1636 index->i[i] = 0;
1637 }
1638 }
1639
1640 /* There is an extra source register that is a second
1641 * subscript to a register file. Effectively it means that
1642 * the register file is actually a 2D array of registers.
1643 *
1644 * file[3][1],
1645 * where:
1646 * [3] = Dimension.Index
1647 */
1648 if (reg->Register.Dimension) {
1649 index2D->i[0] =
1650 index2D->i[1] =
1651 index2D->i[2] =
1652 index2D->i[3] = reg->Dimension.Index;
1653
1654 /* Again, the second subscript index can be addressed indirectly
1655 * identically to the first one.
1656 * Nothing stops us from indirectly addressing the indirect register,
1657 * but there is no need for that, so we won't exercise it.
1658 *
1659 * file[ind[4].y+3][1],
1660 * where:
1661 * ind = DimIndirect.File
1662 * [4] = DimIndirect.Index
1663 * .y = DimIndirect.SwizzleX
1664 */
1665 if (reg->Dimension.Indirect) {
1666 union tgsi_exec_channel index2;
1667 union tgsi_exec_channel indir_index;
1668 const uint execmask = mach->ExecMask;
1669 uint i;
1670
1671 index2.i[0] =
1672 index2.i[1] =
1673 index2.i[2] =
1674 index2.i[3] = reg->DimIndirect.Index;
1675
1676 swizzle = reg->DimIndirect.Swizzle;
1677 fetch_src_file_channel(mach,
1678 reg->DimIndirect.File,
1679 swizzle,
1680 &index2,
1681 &ZeroVec,
1682 &indir_index);
1683
1684 index2D->i[0] += indir_index.i[0];
1685 index2D->i[1] += indir_index.i[1];
1686 index2D->i[2] += indir_index.i[2];
1687 index2D->i[3] += indir_index.i[3];
1688
1689 /* for disabled execution channels, zero-out the index to
1690 * avoid using a potential garbage value.
1691 */
1692 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1693 if ((execmask & (1 << i)) == 0) {
1694 index2D->i[i] = 0;
1695 }
1696 }
1697 }
1698
1699 /* If by any chance there was a need for a 3D array of register
1700 * files, we would have to check whether Dimension is followed
1701 * by a dimension register and continue the saga.
1702 */
1703 } else {
1704 index2D->i[0] =
1705 index2D->i[1] =
1706 index2D->i[2] =
1707 index2D->i[3] = 0;
1708 }
1709 }
1710
1711
1712 static void
1713 fetch_source_d(const struct tgsi_exec_machine *mach,
1714 union tgsi_exec_channel *chan,
1715 const struct tgsi_full_src_register *reg,
1716 const uint chan_index)
1717 {
1718 union tgsi_exec_channel index;
1719 union tgsi_exec_channel index2D;
1720 uint swizzle;
1721
1722 get_index_registers(mach, reg, &index, &index2D);
1723
1724
1725 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
1726 fetch_src_file_channel(mach,
1727 reg->Register.File,
1728 swizzle,
1729 &index,
1730 &index2D,
1731 chan);
1732 }
1733
1734 static void
1735 fetch_source(const struct tgsi_exec_machine *mach,
1736 union tgsi_exec_channel *chan,
1737 const struct tgsi_full_src_register *reg,
1738 const uint chan_index,
1739 enum tgsi_exec_datatype src_datatype)
1740 {
1741 fetch_source_d(mach, chan, reg, chan_index);
1742
1743 if (reg->Register.Absolute) {
1744 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1745 micro_abs(chan, chan);
1746 } else {
1747 micro_iabs(chan, chan);
1748 }
1749 }
1750
1751 if (reg->Register.Negate) {
1752 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1753 micro_neg(chan, chan);
1754 } else {
1755 micro_ineg(chan, chan);
1756 }
1757 }
1758 }
1759
1760 static union tgsi_exec_channel *
1761 store_dest_dstret(struct tgsi_exec_machine *mach,
1762 const union tgsi_exec_channel *chan,
1763 const struct tgsi_full_dst_register *reg,
1764 uint chan_index,
1765 enum tgsi_exec_datatype dst_datatype)
1766 {
1767 static union tgsi_exec_channel null;
1768 union tgsi_exec_channel *dst;
1769 union tgsi_exec_channel index2D;
1770 int offset = 0; /* indirection offset */
1771 int index;
1772
1773 /* for debugging */
1774 if (0 && dst_datatype == TGSI_EXEC_DATA_FLOAT) {
1775 check_inf_or_nan(chan);
1776 }
1777
1778 /* There is an extra source register that indirectly subscripts
1779 * a register file. The direct index now becomes an offset
1780 * that is being added to the indirect register.
1781 *
1782 * file[ind[2].x+1],
1783 * where:
1784 * ind = Indirect.File
1785 * [2] = Indirect.Index
1786 * .x = Indirect.SwizzleX
1787 */
1788 if (reg->Register.Indirect) {
1789 union tgsi_exec_channel index;
1790 union tgsi_exec_channel indir_index;
1791 uint swizzle;
1792
1793 /* which address register (always zero for now) */
1794 index.i[0] =
1795 index.i[1] =
1796 index.i[2] =
1797 index.i[3] = reg->Indirect.Index;
1798
1799 /* get current value of address register[swizzle] */
1800 swizzle = reg->Indirect.Swizzle;
1801
1802 /* fetch values from the address/indirection register */
1803 fetch_src_file_channel(mach,
1804 reg->Indirect.File,
1805 swizzle,
1806 &index,
1807 &ZeroVec,
1808 &indir_index);
1809
1810 /* save indirection offset */
1811 offset = indir_index.i[0];
1812 }
1813
1814 /* There is an extra source register that is a second
1815 * subscript to a register file. Effectively it means that
1816 * the register file is actually a 2D array of registers.
1817 *
1818 * file[3][1],
1819 * where:
1820 * [3] = Dimension.Index
1821 */
1822 if (reg->Register.Dimension) {
1823 index2D.i[0] =
1824 index2D.i[1] =
1825 index2D.i[2] =
1826 index2D.i[3] = reg->Dimension.Index;
1827
1828 /* Again, the second subscript index can be addressed indirectly
1829 * identically to the first one.
1830 * Nothing stops us from indirectly addressing the indirect register,
1831 * but there is no need for that, so we won't exercise it.
1832 *
1833 * file[ind[4].y+3][1],
1834 * where:
1835 * ind = DimIndirect.File
1836 * [4] = DimIndirect.Index
1837 * .y = DimIndirect.SwizzleX
1838 */
1839 if (reg->Dimension.Indirect) {
1840 union tgsi_exec_channel index2;
1841 union tgsi_exec_channel indir_index;
1842 const uint execmask = mach->ExecMask;
1843 unsigned swizzle;
1844 uint i;
1845
1846 index2.i[0] =
1847 index2.i[1] =
1848 index2.i[2] =
1849 index2.i[3] = reg->DimIndirect.Index;
1850
1851 swizzle = reg->DimIndirect.Swizzle;
1852 fetch_src_file_channel(mach,
1853 reg->DimIndirect.File,
1854 swizzle,
1855 &index2,
1856 &ZeroVec,
1857 &indir_index);
1858
1859 index2D.i[0] += indir_index.i[0];
1860 index2D.i[1] += indir_index.i[1];
1861 index2D.i[2] += indir_index.i[2];
1862 index2D.i[3] += indir_index.i[3];
1863
1864 /* for disabled execution channels, zero-out the index to
1865 * avoid using a potential garbage value.
1866 */
1867 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1868 if ((execmask & (1 << i)) == 0) {
1869 index2D.i[i] = 0;
1870 }
1871 }
1872 }
1873
1874 /* If by any chance there was a need for a 3D array of register
1875 * files, we would have to check whether Dimension is followed
1876 * by a dimension register and continue the saga.
1877 */
1878 } else {
1879 index2D.i[0] =
1880 index2D.i[1] =
1881 index2D.i[2] =
1882 index2D.i[3] = 0;
1883 }
1884
1885 switch (reg->Register.File) {
1886 case TGSI_FILE_NULL:
1887 dst = &null;
1888 break;
1889
1890 case TGSI_FILE_OUTPUT:
1891 index = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
1892 + reg->Register.Index;
1893 dst = &mach->Outputs[offset + index].xyzw[chan_index];
1894 #if 0
1895 debug_printf("NumOutputs = %d, TEMP_O_C/I = %d, redindex = %d\n",
1896 mach->NumOutputs, mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0],
1897 reg->Register.Index);
1898 if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
1899 debug_printf("STORING OUT[%d] mask(%d), = (", offset + index, execmask);
1900 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1901 if (execmask & (1 << i))
1902 debug_printf("%f, ", chan->f[i]);
1903 debug_printf(")\n");
1904 }
1905 #endif
1906 break;
1907
1908 case TGSI_FILE_TEMPORARY:
1909 index = reg->Register.Index;
1910 assert( index < TGSI_EXEC_NUM_TEMPS );
1911 dst = &mach->Temps[offset + index].xyzw[chan_index];
1912 break;
1913
1914 case TGSI_FILE_ADDRESS:
1915 index = reg->Register.Index;
1916 dst = &mach->Addrs[index].xyzw[chan_index];
1917 break;
1918
1919 default:
1920 assert( 0 );
1921 return NULL;
1922 }
1923
1924 return dst;
1925 }
1926
1927 static void
1928 store_dest_double(struct tgsi_exec_machine *mach,
1929 const union tgsi_exec_channel *chan,
1930 const struct tgsi_full_dst_register *reg,
1931 uint chan_index,
1932 enum tgsi_exec_datatype dst_datatype)
1933 {
1934 union tgsi_exec_channel *dst;
1935 const uint execmask = mach->ExecMask;
1936 int i;
1937
1938 dst = store_dest_dstret(mach, chan, reg, chan_index, dst_datatype);
1939 if (!dst)
1940 return;
1941
1942 /* doubles path */
1943 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1944 if (execmask & (1 << i))
1945 dst->i[i] = chan->i[i];
1946 }
1947
1948 static void
1949 store_dest(struct tgsi_exec_machine *mach,
1950 const union tgsi_exec_channel *chan,
1951 const struct tgsi_full_dst_register *reg,
1952 const struct tgsi_full_instruction *inst,
1953 uint chan_index,
1954 enum tgsi_exec_datatype dst_datatype)
1955 {
1956 union tgsi_exec_channel *dst;
1957 const uint execmask = mach->ExecMask;
1958 int i;
1959
1960 dst = store_dest_dstret(mach, chan, reg, chan_index, dst_datatype);
1961 if (!dst)
1962 return;
1963
1964 if (!inst->Instruction.Saturate) {
1965 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1966 if (execmask & (1 << i))
1967 dst->i[i] = chan->i[i];
1968 }
1969 else {
1970 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1971 if (execmask & (1 << i)) {
1972 if (chan->f[i] < 0.0f)
1973 dst->f[i] = 0.0f;
1974 else if (chan->f[i] > 1.0f)
1975 dst->f[i] = 1.0f;
1976 else
1977 dst->i[i] = chan->i[i];
1978 }
1979 }
1980 }
1981
1982 #define FETCH(VAL,INDEX,CHAN)\
1983 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
1984
1985 #define IFETCH(VAL,INDEX,CHAN)\
1986 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_INT)
1987
1988
1989 /**
1990 * Execute ARB-style KIL which is predicated by a src register.
1991 * Kill fragment if any of the four values is less than zero.
1992 */
1993 static void
1994 exec_kill_if(struct tgsi_exec_machine *mach,
1995 const struct tgsi_full_instruction *inst)
1996 {
1997 uint uniquemask;
1998 uint chan_index;
1999 uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
2000 union tgsi_exec_channel r[1];
2001
2002 /* This mask stores component bits that were already tested. */
2003 uniquemask = 0;
2004
2005 for (chan_index = 0; chan_index < 4; chan_index++)
2006 {
2007 uint swizzle;
2008 uint i;
2009
2010 /* unswizzle channel */
2011 swizzle = tgsi_util_get_full_src_register_swizzle (
2012 &inst->Src[0],
2013 chan_index);
2014
2015 /* check if the component has not been already tested */
2016 if (uniquemask & (1 << swizzle))
2017 continue;
2018 uniquemask |= 1 << swizzle;
2019
2020 FETCH(&r[0], 0, chan_index);
2021 for (i = 0; i < 4; i++)
2022 if (r[0].f[i] < 0.0f)
2023 kilmask |= 1 << i;
2024 }
2025
2026 /* restrict to fragments currently executing */
2027 kilmask &= mach->ExecMask;
2028
2029 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
2030 }
2031
2032 /**
2033 * Unconditional fragment kill/discard.
2034 */
2035 static void
2036 exec_kill(struct tgsi_exec_machine *mach)
2037 {
2038 uint kilmask; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
2039
2040 /* kill fragment for all fragments currently executing */
2041 kilmask = mach->ExecMask;
2042 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
2043 }
2044
2045 static void
2046 emit_vertex(struct tgsi_exec_machine *mach,
2047 const struct tgsi_full_instruction *inst)
2048 {
2049 union tgsi_exec_channel r[1];
2050 unsigned stream_id;
2051 unsigned *prim_count;
2052 /* FIXME: check for exec mask correctly
2053 unsigned i;
2054 for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
2055 if ((mach->ExecMask & (1 << i)))
2056 */
2057 IFETCH(&r[0], 0, TGSI_CHAN_X);
2058 stream_id = r[0].u[0];
2059 prim_count = &mach->Temps[temp_prim_idxs[stream_id].idx].xyzw[temp_prim_idxs[stream_id].chan].u[0];
2060 if (mach->ExecMask) {
2061 if (mach->Primitives[stream_id][*prim_count] >= mach->MaxOutputVertices)
2062 return;
2063
2064 if (mach->Primitives[stream_id][*prim_count] == 0)
2065 mach->PrimitiveOffsets[stream_id][*prim_count] = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0];
2066 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += mach->NumOutputs;
2067 mach->Primitives[stream_id][*prim_count]++;
2068 }
2069 }
2070
2071 static void
2072 emit_primitive(struct tgsi_exec_machine *mach,
2073 const struct tgsi_full_instruction *inst)
2074 {
2075 unsigned *prim_count;
2076 union tgsi_exec_channel r[1];
2077 unsigned stream_id = 0;
2078 /* FIXME: check for exec mask correctly
2079 unsigned i;
2080 for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
2081 if ((mach->ExecMask & (1 << i)))
2082 */
2083 if (inst) {
2084 IFETCH(&r[0], 0, TGSI_CHAN_X);
2085 stream_id = r[0].u[0];
2086 }
2087 prim_count = &mach->Temps[temp_prim_idxs[stream_id].idx].xyzw[temp_prim_idxs[stream_id].chan].u[0];
2088 if (mach->ExecMask) {
2089 ++(*prim_count);
2090 debug_assert((*prim_count * mach->NumOutputs) < mach->MaxGeometryShaderOutputs);
2091 mach->Primitives[stream_id][*prim_count] = 0;
2092 }
2093 }
2094
2095 static void
2096 conditional_emit_primitive(struct tgsi_exec_machine *mach)
2097 {
2098 if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
2099 int emitted_verts =
2100 mach->Primitives[0][mach->Temps[temp_prim_idxs[0].idx].xyzw[temp_prim_idxs[0].chan].u[0]];
2101 if (emitted_verts) {
2102 emit_primitive(mach, NULL);
2103 }
2104 }
2105 }
2106
2107
2108 /*
2109 * Fetch four texture samples using STR texture coordinates.
2110 */
2111 static void
2112 fetch_texel( struct tgsi_sampler *sampler,
2113 const unsigned sview_idx,
2114 const unsigned sampler_idx,
2115 const union tgsi_exec_channel *s,
2116 const union tgsi_exec_channel *t,
2117 const union tgsi_exec_channel *p,
2118 const union tgsi_exec_channel *c0,
2119 const union tgsi_exec_channel *c1,
2120 float derivs[3][2][TGSI_QUAD_SIZE],
2121 const int8_t offset[3],
2122 enum tgsi_sampler_control control,
2123 union tgsi_exec_channel *r,
2124 union tgsi_exec_channel *g,
2125 union tgsi_exec_channel *b,
2126 union tgsi_exec_channel *a )
2127 {
2128 uint j;
2129 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2130
2131 /* FIXME: handle explicit derivs, offsets */
2132 sampler->get_samples(sampler, sview_idx, sampler_idx,
2133 s->f, t->f, p->f, c0->f, c1->f, derivs, offset, control, rgba);
2134
2135 for (j = 0; j < 4; j++) {
2136 r->f[j] = rgba[0][j];
2137 g->f[j] = rgba[1][j];
2138 b->f[j] = rgba[2][j];
2139 a->f[j] = rgba[3][j];
2140 }
2141 }
2142
2143
2144 #define TEX_MODIFIER_NONE 0
2145 #define TEX_MODIFIER_PROJECTED 1
2146 #define TEX_MODIFIER_LOD_BIAS 2
2147 #define TEX_MODIFIER_EXPLICIT_LOD 3
2148 #define TEX_MODIFIER_LEVEL_ZERO 4
2149 #define TEX_MODIFIER_GATHER 5
2150
2151 /*
2152 * Fetch all 3 (for s,t,r coords) texel offsets, put them into int array.
2153 */
2154 static void
2155 fetch_texel_offsets(struct tgsi_exec_machine *mach,
2156 const struct tgsi_full_instruction *inst,
2157 int8_t offsets[3])
2158 {
2159 if (inst->Texture.NumOffsets == 1) {
2160 union tgsi_exec_channel index;
2161 union tgsi_exec_channel offset[3];
2162 index.i[0] = index.i[1] = index.i[2] = index.i[3] = inst->TexOffsets[0].Index;
2163 fetch_src_file_channel(mach, inst->TexOffsets[0].File,
2164 inst->TexOffsets[0].SwizzleX, &index, &ZeroVec, &offset[0]);
2165 fetch_src_file_channel(mach, inst->TexOffsets[0].File,
2166 inst->TexOffsets[0].SwizzleY, &index, &ZeroVec, &offset[1]);
2167 fetch_src_file_channel(mach, inst->TexOffsets[0].File,
2168 inst->TexOffsets[0].SwizzleZ, &index, &ZeroVec, &offset[2]);
2169 offsets[0] = offset[0].i[0];
2170 offsets[1] = offset[1].i[0];
2171 offsets[2] = offset[2].i[0];
2172 } else {
2173 assert(inst->Texture.NumOffsets == 0);
2174 offsets[0] = offsets[1] = offsets[2] = 0;
2175 }
2176 }
2177
2178
2179 /*
2180 * Fetch dx and dy values for one channel (s, t or r).
2181 * Put dx values into one float array, dy values into another.
2182 */
2183 static void
2184 fetch_assign_deriv_channel(struct tgsi_exec_machine *mach,
2185 const struct tgsi_full_instruction *inst,
2186 unsigned regdsrcx,
2187 unsigned chan,
2188 float derivs[2][TGSI_QUAD_SIZE])
2189 {
2190 union tgsi_exec_channel d;
2191 FETCH(&d, regdsrcx, chan);
2192 derivs[0][0] = d.f[0];
2193 derivs[0][1] = d.f[1];
2194 derivs[0][2] = d.f[2];
2195 derivs[0][3] = d.f[3];
2196 FETCH(&d, regdsrcx + 1, chan);
2197 derivs[1][0] = d.f[0];
2198 derivs[1][1] = d.f[1];
2199 derivs[1][2] = d.f[2];
2200 derivs[1][3] = d.f[3];
2201 }
2202
2203 static uint
2204 fetch_sampler_unit(struct tgsi_exec_machine *mach,
2205 const struct tgsi_full_instruction *inst,
2206 uint sampler)
2207 {
2208 uint unit = 0;
2209 int i;
2210 if (inst->Src[sampler].Register.Indirect) {
2211 const struct tgsi_full_src_register *reg = &inst->Src[sampler];
2212 union tgsi_exec_channel indir_index, index2;
2213 const uint execmask = mach->ExecMask;
2214 index2.i[0] =
2215 index2.i[1] =
2216 index2.i[2] =
2217 index2.i[3] = reg->Indirect.Index;
2218
2219 fetch_src_file_channel(mach,
2220 reg->Indirect.File,
2221 reg->Indirect.Swizzle,
2222 &index2,
2223 &ZeroVec,
2224 &indir_index);
2225 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2226 if (execmask & (1 << i)) {
2227 unit = inst->Src[sampler].Register.Index + indir_index.i[i];
2228 break;
2229 }
2230 }
2231
2232 } else {
2233 unit = inst->Src[sampler].Register.Index;
2234 }
2235 return unit;
2236 }
2237
2238 /*
2239 * execute a texture instruction.
