gallium: Pass per-element (not per-quad) LOD bias values down to texture sampler.
[mesa.git] / src / gallium / auxiliary / tgsi / tgsi_exec.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2009-2010 VMware, Inc. All rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * TGSI interpreter/executor.
31 *
32 * Flow control information:
33 *
34 * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
35 * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
36 * care since a condition may be true for some quad components but false
37 * for other components.
38 *
39 * We basically execute all statements (even if they're in the part of
40 * an IF/ELSE clause that's "not taken") and use a special mask to
41 * control writing to destination registers. This is the ExecMask.
42 * See store_dest().
43 *
44 * The ExecMask is computed from three other masks (CondMask, LoopMask and
45 * ContMask) which are controlled by the flow control instructions (namely:
46 * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
47 *
48 *
49 * Authors:
50 * Michal Krol
51 * Brian Paul
52 */
53
54 #include "pipe/p_compiler.h"
55 #include "pipe/p_state.h"
56 #include "pipe/p_shader_tokens.h"
57 #include "tgsi/tgsi_dump.h"
58 #include "tgsi/tgsi_parse.h"
59 #include "tgsi/tgsi_util.h"
60 #include "tgsi_exec.h"
61 #include "util/u_memory.h"
62 #include "util/u_math.h"
63
64
65 #define FAST_MATH 1
66
67 #define TILE_TOP_LEFT 0
68 #define TILE_TOP_RIGHT 1
69 #define TILE_BOTTOM_LEFT 2
70 #define TILE_BOTTOM_RIGHT 3
71
72 static void
73 micro_abs(union tgsi_exec_channel *dst,
74 const union tgsi_exec_channel *src)
75 {
76 dst->f[0] = fabsf(src->f[0]);
77 dst->f[1] = fabsf(src->f[1]);
78 dst->f[2] = fabsf(src->f[2]);
79 dst->f[3] = fabsf(src->f[3]);
80 }
81
82 static void
83 micro_arl(union tgsi_exec_channel *dst,
84 const union tgsi_exec_channel *src)
85 {
86 dst->i[0] = (int)floorf(src->f[0]);
87 dst->i[1] = (int)floorf(src->f[1]);
88 dst->i[2] = (int)floorf(src->f[2]);
89 dst->i[3] = (int)floorf(src->f[3]);
90 }
91
92 static void
93 micro_arr(union tgsi_exec_channel *dst,
94 const union tgsi_exec_channel *src)
95 {
96 dst->i[0] = (int)floorf(src->f[0] + 0.5f);
97 dst->i[1] = (int)floorf(src->f[1] + 0.5f);
98 dst->i[2] = (int)floorf(src->f[2] + 0.5f);
99 dst->i[3] = (int)floorf(src->f[3] + 0.5f);
100 }
101
102 static void
103 micro_ceil(union tgsi_exec_channel *dst,
104 const union tgsi_exec_channel *src)
105 {
106 dst->f[0] = ceilf(src->f[0]);
107 dst->f[1] = ceilf(src->f[1]);
108 dst->f[2] = ceilf(src->f[2]);
109 dst->f[3] = ceilf(src->f[3]);
110 }
111
112 static void
113 micro_cos(union tgsi_exec_channel *dst,
114 const union tgsi_exec_channel *src)
115 {
116 dst->f[0] = cosf(src->f[0]);
117 dst->f[1] = cosf(src->f[1]);
118 dst->f[2] = cosf(src->f[2]);
119 dst->f[3] = cosf(src->f[3]);
120 }
121
122 static void
123 micro_ddx(union tgsi_exec_channel *dst,
124 const union tgsi_exec_channel *src)
125 {
126 dst->f[0] =
127 dst->f[1] =
128 dst->f[2] =
129 dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
130 }
131
132 static void
133 micro_ddy(union tgsi_exec_channel *dst,
134 const union tgsi_exec_channel *src)
135 {
136 dst->f[0] =
137 dst->f[1] =
138 dst->f[2] =
139 dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
140 }
141
142 static void
143 micro_exp2(union tgsi_exec_channel *dst,
144 const union tgsi_exec_channel *src)
145 {
146 #if FAST_MATH
147 dst->f[0] = util_fast_exp2(src->f[0]);
148 dst->f[1] = util_fast_exp2(src->f[1]);
149 dst->f[2] = util_fast_exp2(src->f[2]);
150 dst->f[3] = util_fast_exp2(src->f[3]);
151 #else
152 #if DEBUG
153 /* Inf is okay for this instruction, so clamp it to silence assertions. */
154 uint i;
155 union tgsi_exec_channel clamped;
156
157 for (i = 0; i < 4; i++) {
158 if (src->f[i] > 127.99999f) {
159 clamped.f[i] = 127.99999f;
160 } else if (src->f[i] < -126.99999f) {
161 clamped.f[i] = -126.99999f;
162 } else {
163 clamped.f[i] = src->f[i];
164 }
165 }
166 src = &clamped;
167 #endif /* DEBUG */
168
169 dst->f[0] = powf(2.0f, src->f[0]);
170 dst->f[1] = powf(2.0f, src->f[1]);
171 dst->f[2] = powf(2.0f, src->f[2]);
172 dst->f[3] = powf(2.0f, src->f[3]);
173 #endif /* FAST_MATH */
174 }
175
176 static void
177 micro_flr(union tgsi_exec_channel *dst,
178 const union tgsi_exec_channel *src)
179 {
180 dst->f[0] = floorf(src->f[0]);
181 dst->f[1] = floorf(src->f[1]);
182 dst->f[2] = floorf(src->f[2]);
183 dst->f[3] = floorf(src->f[3]);
184 }
185
186 static void
187 micro_frc(union tgsi_exec_channel *dst,
188 const union tgsi_exec_channel *src)
189 {
190 dst->f[0] = src->f[0] - floorf(src->f[0]);
191 dst->f[1] = src->f[1] - floorf(src->f[1]);
192 dst->f[2] = src->f[2] - floorf(src->f[2]);
193 dst->f[3] = src->f[3] - floorf(src->f[3]);
194 }
195
196 static void
197 micro_iabs(union tgsi_exec_channel *dst,
198 const union tgsi_exec_channel *src)
199 {
200 dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0];
201 dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1];
202 dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2];
203 dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3];
204 }
205
206 static void
207 micro_ineg(union tgsi_exec_channel *dst,
208 const union tgsi_exec_channel *src)
209 {
210 dst->i[0] = -src->i[0];
211 dst->i[1] = -src->i[1];
212 dst->i[2] = -src->i[2];
213 dst->i[3] = -src->i[3];
214 }
215
216 static void
217 micro_lg2(union tgsi_exec_channel *dst,
218 const union tgsi_exec_channel *src)
219 {
220 #if FAST_MATH
221 dst->f[0] = util_fast_log2(src->f[0]);
222 dst->f[1] = util_fast_log2(src->f[1]);
223 dst->f[2] = util_fast_log2(src->f[2]);
224 dst->f[3] = util_fast_log2(src->f[3]);
225 #else
226 dst->f[0] = logf(src->f[0]) * 1.442695f;
227 dst->f[1] = logf(src->f[1]) * 1.442695f;
228 dst->f[2] = logf(src->f[2]) * 1.442695f;
229 dst->f[3] = logf(src->f[3]) * 1.442695f;
230 #endif
231 }
232
233 static void
234 micro_lrp(union tgsi_exec_channel *dst,
235 const union tgsi_exec_channel *src)
236 {
237 dst->f[0] = src[0].f[0] * (src[1].f[0] - src[2].f[0]) + src[2].f[0];
238 dst->f[1] = src[0].f[1] * (src[1].f[1] - src[2].f[1]) + src[2].f[1];
239 dst->f[2] = src[0].f[2] * (src[1].f[2] - src[2].f[2]) + src[2].f[2];
240 dst->f[3] = src[0].f[3] * (src[1].f[3] - src[2].f[3]) + src[2].f[3];
241 }
242
243 static void
244 micro_mad(union tgsi_exec_channel *dst,
245 const union tgsi_exec_channel *src)
246 {
247 dst->f[0] = src[0].f[0] * src[1].f[0] + src[2].f[0];
248 dst->f[1] = src[0].f[1] * src[1].f[1] + src[2].f[1];
249 dst->f[2] = src[0].f[2] * src[1].f[2] + src[2].f[2];
250 dst->f[3] = src[0].f[3] * src[1].f[3] + src[2].f[3];
251 }
252
253 static void
254 micro_mov(union tgsi_exec_channel *dst,
255 const union tgsi_exec_channel *src)
256 {
257 dst->u[0] = src->u[0];
258 dst->u[1] = src->u[1];
259 dst->u[2] = src->u[2];
260 dst->u[3] = src->u[3];
261 }
262
263 static void
264 micro_rcp(union tgsi_exec_channel *dst,
265 const union tgsi_exec_channel *src)
266 {
267 dst->f[0] = 1.0f / src->f[0];
268 dst->f[1] = 1.0f / src->f[1];
269 dst->f[2] = 1.0f / src->f[2];
270 dst->f[3] = 1.0f / src->f[3];
271 }
272
273 static void
274 micro_rnd(union tgsi_exec_channel *dst,
275 const union tgsi_exec_channel *src)
276 {
277 dst->f[0] = floorf(src->f[0] + 0.5f);
278 dst->f[1] = floorf(src->f[1] + 0.5f);
279 dst->f[2] = floorf(src->f[2] + 0.5f);
280 dst->f[3] = floorf(src->f[3] + 0.5f);
281 }
282
283 static void
284 micro_rsq(union tgsi_exec_channel *dst,
285 const union tgsi_exec_channel *src)
286 {
287 dst->f[0] = 1.0f / sqrtf(fabsf(src->f[0]));
288 dst->f[1] = 1.0f / sqrtf(fabsf(src->f[1]));
289 dst->f[2] = 1.0f / sqrtf(fabsf(src->f[2]));
290 dst->f[3] = 1.0f / sqrtf(fabsf(src->f[3]));
291 }
292
293 static void
294 micro_seq(union tgsi_exec_channel *dst,
295 const union tgsi_exec_channel *src)
296 {
297 dst->f[0] = src[0].f[0] == src[1].f[0] ? 1.0f : 0.0f;
298 dst->f[1] = src[0].f[1] == src[1].f[1] ? 1.0f : 0.0f;
299 dst->f[2] = src[0].f[2] == src[1].f[2] ? 1.0f : 0.0f;
300 dst->f[3] = src[0].f[3] == src[1].f[3] ? 1.0f : 0.0f;
301 }
302
303 static void
304 micro_sge(union tgsi_exec_channel *dst,
305 const union tgsi_exec_channel *src)
306 {
307 dst->f[0] = src[0].f[0] >= src[1].f[0] ? 1.0f : 0.0f;
308 dst->f[1] = src[0].f[1] >= src[1].f[1] ? 1.0f : 0.0f;
309 dst->f[2] = src[0].f[2] >= src[1].f[2] ? 1.0f : 0.0f;
310 dst->f[3] = src[0].f[3] >= src[1].f[3] ? 1.0f : 0.0f;
311 }
312
313 static void
314 micro_sgn(union tgsi_exec_channel *dst,
315 const union tgsi_exec_channel *src)
316 {
317 dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f;
318 dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f;
319 dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f;
320 dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f;
321 }
322
323 static void
324 micro_sgt(union tgsi_exec_channel *dst,
325 const union tgsi_exec_channel *src)
326 {
327 dst->f[0] = src[0].f[0] > src[1].f[0] ? 1.0f : 0.0f;
328 dst->f[1] = src[0].f[1] > src[1].f[1] ? 1.0f : 0.0f;
329 dst->f[2] = src[0].f[2] > src[1].f[2] ? 1.0f : 0.0f;
330 dst->f[3] = src[0].f[3] > src[1].f[3] ? 1.0f : 0.0f;
331 }
332
333 static void
334 micro_sin(union tgsi_exec_channel *dst,
335 const union tgsi_exec_channel *src)
336 {
337 dst->f[0] = sinf(src->f[0]);
338 dst->f[1] = sinf(src->f[1]);
339 dst->f[2] = sinf(src->f[2]);
340 dst->f[3] = sinf(src->f[3]);
341 }
342
343 static void
344 micro_sle(union tgsi_exec_channel *dst,
345 const union tgsi_exec_channel *src)
346 {
347 dst->f[0] = src[0].f[0] <= src[1].f[0] ? 1.0f : 0.0f;
348 dst->f[1] = src[0].f[1] <= src[1].f[1] ? 1.0f : 0.0f;
349 dst->f[2] = src[0].f[2] <= src[1].f[2] ? 1.0f : 0.0f;
350 dst->f[3] = src[0].f[3] <= src[1].f[3] ? 1.0f : 0.0f;
351 }
352
353 static void
354 micro_slt(union tgsi_exec_channel *dst,
355 const union tgsi_exec_channel *src)
356 {
357 dst->f[0] = src[0].f[0] < src[1].f[0] ? 1.0f : 0.0f;
358 dst->f[1] = src[0].f[1] < src[1].f[1] ? 1.0f : 0.0f;
359 dst->f[2] = src[0].f[2] < src[1].f[2] ? 1.0f : 0.0f;
360 dst->f[3] = src[0].f[3] < src[1].f[3] ? 1.0f : 0.0f;
361 }
362
363 static void
364 micro_sne(union tgsi_exec_channel *dst,
365 const union tgsi_exec_channel *src)
366 {
367 dst->f[0] = src[0].f[0] != src[1].f[0] ? 1.0f : 0.0f;
368 dst->f[1] = src[0].f[1] != src[1].f[1] ? 1.0f : 0.0f;