2240 *
2241 * modifier is used to control the channel routing for the
2242 * instruction variants like proj, lod, and texture with lod bias.
2243 * sampler indicates which src register the sampler is contained in.
2244 */
2245 static void
2246 exec_tex(struct tgsi_exec_machine *mach,
2247 const struct tgsi_full_instruction *inst,
2248 uint modifier, uint sampler)
2249 {
2250 const union tgsi_exec_channel *args[5], *proj = NULL;
2251 union tgsi_exec_channel r[5];
2252 enum tgsi_sampler_control control = TGSI_SAMPLER_LOD_NONE;
2253 uint chan;
2254 uint unit;
2255 int8_t offsets[3];
2256 int dim, shadow_ref, i;
2257
2258 unit = fetch_sampler_unit(mach, inst, sampler);
2259 /* always fetch all 3 offsets, overkill but keeps code simple */
2260 fetch_texel_offsets(mach, inst, offsets);
2261
2262 assert(modifier != TEX_MODIFIER_LEVEL_ZERO);
2263 assert(inst->Texture.Texture != TGSI_TEXTURE_BUFFER);
2264
2265 dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture);
2266 shadow_ref = tgsi_util_get_shadow_ref_src_index(inst->Texture.Texture);
2267
2268 assert(dim <= 4);
2269 if (shadow_ref >= 0)
2270 assert(shadow_ref >= dim && shadow_ref < (int)ARRAY_SIZE(args));
2271
2272 /* fetch modifier to the last argument */
2273 if (modifier != TEX_MODIFIER_NONE) {
2274 const int last = ARRAY_SIZE(args) - 1;
2275
2276 /* fetch modifier from src0.w or src1.x */
2277 if (sampler == 1) {
2278 assert(dim <= TGSI_CHAN_W && shadow_ref != TGSI_CHAN_W);
2279 FETCH(&r[last], 0, TGSI_CHAN_W);
2280 }
2281 else {
2282 FETCH(&r[last], 1, TGSI_CHAN_X);
2283 }
2284
2285 if (modifier != TEX_MODIFIER_PROJECTED) {
2286 args[last] = &r[last];
2287 }
2288 else {
2289 proj = &r[last];
2290 args[last] = &ZeroVec;
2291 }
2292
2293 /* point unused arguments to zero vector */
2294 for (i = dim; i < last; i++)
2295 args[i] = &ZeroVec;
2296
2297 if (modifier == TEX_MODIFIER_EXPLICIT_LOD)
2298 control = TGSI_SAMPLER_LOD_EXPLICIT;
2299 else if (modifier == TEX_MODIFIER_LOD_BIAS)
2300 control = TGSI_SAMPLER_LOD_BIAS;
2301 else if (modifier == TEX_MODIFIER_GATHER)
2302 control = TGSI_SAMPLER_GATHER;
2303 }
2304 else {
2305 for (i = dim; i < (int)ARRAY_SIZE(args); i++)
2306 args[i] = &ZeroVec;
2307 }
2308
2309 /* fetch coordinates */
2310 for (i = 0; i < dim; i++) {
2311 FETCH(&r[i], 0, TGSI_CHAN_X + i);
2312
2313 if (proj)
2314 micro_div(&r[i], &r[i], proj);
2315
2316 args[i] = &r[i];
2317 }
2318
2319 /* fetch reference value */
2320 if (shadow_ref >= 0) {
2321 FETCH(&r[shadow_ref], shadow_ref / 4, TGSI_CHAN_X + (shadow_ref % 4));
2322
2323 if (proj)
2324 micro_div(&r[shadow_ref], &r[shadow_ref], proj);
2325
2326 args[shadow_ref] = &r[shadow_ref];
2327 }
2328
2329 fetch_texel(mach->Sampler, unit, unit,
2330 args[0], args[1], args[2], args[3], args[4],
2331 NULL, offsets, control,
2332 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2333
2334 #if 0
2335 debug_printf("fetch r: %g %g %g %g\n",
2336 r[0].f[0], r[0].f[1], r[0].f[2], r[0].f[3]);
2337 debug_printf("fetch g: %g %g %g %g\n",
2338 r[1].f[0], r[1].f[1], r[1].f[2], r[1].f[3]);
2339 debug_printf("fetch b: %g %g %g %g\n",
2340 r[2].f[0], r[2].f[1], r[2].f[2], r[2].f[3]);
2341 debug_printf("fetch a: %g %g %g %g\n",
2342 r[3].f[0], r[3].f[1], r[3].f[2], r[3].f[3]);
2343 #endif
2344
2345 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2346 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2347 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2348 }
2349 }
2350 }
2351
2352 static void
2353 exec_lodq(struct tgsi_exec_machine *mach,
2354 const struct tgsi_full_instruction *inst)
2355 {
2356 uint resource_unit, sampler_unit;
2357 unsigned dim;
2358 unsigned i;
2359 union tgsi_exec_channel coords[4];
2360 const union tgsi_exec_channel *args[ARRAY_SIZE(coords)];
2361 union tgsi_exec_channel r[2];
2362
2363 resource_unit = fetch_sampler_unit(mach, inst, 1);
2364 if (inst->Instruction.Opcode == TGSI_OPCODE_LOD) {
2365 uint target = mach->SamplerViews[resource_unit].Resource;
2366 dim = tgsi_util_get_texture_coord_dim(target);
2367 sampler_unit = fetch_sampler_unit(mach, inst, 2);
2368 } else {
2369 dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture);
2370 sampler_unit = resource_unit;
2371 }
2372 assert(dim <= ARRAY_SIZE(coords));
2373 /* fetch coordinates */
2374 for (i = 0; i < dim; i++) {
2375 FETCH(&coords[i], 0, TGSI_CHAN_X + i);
2376 args[i] = &coords[i];
2377 }
2378 for (i = dim; i < ARRAY_SIZE(coords); i++) {
2379 args[i] = &ZeroVec;
2380 }
2381 mach->Sampler->query_lod(mach->Sampler, resource_unit, sampler_unit,
2382 args[0]->f,
2383 args[1]->f,
2384 args[2]->f,
2385 args[3]->f,
2386 TGSI_SAMPLER_LOD_NONE,
2387 r[0].f,
2388 r[1].f);
2389
2390 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2391 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X,
2392 TGSI_EXEC_DATA_FLOAT);
2393 }
2394 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2395 store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Y,
2396 TGSI_EXEC_DATA_FLOAT);
2397 }
2398 if (inst->Instruction.Opcode == TGSI_OPCODE_LOD) {
2399 unsigned char swizzles[4];
2400 unsigned chan;
2401 swizzles[0] = inst->Src[1].Register.SwizzleX;
2402 swizzles[1] = inst->Src[1].Register.SwizzleY;
2403 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2404 swizzles[3] = inst->Src[1].Register.SwizzleW;
2405
2406 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2407 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2408 if (swizzles[chan] >= 2) {
2409 store_dest(mach, &ZeroVec,
2410 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2411 } else {
2412 store_dest(mach, &r[swizzles[chan]],
2413 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2414 }
2415 }
2416 }
2417 } else {
2418 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2419 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X,
2420 TGSI_EXEC_DATA_FLOAT);
2421 }
2422 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2423 store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Y,
2424 TGSI_EXEC_DATA_FLOAT);
2425 }
2426 }
2427 }
2428
2429 static void
2430 exec_txd(struct tgsi_exec_machine *mach,
2431 const struct tgsi_full_instruction *inst)
2432 {
2433 union tgsi_exec_channel r[4];
2434 float derivs[3][2][TGSI_QUAD_SIZE];
2435 uint chan;
2436 uint unit;
2437 int8_t offsets[3];
2438
2439 unit = fetch_sampler_unit(mach, inst, 3);
2440 /* always fetch all 3 offsets, overkill but keeps code simple */
2441 fetch_texel_offsets(mach, inst, offsets);
2442
2443 switch (inst->Texture.Texture) {
2444 case TGSI_TEXTURE_1D:
2445 FETCH(&r[0], 0, TGSI_CHAN_X);
2446
2447 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2448
2449 fetch_texel(mach->Sampler, unit, unit,
2450 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2451 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2452 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2453 break;
2454
2455 case TGSI_TEXTURE_SHADOW1D:
2456 case TGSI_TEXTURE_1D_ARRAY:
2457 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2458 /* SHADOW1D/1D_ARRAY would not need Y/Z respectively, but don't bother */
2459 FETCH(&r[0], 0, TGSI_CHAN_X);
2460 FETCH(&r[1], 0, TGSI_CHAN_Y);
2461 FETCH(&r[2], 0, TGSI_CHAN_Z);
2462
2463 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2464
2465 fetch_texel(mach->Sampler, unit, unit,
2466 &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2467 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2468 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2469 break;
2470
2471 case TGSI_TEXTURE_2D:
2472 case TGSI_TEXTURE_RECT:
2473 FETCH(&r[0], 0, TGSI_CHAN_X);
2474 FETCH(&r[1], 0, TGSI_CHAN_Y);
2475
2476 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2477 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2478
2479 fetch_texel(mach->Sampler, unit, unit,
2480 &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2481 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2482 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2483 break;
2484
2485
2486 case TGSI_TEXTURE_SHADOW2D:
2487 case TGSI_TEXTURE_SHADOWRECT:
2488 case TGSI_TEXTURE_2D_ARRAY:
2489 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2490 /* only SHADOW2D_ARRAY actually needs W */
2491 FETCH(&r[0], 0, TGSI_CHAN_X);
2492 FETCH(&r[1], 0, TGSI_CHAN_Y);
2493 FETCH(&r[2], 0, TGSI_CHAN_Z);
2494 FETCH(&r[3], 0, TGSI_CHAN_W);
2495
2496 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2497 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2498
2499 fetch_texel(mach->Sampler, unit, unit,
2500 &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
2501 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2502 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2503 break;
2504
2505 case TGSI_TEXTURE_3D:
2506 case TGSI_TEXTURE_CUBE:
2507 case TGSI_TEXTURE_CUBE_ARRAY:
2508 case TGSI_TEXTURE_SHADOWCUBE:
2509 /* only TEXTURE_CUBE_ARRAY and TEXTURE_SHADOWCUBE actually need W */
2510 FETCH(&r[0], 0, TGSI_CHAN_X);
2511 FETCH(&r[1], 0, TGSI_CHAN_Y);
2512 FETCH(&r[2], 0, TGSI_CHAN_Z);
2513 FETCH(&r[3], 0, TGSI_CHAN_W);
2514
2515 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2516 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2517 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Z, derivs[2]);
2518
2519 fetch_texel(mach->Sampler, unit, unit,
2520 &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
2521 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2522 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2523 break;
2524
2525 default:
2526 assert(0);
2527 }
2528
2529 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2530 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2531 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2532 }
2533 }
2534 }
2535
2536
2537 static void
2538 exec_txf(struct tgsi_exec_machine *mach,
2539 const struct tgsi_full_instruction *inst)
2540 {
2541 union tgsi_exec_channel r[4];
2542 uint chan;
2543 uint unit;
2544 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2545 int j;
2546 int8_t offsets[3];
2547 unsigned target;
2548
2549 unit = fetch_sampler_unit(mach, inst, 1);
2550 /* always fetch all 3 offsets, overkill but keeps code simple */
2551 fetch_texel_offsets(mach, inst, offsets);
2552
2553 IFETCH(&r[3], 0, TGSI_CHAN_W);
2554
2555 if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I ||
2556 inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I_MS) {
2557 target = mach->SamplerViews[unit].Resource;
2558 }
2559 else {
2560 target = inst->Texture.Texture;
2561 }
2562 switch(target) {
2563 case TGSI_TEXTURE_3D:
2564 case TGSI_TEXTURE_2D_ARRAY:
2565 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2566 case TGSI_TEXTURE_2D_ARRAY_MSAA:
2567 IFETCH(&r[2], 0, TGSI_CHAN_Z);
2568 /* fallthrough */
2569 case TGSI_TEXTURE_2D:
2570 case TGSI_TEXTURE_RECT:
2571 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2572 case TGSI_TEXTURE_SHADOW2D:
2573 case TGSI_TEXTURE_SHADOWRECT:
2574 case TGSI_TEXTURE_1D_ARRAY:
2575 case TGSI_TEXTURE_2D_MSAA:
2576 IFETCH(&r[1], 0, TGSI_CHAN_Y);
2577 /* fallthrough */
2578 case TGSI_TEXTURE_BUFFER:
2579 case TGSI_TEXTURE_1D:
2580 case TGSI_TEXTURE_SHADOW1D:
2581 IFETCH(&r[0], 0, TGSI_CHAN_X);
2582 break;
2583 default:
2584 assert(0);
2585 break;
2586 }
2587
2588 mach->Sampler->get_texel(mach->Sampler, unit, r[0].i, r[1].i, r[2].i, r[3].i,
2589 offsets, rgba);
2590
2591 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2592 r[0].f[j] = rgba[0][j];
2593 r[1].f[j] = rgba[1][j];
2594 r[2].f[j] = rgba[2][j];
2595 r[3].f[j] = rgba[3][j];
2596 }
2597
2598 if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I ||
2599 inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I_MS) {
2600 unsigned char swizzles[4];
2601 swizzles[0] = inst->Src[1].Register.SwizzleX;
2602 swizzles[1] = inst->Src[1].Register.SwizzleY;
2603 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2604 swizzles[3] = inst->Src[1].Register.SwizzleW;
2605
2606 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2607 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2608 store_dest(mach, &r[swizzles[chan]],
2609 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2610 }
2611 }
2612 }
2613 else {
2614 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2615 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2616 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2617 }
2618 }
2619 }
2620 }
2621
2622 static void
2623 exec_txq(struct tgsi_exec_machine *mach,
2624 const struct tgsi_full_instruction *inst)
2625 {
2626 int result[4];
2627 union tgsi_exec_channel r[4], src;
2628 uint chan;
2629 uint unit;
2630 int i,j;
2631
2632 unit = fetch_sampler_unit(mach, inst, 1);
2633
2634 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
2635
2636 /* XXX: This interface can't return per-pixel values */
2637 mach->Sampler->get_dims(mach->Sampler, unit, src.i[0], result);
2638
2639 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2640 for (j = 0; j < 4; j++) {
2641 r[j].i[i] = result[j];
2642 }
2643 }
2644
2645 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2646 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2647 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
2648 TGSI_EXEC_DATA_INT);
2649 }
2650 }
2651 }
2652
2653 static void
2654 exec_sample(struct tgsi_exec_machine *mach,
2655 const struct tgsi_full_instruction *inst,
2656 uint modifier, boolean compare)
2657 {
2658 const uint resource_unit = inst->Src[1].Register.Index;
2659 const uint sampler_unit = inst->Src[2].Register.Index;
2660 union tgsi_exec_channel r[5], c1;
2661 const union tgsi_exec_channel *lod = &ZeroVec;
2662 enum tgsi_sampler_control control = TGSI_SAMPLER_LOD_NONE;
2663 uint chan;
2664 unsigned char swizzles[4];
2665 int8_t offsets[3];
2666
2667 /* always fetch all 3 offsets, overkill but keeps code simple */
2668 fetch_texel_offsets(mach, inst, offsets);
2669
2670 assert(modifier != TEX_MODIFIER_PROJECTED);
2671
2672 if (modifier != TEX_MODIFIER_NONE) {
2673 if (modifier == TEX_MODIFIER_LOD_BIAS) {
2674 FETCH(&c1, 3, TGSI_CHAN_X);
2675 lod = &c1;
2676 control = TGSI_SAMPLER_LOD_BIAS;
2677 }
2678 else if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
2679 FETCH(&c1, 3, TGSI_CHAN_X);
2680 lod = &c1;
2681 control = TGSI_SAMPLER_LOD_EXPLICIT;
2682 }
2683 else if (modifier == TEX_MODIFIER_GATHER) {
2684 control = TGSI_SAMPLER_GATHER;
2685 }
2686 else {
2687 assert(modifier == TEX_MODIFIER_LEVEL_ZERO);
2688 control = TGSI_SAMPLER_LOD_ZERO;
2689 }
2690 }
2691
2692 FETCH(&r[0], 0, TGSI_CHAN_X);
2693
2694 switch (mach->SamplerViews[resource_unit].Resource) {
2695 case TGSI_TEXTURE_1D:
2696 if (compare) {
2697 FETCH(&r[2], 3, TGSI_CHAN_X);
2698 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2699 &r[0], &ZeroVec, &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2700 NULL, offsets, control,
2701 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2702 }
2703 else {
2704 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2705 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2706 NULL, offsets, control,
2707 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2708 }
2709 break;
2710
2711 case TGSI_TEXTURE_1D_ARRAY:
2712 case TGSI_TEXTURE_2D:
2713 case TGSI_TEXTURE_RECT:
2714 FETCH(&r[1], 0, TGSI_CHAN_Y);
2715 if (compare) {
2716 FETCH(&r[2], 3, TGSI_CHAN_X);
2717 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2718 &r[0], &r[1], &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2719 NULL, offsets, control,
2720 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2721 }
2722 else {
2723 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2724 &r[0], &r[1], &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2725 NULL, offsets, control,
2726 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2727 }
2728 break;
2729
2730 case TGSI_TEXTURE_2D_ARRAY:
2731 case TGSI_TEXTURE_3D:
2732 case TGSI_TEXTURE_CUBE:
2733 FETCH(&r[1], 0, TGSI_CHAN_Y);
2734 FETCH(&r[2], 0, TGSI_CHAN_Z);
2735 if(compare) {
2736 FETCH(&r[3], 3, TGSI_CHAN_X);
2737 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2738 &r[0], &r[1], &r[2], &r[3], lod,
2739 NULL, offsets, control,
2740 &r[0], &r[1], &r[2], &r[3]);
2741 }
2742 else {
2743 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2744 &r[0], &r[1], &r[2], &ZeroVec, lod,
2745 NULL, offsets, control,
2746 &r[0], &r[1], &r[2], &r[3]);
2747 }
2748 break;
2749
2750 case TGSI_TEXTURE_CUBE_ARRAY:
2751 FETCH(&r[1], 0, TGSI_CHAN_Y);
2752 FETCH(&r[2], 0, TGSI_CHAN_Z);
2753 FETCH(&r[3], 0, TGSI_CHAN_W);
2754 if(compare) {
2755 FETCH(&r[4], 3, TGSI_CHAN_X);
2756 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2757 &r[0], &r[1], &r[2], &r[3], &r[4],
2758 NULL, offsets, control,
2759 &r[0], &r[1], &r[2], &r[3]);
2760 }
2761 else {
2762 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2763 &r[0], &r[1], &r[2], &r[3], lod,
2764 NULL, offsets, control,
2765 &r[0], &r[1], &r[2], &r[3]);
2766 }
2767 break;
2768
2769
2770 default:
2771 assert(0);
2772 }
2773
2774 swizzles[0] = inst->Src[1].Register.SwizzleX;
2775 swizzles[1] = inst->Src[1].Register.SwizzleY;
2776 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2777 swizzles[3] = inst->Src[1].Register.SwizzleW;
2778
2779 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2780 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2781 store_dest(mach, &r[swizzles[chan]],
2782 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2783 }
2784 }
2785 }
2786
2787 static void
2788 exec_sample_d(struct tgsi_exec_machine *mach,
2789 const struct tgsi_full_instruction *inst)
2790 {
2791 const uint resource_unit = inst->Src[1].Register.Index;
2792 const uint sampler_unit = inst->Src[2].Register.Index;
2793 union tgsi_exec_channel r[4];
2794 float derivs[3][2][TGSI_QUAD_SIZE];
2795 uint chan;
2796 unsigned char swizzles[4];
2797 int8_t offsets[3];
2798
2799 /* always fetch all 3 offsets, overkill but keeps code simple */
2800 fetch_texel_offsets(mach, inst, offsets);
2801
2802 FETCH(&r[0], 0, TGSI_CHAN_X);
2803
2804 switch (mach->SamplerViews[resource_unit].Resource) {
2805 case TGSI_TEXTURE_1D:
2806 case TGSI_TEXTURE_1D_ARRAY:
2807 /* only 1D array actually needs Y */
2808 FETCH(&r[1], 0, TGSI_CHAN_Y);
2809
2810 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2811
2812 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2813 &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2814 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2815 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2816 break;
2817
2818 case TGSI_TEXTURE_2D:
2819 case TGSI_TEXTURE_RECT:
2820 case TGSI_TEXTURE_2D_ARRAY:
2821 /* only 2D array actually needs Z */
2822 FETCH(&r[1], 0, TGSI_CHAN_Y);
2823 FETCH(&r[2], 0, TGSI_CHAN_Z);
2824
2825 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2826 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2827
2828 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2829 &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* inputs */
2830 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2831 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2832 break;
2833
2834 case TGSI_TEXTURE_3D:
2835 case TGSI_TEXTURE_CUBE:
2836 case TGSI_TEXTURE_CUBE_ARRAY:
2837 /* only cube array actually needs W */
2838 FETCH(&r[1], 0, TGSI_CHAN_Y);
2839 FETCH(&r[2], 0, TGSI_CHAN_Z);
2840 FETCH(&r[3], 0, TGSI_CHAN_W);
2841
2842 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2843 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2844 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Z, derivs[2]);
2845
2846 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2847 &r[0], &r[1], &r[2], &r[3], &ZeroVec,
2848 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2849 &r[0], &r[1], &r[2], &r[3]);
2850 break;
2851
2852 default:
2853 assert(0);
2854 }
2855
2856 swizzles[0] = inst->Src[1].Register.SwizzleX;
2857 swizzles[1] = inst->Src[1].Register.SwizzleY;
2858 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2859 swizzles[3] = inst->Src[1].Register.SwizzleW;
2860
2861 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2862 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2863 store_dest(mach, &r[swizzles[chan]],
2864 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2865 }
2866 }
2867 }
2868
2869
2870 /**
2871 * Evaluate a constant-valued coefficient at the position of the
2872 * current quad.
2873 */
2874 static void
2875 eval_constant_coef(
2876 struct tgsi_exec_machine *mach,
2877 unsigned attrib,
2878 unsigned chan )
2879 {
2880 unsigned i;
2881
2882 for( i = 0; i < TGSI_QUAD_SIZE; i++ ) {
2883 mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
2884 }
2885 }
2886
2887 static void
2888 interp_constant_offset(
2889 UNUSED const struct tgsi_exec_machine *mach,
2890 UNUSED unsigned attrib,
2891 UNUSED unsigned chan,
2892 UNUSED float ofs_x,
2893 UNUSED float ofs_y,
2894 UNUSED union tgsi_exec_channel *out_chan)
2895 {
2896 }
2897
2898 /**
2899 * Evaluate a linear-valued coefficient at the position of the
2900 * current quad.
2901 */
2902 static void
2903 interp_linear_offset(
2904 const struct tgsi_exec_machine *mach,
2905 unsigned attrib,
2906 unsigned chan,
2907 float ofs_x,
2908 float ofs_y,
2909 union tgsi_exec_channel *out_chan)
2910 {
2911 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2912 const float dady = mach->InterpCoefs[attrib].dady[chan];
2913 const float delta = ofs_x * dadx + ofs_y * dady;
2914 out_chan->f[0] += delta;
2915 out_chan->f[1] += delta;
2916 out_chan->f[2] += delta;
2917 out_chan->f[3] += delta;
2918 }
2919
2920 static void
2921 eval_linear_coef(struct tgsi_exec_machine *mach,
2922 unsigned attrib,
2923 unsigned chan)
2924 {
2925 const float x = mach->QuadPos.xyzw[0].f[0];
2926 const float y = mach->QuadPos.xyzw[1].f[0];
2927 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2928 const float dady = mach->InterpCoefs[attrib].dady[chan];
2929 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2930
2931 mach->Inputs[attrib].xyzw[chan].f[0] = a0;
2932 mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
2933 mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
2934 mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
2935 }
2936
2937 /**
2938 * Evaluate a perspective-valued coefficient at the position of the
2939 * current quad.
2940 */
2941
2942 static void
2943 interp_perspective_offset(
2944 const struct tgsi_exec_machine *mach,
2945 unsigned attrib,
2946 unsigned chan,
2947 float ofs_x,
2948 float ofs_y,
2949 union tgsi_exec_channel *out_chan)
2950 {
2951 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2952 const float dady = mach->InterpCoefs[attrib].dady[chan];
2953 const float *w = mach->QuadPos.xyzw[3].f;
2954 const float delta = ofs_x * dadx + ofs_y * dady;
2955 out_chan->f[0] += delta / w[0];
2956 out_chan->f[1] += delta / w[1];
2957 out_chan->f[2] += delta / w[2];
2958 out_chan->f[3] += delta / w[3];
2959 }
2960
2961 static void
2962 eval_perspective_coef(
2963 struct tgsi_exec_machine *mach,
2964 unsigned attrib,
2965 unsigned chan )
2966 {
2967 const float x = mach->QuadPos.xyzw[0].f[0];
2968 const float y = mach->QuadPos.xyzw[1].f[0];
2969 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2970 const float dady = mach->InterpCoefs[attrib].dady[chan];
2971 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2972 const float *w = mach->QuadPos.xyzw[3].f;
2973 /* divide by W here */
2974 mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
2975 mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
2976 mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
2977 mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
2978 }
2979
2980
2981 typedef void (* eval_coef_func)(
2982 struct tgsi_exec_machine *mach,
2983 unsigned attrib,
2984 unsigned chan );
2985
2986 static void
2987 exec_declaration(struct tgsi_exec_machine *mach,
2988 const struct tgsi_full_declaration *decl)
2989 {
2990 if (decl->Declaration.File == TGSI_FILE_SAMPLER_VIEW) {
2991 mach->SamplerViews[decl->Range.First] = decl->SamplerView;
2992 return;
2993 }
2994
2995 if (mach->ShaderType == PIPE_SHADER_FRAGMENT) {
2996 if (decl->Declaration.File == TGSI_FILE_INPUT) {
2997 uint first, last, mask;
2998
2999 first = decl->Range.First;
3000 last = decl->Range.Last;
3001 mask = decl->Declaration.UsageMask;
3002
3003 /* XXX we could remove this special-case code since
3004 * mach->InterpCoefs[first].a0 should already have the
3005 * front/back-face value. But we should first update the
3006 * ureg code to emit the right UsageMask value (WRITEMASK_X).
3007 * Then, we could remove the tgsi_exec_machine::Face field.
3008 */
3009 /* XXX make FACE a system value */
3010 if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
3011 uint i;
3012
3013 assert(decl->Semantic.Index == 0);
3014 assert(first == last);
3015
3016 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3017 mach->Inputs[first].xyzw[0].f[i] = mach->Face;
3018 }
3019 } else {
3020 eval_coef_func eval;
3021 apply_sample_offset_func interp;
3022 uint i, j;
3023
3024 switch (decl->Interp.Interpolate) {
3025 case TGSI_INTERPOLATE_CONSTANT:
3026 eval = eval_constant_coef;
3027 interp = interp_constant_offset;
3028 break;
3029
3030 case TGSI_INTERPOLATE_LINEAR:
3031 eval = eval_linear_coef;
3032 interp = interp_linear_offset;
3033 break;
3034
3035 case TGSI_INTERPOLATE_PERSPECTIVE:
3036 eval = eval_perspective_coef;
3037 interp = interp_perspective_offset;
3038 break;
3039
3040 case TGSI_INTERPOLATE_COLOR:
3041 eval = mach->flatshade_color ? eval_constant_coef : eval_perspective_coef;
3042 interp = mach->flatshade_color ? interp_constant_offset : interp_perspective_offset;
3043 break;
3044
3045 default:
3046 assert(0);
3047 return;
3048 }
3049
3050 for (i = first; i <= last; i++)
3051 mach->InputSampleOffsetApply[i] = interp;
3052
3053 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3054 if (mask & (1 << j)) {
3055 for (i = first; i <= last; i++) {
3056 eval(mach, i, j);
3057 }
3058 }
3059 }
3060 }
3061
3062 if (DEBUG_EXECUTION) {
3063 uint i, j;
3064 for (i = first; i <= last; ++i) {
3065 debug_printf("IN[%2u] = ", i);
3066 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3067 if (j > 0) {
3068 debug_printf(" ");
3069 }
3070 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
3071 mach->Inputs[i].xyzw[0].f[j], mach->Inputs[i].xyzw[0].u[j],
3072 mach->Inputs[i].xyzw[1].f[j], mach->Inputs[i].xyzw[1].u[j],
3073 mach->Inputs[i].xyzw[2].f[j], mach->Inputs[i].xyzw[2].u[j],
3074 mach->Inputs[i].xyzw[3].f[j], mach->Inputs[i].xyzw[3].u[j]);
3075 }
3076 }
3077 }
3078 }
3079 }
3080
3081 }
3082
3083 typedef void (* micro_unary_op)(union tgsi_exec_channel *dst,
3084 const union tgsi_exec_channel *src);
3085
3086 static void
3087 exec_scalar_unary(struct tgsi_exec_machine *mach,
3088 const struct tgsi_full_instruction *inst,
3089 micro_unary_op op,
3090 enum tgsi_exec_datatype dst_datatype,
3091 enum tgsi_exec_datatype src_datatype)
3092 {
3093 unsigned int chan;
3094 union tgsi_exec_channel src;
3095 union tgsi_exec_channel dst;
3096
3097 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
3098 op(&dst, &src);
3099 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3100 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3101 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
3102 }
3103 }
3104 }
3105
3106 static void
3107 exec_vector_unary(struct tgsi_exec_machine *mach,
3108 const struct tgsi_full_instruction *inst,
3109 micro_unary_op op,
3110 enum tgsi_exec_datatype dst_datatype,
3111 enum tgsi_exec_datatype src_datatype)
3112 {
3113 unsigned int chan;
3114 struct tgsi_exec_vector dst;
3115
3116 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3117 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3118 union tgsi_exec_channel src;
3119
3120 fetch_source(mach, &src, &inst->Src[0], chan, src_datatype);
3121 op(&dst.xyzw[chan], &src);
3122 }
3123 }
3124 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3125 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3126 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3127 }
3128 }
3129 }
3130
3131 typedef void (* micro_binary_op)(union tgsi_exec_channel *dst,
3132 const union tgsi_exec_channel *src0,
3133 const union tgsi_exec_channel *src1);
3134
3135 static void
3136 exec_scalar_binary(struct tgsi_exec_machine *mach,
3137 const struct tgsi_full_instruction *inst,
3138 micro_binary_op op,
3139 enum tgsi_exec_datatype dst_datatype,
3140 enum tgsi_exec_datatype src_datatype)
3141 {
3142 unsigned int chan;
3143 union tgsi_exec_channel src[2];
3144 union tgsi_exec_channel dst;
3145
3146 fetch_source(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, src_datatype);
3147 fetch_source(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, src_datatype);
3148 op(&dst, &src[0], &src[1]);
3149 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3150 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3151 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
3152 }
3153 }
3154 }
3155
3156 static void
3157 exec_vector_binary(struct tgsi_exec_machine *mach,
3158 const struct tgsi_full_instruction *inst,
3159 micro_binary_op op,
3160 enum tgsi_exec_datatype dst_datatype,
3161 enum tgsi_exec_datatype src_datatype)
3162 {
3163 unsigned int chan;
3164 struct tgsi_exec_vector dst;
3165
3166 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3167 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3168 union tgsi_exec_channel src[2];
3169
3170 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3171 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3172 op(&dst.xyzw[chan], &src[0], &src[1]);
3173 }
3174 }
3175 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3176 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3177 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3178 }
3179 }
3180 }
3181
3182 typedef void (* micro_trinary_op)(union tgsi_exec_channel *dst,
3183 const union tgsi_exec_channel *src0,
3184 const union tgsi_exec_channel *src1,
3185 const union tgsi_exec_channel *src2);
3186
3187 static void
3188 exec_vector_trinary(struct tgsi_exec_machine *mach,
3189 const struct tgsi_full_instruction *inst,
3190 micro_trinary_op op,
3191 enum tgsi_exec_datatype dst_datatype,
3192 enum tgsi_exec_datatype src_datatype)
3193 {
3194 unsigned int chan;
3195 struct tgsi_exec_vector dst;
3196
3197 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3198 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3199 union tgsi_exec_channel src[3];
3200
3201 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3202 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3203 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
3204 op(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
3205 }
3206 }
3207 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3208 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3209 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3210 }
3211 }
3212 }
3213
3214 typedef void (* micro_quaternary_op)(union tgsi_exec_channel *dst,
3215 const union tgsi_exec_channel *src0,
3216 const union tgsi_exec_channel *src1,
3217 const union tgsi_exec_channel *src2,
3218 const union tgsi_exec_channel *src3);
3219
3220 static void
3221 exec_vector_quaternary(struct tgsi_exec_machine *mach,
3222 const struct tgsi_full_instruction *inst,
3223 micro_quaternary_op op,
3224 enum tgsi_exec_datatype dst_datatype,
3225 enum tgsi_exec_datatype src_datatype)
3226 {
3227 unsigned int chan;
3228 struct tgsi_exec_vector dst;
3229
3230 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3231 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3232 union tgsi_exec_channel src[4];
3233
3234 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3235 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3236 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
3237 fetch_source(mach, &src[3], &inst->Src[3], chan, src_datatype);
3238 op(&dst.xyzw[chan], &src[0], &src[1], &src[2], &src[3]);
3239 }
3240 }
3241 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3242 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3243 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3244 }
3245 }
3246 }
3247
3248 static void
3249 exec_dp3(struct tgsi_exec_machine *mach,
3250 const struct tgsi_full_instruction *inst)
3251 {
3252 unsigned int chan;
3253 union tgsi_exec_channel arg[3];
3254
3255 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3256 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3257 micro_mul(&arg[2], &arg[0], &arg[1]);
3258
3259 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
3260 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
3261 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
3262 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3263 }
3264
3265 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3266 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3267 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3268 }
3269 }
3270 }
3271
3272 static void
3273 exec_dp4(struct tgsi_exec_machine *mach,
3274 const struct tgsi_full_instruction *inst)
3275 {
3276 unsigned int chan;
3277 union tgsi_exec_channel arg[3];
3278
3279 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3280 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3281 micro_mul(&arg[2], &arg[0], &arg[1]);
3282
3283 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
3284 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
3285 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
3286 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3287 }
3288
3289 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3290 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3291 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3292 }
3293 }
3294 }
3295
3296 static void
3297 exec_dp2(struct tgsi_exec_machine *mach,
3298 const struct tgsi_full_instruction *inst)
3299 {
3300 unsigned int chan;
3301 union tgsi_exec_channel arg[3];
3302
3303 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3304 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3305 micro_mul(&arg[2], &arg[0], &arg[1]);
3306
3307 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3308 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3309 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3310
3311 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3312 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3313 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3314 }
3315 }
3316 }
3317
3318 static void
3319 exec_pk2h(struct tgsi_exec_machine *mach,
3320 const struct tgsi_full_instruction *inst)
3321 {
3322 unsigned chan;
3323 union tgsi_exec_channel arg[2], dst;
3324
3325 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3326 fetch_source(mach, &arg[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3327 for (chan = 0; chan < TGSI_QUAD_SIZE; chan++) {
3328 dst.u[chan] = util_float_to_half(arg[0].f[chan]) |
3329 (util_float_to_half(arg[1].f[chan]) << 16);
3330 }
3331 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3332 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3333 store_dest(mach, &dst, &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_UINT);
3334 }
3335 }
3336 }
3337
3338 static void
3339 exec_up2h(struct tgsi_exec_machine *mach,
3340 const struct tgsi_full_instruction *inst)
3341 {
3342 unsigned chan;
3343 union tgsi_exec_channel arg, dst[2];
3344
3345 fetch_source(mach, &arg, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3346 for (chan = 0; chan < TGSI_QUAD_SIZE; chan++) {
3347 dst[0].f[chan] = util_half_to_float(arg.u[chan] & 0xffff);
3348 dst[1].f[chan] = util_half_to_float(arg.u[chan] >> 16);
3349 }
3350 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3351 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3352 store_dest(mach, &dst[chan & 1], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3353 }
3354 }
3355 }
3356
3357 static void
3358 micro_ucmp(union tgsi_exec_channel *dst,
3359 const union tgsi_exec_channel *src0,
3360 const union tgsi_exec_channel *src1,
3361 const union tgsi_exec_channel *src2)
3362 {
3363 dst->f[0] = src0->u[0] ? src1->f[0] : src2->f[0];
3364 dst->f[1] = src0->u[1] ? src1->f[1] : src2->f[1];
3365 dst->f[2] = src0->u[2] ? src1->f[2] : src2->f[2];
3366 dst->f[3] = src0->u[3] ? src1->f[3] : src2->f[3];
3367 }
3368
3369 static void
3370 exec_ucmp(struct tgsi_exec_machine *mach,
3371 const struct tgsi_full_instruction *inst)
3372 {
3373 unsigned int chan;
3374 struct tgsi_exec_vector dst;
3375
3376 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3377 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3378 union tgsi_exec_channel src[3];
3379
3380 fetch_source(mach, &src[0], &inst->Src[0], chan,
3381 TGSI_EXEC_DATA_UINT);
3382 fetch_source(mach, &src[1], &inst->Src[1], chan,
3383 TGSI_EXEC_DATA_FLOAT);
3384 fetch_source(mach, &src[2], &inst->Src[2], chan,
3385 TGSI_EXEC_DATA_FLOAT);
3386 micro_ucmp(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
3387 }
3388 }
3389 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3390 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3391 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan,
3392 TGSI_EXEC_DATA_FLOAT);
3393 }
3394 }
3395 }
3396
3397 static void
3398 exec_dst(struct tgsi_exec_machine *mach,
3399 const struct tgsi_full_instruction *inst)
3400 {
3401 union tgsi_exec_channel r[2];
3402 union tgsi_exec_channel d[4];
3403
3404 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3405 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3406 fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3407 micro_mul(&d[TGSI_CHAN_Y], &r[0], &r[1]);
3408 }
3409 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3410 fetch_source(mach, &d[TGSI_CHAN_Z], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3411 }
3412 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3413 fetch_source(mach, &d[TGSI_CHAN_W], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3414 }
3415
3416 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3417 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3418 }
3419 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3420 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3421 }
3422 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3423 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3424 }
3425 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3426 store_dest(mach, &d[TGSI_CHAN_W], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3427 }
3428 }
3429
3430 static void
3431 exec_log(struct tgsi_exec_machine *mach,
3432 const struct tgsi_full_instruction *inst)
3433 {
3434 union tgsi_exec_channel r[3];
3435
3436 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3437 micro_abs(&r[2], &r[0]); /* r2 = abs(r0) */
3438 micro_lg2(&r[1], &r[2]); /* r1 = lg2(r2) */