369 dst->f[2] = src[0].f[2] != src[1].f[2] ? 1.0f : 0.0f;
370 dst->f[3] = src[0].f[3] != src[1].f[3] ? 1.0f : 0.0f;
371 }
372
373 static void
374 micro_trunc(union tgsi_exec_channel *dst,
375 const union tgsi_exec_channel *src)
376 {
377 dst->f[0] = (float)(int)src->f[0];
378 dst->f[1] = (float)(int)src->f[1];
379 dst->f[2] = (float)(int)src->f[2];
380 dst->f[3] = (float)(int)src->f[3];
381 }
382
383
384 #define CHAN_X 0
385 #define CHAN_Y 1
386 #define CHAN_Z 2
387 #define CHAN_W 3
388
389 enum tgsi_exec_datatype {
390 TGSI_EXEC_DATA_FLOAT,
391 TGSI_EXEC_DATA_INT,
392 TGSI_EXEC_DATA_UINT
393 };
394
395 /*
396 * Shorthand locations of various utility registers (_I = Index, _C = Channel)
397 */
398 #define TEMP_0_I TGSI_EXEC_TEMP_00000000_I
399 #define TEMP_0_C TGSI_EXEC_TEMP_00000000_C
400 #define TEMP_7F_I TGSI_EXEC_TEMP_7FFFFFFF_I
401 #define TEMP_7F_C TGSI_EXEC_TEMP_7FFFFFFF_C
402 #define TEMP_80_I TGSI_EXEC_TEMP_80000000_I
403 #define TEMP_80_C TGSI_EXEC_TEMP_80000000_C
404 #define TEMP_FF_I TGSI_EXEC_TEMP_FFFFFFFF_I
405 #define TEMP_FF_C TGSI_EXEC_TEMP_FFFFFFFF_C
406 #define TEMP_1_I TGSI_EXEC_TEMP_ONE_I
407 #define TEMP_1_C TGSI_EXEC_TEMP_ONE_C
408 #define TEMP_2_I TGSI_EXEC_TEMP_TWO_I
409 #define TEMP_2_C TGSI_EXEC_TEMP_TWO_C
410 #define TEMP_128_I TGSI_EXEC_TEMP_128_I
411 #define TEMP_128_C TGSI_EXEC_TEMP_128_C
412 #define TEMP_M128_I TGSI_EXEC_TEMP_MINUS_128_I
413 #define TEMP_M128_C TGSI_EXEC_TEMP_MINUS_128_C
414 #define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I
415 #define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C
416 #define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I
417 #define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C
418 #define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I
419 #define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C
420 #define TEMP_CC_I TGSI_EXEC_TEMP_CC_I
421 #define TEMP_CC_C TGSI_EXEC_TEMP_CC_C
422 #define TEMP_3_I TGSI_EXEC_TEMP_THREE_I
423 #define TEMP_3_C TGSI_EXEC_TEMP_THREE_C
424 #define TEMP_HALF_I TGSI_EXEC_TEMP_HALF_I
425 #define TEMP_HALF_C TGSI_EXEC_TEMP_HALF_C
426 #define TEMP_R0 TGSI_EXEC_TEMP_R0
427 #define TEMP_P0 TGSI_EXEC_TEMP_P0
428
429 #define IS_CHANNEL_ENABLED(INST, CHAN)\
430 ((INST).Dst[0].Register.WriteMask & (1 << (CHAN)))
431
432 #define IS_CHANNEL_ENABLED2(INST, CHAN)\
433 ((INST).Dst[1].Register.WriteMask & (1 << (CHAN)))
434
435 #define FOR_EACH_ENABLED_CHANNEL(INST, CHAN)\
436 for (CHAN = 0; CHAN < NUM_CHANNELS; CHAN++)\
437 if (IS_CHANNEL_ENABLED( INST, CHAN ))
438
439 #define FOR_EACH_ENABLED_CHANNEL2(INST, CHAN)\
440 for (CHAN = 0; CHAN < NUM_CHANNELS; CHAN++)\
441 if (IS_CHANNEL_ENABLED2( INST, CHAN ))
442
443
444 /** The execution mask depends on the conditional mask and the loop mask */
445 #define UPDATE_EXEC_MASK(MACH) \
446 MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
447
448
449 static const union tgsi_exec_channel ZeroVec =
450 { { 0.0, 0.0, 0.0, 0.0 } };
451
452
453 #define CHECK_INF_OR_NAN(chan) do {\
454 assert(!util_is_inf_or_nan((chan)->f[0]));\
455 assert(!util_is_inf_or_nan((chan)->f[1]));\
456 assert(!util_is_inf_or_nan((chan)->f[2]));\
457 assert(!util_is_inf_or_nan((chan)->f[3]));\
458 } while (0)
459
460
461 #ifdef DEBUG
462 static void
463 print_chan(const char *msg, const union tgsi_exec_channel *chan)
464 {
465 debug_printf("%s = {%f, %f, %f, %f}\n",
466 msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]);
467 }
468 #endif
469
470
471 #ifdef DEBUG
472 static void
473 print_temp(const struct tgsi_exec_machine *mach, uint index)
474 {
475 const struct tgsi_exec_vector *tmp = &mach->Temps[index];
476 int i;
477 debug_printf("Temp[%u] =\n", index);
478 for (i = 0; i < 4; i++) {
479 debug_printf(" %c: { %f, %f, %f, %f }\n",
480 "XYZW"[i],
481 tmp->xyzw[i].f[0],
482 tmp->xyzw[i].f[1],
483 tmp->xyzw[i].f[2],
484 tmp->xyzw[i].f[3]);
485 }
486 }
487 #endif
488
489
490 /**
491 * Check if there's a potential src/dst register data dependency when
492 * using SOA execution.
493 * Example:
494 * MOV T, T.yxwz;
495 * This would expand into:
496 * MOV t0, t1;
497 * MOV t1, t0;
498 * MOV t2, t3;
499 * MOV t3, t2;
500 * The second instruction will have the wrong value for t0 if executed as-is.
501 */
502 boolean
503 tgsi_check_soa_dependencies(const struct tgsi_full_instruction *inst)
504 {
505 uint i, chan;
506
507 uint writemask = inst->Dst[0].Register.WriteMask;
508 if (writemask == TGSI_WRITEMASK_X ||
509 writemask == TGSI_WRITEMASK_Y ||
510 writemask == TGSI_WRITEMASK_Z ||
511 writemask == TGSI_WRITEMASK_W ||
512 writemask == TGSI_WRITEMASK_NONE) {
513 /* no chance of data dependency */
514 return FALSE;
515 }
516
517 /* loop over src regs */
518 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
519 if ((inst->Src[i].Register.File ==
520 inst->Dst[0].Register.File) &&
521 (inst->Src[i].Register.Index ==
522 inst->Dst[0].Register.Index)) {
523 /* loop over dest channels */
524 uint channelsWritten = 0x0;
525 FOR_EACH_ENABLED_CHANNEL(*inst, chan) {
526 /* check if we're reading a channel that's been written */
527 uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan);
528 if (channelsWritten & (1 << swizzle)) {
529 return TRUE;
530 }
531
532 channelsWritten |= (1 << chan);
533 }
534 }
535 }
536 return FALSE;
537 }
538
539
540 /**
541 * Initialize machine state by expanding tokens to full instructions,
542 * allocating temporary storage, setting up constants, etc.
543 * After this, we can call tgsi_exec_machine_run() many times.
544 */
545 void
546 tgsi_exec_machine_bind_shader(
547 struct tgsi_exec_machine *mach,
548 const struct tgsi_token *tokens,
549 uint numSamplers,
550 struct tgsi_sampler **samplers)
551 {
552 uint k;
553 struct tgsi_parse_context parse;
554 struct tgsi_exec_labels *labels = &mach->Labels;
555 struct tgsi_full_instruction *instructions;
556 struct tgsi_full_declaration *declarations;
557 uint maxInstructions = 10, numInstructions = 0;
558 uint maxDeclarations = 10, numDeclarations = 0;
559 uint instno = 0;
560
561 #if 0
562 tgsi_dump(tokens, 0);
563 #endif
564
565 util_init_math();
566
567 mach->Tokens = tokens;
568 mach->Samplers = samplers;
569
570 k = tgsi_parse_init (&parse, mach->Tokens);
571 if (k != TGSI_PARSE_OK) {
572 debug_printf( "Problem parsing!\n" );
573 return;
574 }
575
576 mach->Processor = parse.FullHeader.Processor.Processor;
577 mach->ImmLimit = 0;
578 labels->count = 0;
579
580 declarations = (struct tgsi_full_declaration *)
581 MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) );
582
583 if (!declarations) {
584 return;
585 }
586
587 instructions = (struct tgsi_full_instruction *)
588 MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) );
589
590 if (!instructions) {
591 FREE( declarations );
592 return;
593 }
594
595 while( !tgsi_parse_end_of_tokens( &parse ) ) {
596 uint pointer = parse.Position;
597 uint i;
598
599 tgsi_parse_token( &parse );
600 switch( parse.FullToken.Token.Type ) {
601 case TGSI_TOKEN_TYPE_DECLARATION:
602 /* save expanded declaration */
603 if (numDeclarations == maxDeclarations) {
604 declarations = REALLOC(declarations,
605 maxDeclarations
606 * sizeof(struct tgsi_full_declaration),
607 (maxDeclarations + 10)
608 * sizeof(struct tgsi_full_declaration));
609 maxDeclarations += 10;
610 }
611 if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT) {
612 unsigned reg;
613 for (reg = parse.FullToken.FullDeclaration.Range.First;
614 reg <= parse.FullToken.FullDeclaration.Range.Last;
615 ++reg) {
616 ++mach->NumOutputs;
617 }
618 }
619 memcpy(declarations + numDeclarations,
620 &parse.FullToken.FullDeclaration,
621 sizeof(declarations[0]));
622 numDeclarations++;
623 break;
624
625 case TGSI_TOKEN_TYPE_IMMEDIATE:
626 {
627 uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
628 assert( size <= 4 );
629 assert( mach->ImmLimit + 1 <= TGSI_EXEC_NUM_IMMEDIATES );
630
631 for( i = 0; i < size; i++ ) {
632 mach->Imms[mach->ImmLimit][i] =
633 parse.FullToken.FullImmediate.u[i].Float;
634 }
635 mach->ImmLimit += 1;
636 }
637 break;
638
639 case TGSI_TOKEN_TYPE_INSTRUCTION:
640 assert( labels->count < MAX_LABELS );
641
642 labels->labels[labels->count][0] = instno;
643 labels->labels[labels->count][1] = pointer;
644 labels->count++;
645
646 /* save expanded instruction */
647 if (numInstructions == maxInstructions) {
648 instructions = REALLOC(instructions,
649 maxInstructions
650 * sizeof(struct tgsi_full_instruction),
651 (maxInstructions + 10)
652 * sizeof(struct tgsi_full_instruction));
653 maxInstructions += 10;
654 }
655
656 memcpy(instructions + numInstructions,
657 &parse.FullToken.FullInstruction,
658 sizeof(instructions[0]));
659
660 numInstructions++;
661 break;
662
663 case TGSI_TOKEN_TYPE_PROPERTY:
664 break;
665
666 default:
667 assert( 0 );
668 }
669 }
670 tgsi_parse_free (&parse);
671
672 if (mach->Declarations) {
673 FREE( mach->Declarations );
674 }
675 mach->Declarations = declarations;
676 mach->NumDeclarations = numDeclarations;
677
678 if (mach->Instructions) {
679 FREE( mach->Instructions );
680 }
681 mach->Instructions = instructions;
682 mach->NumInstructions = numInstructions;
683 }
684
685
686 struct tgsi_exec_machine *
687 tgsi_exec_machine_create( void )
688 {
689 struct tgsi_exec_machine *mach;
690 uint i;
691
692 mach = align_malloc( sizeof *mach, 16 );
693 if (!mach)
694 goto fail;
695
696 memset(mach, 0, sizeof(*mach));
697
698 mach->Addrs = &mach->Temps[TGSI_EXEC_TEMP_ADDR];
699 mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES;
700 mach->Predicates = &mach->Temps[TGSI_EXEC_TEMP_P0];
701
702 /* Setup constants. */
703 for( i = 0; i < 4; i++ ) {
704 mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].u[i] = 0x00000000;
705 mach->Temps[TEMP_7F_I].xyzw[TEMP_7F_C].u[i] = 0x7FFFFFFF;
706 mach->Temps[TEMP_80_I].xyzw[TEMP_80_C].u[i] = 0x80000000;
707 mach->Temps[TEMP_FF_I].xyzw[TEMP_FF_C].u[i] = 0xFFFFFFFF;
708 mach->Temps[TEMP_1_I].xyzw[TEMP_1_C].f[i] = 1.0f;
709 mach->Temps[TEMP_2_I].xyzw[TEMP_2_C].f[i] = 2.0f;
710 mach->Temps[TEMP_128_I].xyzw[TEMP_128_C].f[i] = 128.0f;
711 mach->Temps[TEMP_M128_I].xyzw[TEMP_M128_C].f[i] = -128.0f;
712 mach->Temps[TEMP_3_I].xyzw[TEMP_3_C].f[i] = 3.0f;
713 mach->Temps[TEMP_HALF_I].xyzw[TEMP_HALF_C].f[i] = 0.5f;