3439 micro_flr(&r[0], &r[1]); /* r0 = floor(r1) */
3440 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3441 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3442 }
3443 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3444 micro_exp2(&r[0], &r[0]); /* r0 = 2 ^ r0 */
3445 micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */
3446 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3447 }
3448 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3449 store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3450 }
3451 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3452 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3453 }
3454 }
3455
3456 static void
3457 exec_exp(struct tgsi_exec_machine *mach,
3458 const struct tgsi_full_instruction *inst)
3459 {
3460 union tgsi_exec_channel r[3];
3461
3462 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3463 micro_flr(&r[1], &r[0]); /* r1 = floor(r0) */
3464 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3465 micro_exp2(&r[2], &r[1]); /* r2 = 2 ^ r1 */
3466 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3467 }
3468 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3469 micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */
3470 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3471 }
3472 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3473 micro_exp2(&r[2], &r[0]); /* r2 = 2 ^ r0 */
3474 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3475 }
3476 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3477 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3478 }
3479 }
3480
3481 static void
3482 exec_lit(struct tgsi_exec_machine *mach,
3483 const struct tgsi_full_instruction *inst)
3484 {
3485 union tgsi_exec_channel r[3];
3486 union tgsi_exec_channel d[3];
3487
3488 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) {
3489 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3490 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3491 fetch_source(mach, &r[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3492 micro_max(&r[1], &r[1], &ZeroVec);
3493
3494 fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3495 micro_min(&r[2], &r[2], &P128Vec);
3496 micro_max(&r[2], &r[2], &M128Vec);
3497 micro_pow(&r[1], &r[1], &r[2]);
3498 micro_lt(&d[TGSI_CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec);
3499 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3500 }
3501 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3502 micro_max(&d[TGSI_CHAN_Y], &r[0], &ZeroVec);
3503 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3504 }
3505 }
3506 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3507 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3508 }
3509
3510 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3511 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3512 }
3513 }
3514
3515 static void
3516 exec_break(struct tgsi_exec_machine *mach)
3517 {
3518 if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) {
3519 /* turn off loop channels for each enabled exec channel */
3520 mach->LoopMask &= ~mach->ExecMask;
3521 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3522 UPDATE_EXEC_MASK(mach);
3523 } else {
3524 assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH);
3525
3526 mach->Switch.mask = 0x0;
3527
3528 UPDATE_EXEC_MASK(mach);
3529 }
3530 }
3531
3532 static void
3533 exec_switch(struct tgsi_exec_machine *mach,
3534 const struct tgsi_full_instruction *inst)
3535 {
3536 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3537 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3538
3539 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3540 fetch_source(mach, &mach->Switch.selector, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3541 mach->Switch.mask = 0x0;
3542 mach->Switch.defaultMask = 0x0;
3543
3544 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3545 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH;
3546
3547 UPDATE_EXEC_MASK(mach);
3548 }
3549
3550 static void
3551 exec_case(struct tgsi_exec_machine *mach,
3552 const struct tgsi_full_instruction *inst)
3553 {
3554 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3555 union tgsi_exec_channel src;
3556 uint mask = 0;
3557
3558 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3559
3560 if (mach->Switch.selector.u[0] == src.u[0]) {
3561 mask |= 0x1;
3562 }
3563 if (mach->Switch.selector.u[1] == src.u[1]) {
3564 mask |= 0x2;
3565 }
3566 if (mach->Switch.selector.u[2] == src.u[2]) {
3567 mask |= 0x4;
3568 }
3569 if (mach->Switch.selector.u[3] == src.u[3]) {
3570 mask |= 0x8;
3571 }
3572
3573 mach->Switch.defaultMask |= mask;
3574
3575 mach->Switch.mask |= mask & prevMask;
3576
3577 UPDATE_EXEC_MASK(mach);
3578 }
3579
3580 /* FIXME: this will only work if default is last */
3581 static void
3582 exec_default(struct tgsi_exec_machine *mach)
3583 {
3584 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3585
3586 mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask;
3587
3588 UPDATE_EXEC_MASK(mach);
3589 }
3590
3591 static void
3592 exec_endswitch(struct tgsi_exec_machine *mach)
3593 {
3594 mach->Switch = mach->SwitchStack[--mach->SwitchStackTop];
3595 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3596
3597 UPDATE_EXEC_MASK(mach);
3598 }
3599
3600 typedef void (* micro_dop)(union tgsi_double_channel *dst,
3601 const union tgsi_double_channel *src);
3602
3603 typedef void (* micro_dop_sop)(union tgsi_double_channel *dst,
3604 const union tgsi_double_channel *src0,
3605 union tgsi_exec_channel *src1);
3606
3607 typedef void (* micro_dop_s)(union tgsi_double_channel *dst,
3608 const union tgsi_exec_channel *src);
3609
3610 typedef void (* micro_sop_d)(union tgsi_exec_channel *dst,
3611 const union tgsi_double_channel *src);
3612
3613 static void
3614 fetch_double_channel(struct tgsi_exec_machine *mach,
3615 union tgsi_double_channel *chan,
3616 const struct tgsi_full_src_register *reg,
3617 uint chan_0,
3618 uint chan_1)
3619 {
3620 union tgsi_exec_channel src[2];
3621 uint i;
3622
3623 fetch_source_d(mach, &src[0], reg, chan_0);
3624 fetch_source_d(mach, &src[1], reg, chan_1);
3625
3626 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3627 chan->u[i][0] = src[0].u[i];
3628 chan->u[i][1] = src[1].u[i];
3629 }
3630 if (reg->Register.Absolute) {
3631 micro_dabs(chan, chan);
3632 }
3633 if (reg->Register.Negate) {
3634 micro_dneg(chan, chan);
3635 }
3636 }
3637
3638 static void
3639 store_double_channel(struct tgsi_exec_machine *mach,
3640 const union tgsi_double_channel *chan,
3641 const struct tgsi_full_dst_register *reg,
3642 const struct tgsi_full_instruction *inst,
3643 uint chan_0,
3644 uint chan_1)
3645 {
3646 union tgsi_exec_channel dst[2];
3647 uint i;
3648 union tgsi_double_channel temp;
3649 const uint execmask = mach->ExecMask;
3650
3651 if (!inst->Instruction.Saturate) {
3652 for (i = 0; i < TGSI_QUAD_SIZE; i++)
3653 if (execmask & (1 << i)) {
3654 dst[0].u[i] = chan->u[i][0];
3655 dst[1].u[i] = chan->u[i][1];
3656 }
3657 }
3658 else {
3659 for (i = 0; i < TGSI_QUAD_SIZE; i++)
3660 if (execmask & (1 << i)) {
3661 if (chan->d[i] < 0.0)
3662 temp.d[i] = 0.0;
3663 else if (chan->d[i] > 1.0)
3664 temp.d[i] = 1.0;
3665 else
3666 temp.d[i] = chan->d[i];
3667
3668 dst[0].u[i] = temp.u[i][0];
3669 dst[1].u[i] = temp.u[i][1];
3670 }
3671 }
3672
3673 store_dest_double(mach, &dst[0], reg, chan_0, TGSI_EXEC_DATA_UINT);
3674 if (chan_1 != (unsigned)-1)
3675 store_dest_double(mach, &dst[1], reg, chan_1, TGSI_EXEC_DATA_UINT);
3676 }
3677
3678 static void
3679 exec_double_unary(struct tgsi_exec_machine *mach,
3680 const struct tgsi_full_instruction *inst,
3681 micro_dop op)
3682 {
3683 union tgsi_double_channel src;
3684 union tgsi_double_channel dst;
3685
3686 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
3687 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3688 op(&dst, &src);
3689 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3690 }
3691 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
3692 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3693 op(&dst, &src);
3694 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3695 }
3696 }
3697
3698 static void
3699 exec_double_binary(struct tgsi_exec_machine *mach,
3700 const struct tgsi_full_instruction *inst,
3701 micro_dop op,
3702 enum tgsi_exec_datatype dst_datatype)
3703 {
3704 union tgsi_double_channel src[2];
3705 union tgsi_double_channel dst;
3706 int first_dest_chan, second_dest_chan;
3707 int wmask;
3708
3709 wmask = inst->Dst[0].Register.WriteMask;
3710 /* these are & because of the way DSLT etc store their destinations */
3711 if (wmask & TGSI_WRITEMASK_XY) {
3712 first_dest_chan = TGSI_CHAN_X;
3713 second_dest_chan = TGSI_CHAN_Y;
3714 if (dst_datatype == TGSI_EXEC_DATA_UINT) {
3715 first_dest_chan = (wmask & TGSI_WRITEMASK_X) ? TGSI_CHAN_X : TGSI_CHAN_Y;
3716 second_dest_chan = -1;
3717 }
3718
3719 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3720 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, TGSI_CHAN_Y);
3721 op(&dst, src);
3722 store_double_channel(mach, &dst, &inst->Dst[0], inst, first_dest_chan, second_dest_chan);
3723 }
3724
3725 if (wmask & TGSI_WRITEMASK_ZW) {
3726 first_dest_chan = TGSI_CHAN_Z;
3727 second_dest_chan = TGSI_CHAN_W;
3728 if (dst_datatype == TGSI_EXEC_DATA_UINT) {
3729 first_dest_chan = (wmask & TGSI_WRITEMASK_Z) ? TGSI_CHAN_Z : TGSI_CHAN_W;
3730 second_dest_chan = -1;
3731 }
3732
3733 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3734 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_CHAN_W);
3735 op(&dst, src);
3736 store_double_channel(mach, &dst, &inst->Dst[0], inst, first_dest_chan, second_dest_chan);
3737 }
3738 }
3739
3740 static void
3741 exec_double_trinary(struct tgsi_exec_machine *mach,
3742 const struct tgsi_full_instruction *inst,
3743 micro_dop op)
3744 {
3745 union tgsi_double_channel src[3];
3746 union tgsi_double_channel dst;
3747
3748 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
3749 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3750 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, TGSI_CHAN_Y);
3751 fetch_double_channel(mach, &src[2], &inst->Src[2], TGSI_CHAN_X, TGSI_CHAN_Y);
3752 op(&dst, src);
3753 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3754 }
3755 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
3756 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3757 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_CHAN_W);
3758 fetch_double_channel(mach, &src[2], &inst->Src[2], TGSI_CHAN_Z, TGSI_CHAN_W);
3759 op(&dst, src);
3760 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3761 }
3762 }
3763
3764 static void
3765 exec_dldexp(struct tgsi_exec_machine *mach,
3766 const struct tgsi_full_instruction *inst)
3767 {
3768 union tgsi_double_channel src0;
3769 union tgsi_exec_channel src1;
3770 union tgsi_double_channel dst;
3771 int wmask;
3772
3773 wmask = inst->Dst[0].Register.WriteMask;
3774 if (wmask & TGSI_WRITEMASK_XY) {
3775 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3776 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
3777 micro_dldexp(&dst, &src0, &src1);
3778 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3779 }
3780
3781 if (wmask & TGSI_WRITEMASK_ZW) {
3782 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3783 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_INT);
3784 micro_dldexp(&dst, &src0, &src1);
3785 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3786 }
3787 }
3788
3789 static void
3790 exec_dfracexp(struct tgsi_exec_machine *mach,
3791 const struct tgsi_full_instruction *inst)
3792 {
3793 union tgsi_double_channel src;
3794 union tgsi_double_channel dst;
3795 union tgsi_exec_channel dst_exp;
3796
3797 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3798 micro_dfracexp(&dst, &dst_exp, &src);
3799 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY)
3800 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3801 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW)
3802 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3803 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3804 if (inst->Dst[1].Register.WriteMask & (1 << chan))
3805 store_dest(mach, &dst_exp, &inst->Dst[1], inst, chan, TGSI_EXEC_DATA_INT);
3806 }
3807 }
3808
3809 static void
3810 exec_arg0_64_arg1_32(struct tgsi_exec_machine *mach,
3811 const struct tgsi_full_instruction *inst,
3812 micro_dop_sop op)
3813 {
3814 union tgsi_double_channel src0;
3815 union tgsi_exec_channel src1;
3816 union tgsi_double_channel dst;
3817 int wmask;
3818
3819 wmask = inst->Dst[0].Register.WriteMask;
3820 if (wmask & TGSI_WRITEMASK_XY) {
3821 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3822 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
3823 op(&dst, &src0, &src1);
3824 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3825 }
3826
3827 if (wmask & TGSI_WRITEMASK_ZW) {
3828 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3829 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_INT);
3830 op(&dst, &src0, &src1);
3831 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3832 }
3833 }
3834
3835 static int
3836 get_image_coord_dim(unsigned tgsi_tex)
3837 {
3838 int dim;
3839 switch (tgsi_tex) {
3840 case TGSI_TEXTURE_BUFFER:
3841 case TGSI_TEXTURE_1D:
3842 dim = 1;
3843 break;
3844 case TGSI_TEXTURE_2D:
3845 case TGSI_TEXTURE_RECT:
3846 case TGSI_TEXTURE_1D_ARRAY:
3847 case TGSI_TEXTURE_2D_MSAA:
3848 dim = 2;
3849 break;
3850 case TGSI_TEXTURE_3D:
3851 case TGSI_TEXTURE_CUBE:
3852 case TGSI_TEXTURE_2D_ARRAY:
3853 case TGSI_TEXTURE_2D_ARRAY_MSAA:
3854 case TGSI_TEXTURE_CUBE_ARRAY:
3855 dim = 3;
3856 break;
3857 default:
3858 assert(!"unknown texture target");
3859 dim = 0;
3860 break;
3861 }
3862
3863 return dim;
3864 }
3865
3866 static int
3867 get_image_coord_sample(unsigned tgsi_tex)
3868 {
3869 int sample = 0;
3870 switch (tgsi_tex) {
3871 case TGSI_TEXTURE_2D_MSAA:
3872 sample = 3;
3873 break;
3874 case TGSI_TEXTURE_2D_ARRAY_MSAA:
3875 sample = 4;
3876 break;
3877 default:
3878 break;
3879 }
3880 return sample;
3881 }
3882
3883 static void
3884 exec_load_img(struct tgsi_exec_machine *mach,
3885 const struct tgsi_full_instruction *inst)
3886 {
3887 union tgsi_exec_channel r[4], sample_r;
3888 uint unit;
3889 int sample;
3890 int i, j;
3891 int dim;
3892 uint chan;
3893 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3894 struct tgsi_image_params params;
3895 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3896
3897 unit = fetch_sampler_unit(mach, inst, 0);
3898 dim = get_image_coord_dim(inst->Memory.Texture);
3899 sample = get_image_coord_sample(inst->Memory.Texture);
3900 assert(dim <= 3);
3901
3902 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3903 params.unit = unit;
3904 params.tgsi_tex_instr = inst->Memory.Texture;
3905 params.format = inst->Memory.Format;
3906
3907 for (i = 0; i < dim; i++) {
3908 IFETCH(&r[i], 1, TGSI_CHAN_X + i);
3909 }
3910
3911 if (sample)
3912 IFETCH(&sample_r, 1, TGSI_CHAN_X + sample);
3913
3914 mach->Image->load(mach->Image, &params,
3915 r[0].i, r[1].i, r[2].i, sample_r.i,
3916 rgba);
3917 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3918 r[0].f[j] = rgba[0][j];
3919 r[1].f[j] = rgba[1][j];
3920 r[2].f[j] = rgba[2][j];
3921 r[3].f[j] = rgba[3][j];
3922 }
3923 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3924 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3925 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3926 }
3927 }
3928 }
3929
3930 static void
3931 exec_load_buf(struct tgsi_exec_machine *mach,
3932 const struct tgsi_full_instruction *inst)
3933 {
3934 union tgsi_exec_channel r[4];
3935 uint unit;
3936 int j;
3937 uint chan;
3938 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3939 struct tgsi_buffer_params params;
3940 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3941
3942 unit = fetch_sampler_unit(mach, inst, 0);
3943
3944 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3945 params.unit = unit;
3946 IFETCH(&r[0], 1, TGSI_CHAN_X);
3947
3948 mach->Buffer->load(mach->Buffer, &params,
3949 r[0].i, rgba);
3950 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3951 r[0].f[j] = rgba[0][j];
3952 r[1].f[j] = rgba[1][j];
3953 r[2].f[j] = rgba[2][j];
3954 r[3].f[j] = rgba[3][j];
3955 }
3956 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3957 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3958 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3959 }
3960 }
3961 }
3962
3963 static void
3964 exec_load_mem(struct tgsi_exec_machine *mach,
3965 const struct tgsi_full_instruction *inst)
3966 {
3967 union tgsi_exec_channel r[4];
3968 uint chan;
3969 char *ptr = mach->LocalMem;
3970 uint32_t offset;
3971 int j;
3972
3973 IFETCH(&r[0], 1, TGSI_CHAN_X);
3974 if (r[0].u[0] >= mach->LocalMemSize)
3975 return;
3976
3977 offset = r[0].u[0];
3978 ptr += offset;
3979
3980 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3981 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3982 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3983 memcpy(&r[chan].u[j], ptr + (4 * chan), 4);
3984 }
3985 }
3986 }
3987
3988 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3989 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3990 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3991 }
3992 }
3993 }
3994
3995 static void
3996 exec_load(struct tgsi_exec_machine *mach,
3997 const struct tgsi_full_instruction *inst)
3998 {
3999 if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
4000 exec_load_img(mach, inst);
4001 else if (inst->Src[0].Register.File == TGSI_FILE_BUFFER)
4002 exec_load_buf(mach, inst);
4003 else if (inst->Src[0].Register.File == TGSI_FILE_MEMORY)
4004 exec_load_mem(mach, inst);
4005 }
4006
4007 static uint
4008 fetch_store_img_unit(struct tgsi_exec_machine *mach,
4009 const struct tgsi_full_dst_register *dst)
4010 {
4011 uint unit = 0;
4012 int i;
4013 if (dst->Register.Indirect) {
4014 union tgsi_exec_channel indir_index, index2;
4015 const uint execmask = mach->ExecMask;
4016 index2.i[0] =
4017 index2.i[1] =
4018 index2.i[2] =
4019 index2.i[3] = dst->Indirect.Index;
4020
4021 fetch_src_file_channel(mach,
4022 dst->Indirect.File,
4023 dst->Indirect.Swizzle,
4024 &index2,
4025 &ZeroVec,
4026 &indir_index);
4027 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4028 if (execmask & (1 << i)) {
4029 unit = dst->Register.Index + indir_index.i[i];
4030 break;