714 }
715
716 #ifdef DEBUG
717 /* silence warnings */
718 (void) print_chan;
719 (void) print_temp;
720 #endif
721
722 return mach;
723
724 fail:
725 align_free(mach);
726 return NULL;
727 }
728
729
730 void
731 tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach)
732 {
733 if (mach) {
734 FREE(mach->Instructions);
735 FREE(mach->Declarations);
736 }
737
738 align_free(mach);
739 }
740
741 static void
742 micro_add(
743 union tgsi_exec_channel *dst,
744 const union tgsi_exec_channel *src0,
745 const union tgsi_exec_channel *src1 )
746 {
747 dst->f[0] = src0->f[0] + src1->f[0];
748 dst->f[1] = src0->f[1] + src1->f[1];
749 dst->f[2] = src0->f[2] + src1->f[2];
750 dst->f[3] = src0->f[3] + src1->f[3];
751 }
752
753 static void
754 micro_div(
755 union tgsi_exec_channel *dst,
756 const union tgsi_exec_channel *src0,
757 const union tgsi_exec_channel *src1 )
758 {
759 if (src1->f[0] != 0) {
760 dst->f[0] = src0->f[0] / src1->f[0];
761 }
762 if (src1->f[1] != 0) {
763 dst->f[1] = src0->f[1] / src1->f[1];
764 }
765 if (src1->f[2] != 0) {
766 dst->f[2] = src0->f[2] / src1->f[2];
767 }
768 if (src1->f[3] != 0) {
769 dst->f[3] = src0->f[3] / src1->f[3];
770 }
771 }
772
773 static void
774 micro_float_clamp(union tgsi_exec_channel *dst,
775 const union tgsi_exec_channel *src)
776 {
777 uint i;
778
779 for (i = 0; i < 4; i++) {
780 if (src->f[i] > 0.0f) {
781 if (src->f[i] > 1.884467e+019f)
782 dst->f[i] = 1.884467e+019f;
783 else if (src->f[i] < 5.42101e-020f)
784 dst->f[i] = 5.42101e-020f;
785 else
786 dst->f[i] = src->f[i];
787 }
788 else {
789 if (src->f[i] < -1.884467e+019f)
790 dst->f[i] = -1.884467e+019f;
791 else if (src->f[i] > -5.42101e-020f)
792 dst->f[i] = -5.42101e-020f;
793 else
794 dst->f[i] = src->f[i];
795 }
796 }
797 }
798
799 static void
800 micro_lt(
801 union tgsi_exec_channel *dst,
802 const union tgsi_exec_channel *src0,
803 const union tgsi_exec_channel *src1,
804 const union tgsi_exec_channel *src2,
805 const union tgsi_exec_channel *src3 )
806 {
807 dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
808 dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
809 dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
810 dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
811 }
812
813 static void
814 micro_max(
815 union tgsi_exec_channel *dst,
816 const union tgsi_exec_channel *src0,
817 const union tgsi_exec_channel *src1 )
818 {
819 dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0];
820 dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1];
821 dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2];
822 dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3];
823 }
824
825 static void
826 micro_min(
827 union tgsi_exec_channel *dst,
828 const union tgsi_exec_channel *src0,
829 const union tgsi_exec_channel *src1 )
830 {
831 dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0];
832 dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1];
833 dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2];
834 dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3];
835 }
836
837 static void
838 micro_mul(
839 union tgsi_exec_channel *dst,
840 const union tgsi_exec_channel *src0,
841 const union tgsi_exec_channel *src1 )
842 {
843 dst->f[0] = src0->f[0] * src1->f[0];
844 dst->f[1] = src0->f[1] * src1->f[1];
845 dst->f[2] = src0->f[2] * src1->f[2];
846 dst->f[3] = src0->f[3] * src1->f[3];
847 }
848
849 #if 0
850 static void
851 micro_imul64(
852 union tgsi_exec_channel *dst0,
853 union tgsi_exec_channel *dst1,
854 const union tgsi_exec_channel *src0,
855 const union tgsi_exec_channel *src1 )
856 {
857 dst1->i[0] = src0->i[0] * src1->i[0];
858 dst1->i[1] = src0->i[1] * src1->i[1];
859 dst1->i[2] = src0->i[2] * src1->i[2];
860 dst1->i[3] = src0->i[3] * src1->i[3];
861 dst0->i[0] = 0;
862 dst0->i[1] = 0;
863 dst0->i[2] = 0;
864 dst0->i[3] = 0;
865 }
866 #endif
867
868 #if 0
869 static void
870 micro_umul64(
871 union tgsi_exec_channel *dst0,
872 union tgsi_exec_channel *dst1,
873 const union tgsi_exec_channel *src0,
874 const union tgsi_exec_channel *src1 )
875 {
876 dst1->u[0] = src0->u[0] * src1->u[0];
877 dst1->u[1] = src0->u[1] * src1->u[1];
878 dst1->u[2] = src0->u[2] * src1->u[2];
879 dst1->u[3] = src0->u[3] * src1->u[3];
880 dst0->u[0] = 0;
881 dst0->u[1] = 0;
882 dst0->u[2] = 0;
883 dst0->u[3] = 0;
884 }
885 #endif
886
887
888 #if 0
889 static void
890 micro_movc(
891 union tgsi_exec_channel *dst,
892 const union tgsi_exec_channel *src0,
893 const union tgsi_exec_channel *src1,
894 const union tgsi_exec_channel *src2 )
895 {
896 dst->u[0] = src0->u[0] ? src1->u[0] : src2->u[0];
897 dst->u[1] = src0->u[1] ? src1->u[1] : src2->u[1];
898 dst->u[2] = src0->u[2] ? src1->u[2] : src2->u[2];
899 dst->u[3] = src0->u[3] ? src1->u[3] : src2->u[3];
900 }
901 #endif
902
903 static void
904 micro_neg(
905 union tgsi_exec_channel *dst,
906 const union tgsi_exec_channel *src )
907 {
908 dst->f[0] = -src->f[0];
909 dst->f[1] = -src->f[1];
910 dst->f[2] = -src->f[2];
911 dst->f[3] = -src->f[3];
912 }
913
914 static void
915 micro_pow(
916 union tgsi_exec_channel *dst,
917 const union tgsi_exec_channel *src0,
918 const union tgsi_exec_channel *src1 )
919 {
920 #if FAST_MATH
921 dst->f[0] = util_fast_pow( src0->f[0], src1->f[0] );
922 dst->f[1] = util_fast_pow( src0->f[1], src1->f[1] );
923 dst->f[2] = util_fast_pow( src0->f[2], src1->f[2] );
924 dst->f[3] = util_fast_pow( src0->f[3], src1->f[3] );
925 #else
926 dst->f[0] = powf( src0->f[0], src1->f[0] );
927 dst->f[1] = powf( src0->f[1], src1->f[1] );
928 dst->f[2] = powf( src0->f[2], src1->f[2] );
929 dst->f[3] = powf( src0->f[3], src1->f[3] );
930 #endif
931 }
932
933 static void
934 micro_sqrt( union tgsi_exec_channel *dst,
935 const union tgsi_exec_channel *src )
936 {
937 dst->f[0] = sqrtf( src->f[0] );
938 dst->f[1] = sqrtf( src->f[1] );
939 dst->f[2] = sqrtf( src->f[2] );
940 dst->f[3] = sqrtf( src->f[3] );
941 }
942
943 static void
944 micro_sub(
945 union tgsi_exec_channel *dst,
946 const union tgsi_exec_channel *src0,
947 const union tgsi_exec_channel *src1 )
948 {
949 dst->f[0] = src0->f[0] - src1->f[0];
950 dst->f[1] = src0->f[1] - src1->f[1];
951 dst->f[2] = src0->f[2] - src1->f[2];
952 dst->f[3] = src0->f[3] - src1->f[3];
953 }
954
955 static void
956 fetch_src_file_channel(
957 const struct tgsi_exec_machine *mach,
958 const uint file,
959 const uint swizzle,
960 const union tgsi_exec_channel *index,
961 union tgsi_exec_channel *chan )
962 {
963 switch( swizzle ) {
964 case TGSI_SWIZZLE_X:
965 case TGSI_SWIZZLE_Y:
966 case TGSI_SWIZZLE_Z:
967 case TGSI_SWIZZLE_W:
968 switch( file ) {
969 case TGSI_FILE_CONSTANT:
970 assert(mach->Consts);
971 if (index->i[0] < 0)
972 chan->f[0] = 0.0f;
973 else
974 chan->f[0] = mach->Consts[index->i[0]][swizzle];
975 if (index->i[1] < 0)
976 chan->f[1] = 0.0f;
977 else
978 chan->f[1] = mach->Consts[index->i[1]][swizzle];
979 if (index->i[2] < 0)
980 chan->f[2] = 0.0f;
981 else
982 chan->f[2] = mach->Consts[index->i[2]][swizzle];
983 if (index->i[3] < 0)
984 chan->f[3] = 0.0f;
985 else
986 chan->f[3] = mach->Consts[index->i[3]][swizzle];
987 break;
988
989 case TGSI_FILE_INPUT:
990 case TGSI_FILE_SYSTEM_VALUE:
991 chan->u[0] = mach->Inputs[index->i[0]].xyzw[swizzle].u[0];
992 chan->u[1] = mach->Inputs[index->i[1]].xyzw[swizzle].u[1];
993 chan->u[2] = mach->Inputs[index->i[2]].xyzw[swizzle].u[2];
994 chan->u[3] = mach->Inputs[index->i[3]].xyzw[swizzle].u[3];
995 break;
996
997 case TGSI_FILE_TEMPORARY:
998 assert(index->i[0] < TGSI_EXEC_NUM_TEMPS);
999 chan->u[0] = mach->Temps[index->i[0]].xyzw[swizzle].u[0];
1000 chan->u[1] = mach->Temps[index->i[1]].xyzw[swizzle].u[1];
1001 chan->u[2] = mach->Temps[index->i[2]].xyzw[swizzle].u[2];
1002 chan->u[3] = mach->Temps[index->i[3]].xyzw[swizzle].u[3];
1003 break;
1004
1005 case TGSI_FILE_IMMEDIATE:
1006 assert( index->i[0] < (int) mach->ImmLimit );
1007 chan->f[0] = mach->Imms[index->i[0]][swizzle];
1008 assert( index->i[1] < (int) mach->ImmLimit );
1009 chan->f[1] = mach->Imms[index->i[1]][swizzle];
1010 assert( index->i[2] < (int) mach->ImmLimit );
1011 chan->f[2] = mach->Imms[index->i[2]][swizzle];
1012 assert( index->i[3] < (int) mach->ImmLimit );
1013 chan->f[3] = mach->Imms[index->i[3]][swizzle];
1014 break;
1015
1016 case TGSI_FILE_ADDRESS:
1017 chan->u[0] = mach->Addrs[index->i[0]].xyzw[swizzle].u[0];
1018 chan->u[1] = mach->Addrs[index->i[1]].xyzw[swizzle].u[1];
1019 chan->u[2] = mach->Addrs[index->i[2]].xyzw[swizzle].u[2];
1020 chan->u[3] = mach->Addrs[index->i[3]].xyzw[swizzle].u[3];
1021 break;
1022
1023 case TGSI_FILE_PREDICATE:
1024 assert(index->i[0] < TGSI_EXEC_NUM_PREDS);
1025 assert(index->i[1] < TGSI_EXEC_NUM_PREDS);
1026 assert(index->i[2] < TGSI_EXEC_NUM_PREDS);
1027 assert(index->i[3] < TGSI_EXEC_NUM_PREDS);
1028 chan->u[0] = mach->Predicates[0].xyzw[swizzle].u[0];
1029 chan->u[1] = mach->Predicates[0].xyzw[swizzle].u[1];
1030 chan->u[2] = mach->Predicates[0].xyzw[swizzle].u[2];
1031 chan->u[3] = mach->Predicates[0].xyzw[swizzle].u[3];
1032 break;
1033
1034 case TGSI_FILE_OUTPUT:
1035 /* vertex/fragment output vars can be read too */
1036 chan->u[0] = mach->Outputs[index->i[0]].xyzw[swizzle].u[0];
1037 chan->u[1] = mach->Outputs[index->i[1]].xyzw[swizzle].u[1];
1038 chan->u[2] = mach->Outputs[index->i[2]].xyzw[swizzle].u[2];
1039 chan->u[3] = mach->Outputs[index->i[3]].xyzw[swizzle].u[3];
1040 break;
1041
1042 default:
1043 assert( 0 );
1044 }
1045 break;
1046
1047 default:
1048 assert( 0 );
1049 }
1050 }
1051
1052 static void
1053 fetch_source(const struct tgsi_exec_machine *mach,
1054 union tgsi_exec_channel *chan,
1055 const struct tgsi_full_src_register *reg,
1056 const uint chan_index,
1057 enum tgsi_exec_datatype src_datatype)
1058 {
1059 union tgsi_exec_channel index;
1060 uint swizzle;
1061
1062 /* We start with a direct index into a register file.
1063 *
1064 * file[1],
1065 * where:
1066 * file = Register.File
1067 * [1] = Register.Index
1068 */
1069 index.i[0] =
1070 index.i[1] =
1071 index.i[2] =
1072 index.i[3] = reg->Register.Index;
1073
1074 /* There is an extra source register that indirectly subscripts
1075 * a register file. The direct index now becomes an offset
1076 * that is being added to the indirect register.