4031 }
4032 }
4033 } else {
4034 unit = dst->Register.Index;
4035 }
4036 return unit;
4037 }
4038
4039 static void
4040 exec_store_img(struct tgsi_exec_machine *mach,
4041 const struct tgsi_full_instruction *inst)
4042 {
4043 union tgsi_exec_channel r[3], sample_r;
4044 union tgsi_exec_channel value[4];
4045 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4046 struct tgsi_image_params params;
4047 int dim;
4048 int sample;
4049 int i, j;
4050 uint unit;
4051 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4052 unit = fetch_store_img_unit(mach, &inst->Dst[0]);
4053 dim = get_image_coord_dim(inst->Memory.Texture);
4054 sample = get_image_coord_sample(inst->Memory.Texture);
4055 assert(dim <= 3);
4056
4057 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4058 params.unit = unit;
4059 params.tgsi_tex_instr = inst->Memory.Texture;
4060 params.format = inst->Memory.Format;
4061
4062 for (i = 0; i < dim; i++) {
4063 IFETCH(&r[i], 0, TGSI_CHAN_X + i);
4064 }
4065
4066 for (i = 0; i < 4; i++) {
4067 FETCH(&value[i], 1, TGSI_CHAN_X + i);
4068 }
4069 if (sample)
4070 IFETCH(&sample_r, 0, TGSI_CHAN_X + sample);
4071
4072 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4073 rgba[0][j] = value[0].f[j];
4074 rgba[1][j] = value[1].f[j];
4075 rgba[2][j] = value[2].f[j];
4076 rgba[3][j] = value[3].f[j];
4077 }
4078
4079 mach->Image->store(mach->Image, &params,
4080 r[0].i, r[1].i, r[2].i, sample_r.i,
4081 rgba);
4082 }
4083
4084 static void
4085 exec_store_buf(struct tgsi_exec_machine *mach,
4086 const struct tgsi_full_instruction *inst)
4087 {
4088 union tgsi_exec_channel r[3];
4089 union tgsi_exec_channel value[4];
4090 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4091 struct tgsi_buffer_params params;
4092 int i, j;
4093 uint unit;
4094 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4095
4096 unit = fetch_store_img_unit(mach, &inst->Dst[0]);
4097
4098 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4099 params.unit = unit;
4100 params.writemask = inst->Dst[0].Register.WriteMask;
4101
4102 IFETCH(&r[0], 0, TGSI_CHAN_X);
4103 for (i = 0; i < 4; i++) {
4104 FETCH(&value[i], 1, TGSI_CHAN_X + i);
4105 }
4106
4107 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4108 rgba[0][j] = value[0].f[j];
4109 rgba[1][j] = value[1].f[j];
4110 rgba[2][j] = value[2].f[j];
4111 rgba[3][j] = value[3].f[j];
4112 }
4113
4114 mach->Buffer->store(mach->Buffer, &params,
4115 r[0].i,
4116 rgba);
4117 }
4118
4119 static void
4120 exec_store_mem(struct tgsi_exec_machine *mach,
4121 const struct tgsi_full_instruction *inst)
4122 {
4123 union tgsi_exec_channel r[3];
4124 union tgsi_exec_channel value[4];
4125 uint i, chan;
4126 char *ptr = mach->LocalMem;
4127 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4128 int execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4129
4130 IFETCH(&r[0], 0, TGSI_CHAN_X);
4131
4132 for (i = 0; i < 4; i++) {
4133 FETCH(&value[i], 1, TGSI_CHAN_X + i);
4134 }
4135
4136 if (r[0].u[0] >= mach->LocalMemSize)
4137 return;
4138 ptr += r[0].u[0];
4139
4140 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4141 if (execmask & (1 << i)) {
4142 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4143 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4144 memcpy(ptr + (chan * 4), &value[chan].u[0], 4);
4145 }
4146 }
4147 }
4148 }
4149 }
4150
4151 static void
4152 exec_store(struct tgsi_exec_machine *mach,
4153 const struct tgsi_full_instruction *inst)
4154 {
4155 if (inst->Dst[0].Register.File == TGSI_FILE_IMAGE)
4156 exec_store_img(mach, inst);
4157 else if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER)
4158 exec_store_buf(mach, inst);
4159 else if (inst->Dst[0].Register.File == TGSI_FILE_MEMORY)
4160 exec_store_mem(mach, inst);
4161 }
4162
4163 static void
4164 exec_atomop_img(struct tgsi_exec_machine *mach,
4165 const struct tgsi_full_instruction *inst)
4166 {
4167 union tgsi_exec_channel r[4], sample_r;
4168 union tgsi_exec_channel value[4], value2[4];
4169 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4170 float rgba2[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4171 struct tgsi_image_params params;
4172 int dim;
4173 int sample;
4174 int i, j;
4175 uint unit, chan;
4176 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4177 unit = fetch_sampler_unit(mach, inst, 0);
4178 dim = get_image_coord_dim(inst->Memory.Texture);
4179 sample = get_image_coord_sample(inst->Memory.Texture);
4180 assert(dim <= 3);
4181
4182 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4183 params.unit = unit;
4184 params.tgsi_tex_instr = inst->Memory.Texture;
4185 params.format = inst->Memory.Format;
4186
4187 for (i = 0; i < dim; i++) {
4188 IFETCH(&r[i], 1, TGSI_CHAN_X + i);
4189 }
4190
4191 for (i = 0; i < 4; i++) {
4192 FETCH(&value[i], 2, TGSI_CHAN_X + i);
4193 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4194 FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4195 }
4196 if (sample)
4197 IFETCH(&sample_r, 1, TGSI_CHAN_X + sample);
4198
4199 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4200 rgba[0][j] = value[0].f[j];
4201 rgba[1][j] = value[1].f[j];
4202 rgba[2][j] = value[2].f[j];
4203 rgba[3][j] = value[3].f[j];
4204 }
4205 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4206 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4207 rgba2[0][j] = value2[0].f[j];
4208 rgba2[1][j] = value2[1].f[j];
4209 rgba2[2][j] = value2[2].f[j];
4210 rgba2[3][j] = value2[3].f[j];
4211 }
4212 }
4213
4214 mach->Image->op(mach->Image, &params, inst->Instruction.Opcode,
4215 r[0].i, r[1].i, r[2].i, sample_r.i,
4216 rgba, rgba2);
4217
4218 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4219 r[0].f[j] = rgba[0][j];
4220 r[1].f[j] = rgba[1][j];
4221 r[2].f[j] = rgba[2][j];
4222 r[3].f[j] = rgba[3][j];
4223 }
4224 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4225 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4226 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4227 }
4228 }
4229 }
4230
4231 static void
4232 exec_atomop_buf(struct tgsi_exec_machine *mach,
4233 const struct tgsi_full_instruction *inst)
4234 {
4235 union tgsi_exec_channel r[4];
4236 union tgsi_exec_channel value[4], value2[4];
4237 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4238 float rgba2[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4239 struct tgsi_buffer_params params;
4240 int i, j;
4241 uint unit, chan;
4242 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4243
4244 unit = fetch_sampler_unit(mach, inst, 0);
4245
4246 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4247 params.unit = unit;
4248 params.writemask = inst->Dst[0].Register.WriteMask;
4249
4250 IFETCH(&r[0], 1, TGSI_CHAN_X);
4251
4252 for (i = 0; i < 4; i++) {
4253 FETCH(&value[i], 2, TGSI_CHAN_X + i);
4254 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4255 FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4256 }
4257
4258 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4259 rgba[0][j] = value[0].f[j];
4260 rgba[1][j] = value[1].f[j];
4261 rgba[2][j] = value[2].f[j];
4262 rgba[3][j] = value[3].f[j];
4263 }
4264 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4265 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4266 rgba2[0][j] = value2[0].f[j];
4267 rgba2[1][j] = value2[1].f[j];
4268 rgba2[2][j] = value2[2].f[j];
4269 rgba2[3][j] = value2[3].f[j];
4270 }
4271 }
4272
4273 mach->Buffer->op(mach->Buffer, &params, inst->Instruction.Opcode,
4274 r[0].i,
4275 rgba, rgba2);
4276
4277 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4278 r[0].f[j] = rgba[0][j];
4279 r[1].f[j] = rgba[1][j];
4280 r[2].f[j] = rgba[2][j];
4281 r[3].f[j] = rgba[3][j];
4282 }
4283 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4284 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4285 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4286 }
4287 }
4288 }
4289
4290 static void
4291 exec_atomop_mem(struct tgsi_exec_machine *mach,
4292 const struct tgsi_full_instruction *inst)
4293 {
4294 union tgsi_exec_channel r[4];
4295 union tgsi_exec_channel value[4], value2[4];
4296 char *ptr = mach->LocalMem;
4297 uint32_t val;
4298 uint chan, i;
4299 uint32_t offset;
4300 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4301 int execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4302 IFETCH(&r[0], 1, TGSI_CHAN_X);
4303
4304 if (r[0].u[0] >= mach->LocalMemSize)
4305 return;
4306
4307 offset = r[0].u[0];
4308 ptr += offset;
4309 for (i = 0; i < 4; i++) {
4310 FETCH(&value[i], 2, TGSI_CHAN_X + i);
4311 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4312 FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4313 }
4314
4315 memcpy(&r[0].u[0], ptr, 4);
4316 val = r[0].u[0];
4317 switch (inst->Instruction.Opcode) {
4318 case TGSI_OPCODE_ATOMUADD:
4319 val += value[0].u[0];
4320 break;
4321 case TGSI_OPCODE_ATOMXOR:
4322 val ^= value[0].u[0];
4323 break;
4324 case TGSI_OPCODE_ATOMOR:
4325 val |= value[0].u[0];
4326 break;
4327 case TGSI_OPCODE_ATOMAND:
4328 val &= value[0].u[0];
4329 break;
4330 case TGSI_OPCODE_ATOMUMIN:
4331 val = MIN2(val, value[0].u[0]);
4332 break;
4333 case TGSI_OPCODE_ATOMUMAX:
4334 val = MAX2(val, value[0].u[0]);
4335 break;
4336 case TGSI_OPCODE_ATOMIMIN:
4337 val = MIN2(r[0].i[0], value[0].i[0]);
4338 break;
4339 case TGSI_OPCODE_ATOMIMAX:
4340 val = MAX2(r[0].i[0], value[0].i[0]);
4341 break;
4342 case TGSI_OPCODE_ATOMXCHG:
4343 val = value[0].i[0];
4344 break;
4345 case TGSI_OPCODE_ATOMCAS:
4346 if (val == value[0].u[0])
4347 val = value2[0].u[0];
4348 break;
4349 case TGSI_OPCODE_ATOMFADD:
4350 val = fui(r[0].f[0] + value[0].f[0]);
4351 break;
4352 default:
4353 break;
4354 }
4355 for (i = 0; i < TGSI_QUAD_SIZE; i++)
4356 if (execmask & (1 << i))
4357 memcpy(ptr, &val, 4);
4358
4359 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4360 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4361 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4362 }
4363 }
4364 }
4365
4366 static void
4367 exec_atomop(struct tgsi_exec_machine *mach,
4368 const struct tgsi_full_instruction *inst)
4369 {
4370 if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
4371 exec_atomop_img(mach, inst);
4372 else if (inst->Src[0].Register.File == TGSI_FILE_BUFFER)
4373 exec_atomop_buf(mach, inst);
4374 else if (inst->Src[0].Register.File == TGSI_FILE_MEMORY)
4375 exec_atomop_mem(mach, inst);
4376 }
4377
4378 static void
4379 exec_resq_img(struct tgsi_exec_machine *mach,
4380 const struct tgsi_full_instruction *inst)
4381 {
4382 int result[4];
4383 union tgsi_exec_channel r[4];
4384 uint unit;
4385 int i, chan, j;
4386 struct tgsi_image_params params;
4387 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4388
4389 unit = fetch_sampler_unit(mach, inst, 0);
4390
4391 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4392 params.unit = unit;
4393 params.tgsi_tex_instr = inst->Memory.Texture;
4394 params.format = inst->Memory.Format;
4395
4396 mach->Image->get_dims(mach->Image, &params, result);
4397
4398 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4399 for (j = 0; j < 4; j++) {
4400 r[j].i[i] = result[j];
4401 }
4402 }
4403
4404 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4405 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4406 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
4407 TGSI_EXEC_DATA_INT);
4408 }
4409 }
4410 }
4411
4412 static void
4413 exec_resq_buf(struct tgsi_exec_machine *mach,
4414 const struct tgsi_full_instruction *inst)
4415 {
4416 int result;
4417 union tgsi_exec_channel r[4];
4418 uint unit;
4419 int i, chan;
4420 struct tgsi_buffer_params params;
4421 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4422
4423 unit = fetch_sampler_unit(mach, inst, 0);
4424
4425 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4426 params.unit = unit;
4427
4428 mach->Buffer->get_dims(mach->Buffer, &params, &result);
4429
4430 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4431 r[0].i[i] = result;
4432 }
4433
4434 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4435 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4436 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
4437 TGSI_EXEC_DATA_INT);
4438 }
4439 }
4440 }
4441
4442 static void
4443 exec_resq(struct tgsi_exec_machine *mach,
4444 const struct tgsi_full_instruction *inst)
4445 {
4446 if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
4447 exec_resq_img(mach, inst);
4448 else
4449 exec_resq_buf(mach, inst);
4450 }
4451
4452 static void
4453 micro_f2u64(union tgsi_double_channel *dst,
4454 const union tgsi_exec_channel *src)
4455 {
4456 dst->u64[0] = (uint64_t)src->f[0];
4457 dst->u64[1] = (uint64_t)src->f[1];
4458 dst->u64[2] = (uint64_t)src->f[2];
4459 dst->u64[3] = (uint64_t)src->f[3];
4460 }
4461
4462 static void
4463 micro_f2i64(union tgsi_double_channel *dst,
4464 const union tgsi_exec_channel *src)
4465 {
4466 dst->i64[0] = (int64_t)src->f[0];
4467 dst->i64[1] = (int64_t)src->f[1];
4468 dst->i64[2] = (int64_t)src->f[2];
4469 dst->i64[3] = (int64_t)src->f[3];
4470 }
4471
4472 static void
4473 micro_u2i64(union tgsi_double_channel *dst,
4474 const union tgsi_exec_channel *src)
4475 {
4476 dst->u64[0] = (uint64_t)src->u[0];
4477 dst->u64[1] = (uint64_t)src->u[1];
4478 dst->u64[2] = (uint64_t)src->u[2];
4479 dst->u64[3] = (uint64_t)src->u[3];
4480 }
4481
4482 static void
4483 micro_i2i64(union tgsi_double_channel *dst,
4484 const union tgsi_exec_channel *src)
4485 {
4486 dst->i64[0] = (int64_t)src->i[0];
4487 dst->i64[1] = (int64_t)src->i[1];
4488 dst->i64[2] = (int64_t)src->i[2];
4489 dst->i64[3] = (int64_t)src->i[3];
4490 }
4491
4492 static void
4493 micro_d2u64(union tgsi_double_channel *dst,
4494 const union tgsi_double_channel *src)
4495 {
4496 dst->u64[0] = (uint64_t)src->d[0];
4497 dst->u64[1] = (uint64_t)src->d[1];
4498 dst->u64[2] = (uint64_t)src->d[2];
4499 dst->u64[3] = (uint64_t)src->d[3];
4500 }
4501
4502 static void
4503 micro_d2i64(union tgsi_double_channel *dst,
4504 const union tgsi_double_channel *src)
4505 {
4506 dst->i64[0] = (int64_t)src->d[0];
4507 dst->i64[1] = (int64_t)src->d[1];
4508 dst->i64[2] = (int64_t)src->d[2];
4509 dst->i64[3] = (int64_t)src->d[3];
4510 }
4511
4512 static void
4513 micro_u642d(union tgsi_double_channel *dst,
4514 const union tgsi_double_channel *src)
4515 {
4516 dst->d[0] = (double)src->u64[0];
4517 dst->d[1] = (double)src->u64[1];
4518 dst->d[2] = (double)src->u64[2];
4519 dst->d[3] = (double)src->u64[3];
4520 }
4521
4522 static void
4523 micro_i642d(union tgsi_double_channel *dst,
4524 const union tgsi_double_channel *src)
4525 {
4526 dst->d[0] = (double)src->i64[0];
4527 dst->d[1] = (double)src->i64[1];
4528 dst->d[2] = (double)src->i64[2];
4529 dst->d[3] = (double)src->i64[3];
4530 }
4531
4532 static void
4533 micro_u642f(union tgsi_exec_channel *dst,
4534 const union tgsi_double_channel *src)
4535 {
4536 dst->f[0] = (float)src->u64[0];
4537 dst->f[1] = (float)src->u64[1];
4538 dst->f[2] = (float)src->u64[2];
4539 dst->f[3] = (float)src->u64[3];
4540 }
4541
4542 static void
4543 micro_i642f(union tgsi_exec_channel *dst,
4544 const union tgsi_double_channel *src)
4545 {
4546 dst->f[0] = (float)src->i64[0];
4547 dst->f[1] = (float)src->i64[1];
4548 dst->f[2] = (float)src->i64[2];
4549 dst->f[3] = (float)src->i64[3];
4550 }
4551
4552 static void
4553 exec_t_2_64(struct tgsi_exec_machine *mach,
4554 const struct tgsi_full_instruction *inst,
4555 micro_dop_s op,
4556 enum tgsi_exec_datatype src_datatype)
4557 {
4558 union tgsi_exec_channel src;
4559 union tgsi_double_channel dst;
4560
4561 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
4562 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
4563 op(&dst, &src);
4564 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
4565 }
4566 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
4567 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_Y, src_datatype);
4568 op(&dst, &src);
4569 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
4570 }
4571 }
4572
4573 static void
4574 exec_64_2_t(struct tgsi_exec_machine *mach,
4575 const struct tgsi_full_instruction *inst,
4576 micro_sop_d op,
4577 enum tgsi_exec_datatype dst_datatype)
4578 {
4579 union tgsi_double_channel src;
4580 union tgsi_exec_channel dst;
4581 int wm = inst->Dst[0].Register.WriteMask;
4582 int i;
4583 int bit;
4584 for (i = 0; i < 2; i++) {
4585 bit = ffs(wm);
4586 if (bit) {
4587 wm &= ~(1 << (bit - 1));
4588 if (i == 0)
4589 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
4590 else
4591 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
4592 op(&dst, &src);
4593 store_dest(mach, &dst, &inst->Dst[0], inst, bit - 1, dst_datatype);
4594 }
4595 }
4596 }
4597
4598 static void
4599 micro_i2f(union tgsi_exec_channel *dst,
4600 const union tgsi_exec_channel *src)
4601 {
4602 dst->f[0] = (float)src->i[0];
4603 dst->f[1] = (float)src->i[1];
4604 dst->f[2] = (float)src->i[2];
4605 dst->f[3] = (float)src->i[3];
4606 }
4607
4608 static void
4609 micro_not(union tgsi_exec_channel *dst,
4610 const union tgsi_exec_channel *src)
4611 {
4612 dst->u[0] = ~src->u[0];
4613 dst->u[1] = ~src->u[1];
4614 dst->u[2] = ~src->u[2];
4615 dst->u[3] = ~src->u[3];
4616 }
4617
4618 static void
4619 micro_shl(union tgsi_exec_channel *dst,
4620 const union tgsi_exec_channel *src0,
4621 const union tgsi_exec_channel *src1)
4622 {
4623 unsigned masked_count;
4624 masked_count = src1->u[0] & 0x1f;
4625 dst->u[0] = src0->u[0] << masked_count;
4626 masked_count = src1->u[1] & 0x1f;
4627 dst->u[1] = src0->u[1] << masked_count;
4628 masked_count = src1->u[2] & 0x1f;
4629 dst->u[2] = src0->u[2] << masked_count;
4630 masked_count = src1->u[3] & 0x1f;
4631 dst->u[3] = src0->u[3] << masked_count;
4632 }
4633
4634 static void
4635 micro_and(union tgsi_exec_channel *dst,
4636 const union tgsi_exec_channel *src0,
4637 const union tgsi_exec_channel *src1)
4638 {
4639 dst->u[0] = src0->u[0] & src1->u[0];
4640 dst->u[1] = src0->u[1] & src1->u[1];
4641 dst->u[2] = src0->u[2] & src1->u[2];
4642 dst->u[3] = src0->u[3] & src1->u[3];
4643 }
4644
4645 static void
4646 micro_or(union tgsi_exec_channel *dst,
4647 const union tgsi_exec_channel *src0,
4648 const union tgsi_exec_channel *src1)
4649 {
4650 dst->u[0] = src0->u[0] | src1->u[0];
4651 dst->u[1] = src0->u[1] | src1->u[1];
4652 dst->u[2] = src0->u[2] | src1->u[2];
4653 dst->u[3] = src0->u[3] | src1->u[3];
4654 }
4655
4656 static void
4657 micro_xor(union tgsi_exec_channel *dst,
4658 const union tgsi_exec_channel *src0,
4659 const union tgsi_exec_channel *src1)
4660 {
4661 dst->u[0] = src0->u[0] ^ src1->u[0];
4662 dst->u[1] = src0->u[1] ^ src1->u[1];
4663 dst->u[2] = src0->u[2] ^ src1->u[2];
4664 dst->u[3] = src0->u[3] ^ src1->u[3];
4665 }
4666
4667 static void
4668 micro_mod(union tgsi_exec_channel *dst,
4669 const union tgsi_exec_channel *src0,
4670 const union tgsi_exec_channel *src1)
4671 {
4672 dst->i[0] = src1->i[0] ? src0->i[0] % src1->i[0] : ~0;
4673 dst->i[1] = src1->i[1] ? src0->i[1] % src1->i[1] : ~0;
4674 dst->i[2] = src1->i[2] ? src0->i[2] % src1->i[2] : ~0;
4675 dst->i[3] = src1->i[3] ? src0->i[3] % src1->i[3] : ~0;
4676 }
4677
4678 static void
4679 micro_f2i(union tgsi_exec_channel *dst,
4680 const union tgsi_exec_channel *src)
4681 {
4682 dst->i[0] = (int)src->f[0];
4683 dst->i[1] = (int)src->f[1];
4684 dst->i[2] = (int)src->f[2];
4685 dst->i[3] = (int)src->f[3];
4686 }
4687
4688 static void
4689 micro_fseq(union tgsi_exec_channel *dst,
4690 const union tgsi_exec_channel *src0,
4691 const union tgsi_exec_channel *src1)
4692 {
4693 dst->u[0] = src0->f[0] == src1->f[0] ? ~0 : 0;
4694 dst->u[1] = src0->f[1] == src1->f[1] ? ~0 : 0;
4695 dst->u[2] = src0->f[2] == src1->f[2] ? ~0 : 0;
4696 dst->u[3] = src0->f[3] == src1->f[3] ? ~0 : 0;
4697 }
4698
4699 static void
4700 micro_fsge(union tgsi_exec_channel *dst,
4701 const union tgsi_exec_channel *src0,
4702 const union tgsi_exec_channel *src1)
4703 {
4704 dst->u[0] = src0->f[0] >= src1->f[0] ? ~0 : 0;
4705 dst->u[1] = src0->f[1] >= src1->f[1] ? ~0 : 0;
4706 dst->u[2] = src0->f[2] >= src1->f[2] ? ~0 : 0;
4707 dst->u[3] = src0->f[3] >= src1->f[3] ? ~0 : 0;
4708 }
4709
4710 static void
4711 micro_fslt(union tgsi_exec_channel *dst,
4712 const union tgsi_exec_channel *src0,
4713 const union tgsi_exec_channel *src1)
4714 {
4715 dst->u[0] = src0->f[0] < src1->f[0] ? ~0 : 0;
4716 dst->u[1] = src0->f[1] < src1->f[1] ? ~0 : 0;
4717 dst->u[2] = src0->f[2] < src1->f[2] ? ~0 : 0;
4718 dst->u[3] = src0->f[3] < src1->f[3] ? ~0 : 0;
4719 }
4720
4721 static void
4722 micro_fsne(union tgsi_exec_channel *dst,
4723 const union tgsi_exec_channel *src0,
4724 const union tgsi_exec_channel *src1)
4725 {
4726 dst->u[0] = src0->f[0] != src1->f[0] ? ~0 : 0;
4727 dst->u[1] = src0->f[1] != src1->f[1] ? ~0 : 0;
4728 dst->u[2] = src0->f[2] != src1->f[2] ? ~0 : 0;
4729 dst->u[3] = src0->f[3] != src1->f[3] ? ~0 : 0;
4730 }
4731
4732 static void
4733 micro_idiv(union tgsi_exec_channel *dst,
4734 const union tgsi_exec_channel *src0,
4735 const union tgsi_exec_channel *src1)
4736 {
4737 dst->i[0] = src1->i[0] ? src0->i[0] / src1->i[0] : 0;
4738 dst->i[1] = src1->i[1] ? src0->i[1] / src1->i[1] : 0;
4739 dst->i[2] = src1->i[2] ? src0->i[2] / src1->i[2] : 0;
4740 dst->i[3] = src1->i[3] ? src0->i[3] / src1->i[3] : 0;
4741 }
4742
4743 static void
4744 micro_imax(union tgsi_exec_channel *dst,
4745 const union tgsi_exec_channel *src0,
4746 const union tgsi_exec_channel *src1)
4747 {
4748 dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0];
4749 dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1];
4750 dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2];
4751 dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3];
4752 }
4753
4754 static void
4755 micro_imin(union tgsi_exec_channel *dst,
4756 const union tgsi_exec_channel *src0,
4757 const union tgsi_exec_channel *src1)
4758 {
4759 dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0];
4760 dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1];
4761 dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2];
4762 dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3];
4763 }
4764
4765 static void
4766 micro_isge(union tgsi_exec_channel *dst,
4767 const union tgsi_exec_channel *src0,
4768 const union tgsi_exec_channel *src1)
4769 {
4770 dst->i[0] = src0->i[0] >= src1->i[0] ? -1 : 0;
4771 dst->i[1] = src0->i[1] >= src1->i[1] ? -1 : 0;
4772 dst->i[2] = src0->i[2] >= src1->i[2] ? -1 : 0;
4773 dst->i[3] = src0->i[3] >= src1->i[3] ? -1 : 0;
4774 }
4775
4776 static void
4777 micro_ishr(union tgsi_exec_channel *dst,
4778 const union tgsi_exec_channel *src0,
4779 const union tgsi_exec_channel *src1)
4780 {
4781 unsigned masked_count;
4782 masked_count = src1->i[0] & 0x1f;
4783 dst->i[0] = src0->i[0] >> masked_count;
4784 masked_count = src1->i[1] & 0x1f;
4785 dst->i[1] = src0->i[1] >> masked_count;
4786 masked_count = src1->i[2] & 0x1f;
4787 dst->i[2] = src0->i[2] >> masked_count;
4788 masked_count = src1->i[3] & 0x1f;
4789 dst->i[3] = src0->i[3] >> masked_count;
4790 }
4791
4792 static void
4793 micro_islt(union tgsi_exec_channel *dst,
4794 const union tgsi_exec_channel *src0,
4795 const union tgsi_exec_channel *src1)
4796 {
4797 dst->i[0] = src0->i[0] < src1->i[0] ? -1 : 0;
4798 dst->i[1] = src0->i[1] < src1->i[1] ? -1 : 0;
4799 dst->i[2] = src0->i[2] < src1->i[2] ? -1 : 0;
4800 dst->i[3] = src0->i[3] < src1->i[3] ? -1 : 0;
4801 }
4802
4803 static void
4804 micro_f2u(union tgsi_exec_channel *dst,
4805 const union tgsi_exec_channel *src)
4806 {
4807 dst->u[0] = (uint)src->f[0];
4808 dst->u[1] = (uint)src->f[1];
4809 dst->u[2] = (uint)src->f[2];
4810 dst->u[3] = (uint)src->f[3];
4811 }
4812
4813 static void
4814 micro_u2f(union tgsi_exec_channel *dst,
4815 const union tgsi_exec_channel *src)
4816 {
4817 dst->f[0] = (float)src->u[0];
4818 dst->f[1] = (float)src->u[1];
4819 dst->f[2] = (float)src->u[2];
4820 dst->f[3] = (float)src->u[3];
4821 }
4822
4823 static void
4824 micro_uadd(union tgsi_exec_channel *dst,
4825 const union tgsi_exec_channel *src0,
4826 const union tgsi_exec_channel *src1)
4827 {
4828 dst->u[0] = src0->u[0] + src1->u[0];
4829 dst->u[1] = src0->u[1] + src1->u[1];
4830 dst->u[2] = src0->u[2] + src1->u[2];
4831 dst->u[3] = src0->u[3] + src1->u[3];
4832 }
4833
4834 static void
4835 micro_udiv(union tgsi_exec_channel *dst,
4836 const union tgsi_exec_channel *src0,
4837 const union tgsi_exec_channel *src1)
4838 {
4839 dst->u[0] = src1->u[0] ? src0->u[0] / src1->u[0] : ~0u;
4840 dst->u[1] = src1->u[1] ? src0->u[1] / src1->u[1] : ~0u;
4841 dst->u[2] = src1->u[2] ? src0->u[2] / src1->u[2] : ~0u;
4842 dst->u[3] = src1->u[3] ? src0->u[3] / src1->u[3] : ~0u;
4843 }
4844
4845 static void
4846 micro_umad(union tgsi_exec_channel *dst,
4847 const union tgsi_exec_channel *src0,
4848 const union tgsi_exec_channel *src1,
4849 const union tgsi_exec_channel *src2)
4850 {
4851 dst->u[0] = src0->u[0] * src1->u[0] + src2->u[0];
4852 dst->u[1] = src0->u[1] * src1->u[1] + src2->u[1];
4853 dst->u[2] = src0->u[2] * src1->u[2] + src2->u[2];
4854 dst->u[3] = src0->u[3] * src1->u[3] + src2->u[3];
4855 }
4856
4857 static void
4858 micro_umax(union tgsi_exec_channel *dst,
4859 const union tgsi_exec_channel *src0,
4860 const union tgsi_exec_channel *src1)
4861 {
4862 dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0];
4863 dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1];
4864 dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2];
4865 dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3];
4866 }
4867
4868 static void
4869 micro_umin(union tgsi_exec_channel *dst,
4870 const union tgsi_exec_channel *src0,
4871 const union tgsi_exec_channel *src1)
4872 {
4873 dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0];
4874 dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1];
4875 dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2];
4876 dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3];
4877 }
4878
4879 static void
4880 micro_umod(union tgsi_exec_channel *dst,
4881 const union tgsi_exec_channel *src0,
4882 const union tgsi_exec_channel *src1)
4883 {
4884 dst->u[0] = src1->u[0] ? src0->u[0] % src1->u[0] : ~0u;
4885 dst->u[1] = src1->u[1] ? src0->u[1] % src1->u[1] : ~0u;
4886 dst->u[2] = src1->u[2] ? src0->u[2] % src1->u[2] : ~0u;
4887 dst->u[3] = src1->u[3] ? src0->u[3] % src1->u[3] : ~0u;
4888 }
4889
4890 static void
4891 micro_umul(union tgsi_exec_channel *dst,
4892 const union tgsi_exec_channel *src0,
4893 const union tgsi_exec_channel *src1)
4894 {
4895 dst->u[0] = src0->u[0] * src1->u[0];
4896 dst->u[1] = src0->u[1] * src1->u[1];
4897 dst->u[2] = src0->u[2] * src1->u[2];
4898 dst->u[3] = src0->u[3] * src1->u[3];
4899 }
4900
4901 static void
4902 micro_imul_hi(union tgsi_exec_channel *dst,
4903 const union tgsi_exec_channel *src0,
4904 const union tgsi_exec_channel *src1)
4905 {
4906 #define I64M(x, y) ((((int64_t)x) * ((int64_t)y)) >> 32)
4907 dst->i[0] = I64M(src0->i[0], src1->i[0]);
4908 dst->i[1] = I64M(src0->i[1], src1->i[1]);
4909 dst->i[2] = I64M(src0->i[2], src1->i[2]);
4910 dst->i[3] = I64M(src0->i[3], src1->i[3]);
4911 #undef I64M
4912 }
4913
4914 static void
4915 micro_umul_hi(union tgsi_exec_channel *dst,
4916 const union tgsi_exec_channel *src0,
4917 const union tgsi_exec_channel *src1)
4918 {
4919 #define U64M(x, y) ((((uint64_t)x) * ((uint64_t)y)) >> 32)
4920 dst->u[0] = U64M(src0->u[0], src1->u[0]);
4921 dst->u[1] = U64M(src0->u[1], src1->u[1]);
4922 dst->u[2] = U64M(src0->u[2], src1->u[2]);
4923 dst->u[3] = U64M(src0->u[3], src1->u[3]);
4924 #undef U64M
4925 }
4926
4927 static void
4928 micro_useq(union tgsi_exec_channel *dst,
4929 const union tgsi_exec_channel *src0,
4930 const union tgsi_exec_channel *src1)
4931 {
4932 dst->u[0] = src0->u[0] == src1->u[0] ? ~0 : 0;
4933 dst->u[1] = src0->u[1] == src1->u[1] ? ~0 : 0;
4934 dst->u[2] = src0->u[2] == src1->u[2] ? ~0 : 0;
4935 dst->u[3] = src0->u[3] == src1->u[3] ? ~0 : 0;
4936 }
4937
4938 static void
4939 micro_usge(union tgsi_exec_channel *dst,
4940 const union tgsi_exec_channel *src0,
4941 const union tgsi_exec_channel *src1)
4942 {
4943 dst->u[0] = src0->u[0] >= src1->u[0] ? ~0 : 0;
4944 dst->u[1] = src0->u[1] >= src1->u[1] ? ~0 : 0;
4945 dst->u[2] = src0->u[2] >= src1->u[2] ? ~0 : 0;
4946 dst->u[3] = src0->u[3] >= src1->u[3] ? ~0 : 0;
4947 }
4948
4949 static void
4950 micro_ushr(union tgsi_exec_channel *dst,
4951 const union tgsi_exec_channel *src0,
4952 const union tgsi_exec_channel *src1)
4953 {
4954 unsigned masked_count;
4955 masked_count = src1->u[0] & 0x1f;
4956 dst->u[0] = src0->u[0] >> masked_count;
4957 masked_count = src1->u[1] & 0x1f;
4958 dst->u[1] = src0->u[1] >> masked_count;
4959 masked_count = src1->u[2] & 0x1f;
4960 dst->u[2] = src0->u[2] >> masked_count;
4961 masked_count = src1->u[3] & 0x1f;
4962 dst->u[3] = src0->u[3] >> masked_count;
4963 }
4964
4965 static void
4966 micro_uslt(union tgsi_exec_channel *dst,
4967 const union tgsi_exec_channel *src0,
4968 const union tgsi_exec_channel *src1)
4969 {
4970 dst->u[0] = src0->u[0] < src1->u[0] ? ~0 : 0;
4971 dst->u[1] = src0->u[1] < src1->u[1] ? ~0 : 0;
4972 dst->u[2] = src0->u[2] < src1->u[2] ? ~0 : 0;
4973 dst->u[3] = src0->u[3] < src1->u[3] ? ~0 : 0;
4974 }
4975
4976 static void
4977 micro_usne(union tgsi_exec_channel *dst,
4978 const union tgsi_exec_channel *src0,
4979 const union tgsi_exec_channel *src1)
4980 {
4981 dst->u[0] = src0->u[0] != src1->u[0] ? ~0 : 0;
4982 dst->u[1] = src0->u[1] != src1->u[1] ? ~0 : 0;
4983 dst->u[2] = src0->u[2] != src1->u[2] ? ~0 : 0;
4984 dst->u[3] = src0->u[3] != src1->u[3] ? ~0 : 0;
4985 }
4986
4987 static void
4988 micro_uarl(union tgsi_exec_channel *dst,
4989 const union tgsi_exec_channel *src)
4990 {
4991 dst->i[0] = src->u[0];
4992 dst->i[1] = src->u[1];
4993 dst->i[2] = src->u[2];
4994 dst->i[3] = src->u[3];
4995 }
4996
4997 /**
4998 * Signed bitfield extract (i.e. sign-extend the extracted bits)
4999 */
5000 static void
5001 micro_ibfe(union tgsi_exec_channel *dst,
5002 const union tgsi_exec_channel *src0,
5003 const union tgsi_exec_channel *src1,
5004 const union tgsi_exec_channel *src2)
5005 {
5006 int i;
5007 for (i = 0; i < 4; i++) {
5008 int width = src2->i[i];
5009 int offset = src1->i[i] & 0x1f;
5010 if (width == 32 && offset == 0) {
5011 dst->i[i] = src0->i[i];
5012 continue;
5013 }
5014 width &= 0x1f;
5015 if (width == 0)
5016 dst->i[i] = 0;
5017 else if (width + offset < 32)
5018 dst->i[i] = (src0->i[i] << (32 - width - offset)) >> (32 - width);
5019 else
5020 dst->i[i] = src0->i[i] >> offset;
5021 }
5022 }
5023
5024 /**
5025 * Unsigned bitfield extract
5026 */
5027 static void
5028 micro_ubfe(union tgsi_exec_channel *dst,
5029 const union tgsi_exec_channel *src0,
5030 const union tgsi_exec_channel *src1,
5031 const union tgsi_exec_channel *src2)
5032 {
5033 int i;
5034 for (i = 0; i < 4; i++) {
5035 int width = src2->u[i];
5036 int offset = src1->u[i] & 0x1f;
5037 if (width == 32 && offset == 0) {
5038 dst->u[i] = src0->u[i];
5039 continue;
5040 }
5041 width &= 0x1f;
5042 if (width == 0)
5043 dst->u[i] = 0;
5044 else if (width + offset < 32)
5045 dst->u[i] = (src0->u[i] << (32 - width - offset)) >> (32 - width);
5046 else
5047 dst->u[i] = src0->u[i] >> offset;
5048 }
5049 }
5050
5051 /**
5052 * Bitfield insert: copy low bits from src1 into a region of src0.
5053 */
5054 static void
5055 micro_bfi(union tgsi_exec_channel *dst,
5056 const union tgsi_exec_channel *src0,
5057 const union tgsi_exec_channel *src1,
5058 const union tgsi_exec_channel *src2,
5059 const union tgsi_exec_channel *src3)
5060 {
5061 int i;
5062 for (i = 0; i < 4; i++) {
5063 int width = src3->u[i];
5064 int offset = src2->u[i] & 0x1f;
5065 if (width == 32) {
5066 dst->u[i] = src1->u[i];
5067 } else {
5068 int bitmask = ((1 << width) - 1) << offset;
5069 dst->u[i] = ((src1->u[i] << offset) & bitmask) | (src0->u[i] & ~bitmask);
5070 }
5071 }
5072 }
5073
5074 static void
5075 micro_brev(union tgsi_exec_channel *dst,
5076 const union tgsi_exec_channel *src)
5077 {
5078 dst->u[0] = util_bitreverse(src->u[0]);
5079 dst->u[1] = util_bitreverse(src->u[1]);
5080 dst->u[2] = util_bitreverse(src->u[2]);
5081 dst->u[3] = util_bitreverse(src->u[3]);
5082 }
5083
5084 static void
5085 micro_popc(union tgsi_exec_channel *dst,
5086 const union tgsi_exec_channel *src)
5087 {
5088 dst->u[0] = util_bitcount(src->u[0]);
5089 dst->u[1] = util_bitcount(src->u[1]);
5090 dst->u[2] = util_bitcount(src->u[2]);
5091 dst->u[3] = util_bitcount(src->u[3]);
5092 }
5093
5094 static void
5095 micro_lsb(union tgsi_exec_channel *dst,
5096 const union tgsi_exec_channel *src)
5097 {
5098 dst->i[0] = ffs(src->u[0]) - 1;
5099 dst->i[1] = ffs(src->u[1]) - 1;
5100 dst->i[2] = ffs(src->u[2]) - 1;
5101 dst->i[3] = ffs(src->u[3]) - 1;
5102 }
5103
5104 static void
5105 micro_imsb(union tgsi_exec_channel *dst,
5106 const union tgsi_exec_channel *src)
5107 {
5108 dst->i[0] = util_last_bit_signed(src->i[0]) - 1;
5109 dst->i[1] = util_last_bit_signed(src->i[1]) - 1;
5110 dst->i[2] = util_last_bit_signed(src->i[2]) - 1;
5111 dst->i[3] = util_last_bit_signed(src->i[3]) - 1;
5112 }
5113
5114 static void
5115 micro_umsb(union tgsi_exec_channel *dst,
5116 const union tgsi_exec_channel *src)
5117 {
5118 dst->i[0] = util_last_bit(src->u[0]) - 1;
5119 dst->i[1] = util_last_bit(src->u[1]) - 1;
5120 dst->i[2] = util_last_bit(src->u[2]) - 1;
5121 dst->i[3] = util_last_bit(src->u[3]) - 1;
5122 }
5123
5124
5125 static void
5126 exec_interp_at_sample(struct tgsi_exec_machine *mach,
5127 const struct tgsi_full_instruction *inst)
5128 {
5129 union tgsi_exec_channel index;
5130 union tgsi_exec_channel index2D;
5131 union tgsi_exec_channel result[TGSI_NUM_CHANNELS];
5132 const struct tgsi_full_src_register *reg = &inst->Src[0];
5133
5134 assert(reg->Register.File == TGSI_FILE_INPUT);
5135 assert(inst->Src[1].Register.File == TGSI_FILE_IMMEDIATE);
5136
5137 get_index_registers(mach, reg, &index, &index2D);
5138 float sample = mach->Imms[inst->Src[1].Register.Index][inst->Src[1].Register.SwizzleX];
5139
5140 /* Short cut: sample 0 is like a normal fetch */
5141 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
5142 if (!(inst->Dst[0].Register.WriteMask & (1 << chan)))
5143 continue;
5144
5145 fetch_src_file_channel(mach, TGSI_FILE_INPUT, chan, &index, &index2D,
5146 &result[chan]);
5147 if (sample != 0.0f) {
5148
5149 /* TODO: define the samples > 0, but so far we only do fake MSAA */
5150 float x = 0;
5151 float y = 0;
5152
5153 unsigned pos = index2D.i[chan] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index.i[chan];
5154 assert(pos >= 0);
5155 assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS);
5156 mach->InputSampleOffsetApply[pos](mach, pos, chan, x, y, &result[chan]);
5157 }
5158 store_dest(mach, &result[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
5159 }
5160 }
5161
5162
5163 static void
5164 exec_interp_at_offset(struct tgsi_exec_machine *mach,
5165 const struct tgsi_full_instruction *inst)
5166 {
5167 union tgsi_exec_channel index;
5168 union tgsi_exec_channel index2D;
5169 union tgsi_exec_channel ofsx;
5170 union tgsi_exec_channel ofsy;
5171 const struct tgsi_full_src_register *reg = &inst->Src[0];
5172
5173 assert(reg->Register.File == TGSI_FILE_INPUT);
5174
5175 get_index_registers(mach, reg, &index, &index2D);
5176 unsigned pos = index2D.i[0] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index.i[0];
5177
5178 fetch_source(mach, &ofsx, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
5179 fetch_source(mach, &ofsy, &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
5180
5181 for (int chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
5182 if (!(inst->Dst[0].Register.WriteMask & (1 << chan)))
5183 continue;
5184 union tgsi_exec_channel result;
5185 fetch_src_file_channel(mach, TGSI_FILE_INPUT, chan, &index, &index2D, &result);
5186 mach->InputSampleOffsetApply[pos](mach, pos, chan, ofsx.f[chan], ofsy.f[chan], &result);
5187 store_dest(mach, &result, &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
5188 }
5189 }
5190
5191
5192 static void
5193 exec_interp_at_centroid(struct tgsi_exec_machine *mach,
5194 const struct tgsi_full_instruction *inst)
5195 {
5196 union tgsi_exec_channel index;
5197 union tgsi_exec_channel index2D;
5198 union tgsi_exec_channel result[TGSI_NUM_CHANNELS];
5199 const struct tgsi_full_src_register *reg = &inst->Src[0];
5200
5201 assert(reg->Register.File == TGSI_FILE_INPUT);
5202 get_index_registers(mach, reg, &index, &index2D);
5203
5204 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
5205 if (!(inst->Dst[0].Register.WriteMask & (1 << chan)))
5206 continue;
5207
5208 /* Here we should add the change to use a sample that lies within the
5209 * primitive (Section 15.2):
5210 *
5211 * "When interpolating variables declared using centroid in ,
5212 * the variable is sampled at a location within the pixel covered
5213 * by the primitive generating the fragment.