1077 *
1078 * file[ind[2].x+1],
1079 * where:
1080 * ind = Indirect.File
1081 * [2] = Indirect.Index
1082 * .x = Indirect.SwizzleX
1083 */
1084 if (reg->Register.Indirect) {
1085 union tgsi_exec_channel index2;
1086 union tgsi_exec_channel indir_index;
1087 const uint execmask = mach->ExecMask;
1088 uint i;
1089
1090 /* which address register (always zero now) */
1091 index2.i[0] =
1092 index2.i[1] =
1093 index2.i[2] =
1094 index2.i[3] = reg->Indirect.Index;
1095
1096 /* get current value of address register[swizzle] */
1097 swizzle = tgsi_util_get_src_register_swizzle( &reg->Indirect, CHAN_X );
1098 fetch_src_file_channel(
1099 mach,
1100 reg->Indirect.File,
1101 swizzle,
1102 &index2,
1103 &indir_index );
1104
1105 /* add value of address register to the offset */
1106 index.i[0] += indir_index.i[0];
1107 index.i[1] += indir_index.i[1];
1108 index.i[2] += indir_index.i[2];
1109 index.i[3] += indir_index.i[3];
1110
1111 /* for disabled execution channels, zero-out the index to
1112 * avoid using a potential garbage value.
1113 */
1114 for (i = 0; i < QUAD_SIZE; i++) {
1115 if ((execmask & (1 << i)) == 0)
1116 index.i[i] = 0;
1117 }
1118 }
1119
1120 /* There is an extra source register that is a second
1121 * subscript to a register file. Effectively it means that
1122 * the register file is actually a 2D array of registers.
1123 *
1124 * file[1][3] == file[1*sizeof(file[1])+3],
1125 * where:
1126 * [3] = Dimension.Index
1127 */
1128 if (reg->Register.Dimension) {
1129 /* The size of the first-order array depends on the register file type.
1130 * We need to multiply the index to the first array to get an effective,
1131 * "flat" index that points to the beginning of the second-order array.
1132 */
1133 switch (reg->Register.File) {
1134 case TGSI_FILE_INPUT:
1135 case TGSI_FILE_SYSTEM_VALUE:
1136 index.i[0] *= TGSI_EXEC_MAX_INPUT_ATTRIBS;
1137 index.i[1] *= TGSI_EXEC_MAX_INPUT_ATTRIBS;
1138 index.i[2] *= TGSI_EXEC_MAX_INPUT_ATTRIBS;
1139 index.i[3] *= TGSI_EXEC_MAX_INPUT_ATTRIBS;
1140 break;
1141 case TGSI_FILE_CONSTANT:
1142 index.i[0] *= TGSI_EXEC_MAX_CONST_BUFFER;
1143 index.i[1] *= TGSI_EXEC_MAX_CONST_BUFFER;
1144 index.i[2] *= TGSI_EXEC_MAX_CONST_BUFFER;
1145 index.i[3] *= TGSI_EXEC_MAX_CONST_BUFFER;
1146 break;
1147 default:
1148 assert( 0 );
1149 }
1150
1151 index.i[0] += reg->Dimension.Index;
1152 index.i[1] += reg->Dimension.Index;
1153 index.i[2] += reg->Dimension.Index;
1154 index.i[3] += reg->Dimension.Index;
1155
1156 /* Again, the second subscript index can be addressed indirectly
1157 * identically to the first one.
1158 * Nothing stops us from indirectly addressing the indirect register,
1159 * but there is no need for that, so we won't exercise it.
1160 *
1161 * file[1][ind[4].y+3],
1162 * where:
1163 * ind = DimIndirect.File
1164 * [4] = DimIndirect.Index
1165 * .y = DimIndirect.SwizzleX
1166 */
1167 if (reg->Dimension.Indirect) {
1168 union tgsi_exec_channel index2;
1169 union tgsi_exec_channel indir_index;
1170 const uint execmask = mach->ExecMask;
1171 uint i;
1172
1173 index2.i[0] =
1174 index2.i[1] =
1175 index2.i[2] =
1176 index2.i[3] = reg->DimIndirect.Index;
1177
1178 swizzle = tgsi_util_get_src_register_swizzle( &reg->DimIndirect, CHAN_X );
1179 fetch_src_file_channel(
1180 mach,
1181 reg->DimIndirect.File,
1182 swizzle,
1183 &index2,
1184 &indir_index );
1185
1186 index.i[0] += indir_index.i[0];
1187 index.i[1] += indir_index.i[1];
1188 index.i[2] += indir_index.i[2];
1189 index.i[3] += indir_index.i[3];
1190
1191 /* for disabled execution channels, zero-out the index to
1192 * avoid using a potential garbage value.
1193 */
1194 for (i = 0; i < QUAD_SIZE; i++) {
1195 if ((execmask & (1 << i)) == 0)
1196 index.i[i] = 0;
1197 }
1198 }
1199
1200 /* If by any chance there was a need for a 3D array of register
1201 * files, we would have to check whether Dimension is followed
1202 * by a dimension register and continue the saga.
1203 */
1204 }
1205
1206 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
1207 fetch_src_file_channel(
1208 mach,
1209 reg->Register.File,
1210 swizzle,
1211 &index,
1212 chan );
1213
1214 if (reg->Register.Absolute) {
1215 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1216 micro_abs(chan, chan);
1217 } else {
1218 micro_iabs(chan, chan);
1219 }
1220 }
1221
1222 if (reg->Register.Negate) {
1223 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1224 micro_neg(chan, chan);
1225 } else {
1226 micro_ineg(chan, chan);
1227 }
1228 }
1229 }
1230
1231 static void
1232 store_dest(struct tgsi_exec_machine *mach,
1233 const union tgsi_exec_channel *chan,
1234 const struct tgsi_full_dst_register *reg,
1235 const struct tgsi_full_instruction *inst,
1236 uint chan_index,
1237 enum tgsi_exec_datatype dst_datatype)
1238 {
1239 uint i;
1240 union tgsi_exec_channel null;
1241 union tgsi_exec_channel *dst;
1242 uint execmask = mach->ExecMask;
1243 int offset = 0; /* indirection offset */
1244 int index;
1245
1246 if (dst_datatype == TGSI_EXEC_DATA_FLOAT) {
1247 CHECK_INF_OR_NAN(chan);
1248 }
1249
1250 /* There is an extra source register that indirectly subscripts
1251 * a register file. The direct index now becomes an offset
1252 * that is being added to the indirect register.
1253 *
1254 * file[ind[2].x+1],
1255 * where:
1256 * ind = Indirect.File
1257 * [2] = Indirect.Index
1258 * .x = Indirect.SwizzleX
1259 */
1260 if (reg->Register.Indirect) {
1261 union tgsi_exec_channel index;
1262 union tgsi_exec_channel indir_index;
1263 uint swizzle;
1264
1265 /* which address register (always zero for now) */
1266 index.i[0] =
1267 index.i[1] =
1268 index.i[2] =
1269 index.i[3] = reg->Indirect.Index;
1270
1271 /* get current value of address register[swizzle] */
1272 swizzle = tgsi_util_get_src_register_swizzle( &reg->Indirect, CHAN_X );
1273
1274 /* fetch values from the address/indirection register */
1275 fetch_src_file_channel(
1276 mach,
1277 reg->Indirect.File,
1278 swizzle,
1279 &index,
1280 &indir_index );
1281
1282 /* save indirection offset */
1283 offset = indir_index.i[0];
1284 }
1285
1286 switch (reg->Register.File) {
1287 case TGSI_FILE_NULL:
1288 dst = &null;
1289 break;
1290
1291 case TGSI_FILE_OUTPUT:
1292 index = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
1293 + reg->Register.Index;
1294 dst = &mach->Outputs[offset + index].xyzw[chan_index];
1295 #if 0
1296 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1297 fprintf(stderr, "STORING OUT[%d] mask(%d), = (", offset + index, execmask);
1298 for (i = 0; i < QUAD_SIZE; i++)
1299 if (execmask & (1 << i))
1300 fprintf(stderr, "%f, ", chan->f[i]);
1301 fprintf(stderr, ")\n");
1302 }
1303 #endif
1304 break;
1305
1306 case TGSI_FILE_TEMPORARY:
1307 index = reg->Register.Index;
1308 assert( index < TGSI_EXEC_NUM_TEMPS );
1309 dst = &mach->Temps[offset + index].xyzw[chan_index];
1310 break;
1311
1312 case TGSI_FILE_ADDRESS:
1313 index = reg->Register.Index;
1314 dst = &mach->Addrs[index].xyzw[chan_index];
1315 break;
1316
1317 case TGSI_FILE_LOOP:
1318 assert(reg->Register.Index == 0);
1319 assert(mach->LoopCounterStackTop > 0);
1320 assert(chan_index == CHAN_X);
1321 dst = &mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[chan_index];
1322 break;
1323
1324 case TGSI_FILE_PREDICATE:
1325 index = reg->Register.Index;
1326 assert(index < TGSI_EXEC_NUM_PREDS);
1327 dst = &mach->Predicates[index].xyzw[chan_index];
1328 break;
1329
1330 default:
1331 assert( 0 );
1332 return;
1333 }
1334
1335 if (inst->Instruction.Predicate) {
1336 uint swizzle;
1337 union tgsi_exec_channel *pred;
1338
1339 switch (chan_index) {
1340 case CHAN_X:
1341 swizzle = inst->Predicate.SwizzleX;
1342 break;
1343 case CHAN_Y:
1344 swizzle = inst->Predicate.SwizzleY;
1345 break;
1346 case CHAN_Z:
1347 swizzle = inst->Predicate.SwizzleZ;
1348 break;
1349 case CHAN_W:
1350 swizzle = inst->Predicate.SwizzleW;
1351 break;
1352 default:
1353 assert(0);
1354 return;
1355 }
1356
1357 assert(inst->Predicate.Index == 0);
1358
1359 pred = &mach->Predicates[inst->Predicate.Index].xyzw[swizzle];
1360
1361 if (inst->Predicate.Negate) {
1362 for (i = 0; i < QUAD_SIZE; i++) {
1363 if (pred->u[i]) {
1364 execmask &= ~(1 << i);
1365 }
1366 }
1367 } else {
1368 for (i = 0; i < QUAD_SIZE; i++) {
1369 if (!pred->u[i]) {
1370 execmask &= ~(1 << i);
1371 }
1372 }
1373 }
1374 }
1375
1376 switch (inst->Instruction.Saturate) {
1377 case TGSI_SAT_NONE:
1378 for (i = 0; i < QUAD_SIZE; i++)
1379 if (execmask & (1 << i))
1380 dst->i[i] = chan->i[i];
1381 break;
1382
1383 case TGSI_SAT_ZERO_ONE:
1384 for (i = 0; i < QUAD_SIZE; i++)
1385 if (execmask & (1 << i)) {
1386 if (chan->f[i] < 0.0f)
1387 dst->f[i] = 0.0f;
1388 else if (chan->f[i] > 1.0f)
1389 dst->f[i] = 1.0f;
1390 else
1391 dst->i[i] = chan->i[i];
1392 }
1393 break;
1394
1395 case TGSI_SAT_MINUS_PLUS_ONE:
1396 for (i = 0; i < QUAD_SIZE; i++)
1397 if (execmask & (1 << i)) {
1398 if (chan->f[i] < -1.0f)
1399 dst->f[i] = -1.0f;
1400 else if (chan->f[i] > 1.0f)
1401 dst->f[i] = 1.0f;
1402 else
1403 dst->i[i] = chan->i[i];
1404 }
1405 break;
1406
1407 default:
1408 assert( 0 );
1409 }
1410 }
1411
1412 #define FETCH(VAL,INDEX,CHAN)\
1413 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
1414
1415 #define STORE(VAL,INDEX,CHAN)\
1416 store_dest(mach, VAL, &inst->Dst[INDEX], inst, CHAN, TGSI_EXEC_DATA_FLOAT)
1417
1418
1419 /**
1420 * Execute ARB-style KIL which is predicated by a src register.
1421 * Kill fragment if any of the four values is less than zero.
1422 */
1423 static void
1424 exec_kil(struct tgsi_exec_machine *mach,
1425 const struct tgsi_full_instruction *inst)
1426 {
1427 uint uniquemask;
1428 uint chan_index;
1429 uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1430 union tgsi_exec_channel r[1];
1431
1432 /* This mask stores component bits that were already tested. */
1433 uniquemask = 0;
1434
1435 for (chan_index = 0; chan_index < 4; chan_index++)
1436 {
1437 uint swizzle;
1438 uint i;
1439
1440 /* unswizzle channel */
1441 swizzle = tgsi_util_get_full_src_register_swizzle (
1442 &inst->Src[0],
1443 chan_index);
1444
1445 /* check if the component has not been already tested */
1446 if (uniquemask & (1 << swizzle))
1447 continue;
1448 uniquemask |= 1 << swizzle;
1449
1450 FETCH(&r[0], 0, chan_index);
1451 for (i = 0; i < 4; i++)
1452 if (r[0].f[i] < 0.0f)
1453 kilmask |= 1 << i;
1454 }
1455
1456 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
1457 }
1458
1459 /**
1460 * Execute NVIDIA-style KIL which is predicated by a condition code.
1461 * Kill fragment if the condition code is TRUE.