5214 * ...
5215 * The built-in functions interpolateAtCentroid ... will sample
5216 * variables as though they were declared with the centroid ...
5217 * qualifier[s]."
5218 *
5219 * Since we only support 1 sample currently, this is just a pass-through.
5220 */
5221 fetch_src_file_channel(mach, TGSI_FILE_INPUT, chan, &index, &index2D,
5222 &result[chan]);
5223 store_dest(mach, &result[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
5224 }
5225
5226 }
5227
5228
5229 /**
5230 * Execute a TGSI instruction.
5231 * Returns TRUE if a barrier instruction is hit,
5232 * otherwise FALSE.
5233 */
5234 static boolean
5235 exec_instruction(
5236 struct tgsi_exec_machine *mach,
5237 const struct tgsi_full_instruction *inst,
5238 int *pc )
5239 {
5240 union tgsi_exec_channel r[10];
5241
5242 (*pc)++;
5243
5244 switch (inst->Instruction.Opcode) {
5245 case TGSI_OPCODE_ARL:
5246 exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5247 break;
5248
5249 case TGSI_OPCODE_MOV:
5250 exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5251 break;
5252
5253 case TGSI_OPCODE_LIT:
5254 exec_lit(mach, inst);
5255 break;
5256
5257 case TGSI_OPCODE_RCP:
5258 exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5259 break;
5260
5261 case TGSI_OPCODE_RSQ:
5262 exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5263 break;
5264
5265 case TGSI_OPCODE_EXP:
5266 exec_exp(mach, inst);
5267 break;
5268
5269 case TGSI_OPCODE_LOG:
5270 exec_log(mach, inst);
5271 break;
5272
5273 case TGSI_OPCODE_MUL:
5274 exec_vector_binary(mach, inst, micro_mul, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5275 break;
5276
5277 case TGSI_OPCODE_ADD:
5278 exec_vector_binary(mach, inst, micro_add, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5279 break;
5280
5281 case TGSI_OPCODE_DP3:
5282 exec_dp3(mach, inst);
5283 break;
5284
5285 case TGSI_OPCODE_DP4:
5286 exec_dp4(mach, inst);
5287 break;
5288
5289 case TGSI_OPCODE_DST:
5290 exec_dst(mach, inst);
5291 break;
5292
5293 case TGSI_OPCODE_MIN:
5294 exec_vector_binary(mach, inst, micro_min, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5295 break;
5296
5297 case TGSI_OPCODE_MAX:
5298 exec_vector_binary(mach, inst, micro_max, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5299 break;
5300
5301 case TGSI_OPCODE_SLT:
5302 exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5303 break;
5304
5305 case TGSI_OPCODE_SGE:
5306 exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5307 break;
5308
5309 case TGSI_OPCODE_MAD:
5310 exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5311 break;
5312
5313 case TGSI_OPCODE_LRP:
5314 exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5315 break;
5316
5317 case TGSI_OPCODE_SQRT:
5318 exec_scalar_unary(mach, inst, micro_sqrt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5319 break;
5320
5321 case TGSI_OPCODE_FRC:
5322 exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5323 break;
5324
5325 case TGSI_OPCODE_FLR:
5326 exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5327 break;
5328
5329 case TGSI_OPCODE_ROUND:
5330 exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5331 break;
5332
5333 case TGSI_OPCODE_EX2:
5334 exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5335 break;
5336
5337 case TGSI_OPCODE_LG2:
5338 exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5339 break;
5340
5341 case TGSI_OPCODE_POW:
5342 exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5343 break;
5344
5345 case TGSI_OPCODE_LDEXP:
5346 exec_vector_binary(mach, inst, micro_ldexp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5347 break;
5348
5349 case TGSI_OPCODE_COS:
5350 exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5351 break;
5352
5353 case TGSI_OPCODE_DDX_FINE:
5354 exec_vector_unary(mach, inst, micro_ddx_fine, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5355 break;
5356
5357 case TGSI_OPCODE_DDX:
5358 exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5359 break;
5360
5361 case TGSI_OPCODE_DDY_FINE:
5362 exec_vector_unary(mach, inst, micro_ddy_fine, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5363 break;
5364
5365 case TGSI_OPCODE_DDY:
5366 exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5367 break;
5368
5369 case TGSI_OPCODE_KILL:
5370 exec_kill (mach);
5371 break;
5372
5373 case TGSI_OPCODE_KILL_IF:
5374 exec_kill_if (mach, inst);
5375 break;
5376
5377 case TGSI_OPCODE_PK2H:
5378 exec_pk2h(mach, inst);
5379 break;
5380
5381 case TGSI_OPCODE_PK2US:
5382 assert (0);
5383 break;
5384
5385 case TGSI_OPCODE_PK4B:
5386 assert (0);
5387 break;
5388
5389 case TGSI_OPCODE_PK4UB:
5390 assert (0);
5391 break;
5392
5393 case TGSI_OPCODE_SEQ:
5394 exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5395 break;
5396
5397 case TGSI_OPCODE_SGT:
5398 exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5399 break;
5400
5401 case TGSI_OPCODE_SIN:
5402 exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5403 break;
5404
5405 case TGSI_OPCODE_SLE:
5406 exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5407 break;
5408
5409 case TGSI_OPCODE_SNE:
5410 exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5411 break;
5412
5413 case TGSI_OPCODE_TEX:
5414 /* simple texture lookup */
5415 /* src[0] = texcoord */
5416 /* src[1] = sampler unit */
5417 exec_tex(mach, inst, TEX_MODIFIER_NONE, 1);
5418 break;
5419
5420 case TGSI_OPCODE_TXB:
5421 /* Texture lookup with lod bias */
5422 /* src[0] = texcoord (src[0].w = LOD bias) */
5423 /* src[1] = sampler unit */
5424 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 1);
5425 break;
5426
5427 case TGSI_OPCODE_TXD:
5428 /* Texture lookup with explict partial derivatives */
5429 /* src[0] = texcoord */
5430 /* src[1] = d[strq]/dx */
5431 /* src[2] = d[strq]/dy */
5432 /* src[3] = sampler unit */
5433 exec_txd(mach, inst);
5434 break;
5435
5436 case TGSI_OPCODE_TXL:
5437 /* Texture lookup with explit LOD */
5438 /* src[0] = texcoord (src[0].w = LOD) */
5439 /* src[1] = sampler unit */
5440 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 1);
5441 break;
5442
5443 case TGSI_OPCODE_TXP:
5444 /* Texture lookup with projection */
5445 /* src[0] = texcoord (src[0].w = projection) */
5446 /* src[1] = sampler unit */
5447 exec_tex(mach, inst, TEX_MODIFIER_PROJECTED, 1);
5448 break;
5449
5450 case TGSI_OPCODE_TG4:
5451 /* src[0] = texcoord */
5452 /* src[1] = component */
5453 /* src[2] = sampler unit */
5454 exec_tex(mach, inst, TEX_MODIFIER_GATHER, 2);
5455 break;
5456
5457 case TGSI_OPCODE_LODQ:
5458 /* src[0] = texcoord */
5459 /* src[1] = sampler unit */
5460 exec_lodq(mach, inst);
5461 break;
5462
5463 case TGSI_OPCODE_UP2H:
5464 exec_up2h(mach, inst);
5465 break;
5466
5467 case TGSI_OPCODE_UP2US:
5468 assert (0);
5469 break;
5470
5471 case TGSI_OPCODE_UP4B:
5472 assert (0);
5473 break;
5474
5475 case TGSI_OPCODE_UP4UB:
5476 assert (0);
5477 break;
5478
5479 case TGSI_OPCODE_ARR:
5480 exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5481 break;
5482
5483 case TGSI_OPCODE_CAL:
5484 /* skip the call if no execution channels are enabled */
5485 if (mach->ExecMask) {
5486 /* do the call */
5487
5488 /* First, record the depths of the execution stacks.
5489 * This is important for deeply nested/looped return statements.
5490 * We have to unwind the stacks by the correct amount. For a
5491 * real code generator, we could determine the number of entries
5492 * to pop off each stack with simple static analysis and avoid
5493 * implementing this data structure at run time.
5494 */
5495 mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop;
5496 mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop;
5497 mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop;
5498 mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop;
5499 mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop;
5500 /* note that PC was already incremented above */
5501 mach->CallStack[mach->CallStackTop].ReturnAddr = *pc;
5502
5503 mach->CallStackTop++;
5504
5505 /* Second, push the Cond, Loop, Cont, Func stacks */
5506 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5507 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5508 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5509 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
5510 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
5511 assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
5512
5513 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5514 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
5515 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
5516 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
5517 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
5518 mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
5519
5520 /* Finally, jump to the subroutine. The label is a pointer
5521 * (an instruction number) to the BGNSUB instruction.
5522 */
5523 *pc = inst->Label.Label;
5524 assert(mach->Instructions[*pc].Instruction.Opcode
5525 == TGSI_OPCODE_BGNSUB);
5526 }
5527 break;
5528
5529 case TGSI_OPCODE_RET:
5530 mach->FuncMask &= ~mach->ExecMask;
5531 UPDATE_EXEC_MASK(mach);
5532
5533 if (mach->FuncMask == 0x0) {
5534 /* really return now (otherwise, keep executing */
5535
5536 if (mach->CallStackTop == 0) {
5537 /* returning from main() */
5538 mach->CondStackTop = 0;
5539 mach->LoopStackTop = 0;
5540 mach->ContStackTop = 0;
5541 mach->LoopLabelStackTop = 0;
5542 mach->SwitchStackTop = 0;
5543 mach->BreakStackTop = 0;
5544 *pc = -1;
5545 return FALSE;
5546 }
5547
5548 assert(mach->CallStackTop > 0);
5549 mach->CallStackTop--;
5550
5551 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
5552 mach->CondMask = mach->CondStack[mach->CondStackTop];
5553
5554 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
5555 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
5556
5557 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
5558 mach->ContMask = mach->ContStack[mach->ContStackTop];
5559
5560 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
5561 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
5562
5563 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
5564 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
5565
5566 assert(mach->FuncStackTop > 0);
5567 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
5568
5569 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
5570
5571 UPDATE_EXEC_MASK(mach);
5572 }
5573 break;
5574
5575 case TGSI_OPCODE_SSG:
5576 exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5577 break;
5578
5579 case TGSI_OPCODE_CMP:
5580 exec_vector_trinary(mach, inst, micro_cmp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5581 break;
5582
5583 case TGSI_OPCODE_DIV:
5584 exec_vector_binary(mach, inst, micro_div, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5585 break;
5586
5587 case TGSI_OPCODE_DP2:
5588 exec_dp2(mach, inst);
5589 break;
5590
5591 case TGSI_OPCODE_IF:
5592 /* push CondMask */
5593 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5594 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5595 FETCH( &r[0], 0, TGSI_CHAN_X );
5596 /* update CondMask */
5597 if( ! r[0].f[0] ) {
5598 mach->CondMask &= ~0x1;
5599 }
5600 if( ! r[0].f[1] ) {
5601 mach->CondMask &= ~0x2;
5602 }
5603 if( ! r[0].f[2] ) {
5604 mach->CondMask &= ~0x4;
5605 }
5606 if( ! r[0].f[3] ) {
5607 mach->CondMask &= ~0x8;
5608 }
5609 UPDATE_EXEC_MASK(mach);
5610 /* Todo: If CondMask==0, jump to ELSE */
5611 break;
5612
5613 case TGSI_OPCODE_UIF:
5614 /* push CondMask */
5615 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5616 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5617 IFETCH( &r[0], 0, TGSI_CHAN_X );
5618 /* update CondMask */
5619 if( ! r[0].u[0] ) {
5620 mach->CondMask &= ~0x1;
5621 }
5622 if( ! r[0].u[1] ) {
5623 mach->CondMask &= ~0x2;
5624 }
5625 if( ! r[0].u[2] ) {
5626 mach->CondMask &= ~0x4;
5627 }
5628 if( ! r[0].u[3] ) {
5629 mach->CondMask &= ~0x8;
5630 }
5631 UPDATE_EXEC_MASK(mach);
5632 /* Todo: If CondMask==0, jump to ELSE */
5633 break;
5634
5635 case TGSI_OPCODE_ELSE:
5636 /* invert CondMask wrt previous mask */
5637 {
5638 uint prevMask;
5639 assert(mach->CondStackTop > 0);
5640 prevMask = mach->CondStack[mach->CondStackTop - 1];
5641 mach->CondMask = ~mach->CondMask & prevMask;
5642 UPDATE_EXEC_MASK(mach);
5643 /* Todo: If CondMask==0, jump to ENDIF */
5644 }
5645 break;
5646
5647 case TGSI_OPCODE_ENDIF:
5648 /* pop CondMask */
5649 assert(mach->CondStackTop > 0);
5650 mach->CondMask = mach->CondStack[--mach->CondStackTop];
5651 UPDATE_EXEC_MASK(mach);
5652 break;
5653
5654 case TGSI_OPCODE_END:
5655 /* make sure we end primitives which haven't
5656 * been explicitly emitted */
5657 conditional_emit_primitive(mach);
5658 /* halt execution */
5659 *pc = -1;
5660 break;
5661
5662 case TGSI_OPCODE_CEIL:
5663 exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5664 break;
5665
5666 case TGSI_OPCODE_I2F:
5667 exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT);
5668 break;
5669
5670 case TGSI_OPCODE_NOT:
5671 exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5672 break;
5673
5674 case TGSI_OPCODE_TRUNC:
5675 exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5676 break;
5677
5678 case TGSI_OPCODE_SHL:
5679 exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5680 break;
5681
5682 case TGSI_OPCODE_AND:
5683 exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5684 break;
5685
5686 case TGSI_OPCODE_OR:
5687 exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5688 break;
5689
5690 case TGSI_OPCODE_MOD:
5691 exec_vector_binary(mach, inst, micro_mod, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5692 break;
5693
5694 case TGSI_OPCODE_XOR:
5695 exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5696 break;
5697
5698 case TGSI_OPCODE_TXF:
5699 exec_txf(mach, inst);
5700 break;
5701
5702 case TGSI_OPCODE_TXQ:
5703 exec_txq(mach, inst);
5704 break;
5705
5706 case TGSI_OPCODE_EMIT:
5707 emit_vertex(mach, inst);
5708 break;
5709
5710 case TGSI_OPCODE_ENDPRIM:
5711 emit_primitive(mach, inst);
5712 break;
5713
5714 case TGSI_OPCODE_BGNLOOP:
5715 /* push LoopMask and ContMasks */
5716 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5717 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5718 assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5719 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
5720
5721 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
5722 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
5723 mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1;
5724 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
5725 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP;
5726 break;
5727
5728 case TGSI_OPCODE_ENDLOOP:
5729 /* Restore ContMask, but don't pop */
5730 assert(mach->ContStackTop > 0);
5731 mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
5732 UPDATE_EXEC_MASK(mach);
5733 if (mach->ExecMask) {
5734 /* repeat loop: jump to instruction just past BGNLOOP */
5735 assert(mach->LoopLabelStackTop > 0);
5736 *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
5737 }
5738 else {
5739 /* exit loop: pop LoopMask */
5740 assert(mach->LoopStackTop > 0);
5741 mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
5742 /* pop ContMask */
5743 assert(mach->ContStackTop > 0);
5744 mach->ContMask = mach->ContStack[--mach->ContStackTop];
5745 assert(mach->LoopLabelStackTop > 0);
5746 --mach->LoopLabelStackTop;
5747
5748 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
5749 }
5750 UPDATE_EXEC_MASK(mach);
5751 break;
5752
5753 case TGSI_OPCODE_BRK:
5754 exec_break(mach);
5755 break;
5756
5757 case TGSI_OPCODE_CONT:
5758 /* turn off cont channels for each enabled exec channel */
5759 mach->ContMask &= ~mach->ExecMask;
5760 /* Todo: if mach->LoopMask == 0, jump to end of loop */
5761 UPDATE_EXEC_MASK(mach);
5762 break;
5763
5764 case TGSI_OPCODE_BGNSUB:
5765 /* no-op */
5766 break;
5767
5768 case TGSI_OPCODE_ENDSUB:
5769 /*
5770 * XXX: This really should be a no-op. We should never reach this opcode.