1462 */
1463 static void
1464 exec_kilp(struct tgsi_exec_machine *mach,
1465 const struct tgsi_full_instruction *inst)
1466 {
1467 uint kilmask; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1468
1469 /* "unconditional" kil */
1470 kilmask = mach->ExecMask;
1471 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
1472 }
1473
1474 static void
1475 emit_vertex(struct tgsi_exec_machine *mach)
1476 {
1477 /* FIXME: check for exec mask correctly
1478 unsigned i;
1479 for (i = 0; i < QUAD_SIZE; ++i) {
1480 if ((mach->ExecMask & (1 << i)))
1481 */
1482 if (mach->ExecMask) {
1483 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += mach->NumOutputs;
1484 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++;
1485 }
1486 }
1487
1488 static void
1489 emit_primitive(struct tgsi_exec_machine *mach)
1490 {
1491 unsigned *prim_count = &mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0];
1492 /* FIXME: check for exec mask correctly
1493 unsigned i;
1494 for (i = 0; i < QUAD_SIZE; ++i) {
1495 if ((mach->ExecMask & (1 << i)))
1496 */
1497 if (mach->ExecMask) {
1498 ++(*prim_count);
1499 debug_assert((*prim_count * mach->NumOutputs) < mach->MaxGeometryShaderOutputs);
1500 mach->Primitives[*prim_count] = 0;
1501 }
1502 }
1503
1504 /*
1505 * Fetch a four texture samples using STR texture coordinates.
1506 */
1507 static void
1508 fetch_texel( struct tgsi_sampler *sampler,
1509 const union tgsi_exec_channel *s,
1510 const union tgsi_exec_channel *t,
1511 const union tgsi_exec_channel *p,
1512 const union tgsi_exec_channel *lodbias,
1513 union tgsi_exec_channel *r,
1514 union tgsi_exec_channel *g,
1515 union tgsi_exec_channel *b,
1516 union tgsi_exec_channel *a )
1517 {
1518 uint j;
1519 float rgba[NUM_CHANNELS][QUAD_SIZE];
1520
1521 sampler->get_samples(sampler, s->f, t->f, p->f, lodbias->f, rgba);
1522
1523 for (j = 0; j < 4; j++) {
1524 r->f[j] = rgba[0][j];
1525 g->f[j] = rgba[1][j];
1526 b->f[j] = rgba[2][j];
1527 a->f[j] = rgba[3][j];
1528 }
1529 }
1530
1531
1532 #define TEX_MODIFIER_NONE 0
1533 #define TEX_MODIFIER_PROJECTED 1
1534 #define TEX_MODIFIER_LOD_BIAS 2
1535 #define TEX_MODIFIER_EXPLICIT_LOD 3
1536
1537
1538 static void
1539 exec_tex(struct tgsi_exec_machine *mach,
1540 const struct tgsi_full_instruction *inst,
1541 uint modifier)
1542 {
1543 const uint unit = inst->Src[1].Register.Index;
1544 union tgsi_exec_channel r[4];
1545 const union tgsi_exec_channel *lodBias = &ZeroVec;
1546 uint chan_index;
1547
1548 if (modifier != TEX_MODIFIER_NONE) {
1549 FETCH(&r[3], 0, CHAN_W);
1550 if (modifier != TEX_MODIFIER_PROJECTED) {
1551 lodBias = &r[3];
1552 }
1553 }
1554
1555 switch (inst->Texture.Texture) {
1556 case TGSI_TEXTURE_1D:
1557 case TGSI_TEXTURE_SHADOW1D:
1558 FETCH(&r[0], 0, CHAN_X);
1559
1560 if (modifier == TEX_MODIFIER_PROJECTED) {
1561 micro_div(&r[0], &r[0], &r[3]);
1562 }
1563
1564 fetch_texel(mach->Samplers[unit],
1565 &r[0], &ZeroVec, &ZeroVec, lodBias, /* S, T, P, BIAS */
1566 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1567 break;
1568
1569 case TGSI_TEXTURE_2D:
1570 case TGSI_TEXTURE_RECT:
1571 case TGSI_TEXTURE_SHADOW2D:
1572 case TGSI_TEXTURE_SHADOWRECT:
1573 FETCH(&r[0], 0, CHAN_X);
1574 FETCH(&r[1], 0, CHAN_Y);
1575 FETCH(&r[2], 0, CHAN_Z);
1576
1577 if (modifier == TEX_MODIFIER_PROJECTED) {
1578 micro_div(&r[0], &r[0], &r[3]);
1579 micro_div(&r[1], &r[1], &r[3]);
1580 micro_div(&r[2], &r[2], &r[3]);
1581 }
1582
1583 fetch_texel(mach->Samplers[unit],
1584 &r[0], &r[1], &r[2], lodBias, /* inputs */
1585 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1586 break;
1587
1588 case TGSI_TEXTURE_3D:
1589 case TGSI_TEXTURE_CUBE:
1590 FETCH(&r[0], 0, CHAN_X);
1591 FETCH(&r[1], 0, CHAN_Y);
1592 FETCH(&r[2], 0, CHAN_Z);
1593
1594 if (modifier == TEX_MODIFIER_PROJECTED) {
1595 micro_div(&r[0], &r[0], &r[3]);
1596 micro_div(&r[1], &r[1], &r[3]);
1597 micro_div(&r[2], &r[2], &r[3]);
1598 }
1599
1600 fetch_texel(mach->Samplers[unit],
1601 &r[0], &r[1], &r[2], lodBias,
1602 &r[0], &r[1], &r[2], &r[3]);
1603 break;
1604
1605 default:
1606 assert(0);
1607 }
1608
1609 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
1610 STORE(&r[chan_index], 0, chan_index);
1611 }
1612 }
1613
1614 static void
1615 exec_txd(struct tgsi_exec_machine *mach,
1616 const struct tgsi_full_instruction *inst)
1617 {
1618 const uint unit = inst->Src[3].Register.Index;
1619 union tgsi_exec_channel r[4];
1620 uint chan_index;
1621
1622 /*
1623 * XXX: This is fake TXD -- the derivatives are not taken into account, yet.
1624 */
1625
1626 switch (inst->Texture.Texture) {
1627 case TGSI_TEXTURE_1D:
1628 case TGSI_TEXTURE_SHADOW1D:
1629
1630 FETCH(&r[0], 0, CHAN_X);
1631
1632 fetch_texel(mach->Samplers[unit],
1633 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, BIAS */
1634 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1635 break;
1636
1637 case TGSI_TEXTURE_2D:
1638 case TGSI_TEXTURE_RECT:
1639 case TGSI_TEXTURE_SHADOW2D:
1640 case TGSI_TEXTURE_SHADOWRECT:
1641
1642 FETCH(&r[0], 0, CHAN_X);
1643 FETCH(&r[1], 0, CHAN_Y);
1644 FETCH(&r[2], 0, CHAN_Z);
1645
1646 fetch_texel(mach->Samplers[unit],
1647 &r[0], &r[1], &r[2], &ZeroVec, /* inputs */
1648 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1649 break;
1650
1651 case TGSI_TEXTURE_3D:
1652 case TGSI_TEXTURE_CUBE:
1653
1654 FETCH(&r[0], 0, CHAN_X);
1655 FETCH(&r[1], 0, CHAN_Y);
1656 FETCH(&r[2], 0, CHAN_Z);
1657
1658 fetch_texel(mach->Samplers[unit],
1659 &r[0], &r[1], &r[2], &ZeroVec,
1660 &r[0], &r[1], &r[2], &r[3]);
1661 break;
1662
1663 default:
1664 assert(0);
1665 }
1666
1667 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
1668 STORE(&r[chan_index], 0, chan_index);
1669 }
1670 }
1671
1672
1673 /**
1674 * Evaluate a constant-valued coefficient at the position of the
1675 * current quad.
1676 */
1677 static void
1678 eval_constant_coef(
1679 struct tgsi_exec_machine *mach,
1680 unsigned attrib,
1681 unsigned chan )
1682 {
1683 unsigned i;
1684
1685 for( i = 0; i < QUAD_SIZE; i++ ) {
1686 mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
1687 }
1688 }
1689
1690 /**
1691 * Evaluate a linear-valued coefficient at the position of the
1692 * current quad.
1693 */
1694 static void
1695 eval_linear_coef(
1696 struct tgsi_exec_machine *mach,
1697 unsigned attrib,
1698 unsigned chan )
1699 {
1700 const float x = mach->QuadPos.xyzw[0].f[0];
1701 const float y = mach->QuadPos.xyzw[1].f[0];
1702 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
1703 const float dady = mach->InterpCoefs[attrib].dady[chan];
1704 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
1705 mach->Inputs[attrib].xyzw[chan].f[0] = a0;
1706 mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
1707 mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
1708 mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
1709 }
1710
1711 /**
1712 * Evaluate a perspective-valued coefficient at the position of the
1713 * current quad.
1714 */
1715 static void
1716 eval_perspective_coef(
1717 struct tgsi_exec_machine *mach,
1718 unsigned attrib,
1719 unsigned chan )
1720 {
1721 const float x = mach->QuadPos.xyzw[0].f[0];
1722 const float y = mach->QuadPos.xyzw[1].f[0];
1723 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
1724 const float dady = mach->InterpCoefs[attrib].dady[chan];
1725 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
1726 const float *w = mach->QuadPos.xyzw[3].f;
1727 /* divide by W here */
1728 mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
1729 mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
1730 mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
1731 mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
1732 }
1733
1734
1735 typedef void (* eval_coef_func)(
1736 struct tgsi_exec_machine *mach,
1737 unsigned attrib,
1738 unsigned chan );
1739
1740 static void
1741 exec_declaration(struct tgsi_exec_machine *mach,
1742 const struct tgsi_full_declaration *decl)
1743 {
1744 if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
1745 if (decl->Declaration.File == TGSI_FILE_INPUT ||
1746 decl->Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
1747 uint first, last, mask;
1748
1749 first = decl->Range.First;
1750 last = decl->Range.Last;
1751 mask = decl->Declaration.UsageMask;
1752
1753 if (decl->Semantic.Name == TGSI_SEMANTIC_POSITION) {
1754 assert(decl->Semantic.Index == 0);
1755 assert(first == last);
1756 assert(mask == TGSI_WRITEMASK_XYZW);
1757
1758 mach->Inputs[first] = mach->QuadPos;
1759 } else if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
1760 uint i;
1761
1762 assert(decl->Semantic.Index == 0);
1763 assert(first == last);
1764
1765 for (i = 0; i < QUAD_SIZE; i++) {
1766 mach->Inputs[first].xyzw[0].f[i] = mach->Face;
1767 }
1768 } else {
1769 eval_coef_func eval;
1770 uint i, j;
1771
1772 switch (decl->Declaration.Interpolate) {
1773 case TGSI_INTERPOLATE_CONSTANT:
1774 eval = eval_constant_coef;
1775 break;
1776
1777 case TGSI_INTERPOLATE_LINEAR:
1778 eval = eval_linear_coef;
1779 break;
1780
1781 case TGSI_INTERPOLATE_PERSPECTIVE:
1782 eval = eval_perspective_coef;
1783 break;
1784
1785 default:
1786 assert(0);
1787 return;
1788 }
1789
1790 for (j = 0; j < NUM_CHANNELS; j++) {
1791 if (mask & (1 << j)) {
1792 for (i = first; i <= last; i++) {
1793 eval(mach, i, j);
1794 }
1795 }
1796 }
1797 }
1798 }
1799 }
1800 }
1801
1802 typedef void (* micro_op)(union tgsi_exec_channel *dst,
1803 const union tgsi_exec_channel *src);
1804
1805 static void
1806 exec_scalar_unary(struct tgsi_exec_machine *mach,
1807 const struct tgsi_full_instruction *inst,
1808 micro_op op,
1809 enum tgsi_exec_datatype dst_datatype,
1810 enum tgsi_exec_datatype src_datatype)
1811 {
1812 unsigned int chan;
1813 union tgsi_exec_channel src;
1814 union tgsi_exec_channel dst;
1815
1816 fetch_source(mach, &src, &inst->Src[0], CHAN_X, src_datatype);
1817 op(&dst, &src);
1818 for (chan = 0; chan < NUM_CHANNELS; chan++) {
1819 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1820 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
1821 }
1822 }
1823 }
1824
1825 static void
1826 exec_vector_unary(struct tgsi_exec_machine *mach,
1827 const struct tgsi_full_instruction *inst,
1828 micro_op op,
1829 enum tgsi_exec_datatype dst_datatype,
1830 enum tgsi_exec_datatype src_datatype)
1831 {
1832 unsigned int chan;
1833 struct tgsi_exec_vector dst;
1834
1835 for (chan = 0; chan < NUM_CHANNELS; chan++) {
1836 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1837 union tgsi_exec_channel src;
1838
1839 fetch_source(mach, &src, &inst->Src[0], chan, src_datatype);
1840 op(&dst.xyzw[chan], &src);
1841 }
1842 }
1843 for (chan = 0; chan < NUM_CHANNELS; chan++) {
1844 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1845 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
1846 }
1847 }
1848 }
1849
1850 static void
1851 exec_vector_binary(struct tgsi_exec_machine *mach,
1852 const struct tgsi_full_instruction *inst,
1853 micro_op op,
1854 enum tgsi_exec_datatype dst_datatype,