5771 */
5772
5773 assert(mach->CallStackTop > 0);
5774 mach->CallStackTop--;
5775
5776 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
5777 mach->CondMask = mach->CondStack[mach->CondStackTop];
5778
5779 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
5780 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
5781
5782 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
5783 mach->ContMask = mach->ContStack[mach->ContStackTop];
5784
5785 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
5786 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
5787
5788 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
5789 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
5790
5791 assert(mach->FuncStackTop > 0);
5792 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
5793
5794 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
5795
5796 UPDATE_EXEC_MASK(mach);
5797 break;
5798
5799 case TGSI_OPCODE_NOP:
5800 break;
5801
5802 case TGSI_OPCODE_F2I:
5803 exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5804 break;
5805
5806 case TGSI_OPCODE_FSEQ:
5807 exec_vector_binary(mach, inst, micro_fseq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5808 break;
5809
5810 case TGSI_OPCODE_FSGE:
5811 exec_vector_binary(mach, inst, micro_fsge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5812 break;
5813
5814 case TGSI_OPCODE_FSLT:
5815 exec_vector_binary(mach, inst, micro_fslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5816 break;
5817
5818 case TGSI_OPCODE_FSNE:
5819 exec_vector_binary(mach, inst, micro_fsne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5820 break;
5821
5822 case TGSI_OPCODE_IDIV:
5823 exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5824 break;
5825
5826 case TGSI_OPCODE_IMAX:
5827 exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5828 break;
5829
5830 case TGSI_OPCODE_IMIN:
5831 exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5832 break;
5833
5834 case TGSI_OPCODE_INEG:
5835 exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5836 break;
5837
5838 case TGSI_OPCODE_ISGE:
5839 exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5840 break;
5841
5842 case TGSI_OPCODE_ISHR:
5843 exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5844 break;
5845
5846 case TGSI_OPCODE_ISLT:
5847 exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5848 break;
5849
5850 case TGSI_OPCODE_F2U:
5851 exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5852 break;
5853
5854 case TGSI_OPCODE_U2F:
5855 exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_UINT);
5856 break;
5857
5858 case TGSI_OPCODE_UADD:
5859 exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5860 break;
5861
5862 case TGSI_OPCODE_UDIV:
5863 exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5864 break;
5865
5866 case TGSI_OPCODE_UMAD:
5867 exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5868 break;
5869
5870 case TGSI_OPCODE_UMAX:
5871 exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5872 break;
5873
5874 case TGSI_OPCODE_UMIN:
5875 exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5876 break;
5877
5878 case TGSI_OPCODE_UMOD:
5879 exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5880 break;
5881
5882 case TGSI_OPCODE_UMUL:
5883 exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5884 break;
5885
5886 case TGSI_OPCODE_IMUL_HI:
5887 exec_vector_binary(mach, inst, micro_imul_hi, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5888 break;
5889
5890 case TGSI_OPCODE_UMUL_HI:
5891 exec_vector_binary(mach, inst, micro_umul_hi, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5892 break;
5893
5894 case TGSI_OPCODE_USEQ:
5895 exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5896 break;
5897
5898 case TGSI_OPCODE_USGE:
5899 exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5900 break;
5901
5902 case TGSI_OPCODE_USHR:
5903 exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5904 break;
5905
5906 case TGSI_OPCODE_USLT:
5907 exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5908 break;
5909
5910 case TGSI_OPCODE_USNE:
5911 exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5912 break;
5913
5914 case TGSI_OPCODE_SWITCH:
5915 exec_switch(mach, inst);
5916 break;
5917
5918 case TGSI_OPCODE_CASE:
5919 exec_case(mach, inst);
5920 break;
5921
5922 case TGSI_OPCODE_DEFAULT:
5923 exec_default(mach);
5924 break;
5925
5926 case TGSI_OPCODE_ENDSWITCH:
5927 exec_endswitch(mach);
5928 break;
5929
5930 case TGSI_OPCODE_SAMPLE_I:
5931 exec_txf(mach, inst);
5932 break;
5933
5934 case TGSI_OPCODE_SAMPLE_I_MS:
5935 exec_txf(mach, inst);
5936 break;
5937
5938 case TGSI_OPCODE_SAMPLE:
5939 exec_sample(mach, inst, TEX_MODIFIER_NONE, FALSE);
5940 break;
5941
5942 case TGSI_OPCODE_SAMPLE_B:
5943 exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS, FALSE);
5944 break;
5945
5946 case TGSI_OPCODE_SAMPLE_C:
5947 exec_sample(mach, inst, TEX_MODIFIER_NONE, TRUE);
5948 break;
5949
5950 case TGSI_OPCODE_SAMPLE_C_LZ:
5951 exec_sample(mach, inst, TEX_MODIFIER_LEVEL_ZERO, TRUE);
5952 break;
5953
5954 case TGSI_OPCODE_SAMPLE_D:
5955 exec_sample_d(mach, inst);
5956 break;
5957
5958 case TGSI_OPCODE_SAMPLE_L:
5959 exec_sample(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, FALSE);
5960 break;
5961
5962 case TGSI_OPCODE_GATHER4:
5963 exec_sample(mach, inst, TEX_MODIFIER_GATHER, FALSE);
5964 break;
5965
5966 case TGSI_OPCODE_SVIEWINFO:
5967 exec_txq(mach, inst);
5968 break;
5969
5970 case TGSI_OPCODE_SAMPLE_POS:
5971 assert(0);
5972 break;
5973
5974 case TGSI_OPCODE_SAMPLE_INFO:
5975 assert(0);
5976 break;
5977
5978 case TGSI_OPCODE_LOD:
5979 exec_lodq(mach, inst);
5980 break;
5981
5982 case TGSI_OPCODE_UARL:
5983 exec_vector_unary(mach, inst, micro_uarl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
5984 break;
5985
5986 case TGSI_OPCODE_UCMP:
5987 exec_ucmp(mach, inst);
5988 break;
5989
5990 case TGSI_OPCODE_IABS:
5991 exec_vector_unary(mach, inst, micro_iabs, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5992 break;
5993
5994 case TGSI_OPCODE_ISSG:
5995 exec_vector_unary(mach, inst, micro_isgn, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5996 break;
5997
5998 case TGSI_OPCODE_TEX2:
5999 /* simple texture lookup */
6000 /* src[0] = texcoord */
6001 /* src[1] = compare */
6002 /* src[2] = sampler unit */
6003 exec_tex(mach, inst, TEX_MODIFIER_NONE, 2);
6004 break;
6005 case TGSI_OPCODE_TXB2:
6006 /* simple texture lookup */
6007 /* src[0] = texcoord */
6008 /* src[1] = bias */
6009 /* src[2] = sampler unit */
6010 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 2);
6011 break;
6012 case TGSI_OPCODE_TXL2:
6013 /* simple texture lookup */
6014 /* src[0] = texcoord */
6015 /* src[1] = lod */
6016 /* src[2] = sampler unit */
6017 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 2);
6018 break;
6019
6020 case TGSI_OPCODE_IBFE:
6021 exec_vector_trinary(mach, inst, micro_ibfe, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
6022 break;
6023 case TGSI_OPCODE_UBFE:
6024 exec_vector_trinary(mach, inst, micro_ubfe, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
6025 break;
6026 case TGSI_OPCODE_BFI:
6027 exec_vector_quaternary(mach, inst, micro_bfi, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
6028 break;
6029 case TGSI_OPCODE_BREV:
6030 exec_vector_unary(mach, inst, micro_brev, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
6031 break;
6032 case TGSI_OPCODE_POPC:
6033 exec_vector_unary(mach, inst, micro_popc, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
6034 break;
6035 case TGSI_OPCODE_LSB:
6036 exec_vector_unary(mach, inst, micro_lsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
6037 break;
6038 case TGSI_OPCODE_IMSB:
6039 exec_vector_unary(mach, inst, micro_imsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
6040 break;
6041 case TGSI_OPCODE_UMSB:
6042 exec_vector_unary(mach, inst, micro_umsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
6043 break;
6044
6045 case TGSI_OPCODE_F2D:
6046 exec_t_2_64(mach, inst, micro_f2d, TGSI_EXEC_DATA_FLOAT);
6047 break;
6048
6049 case TGSI_OPCODE_D2F:
6050 exec_64_2_t(mach, inst, micro_d2f, TGSI_EXEC_DATA_FLOAT);
6051 break;
6052
6053 case TGSI_OPCODE_DABS:
6054 exec_double_unary(mach, inst, micro_dabs);
6055 break;
6056
6057 case TGSI_OPCODE_DNEG:
6058 exec_double_unary(mach, inst, micro_dneg);
6059 break;
6060
6061 case TGSI_OPCODE_DADD:
6062 exec_double_binary(mach, inst, micro_dadd, TGSI_EXEC_DATA_DOUBLE);
6063 break;
6064
6065 case TGSI_OPCODE_DDIV:
6066 exec_double_binary(mach, inst, micro_ddiv, TGSI_EXEC_DATA_DOUBLE);
6067 break;
6068
6069 case TGSI_OPCODE_DMUL:
6070 exec_double_binary(mach, inst, micro_dmul, TGSI_EXEC_DATA_DOUBLE);
6071 break;
6072
6073 case TGSI_OPCODE_DMAX:
6074 exec_double_binary(mach, inst, micro_dmax, TGSI_EXEC_DATA_DOUBLE);
6075 break;
6076
6077 case TGSI_OPCODE_DMIN:
6078 exec_double_binary(mach, inst, micro_dmin, TGSI_EXEC_DATA_DOUBLE);
6079 break;
6080
6081 case TGSI_OPCODE_DSLT:
6082 exec_double_binary(mach, inst, micro_dslt, TGSI_EXEC_DATA_UINT);
6083 break;
6084
6085 case TGSI_OPCODE_DSGE:
6086 exec_double_binary(mach, inst, micro_dsge, TGSI_EXEC_DATA_UINT);
6087 break;
6088
6089 case TGSI_OPCODE_DSEQ:
6090 exec_double_binary(mach, inst, micro_dseq, TGSI_EXEC_DATA_UINT);
6091 break;
6092
6093 case TGSI_OPCODE_DSNE:
6094 exec_double_binary(mach, inst, micro_dsne, TGSI_EXEC_DATA_UINT);
6095 break;
6096
6097 case TGSI_OPCODE_DRCP:
6098 exec_double_unary(mach, inst, micro_drcp);
6099 break;
6100
6101 case TGSI_OPCODE_DSQRT:
6102 exec_double_unary(mach, inst, micro_dsqrt);
6103 break;
6104
6105 case TGSI_OPCODE_DRSQ:
6106 exec_double_unary(mach, inst, micro_drsq);
6107 break;
6108
6109 case TGSI_OPCODE_DMAD:
6110 exec_double_trinary(mach, inst, micro_dmad);
6111 break;
6112
6113 case TGSI_OPCODE_DFRAC:
6114 exec_double_unary(mach, inst, micro_dfrac);
6115 break;
6116
6117 case TGSI_OPCODE_DFLR:
6118 exec_double_unary(mach, inst, micro_dflr);
6119 break;
6120
6121 case TGSI_OPCODE_DLDEXP:
6122 exec_dldexp(mach, inst);
6123 break;
6124
6125 case TGSI_OPCODE_DFRACEXP:
6126 exec_dfracexp(mach, inst);
6127 break;
6128
6129 case TGSI_OPCODE_I2D:
6130 exec_t_2_64(mach, inst, micro_i2d, TGSI_EXEC_DATA_INT);
6131 break;
6132
6133 case TGSI_OPCODE_D2I:
6134 exec_64_2_t(mach, inst, micro_d2i, TGSI_EXEC_DATA_INT);
6135 break;
6136
6137 case TGSI_OPCODE_U2D:
6138 exec_t_2_64(mach, inst, micro_u2d, TGSI_EXEC_DATA_UINT);
6139 break;
6140
6141 case TGSI_OPCODE_D2U:
6142 exec_64_2_t(mach, inst, micro_d2u, TGSI_EXEC_DATA_INT);
6143 break;
6144
6145 case TGSI_OPCODE_LOAD:
6146 exec_load(mach, inst);
6147 break;
6148
6149 case TGSI_OPCODE_STORE:
6150 exec_store(mach, inst);
6151 break;
6152
6153 case TGSI_OPCODE_ATOMUADD:
6154 case TGSI_OPCODE_ATOMXCHG:
6155 case TGSI_OPCODE_ATOMCAS:
6156 case TGSI_OPCODE_ATOMAND:
6157 case TGSI_OPCODE_ATOMOR:
6158 case TGSI_OPCODE_ATOMXOR:
6159 case TGSI_OPCODE_ATOMUMIN:
6160 case TGSI_OPCODE_ATOMUMAX:
6161 case TGSI_OPCODE_ATOMIMIN:
6162 case TGSI_OPCODE_ATOMIMAX:
6163 case TGSI_OPCODE_ATOMFADD:
6164 exec_atomop(mach, inst);
6165 break;
6166
6167 case TGSI_OPCODE_RESQ:
6168 exec_resq(mach, inst);
6169 break;
6170 case TGSI_OPCODE_BARRIER:
6171 case TGSI_OPCODE_MEMBAR:
6172 return TRUE;
6173 break;
6174
6175 case TGSI_OPCODE_I64ABS:
6176 exec_double_unary(mach, inst, micro_i64abs);
6177 break;
6178
6179 case TGSI_OPCODE_I64SSG:
6180 exec_double_unary(mach, inst, micro_i64sgn);
6181 break;
6182
6183 case TGSI_OPCODE_I64NEG:
6184 exec_double_unary(mach, inst, micro_i64neg);
6185 break;
6186
6187 case TGSI_OPCODE_U64SEQ:
6188 exec_double_binary(mach, inst, micro_u64seq, TGSI_EXEC_DATA_UINT);
6189 break;
6190
6191 case TGSI_OPCODE_U64SNE:
6192 exec_double_binary(mach, inst, micro_u64sne, TGSI_EXEC_DATA_UINT);
6193 break;
6194
6195 case TGSI_OPCODE_I64SLT:
6196 exec_double_binary(mach, inst, micro_i64slt, TGSI_EXEC_DATA_UINT);
6197 break;
6198 case TGSI_OPCODE_U64SLT:
6199 exec_double_binary(mach, inst, micro_u64slt, TGSI_EXEC_DATA_UINT);
6200 break;
6201
6202 case TGSI_OPCODE_I64SGE:
6203 exec_double_binary(mach, inst, micro_i64sge, TGSI_EXEC_DATA_UINT);
6204 break;
6205 case TGSI_OPCODE_U64SGE:
6206 exec_double_binary(mach, inst, micro_u64sge, TGSI_EXEC_DATA_UINT);
6207 break;
6208
6209 case TGSI_OPCODE_I64MIN:
6210 exec_double_binary(mach, inst, micro_i64min, TGSI_EXEC_DATA_INT64);
6211 break;
6212 case TGSI_OPCODE_U64MIN:
6213 exec_double_binary(mach, inst, micro_u64min, TGSI_EXEC_DATA_UINT64);
6214 break;
6215 case TGSI_OPCODE_I64MAX:
6216 exec_double_binary(mach, inst, micro_i64max, TGSI_EXEC_DATA_INT64);
6217 break;
6218 case TGSI_OPCODE_U64MAX:
6219 exec_double_binary(mach, inst, micro_u64max, TGSI_EXEC_DATA_UINT64);
6220 break;
6221 case TGSI_OPCODE_U64ADD:
6222 exec_double_binary(mach, inst, micro_u64add, TGSI_EXEC_DATA_UINT64);
6223 break;
6224 case TGSI_OPCODE_U64MUL:
6225 exec_double_binary(mach, inst, micro_u64mul, TGSI_EXEC_DATA_UINT64);
6226 break;
6227 case TGSI_OPCODE_U64SHL:
6228 exec_arg0_64_arg1_32(mach, inst, micro_u64shl);
6229 break;
6230 case TGSI_OPCODE_I64SHR:
6231 exec_arg0_64_arg1_32(mach, inst, micro_i64shr);
6232 break;
6233 case TGSI_OPCODE_U64SHR:
6234 exec_arg0_64_arg1_32(mach, inst, micro_u64shr);
6235 break;
6236 case TGSI_OPCODE_U64DIV:
6237 exec_double_binary(mach, inst, micro_u64div, TGSI_EXEC_DATA_UINT64);
6238 break;
6239 case TGSI_OPCODE_I64DIV:
6240 exec_double_binary(mach, inst, micro_i64div, TGSI_EXEC_DATA_INT64);
6241 break;
6242 case TGSI_OPCODE_U64MOD:
6243 exec_double_binary(mach, inst, micro_u64mod, TGSI_EXEC_DATA_UINT64);
6244 break;
6245 case TGSI_OPCODE_I64MOD:
6246 exec_double_binary(mach, inst, micro_i64mod, TGSI_EXEC_DATA_INT64);
6247 break;
6248
6249 case TGSI_OPCODE_F2U64:
6250 exec_t_2_64(mach, inst, micro_f2u64, TGSI_EXEC_DATA_FLOAT);
6251 break;
6252
6253 case TGSI_OPCODE_F2I64:
6254 exec_t_2_64(mach, inst, micro_f2i64, TGSI_EXEC_DATA_FLOAT);
6255 break;
6256
6257 case TGSI_OPCODE_U2I64:
6258 exec_t_2_64(mach, inst, micro_u2i64, TGSI_EXEC_DATA_INT);
6259 break;
6260 case TGSI_OPCODE_I2I64:
6261 exec_t_2_64(mach, inst, micro_i2i64, TGSI_EXEC_DATA_INT);
6262 break;
6263
6264 case TGSI_OPCODE_D2U64:
6265 exec_double_unary(mach, inst, micro_d2u64);
6266 break;
6267
6268 case TGSI_OPCODE_D2I64:
6269 exec_double_unary(mach, inst, micro_d2i64);
6270 break;
6271
6272 case TGSI_OPCODE_U642F:
6273 exec_64_2_t(mach, inst, micro_u642f, TGSI_EXEC_DATA_FLOAT);
6274 break;
6275 case TGSI_OPCODE_I642F:
6276 exec_64_2_t(mach, inst, micro_i642f, TGSI_EXEC_DATA_FLOAT);
6277 break;
6278
6279 case TGSI_OPCODE_U642D:
6280 exec_double_unary(mach, inst, micro_u642d);
6281 break;
6282 case TGSI_OPCODE_I642D:
6283 exec_double_unary(mach, inst, micro_i642d);
6284 break;
6285 case TGSI_OPCODE_INTERP_SAMPLE:
6286 exec_interp_at_sample(mach, inst);
6287 break;
6288 case TGSI_OPCODE_INTERP_OFFSET:
6289 exec_interp_at_offset(mach, inst);
6290 break;
6291 case TGSI_OPCODE_INTERP_CENTROID:
6292 exec_interp_at_centroid(mach, inst);
6293 break;
6294 default:
6295 assert( 0 );
6296 }
6297 return FALSE;
6298 }
6299
6300 static void
6301 tgsi_exec_machine_setup_masks(struct tgsi_exec_machine *mach)
6302 {
6303 uint default_mask = 0xf;
6304
6305 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
6306 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;
6307
6308 if (mach->ShaderType == PIPE_SHADER_GEOMETRY) {
6309 for (unsigned i = 0; i < TGSI_MAX_VERTEX_STREAMS; i++) {
6310 mach->Temps[temp_prim_idxs[i].idx].xyzw[temp_prim_idxs[i].chan].u[0] = 0;
6311 mach->Primitives[i][0] = 0;
6312 }
6313 /* GS runs on a single primitive for now */
6314 default_mask = 0x1;
6315 }
6316
6317 if (mach->NonHelperMask == 0)
6318 mach->NonHelperMask = default_mask;
6319 mach->CondMask = default_mask;
6320 mach->LoopMask = default_mask;
6321 mach->ContMask = default_mask;
6322 mach->FuncMask = default_mask;
6323 mach->ExecMask = default_mask;
6324
6325 mach->Switch.mask = default_mask;
6326
6327 assert(mach->CondStackTop == 0);
6328 assert(mach->LoopStackTop == 0);
6329 assert(mach->ContStackTop == 0);
6330 assert(mach->SwitchStackTop == 0);
6331 assert(mach->BreakStackTop == 0);
6332 assert(mach->CallStackTop == 0);
6333 }
6334
6335 /**
6336 * Run TGSI interpreter.
6337 * \return bitmask of "alive" quad components
6338 */
6339 uint
6340 tgsi_exec_machine_run( struct tgsi_exec_machine *mach, int start_pc )
6341 {
6342 uint i;
6343
6344 mach->pc = start_pc;
6345
6346 if (!start_pc) {
6347 tgsi_exec_machine_setup_masks(mach);
6348
6349 /* execute declarations (interpolants) */
6350 for (i = 0; i < mach->NumDeclarations; i++) {
6351 exec_declaration( mach, mach->Declarations+i );
6352 }
6353 }
6354
6355 {
6356 #if DEBUG_EXECUTION
6357 struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS];
6358 struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS];
6359 uint inst = 1;
6360
6361 if (!start_pc) {
6362 memset(mach->Temps, 0, sizeof(temps));
6363 if (mach->Outputs)
6364 memset(mach->Outputs, 0, sizeof(outputs));
6365 memset(temps, 0, sizeof(temps));
6366 memset(outputs, 0, sizeof(outputs));
6367 }
6368 #endif
6369
6370 /* execute instructions, until pc is set to -1 */
6371 while (mach->pc != -1) {
6372 boolean barrier_hit;
6373 #if DEBUG_EXECUTION
6374 uint i;
6375
6376 tgsi_dump_instruction(&mach->Instructions[mach->pc], inst++);
6377 #endif
6378
6379 assert(mach->pc < (int) mach->NumInstructions);
6380 barrier_hit = exec_instruction(mach, mach->Instructions + mach->pc, &mach->pc);
6381
6382 /* for compute shaders if we hit a barrier return now for later rescheduling */
6383 if (barrier_hit && mach->ShaderType == PIPE_SHADER_COMPUTE)
6384 return 0;
6385
6386 #if DEBUG_EXECUTION
6387 for (i = 0; i < TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS; i++) {
6388 if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) {
6389 uint j;
6390
6391 memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i]));
6392 debug_printf("TEMP[%2u] = ", i);
6393 for (j = 0; j < 4; j++) {
6394 if (j > 0) {
6395 debug_printf(" ");
6396 }
6397 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
6398 temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j],
6399 temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j],
6400 temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j],
6401 temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]);
6402 }
6403 }
6404 }
6405 if (mach->Outputs) {
6406 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
6407 if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) {
6408 uint j;
6409
6410 memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]));
6411 debug_printf("OUT[%2u] = ", i);
6412 for (j = 0; j < 4; j++) {
6413 if (j > 0) {
6414 debug_printf(" ");
6415 }
6416 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
6417 outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j],
6418 outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j],
6419 outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j],
6420 outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]);
6421 }
6422 }
6423 }
6424 }
6425 #endif
6426 }
6427 }
6428
6429 #if 0
6430 /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
6431 if (mach->ShaderType == PIPE_SHADER_FRAGMENT) {
6432 /*
6433 * Scale back depth component.
6434 */
6435 for (i = 0; i < 4; i++)
6436 mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
6437 }
6438 #endif
6439
6440 /* Strictly speaking, these assertions aren't really needed but they
6441 * can potentially catch some bugs in the control flow code.
6442 */
6443 assert(mach->CondStackTop == 0);
6444 assert(mach->LoopStackTop == 0);
6445 assert(mach->ContStackTop == 0);
6446 assert(mach->SwitchStackTop == 0);
6447 assert(mach->BreakStackTop == 0);
6448 assert(mach->CallStackTop == 0);
6449
6450 return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
6451 }