1855 enum tgsi_exec_datatype src_datatype)
1856 {
1857 unsigned int chan;
1858 struct tgsi_exec_vector dst;
1859
1860 for (chan = 0; chan < NUM_CHANNELS; chan++) {
1861 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1862 union tgsi_exec_channel src[2];
1863
1864 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
1865 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
1866 op(&dst.xyzw[chan], src);
1867 }
1868 }
1869 for (chan = 0; chan < NUM_CHANNELS; chan++) {
1870 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1871 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
1872 }
1873 }
1874 }
1875
1876 static void
1877 exec_vector_trinary(struct tgsi_exec_machine *mach,
1878 const struct tgsi_full_instruction *inst,
1879 micro_op op,
1880 enum tgsi_exec_datatype dst_datatype,
1881 enum tgsi_exec_datatype src_datatype)
1882 {
1883 unsigned int chan;
1884 struct tgsi_exec_vector dst;
1885
1886 for (chan = 0; chan < NUM_CHANNELS; chan++) {
1887 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1888 union tgsi_exec_channel src[3];
1889
1890 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
1891 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
1892 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
1893 op(&dst.xyzw[chan], src);
1894 }
1895 }
1896 for (chan = 0; chan < NUM_CHANNELS; chan++) {
1897 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1898 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
1899 }
1900 }
1901 }
1902
1903 static void
1904 exec_break(struct tgsi_exec_machine *mach)
1905 {
1906 if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) {
1907 /* turn off loop channels for each enabled exec channel */
1908 mach->LoopMask &= ~mach->ExecMask;
1909 /* Todo: if mach->LoopMask == 0, jump to end of loop */
1910 UPDATE_EXEC_MASK(mach);
1911 } else {
1912 assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH);
1913
1914 mach->Switch.mask = 0x0;
1915
1916 UPDATE_EXEC_MASK(mach);
1917 }
1918 }
1919
1920 static void
1921 exec_switch(struct tgsi_exec_machine *mach,
1922 const struct tgsi_full_instruction *inst)
1923 {
1924 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
1925 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
1926
1927 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
1928 fetch_source(mach, &mach->Switch.selector, &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_UINT);
1929 mach->Switch.mask = 0x0;
1930 mach->Switch.defaultMask = 0x0;
1931
1932 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
1933 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH;
1934
1935 UPDATE_EXEC_MASK(mach);
1936 }
1937
1938 static void
1939 exec_case(struct tgsi_exec_machine *mach,
1940 const struct tgsi_full_instruction *inst)
1941 {
1942 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
1943 union tgsi_exec_channel src;
1944 uint mask = 0;
1945
1946 fetch_source(mach, &src, &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_UINT);
1947
1948 if (mach->Switch.selector.u[0] == src.u[0]) {
1949 mask |= 0x1;
1950 }
1951 if (mach->Switch.selector.u[1] == src.u[1]) {
1952 mask |= 0x2;
1953 }
1954 if (mach->Switch.selector.u[2] == src.u[2]) {
1955 mask |= 0x4;
1956 }
1957 if (mach->Switch.selector.u[3] == src.u[3]) {
1958 mask |= 0x8;
1959 }
1960
1961 mach->Switch.defaultMask |= mask;
1962
1963 mach->Switch.mask |= mask & prevMask;
1964
1965 UPDATE_EXEC_MASK(mach);
1966 }
1967
1968 static void
1969 exec_default(struct tgsi_exec_machine *mach)
1970 {
1971 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
1972
1973 mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask;
1974
1975 UPDATE_EXEC_MASK(mach);
1976 }
1977
1978 static void
1979 exec_endswitch(struct tgsi_exec_machine *mach)
1980 {
1981 mach->Switch = mach->SwitchStack[--mach->SwitchStackTop];
1982 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
1983
1984 UPDATE_EXEC_MASK(mach);
1985 }
1986
1987 static void
1988 micro_i2f(union tgsi_exec_channel *dst,
1989 const union tgsi_exec_channel *src)
1990 {
1991 dst->f[0] = (float)src->i[0];
1992 dst->f[1] = (float)src->i[1];
1993 dst->f[2] = (float)src->i[2];
1994 dst->f[3] = (float)src->i[3];
1995 }
1996
1997 static void
1998 micro_not(union tgsi_exec_channel *dst,
1999 const union tgsi_exec_channel *src)
2000 {
2001 dst->u[0] = ~src->u[0];
2002 dst->u[1] = ~src->u[1];
2003 dst->u[2] = ~src->u[2];
2004 dst->u[3] = ~src->u[3];
2005 }
2006
2007 static void
2008 micro_shl(union tgsi_exec_channel *dst,
2009 const union tgsi_exec_channel *src)
2010 {
2011 dst->u[0] = src[0].u[0] << src[1].u[0];
2012 dst->u[1] = src[0].u[1] << src[1].u[1];
2013 dst->u[2] = src[0].u[2] << src[1].u[2];
2014 dst->u[3] = src[0].u[3] << src[1].u[3];
2015 }
2016
2017 static void
2018 micro_and(union tgsi_exec_channel *dst,
2019 const union tgsi_exec_channel *src)
2020 {
2021 dst->u[0] = src[0].u[0] & src[1].u[0];
2022 dst->u[1] = src[0].u[1] & src[1].u[1];
2023 dst->u[2] = src[0].u[2] & src[1].u[2];
2024 dst->u[3] = src[0].u[3] & src[1].u[3];
2025 }
2026
2027 static void
2028 micro_or(union tgsi_exec_channel *dst,
2029 const union tgsi_exec_channel *src)
2030 {
2031 dst->u[0] = src[0].u[0] | src[1].u[0];
2032 dst->u[1] = src[0].u[1] | src[1].u[1];
2033 dst->u[2] = src[0].u[2] | src[1].u[2];
2034 dst->u[3] = src[0].u[3] | src[1].u[3];
2035 }
2036
2037 static void
2038 micro_xor(union tgsi_exec_channel *dst,
2039 const union tgsi_exec_channel *src)
2040 {
2041 dst->u[0] = src[0].u[0] ^ src[1].u[0];
2042 dst->u[1] = src[0].u[1] ^ src[1].u[1];
2043 dst->u[2] = src[0].u[2] ^ src[1].u[2];
2044 dst->u[3] = src[0].u[3] ^ src[1].u[3];
2045 }
2046
2047 static void
2048 micro_f2i(union tgsi_exec_channel *dst,
2049 const union tgsi_exec_channel *src)
2050 {
2051 dst->i[0] = (int)src->f[0];
2052 dst->i[1] = (int)src->f[1];
2053 dst->i[2] = (int)src->f[2];
2054 dst->i[3] = (int)src->f[3];
2055 }
2056
2057 static void
2058 micro_idiv(union tgsi_exec_channel *dst,
2059 const union tgsi_exec_channel *src)
2060 {
2061 dst->i[0] = src[0].i[0] / src[1].i[0];
2062 dst->i[1] = src[0].i[1] / src[1].i[1];
2063 dst->i[2] = src[0].i[2] / src[1].i[2];
2064 dst->i[3] = src[0].i[3] / src[1].i[3];
2065 }
2066
2067 static void
2068 micro_imax(union tgsi_exec_channel *dst,
2069 const union tgsi_exec_channel *src)
2070 {
2071 dst->i[0] = src[0].i[0] > src[1].i[0] ? src[0].i[0] : src[1].i[0];
2072 dst->i[1] = src[0].i[1] > src[1].i[1] ? src[0].i[1] : src[1].i[1];
2073 dst->i[2] = src[0].i[2] > src[1].i[2] ? src[0].i[2] : src[1].i[2];
2074 dst->i[3] = src[0].i[3] > src[1].i[3] ? src[0].i[3] : src[1].i[3];
2075 }
2076
2077 static void
2078 micro_imin(union tgsi_exec_channel *dst,
2079 const union tgsi_exec_channel *src)
2080 {
2081 dst->i[0] = src[0].i[0] < src[1].i[0] ? src[0].i[0] : src[1].i[0];
2082 dst->i[1] = src[0].i[1] < src[1].i[1] ? src[0].i[1] : src[1].i[1];
2083 dst->i[2] = src[0].i[2] < src[1].i[2] ? src[0].i[2] : src[1].i[2];
2084 dst->i[3] = src[0].i[3] < src[1].i[3] ? src[0].i[3] : src[1].i[3];
2085 }
2086
2087 static void
2088 micro_isge(union tgsi_exec_channel *dst,
2089 const union tgsi_exec_channel *src)
2090 {
2091 dst->i[0] = src[0].i[0] >= src[1].i[0] ? -1 : 0;
2092 dst->i[1] = src[0].i[1] >= src[1].i[1] ? -1 : 0;
2093 dst->i[2] = src[0].i[2] >= src[1].i[2] ? -1 : 0;
2094 dst->i[3] = src[0].i[3] >= src[1].i[3] ? -1 : 0;
2095 }
2096
2097 static void
2098 micro_ishr(union tgsi_exec_channel *dst,
2099 const union tgsi_exec_channel *src)
2100 {
2101 dst->i[0] = src[0].i[0] >> src[1].i[0];
2102 dst->i[1] = src[0].i[1] >> src[1].i[1];
2103 dst->i[2] = src[0].i[2] >> src[1].i[2];
2104 dst->i[3] = src[0].i[3] >> src[1].i[3];
2105 }
2106
2107 static void
2108 micro_islt(union tgsi_exec_channel *dst,
2109 const union tgsi_exec_channel *src)
2110 {
2111 dst->i[0] = src[0].i[0] < src[1].i[0] ? -1 : 0;
2112 dst->i[1] = src[0].i[1] < src[1].i[1] ? -1 : 0;
2113 dst->i[2] = src[0].i[2] < src[1].i[2] ? -1 : 0;
2114 dst->i[3] = src[0].i[3] < src[1].i[3] ? -1 : 0;
2115 }
2116
2117 static void
2118 micro_f2u(union tgsi_exec_channel *dst,
2119 const union tgsi_exec_channel *src)
2120 {
2121 dst->u[0] = (uint)src->f[0];
2122 dst->u[1] = (uint)src->f[1];
2123 dst->u[2] = (uint)src->f[2];
2124 dst->u[3] = (uint)src->f[3];
2125 }
2126
2127 static void
2128 micro_u2f(union tgsi_exec_channel *dst,
2129 const union tgsi_exec_channel *src)
2130 {
2131 dst->f[0] = (float)src->u[0];
2132 dst->f[1] = (float)src->u[1];
2133 dst->f[2] = (float)src->u[2];
2134 dst->f[3] = (float)src->u[3];
2135 }
2136
2137 static void
2138 micro_uadd(union tgsi_exec_channel *dst,
2139 const union tgsi_exec_channel *src)
2140 {
2141 dst->u[0] = src[0].u[0] + src[1].u[0];
2142 dst->u[1] = src[0].u[1] + src[1].u[1];
2143 dst->u[2] = src[0].u[2] + src[1].u[2];
2144 dst->u[3] = src[0].u[3] + src[1].u[3];
2145 }
2146
2147 static void
2148 micro_udiv(union tgsi_exec_channel *dst,
2149 const union tgsi_exec_channel *src)
2150 {
2151 dst->u[0] = src[0].u[0] / src[1].u[0];
2152 dst->u[1] = src[0].u[1] / src[1].u[1];
2153 dst->u[2] = src[0].u[2] / src[1].u[2];
2154 dst->u[3] = src[0].u[3] / src[1].u[3];
2155 }
2156
2157 static void
2158 micro_umad(union tgsi_exec_channel *dst,
2159 const union tgsi_exec_channel *src)
2160 {
2161 dst->u[0] = src[0].u[0] * src[1].u[0] + src[2].u[0];
2162 dst->u[1] = src[0].u[1] * src[1].u[1] + src[2].u[1];
2163 dst->u[2] = src[0].u[2] * src[1].u[2] + src[2].u[2];
2164 dst->u[3] = src[0].u[3] * src[1].u[3] + src[2].u[3];
2165 }
2166
2167 static void
2168 micro_umax(union tgsi_exec_channel *dst,
2169 const union tgsi_exec_channel *src)
2170 {
2171 dst->u[0] = src[0].u[0] > src[1].u[0] ? src[0].u[0] : src[1].u[0];
2172 dst->u[1] = src[0].u[1] > src[1].u[1] ? src[0].u[1] : src[1].u[1];
2173 dst->u[2] = src[0].u[2] > src[1].u[2] ? src[0].u[2] : src[1].u[2];
2174 dst->u[3] = src[0].u[3] > src[1].u[3] ? src[0].u[3] : src[1].u[3];
2175 }
2176
2177 static void
2178 micro_umin(union tgsi_exec_channel *dst,
2179 const union tgsi_exec_channel *src)
2180 {
2181 dst->u[0] = src[0].u[0] < src[1].u[0] ? src[0].u[0] : src[1].u[0];
2182 dst->u[1] = src[0].u[1] < src[1].u[1] ? src[0].u[1] : src[1].u[1];
2183 dst->u[2] = src[0].u[2] < src[1].u[2] ? src[0].u[2] : src[1].u[2];
2184 dst->u[3] = src[0].u[3] < src[1].u[3] ? src[0].u[3] : src[1].u[3];
2185 }
2186
2187 static void
2188 micro_umod(union tgsi_exec_channel *dst,
2189 const union tgsi_exec_channel *src)
2190 {
2191 dst->u[0] = src[0].u[0] % src[1].u[0];
2192 dst->u[1] = src[0].u[1] % src[1].u[1];
2193 dst->u[2] = src[0].u[2] % src[1].u[2];
2194 dst->u[3] = src[0].u[3] % src[1].u[3];
2195 }
2196
2197 static void
2198 micro_umul(union tgsi_exec_channel *dst,
2199 const union tgsi_exec_channel *src)
2200 {
2201 dst->u[0] = src[0].u[0] * src[1].u[0];
2202 dst->u[1] = src[0].u[1] * src[1].u[1];
2203 dst->u[2] = src[0].u[2] * src[1].u[2];
2204 dst->u[3] = src[0].u[3] * src[1].u[3];
2205 }
2206
2207 static void
2208 micro_useq(union tgsi_exec_channel *dst,
2209 const union tgsi_exec_channel *src)
2210 {
2211 dst->u[0] = src[0].u[0] == src[1].u[0] ? ~0 : 0;
2212 dst->u[1] = src[0].u[1] == src[1].u[1] ? ~0 : 0;
2213 dst->u[2] = src[0].u[2] == src[1].u[2] ? ~0 : 0;
2214 dst->u[3] = src[0].u[3] == src[1].u[3] ? ~0 : 0;
2215 }
2216
2217 static void
2218 micro_usge(union tgsi_exec_channel *dst,
2219 const union tgsi_exec_channel *src)
2220 {
2221 dst->u[0] = src[0].u[0] >= src[1].u[0] ? ~0 : 0;
2222 dst->u[1] = src[0].u[1] >= src[1].u[1] ? ~0 : 0;
2223 dst->u[2] = src[0].u[2] >= src[1].u[2] ? ~0 : 0;
2224 dst->u[3] = src[0].u[3] >= src[1].u[3] ? ~0 : 0;
2225 }
2226
2227 static void
2228 micro_ushr(union tgsi_exec_channel *dst,
2229 const union tgsi_exec_channel *src)
2230 {
2231 dst->u[0] = src[0].u[0] >> src[1].u[0];
2232 dst->u[1] = src[0].u[1] >> src[1].u[1];
2233 dst->u[2] = src[0].u[2] >> src[1].u[2];
2234 dst->u[3] = src[0].u[3] >> src[1].u[3];
2235 }
2236
2237 static void
2238 micro_uslt(union tgsi_exec_channel *dst,
2239 const union tgsi_exec_channel *src)
2240 {
2241 dst->u[0] = src[0].u[0] < src[1].u[0] ? ~0 : 0;
2242 dst->u[1] = src[0].u[1] < src[1].u[1] ? ~0 : 0;
2243 dst->u[2] = src[0].u[2] < src[1].u[2] ? ~0 : 0;
2244 dst->u[3] = src[0].u[3] < src[1].u[3] ? ~0 : 0;
2245 }
2246
2247 static void
2248 micro_usne(union tgsi_exec_channel *dst,
2249 const union tgsi_exec_channel *src)
2250 {
2251 dst->u[0] = src[0].u[0] != src[1].u[0] ? ~0 : 0;
2252 dst->u[1] = src[0].u[1] != src[1].u[1] ? ~0 : 0;
2253 dst->u[2] = src[0].u[2] != src[1].u[2] ? ~0 : 0;
2254 dst->u[3] = src[0].u[3] != src[1].u[3] ? ~0 : 0;
2255 }
2256
2257 static void
2258 exec_instruction(
2259 struct tgsi_exec_machine *mach,
2260 const struct tgsi_full_instruction *inst,
2261 int *pc )
2262 {
2263 uint chan_index;
2264 union tgsi_exec_channel r[10];
2265 union tgsi_exec_channel d[8];
2266
2267 (*pc)++;
2268
2269 switch (inst->Instruction.Opcode) {
2270 case TGSI_OPCODE_ARL:
2271 exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
2272 break;
2273
2274 case TGSI_OPCODE_MOV:
2275 exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
2276 break;
2277
2278 case TGSI_OPCODE_LIT:
2279 if (IS_CHANNEL_ENABLED( *inst, CHAN_Y ) || IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
2280 FETCH( &r[0], 0, CHAN_X );
2281 if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) {
2282 micro_max(&d[CHAN_Y], &r[0], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C]);
2283 }
2284
2285 if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
2286 FETCH( &r[1], 0, CHAN_Y );
2287 micro_max( &r[1], &r[1], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C] );
2288
2289 FETCH( &r[2], 0, CHAN_W );
2290 micro_min( &r[2], &r[2], &mach->Temps[TEMP_128_I].xyzw[TEMP_128_C] );
2291 micro_max( &r[2], &r[2], &mach->Temps[TEMP_M128_I].xyzw[TEMP_M128_C] );
2292 micro_pow( &r[1], &r[1], &r[2] );
2293 micro_lt(&d[CHAN_Z], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], &r[0], &r[1], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C]);
2294 }
2295
2296 if (IS_CHANNEL_ENABLED(*inst, CHAN_Y)) {
2297 STORE(&d[CHAN_Y], 0, CHAN_Y);
2298 }
2299 if (IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
2300 STORE(&d[CHAN_Z], 0, CHAN_Z);
2301 }
2302 }
2303 if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) {
2304 STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_X );
2305 }
2306 if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
2307 STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
2308 }
2309 break;
2310
2311 case TGSI_OPCODE_RCP:
2312 exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2313 break;
2314
2315 case TGSI_OPCODE_RSQ:
2316 exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2317 break;
2318
2319 case TGSI_OPCODE_EXP:
2320 FETCH( &r[0], 0, CHAN_X );
2321 micro_flr( &r[1], &r[0] ); /* r1 = floor(r0) */
2322 if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) {
2323 micro_exp2( &r[2], &r[1] ); /* r2 = 2 ^ r1 */
2324 STORE( &r[2], 0, CHAN_X ); /* store r2 */
2325 }
2326 if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) {
2327 micro_sub( &r[2], &r[0], &r[1] ); /* r2 = r0 - r1 */
2328 STORE( &r[2], 0, CHAN_Y ); /* store r2 */
2329 }
2330 if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
2331 micro_exp2( &r[2], &r[0] ); /* r2 = 2 ^ r0 */
2332 STORE( &r[2], 0, CHAN_Z ); /* store r2 */
2333 }
2334 if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
2335 STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
2336 }
2337 break;
2338
2339 case TGSI_OPCODE_LOG:
2340 FETCH( &r[0], 0, CHAN_X );
2341 micro_abs( &r[2], &r[0] ); /* r2 = abs(r0) */
2342 micro_lg2( &r[1], &r[2] ); /* r1 = lg2(r2) */
2343 micro_flr( &r[0], &r[1] ); /* r0 = floor(r1) */
2344 if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) {
2345 STORE( &r[0], 0, CHAN_X );
2346 }
2347 if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) {
2348 micro_exp2( &r[0], &r[0] ); /* r0 = 2 ^ r0 */
2349 micro_div( &r[0], &r[2], &r[0] ); /* r0 = r2 / r0 */
2350 STORE( &r[0], 0, CHAN_Y );
2351 }
2352 if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
2353 STORE( &r[1], 0, CHAN_Z );
2354 }
2355 if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
2356 STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
2357 }
2358 break;
2359
2360 case TGSI_OPCODE_MUL:
2361 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
2362 FETCH(&r[0], 0, chan_index);
2363 FETCH(&r[1], 1, chan_index);
2364 micro_mul(&d[chan_index], &r[0], &r[1]);
2365 }
2366 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
2367 STORE(&d[chan_index], 0, chan_index);
2368 }
2369 break;
2370
2371 case TGSI_OPCODE_ADD:
2372 FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
2373 FETCH( &r[0], 0, chan_index );
2374 FETCH( &r[1], 1, chan_index );
2375 micro_add(&d[chan_index], &r[0], &r[1]);
2376 }
2377 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
2378 STORE(&d[chan_index], 0, chan_index);
2379 }
2380 break;
2381
2382 case TGSI_OPCODE_DP3:
2383 /* TGSI_OPCODE_DOT3 */
2384 FETCH( &r[0], 0, CHAN_X );
2385 FETCH( &r[1], 1, CHAN_X );
2386 micro_mul( &r[0], &r[0], &r[1] );
2387
2388 FETCH( &r[1], 0, CHAN_Y );
2389 FETCH( &r[2], 1, CHAN_Y );
2390 micro_mul( &r[1], &r[1], &r[2] );
2391 micro_add( &r[0], &r[0], &r[1] );
2392
2393 FETCH( &r[1], 0, CHAN_Z );
2394 FETCH( &r[2], 1, CHAN_Z );
2395 micro_mul( &r[1], &r[1], &r[2] );
2396 micro_add( &r[0], &r[0], &r[1] );
2397
2398 FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
2399 STORE( &r[0], 0, chan_index );
2400 }
2401 break;
2402
2403 case TGSI_OPCODE_DP4:
2404 /* TGSI_OPCODE_DOT4 */
2405 FETCH(&r[0], 0, CHAN_X);
2406 FETCH(&r[1], 1, CHAN_X);
2407
2408 micro_mul( &r[0], &r[0], &r[1] );
2409
2410 FETCH(&r[1], 0, CHAN_Y);
2411 FETCH(&r[2], 1, CHAN_Y);
2412
2413 micro_mul( &r[1], &r[1], &r[2] );
2414 micro_add( &r[0], &r[0], &r[1] );
2415
2416 FETCH(&r[1], 0, CHAN_Z);
2417 FETCH(&r[2], 1, CHAN_Z);
2418
2419 micro_mul( &r[1], &r[1], &r[2] );
2420 micro_add( &r[0], &r[0], &r[1] );
2421
2422 FETCH(&r[1], 0, CHAN_W);
2423 FETCH(&r[2], 1, CHAN_W);
2424
2425 micro_mul( &r[1], &r[1], &r[2] );
2426 micro_add( &r[0], &r[0], &r[1] );
2427
2428 FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
2429 STORE( &r[0], 0, chan_index );
2430 }
2431 break;
2432
2433 case TGSI_OPCODE_DST:
2434 if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) {
2435 FETCH( &r[0], 0, CHAN_Y );
2436 FETCH( &r[1], 1, CHAN_Y);
2437 micro_mul(&d[CHAN_Y], &r[0], &r[1]);
2438 }
2439 if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
2440 FETCH(&d[CHAN_Z], 0, CHAN_Z);
2441 }
2442 if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
2443 FETCH(&d[CHAN_W], 1, CHAN_W);
2444 }
2445
2446 if (IS_CHANNEL_ENABLED(*inst, CHAN_X)) {
2447 STORE(&mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_X);
2448 }
2449 if (IS_CHANNEL_ENABLED(*inst, CHAN_Y)) {
2450 STORE(&d[CHAN_Y], 0, CHAN_Y);
2451 }
2452 if (IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
2453 STORE(&d[CHAN_Z], 0, CHAN_Z);
2454 }
2455 if (IS_CHANNEL_ENABLED(*inst, CHAN_W)) {
2456 STORE(&d[CHAN_W], 0, CHAN_W);
2457 }
2458 break;
2459
2460 case TGSI_OPCODE_MIN:
2461 FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
2462 FETCH(&r[0], 0, chan_index);
2463 FETCH(&r[1], 1, chan_index);
2464
2465 /* XXX use micro_min()?? */
2466 micro_lt(&d[chan_index], &r[0], &r[1], &r[0], &r[1]);
2467 }
2468 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
2469 STORE(&d[chan_index], 0, chan_index);
2470 }
2471 break;
2472
2473 case TGSI_OPCODE_MAX:
2474 FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
2475 FETCH(&r[0], 0, chan_index);
2476 FETCH(&r[1], 1, chan_index);
2477
2478 /* XXX use micro_max()?? */
2479 micro_lt(&d[chan_index], &r[0], &r[1], &r[1], &r[0] );
2480 }
2481 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
2482 STORE(&d[chan_index], 0, chan_index);
2483 }
2484 break;
2485
2486 case TGSI_OPCODE_SLT:
2487 exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2488 break;
2489
2490 case TGSI_OPCODE_SGE:
2491 exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2492 break;
2493
2494 case TGSI_OPCODE_MAD:
2495 exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2496 break;
2497
2498 case TGSI_OPCODE_SUB:
2499 FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
2500 FETCH(&r[0], 0, chan_index);
2501 FETCH(&r[1], 1, chan_index);
2502 micro_sub(&d[chan_index], &r[0], &r[1]);
2503 }
2504 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
2505 STORE(&d[chan_index], 0, chan_index);
2506 }
2507 break;
2508
2509 case TGSI_OPCODE_LRP:
2510 exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2511 break;
2512
2513 case TGSI_OPCODE_CND:
2514 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
2515 FETCH(&r[0], 0, chan_index);
2516 FETCH(&r[1], 1, chan_index);
2517 FETCH(&r[2], 2, chan_index);
2518 micro_lt(&d[chan_index], &mach->Temps[TEMP_HALF_I].xyzw[TEMP_HALF_C], &r[2], &r[0], &r[1]);
2519 }
2520 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
2521 STORE(&d[chan_index], 0, chan_index);
2522 }
2523 break;
2524
2525 case TGSI_OPCODE_DP2A:
2526 FETCH( &r[0], 0, CHAN_X );
2527 FETCH( &r[1], 1, CHAN_X );
2528 micro_mul( &r[0], &r[0], &r[1] );
2529
2530 FETCH( &r[1], 0, CHAN_Y );
2531 FETCH( &r[2], 1, CHAN_Y );
2532 micro_mul( &r[1], &r[1], &r[2] );
2533 micro_add( &r[0], &r[0], &r[1] );
2534
2535 FETCH( &r[2], 2, CHAN_X );
2536 micro_add( &r[0], &r[0], &r[2] );
2537
2538 FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
2539 STORE( &r[0], 0, chan_index );
2540 }
2541 break;
2542
2543 case TGSI_OPCODE_FRC:
2544 exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2545 break;
2546
2547 case TGSI_OPCODE_CLAMP:
2548 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
2549 FETCH(&r[0], 0, chan_index);
2550 FETCH(&r[1], 1, chan_index);
2551 micro_max(&r[0], &r[0], &r[1]);
2552 FETCH(&r[1], 2, chan_index);
2553 micro_min(&d[chan_index], &r[0], &r[1]);
2554 }
2555 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
2556 STORE(&d[chan_index], 0, chan_index);
2557 }
2558 break;
2559
2560 case TGSI_OPCODE_FLR:
2561 exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2562 break;
2563
2564 case TGSI_OPCODE_ROUND:
2565 exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2566 break;
2567
2568 case TGSI_OPCODE_EX2:
2569 exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2570 break;
2571
2572 case TGSI_OPCODE_LG2:
2573 exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2574 break;
2575
2576 case TGSI_OPCODE_POW:
2577 FETCH(&r[0], 0, CHAN_X);
2578 FETCH(&r[1], 1, CHAN_X);
2579
2580 micro_pow( &r[0], &r[0], &r[1] );
2581
2582 FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
2583 STORE( &r[0], 0, chan_index );
2584 }
2585 break;
2586
2587 case TGSI_OPCODE_XPD:
2588 FETCH(&r[0], 0, CHAN_Y);
2589 FETCH(&r[1], 1, CHAN_Z);
2590
2591 micro_mul( &r[2], &r[0], &r[1] );
2592
2593 FETCH(&r[3], 0, CHAN_Z);
2594 FETCH(&r[4], 1, CHAN_Y);
2595
2596 micro_mul( &r[5], &r[3], &r[4] );
2597 micro_sub(&d[CHAN_X], &r[2], &r[5]);
2598
2599 FETCH(&r[2], 1, CHAN_X);
2600
2601 micro_mul( &r[3], &r[3], &r[2] );
2602
2603 FETCH(&r[5], 0, CHAN_X);
2604
2605 micro_mul( &r[1], &r[1], &r[5] );
2606 micro_sub(&d[CHAN_Y], &r[3], &r[1]);
2607
2608 micro_mul( &r[5], &r[5], &r[4] );
2609 micro_mul( &r[0], &r[0], &r[2] );
2610 micro_sub(&d[CHAN_Z], &r[5], &r[0]);
2611
2612 if (IS_CHANNEL_ENABLED(*inst, CHAN_X)) {
2613 STORE(&d[CHAN_X], 0, CHAN_X);
2614 }
2615 if (IS_CHANNEL_ENABLED(*inst, CHAN_Y)) {
2616 STORE(&d[CHAN_Y], 0, CHAN_Y);
2617 }
2618 if (IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
2619 STORE(&d[CHAN_Z], 0, CHAN_Z);
2620 }
2621 if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
2622 STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
2623 }
2624 break;
2625
2626 case TGSI_OPCODE_ABS:
2627 exec_vector_unary(mach, inst, micro_abs, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2628 break;
2629
2630 case TGSI_OPCODE_RCC:
2631 FETCH(&r[0], 0, CHAN_X);
2632 micro_div(&r[0], &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], &r[0]);
2633 micro_float_clamp(&r[0], &r[0]);
2634 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
2635 STORE(&r[0], 0, chan_index);
2636 }
2637 break;
2638
2639 case TGSI_OPCODE_DPH:
2640 FETCH(&r[0], 0, CHAN_X);
2641 FETCH(&r[1], 1, CHAN_X);
2642
2643 micro_mul( &r[0], &r[0], &r[1] );
2644
2645 FETCH(&r[1], 0, CHAN_Y);
2646 FETCH(&r[2], 1, CHAN_Y);
2647
2648 micro_mul( &r[1], &r[1], &r[2] );
2649 micro_add( &r[0], &r[0], &r[1] );
2650
2651 FETCH(&r[1], 0, CHAN_Z);
2652 FETCH(&r[2], 1, CHAN_Z);
2653
2654 micro_mul( &r[1], &r[1], &r[2] );
2655 micro_add( &r[0], &r[0], &r[1] );
2656
2657 FETCH(&r[1], 1, CHAN_W);
2658
2659 micro_add( &r[0], &r[0], &r[1] );
2660
2661 FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
2662 STORE( &r[0], 0, chan_index );
2663 }
2664 break;
2665
2666 case TGSI_OPCODE_COS:
2667 exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2668 break;
2669
2670 case TGSI_OPCODE_DDX:
2671 exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2672 break;
2673
2674 case TGSI_OPCODE_DDY:
2675 exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2676 break;
2677
2678 case TGSI_OPCODE_KILP:
2679 exec_kilp (mach, inst);
2680 break;
2681
2682 case TGSI_OPCODE_KIL:
2683 exec_kil (mach, inst);
2684 break;
2685
2686 case TGSI_OPCODE_PK2H:
2687 assert (0);
2688 break;
2689
2690 case TGSI_OPCODE_PK2US:
2691 assert (0);
2692 break;
2693
2694 case TGSI_OPCODE_PK4B:
2695 assert (0);
2696 break;
2697
2698 case TGSI_OPCODE_PK4UB:
2699 assert (0);
2700 break;
2701
2702 case TGSI_OPCODE_RFL:
2703 if (IS_CHANNEL_ENABLED(*inst, CHAN_X) ||
2704 IS_CHANNEL_ENABLED(*inst, CHAN_Y) ||
2705 IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
2706 /* r0 = dp3(src0, src0) */
2707 FETCH(&r[2], 0, CHAN_X);
2708 micro_mul(&r[0], &r[2], &r[2]);
2709 FETCH(&r[4], 0, CHAN_Y);
2710 micro_mul(&r[8], &r[4], &r[4]);
2711 micro_add(&r[0], &r[0], &r[8]);
2712 FETCH(&r[6], 0, CHAN_Z);
2713 micro_mul(&r[8], &r[6], &r[6]);
2714 micro_add(&r[0], &r[0], &r[8]);
2715
2716 /* r1 = dp3(src0, src1) */
2717 FETCH(&r[3], 1, CHAN_X);
2718 micro_mul(&r[1], &r[2], &r[3]);
2719 FETCH(&r[5], 1, CHAN_Y);
2720 micro_mul(&r[8], &r[4], &r[5]);
2721 micro_add(&r[1], &r[1], &r[8]);
2722 FETCH(&r[7], 1, CHAN_Z);
2723 micro_mul(&r[8], &r[6], &r[7]);
2724 micro_add(&r[1], &r[1], &r[8]);
2725
2726 /* r1 = 2 * r1 / r0 */
2727 micro_add(&r[1], &r[1], &r[1]);
2728 micro_div(&r[1], &r[1], &r[0]);
2729
2730 if (IS_CHANNEL_ENABLED(*inst, CHAN_X)) {
2731 micro_mul(&r[2], &r[2], &r[1]);
2732 micro_sub(&r[2], &r[2], &r[3]);
2733 STORE(&r[2], 0, CHAN_X);
2734 }
2735 if (IS_CHANNEL_ENABLED(*inst, CHAN_Y)) {
2736 micro_mul(&r[4], &r[4], &r[1]);
2737 micro_sub(&r[4], &r[4], &r[5]);
2738 STORE(&r[4], 0, CHAN_Y);
2739 }
2740 if (IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
2741 micro_mul(&r[6], &r[6], &r[1]);
2742 micro_sub(&r[6], &r[6], &r[7]);
2743 STORE(&r[6], 0, CHAN_Z);
2744 }
2745 }
2746 if (IS_CHANNEL_ENABLED(*inst, CHAN_W)) {
2747 STORE(&mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W);
2748 }
2749 break;
2750
2751 case TGSI_OPCODE_SEQ:
2752 exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2753 break;
2754
2755 case TGSI_OPCODE_SFL:
2756 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
2757 STORE(&mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], 0, chan_index);
2758 }
2759 break;
2760
2761 case TGSI_OPCODE_SGT:
2762 exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2763 break;
2764
2765 case TGSI_OPCODE_SIN:
2766 exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2767 break;
2768
2769 case TGSI_OPCODE_SLE:
2770 exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2771 break;
2772
2773 case TGSI_OPCODE_SNE:
2774 exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2775 break;
2776
2777 case TGSI_OPCODE_STR:
2778 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
2779 STORE(&mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, chan_index);
2780 }
2781 break;
2782
2783 case TGSI_OPCODE_TEX:
2784 /* simple texture lookup */
2785 /* src[0] = texcoord */
2786 /* src[1] = sampler unit */
2787 exec_tex(mach, inst, TEX_MODIFIER_NONE);
2788 break;
2789
2790 case TGSI_OPCODE_TXB:
2791 /* Texture lookup with lod bias */
2792 /* src[0] = texcoord (src[0].w = LOD bias) */
2793 /* src[1] = sampler unit */
2794 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS);
2795 break;
2796
2797 case TGSI_OPCODE_TXD:
2798 /* Texture lookup with explict partial derivatives */
2799 /* src[0] = texcoord */
2800 /* src[1] = d[strq]/dx */
2801 /* src[2] = d[strq]/dy */
2802 /* src[3] = sampler unit */
2803 exec_txd(mach, inst);
2804 break;
2805
2806 case TGSI_OPCODE_TXL:
2807 /* Texture lookup with explit LOD */
2808 /* src[0] = texcoord (src[0].w = LOD) */
2809 /* src[1] = sampler unit */
2810 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD);
2811 break;
2812
2813 case TGSI_OPCODE_TXP:
2814 /* Texture lookup with projection */
2815 /* src[0] = texcoord (src[0].w = projection) */
2816 /* src[1] = sampler unit */
2817 exec_tex(mach, inst, TEX_MODIFIER_PROJECTED);
2818 break;
2819
2820 case TGSI_OPCODE_UP2H:
2821 assert (0);
2822 break;
2823
2824 case TGSI_OPCODE_UP2US:
2825 assert (0);
2826 break;
2827
2828 case TGSI_OPCODE_UP4B:
2829 assert (0);
2830 break;
2831
2832 case TGSI_OPCODE_UP4UB:
2833 assert (0);
2834 break;
2835
2836 case TGSI_OPCODE_X2D:
2837 FETCH(&r[0], 1, CHAN_X);
2838 FETCH(&r[1], 1, CHAN_Y);
2839 if (IS_CHANNEL_ENABLED(*inst, CHAN_X) ||
2840 IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
2841 FETCH(&r[2], 2, CHAN_X);
2842 micro_mul(&r[2], &r[2], &r[0]);
2843 FETCH(&r[3], 2, CHAN_Y);
2844 micro_mul(&r[3], &r[3], &r[1]);
2845 micro_add(&r[2], &r[2], &r[3]);
2846 FETCH(&r[3], 0, CHAN_X);
2847 micro_add(&d[CHAN_X], &r[2], &r[3]);
2848
2849 }
2850 if (IS_CHANNEL_ENABLED(*inst, CHAN_Y) ||
2851 IS_CHANNEL_ENABLED(*inst, CHAN_W)) {
2852 FETCH(&r[2], 2, CHAN_Z);
2853 micro_mul(&r[2], &r[2], &r[0]);
2854 FETCH(&r[3], 2, CHAN_W);
2855 micro_mul(&r[3], &r[3], &r[1]);
2856 micro_add(&r[2], &r[2], &r[3]);
2857 FETCH(&r[3], 0, CHAN_Y);
2858 micro_add(&d[CHAN_Y], &r[2], &r[3]);
2859
2860 }
2861 if (IS_CHANNEL_ENABLED(*inst, CHAN_X)) {
2862 STORE(&d[CHAN_X], 0, CHAN_X);
2863 }
2864 if (IS_CHANNEL_ENABLED(*inst, CHAN_Y)) {
2865 STORE(&d[CHAN_Y], 0, CHAN_Y);
2866 }
2867 if (IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
2868 STORE(&d[CHAN_X], 0, CHAN_Z);
2869 }
2870 if (IS_CHANNEL_ENABLED(*inst, CHAN_W)) {
2871 STORE(&d[CHAN_Y], 0, CHAN_W);
2872 }
2873 break;
2874
2875 case TGSI_OPCODE_ARA:
2876 assert (0);
2877 break;
2878
2879 case TGSI_OPCODE_ARR:
2880 exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
2881 break;
2882
2883 case TGSI_OPCODE_BRA:
2884 assert (0);
2885 break;
2886
2887 case TGSI_OPCODE_CAL:
2888 /* skip the call if no execution channels are enabled */
2889 if (mach->ExecMask) {
2890 /* do the call */
2891
2892 /* First, record the depths of the execution stacks.
2893 * This is important for deeply nested/looped return statements.
2894 * We have to unwind the stacks by the correct amount. For a
2895 * real code generator, we could determine the number of entries
2896 * to pop off each stack with simple static analysis and avoid
2897 * implementing this data structure at run time.
2898 */
2899 mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop;
2900 mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop;
2901 mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop;
2902 mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop;
2903 mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop;
2904 /* note that PC was already incremented above */
2905 mach->CallStack[mach->CallStackTop].ReturnAddr = *pc;
2906
2907 mach->CallStackTop++;
2908
2909 /* Second, push the Cond, Loop, Cont, Func stacks */
2910 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
2911 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
2912 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
2913 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
2914 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
2915 assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
2916
2917 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
2918 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
2919 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
2920 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
2921 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
2922 mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
2923
2924 /* Finally, jump to the subroutine */
2925 *pc = inst->Label.Label;
2926 }
2927 break;
2928
2929 case TGSI_OPCODE_RET:
2930 mach->FuncMask &= ~mach->ExecMask;
2931 UPDATE_EXEC_MASK(mach);
2932
2933 if (mach->FuncMask == 0x0) {
2934 /* really return now (otherwise, keep executing */
2935
2936 if (mach->CallStackTop == 0) {
2937 /* returning from main() */
2938 *pc = -1;
2939 return;
2940 }
2941
2942 assert(mach->CallStackTop > 0);
2943 mach->CallStackTop--;
2944
2945 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
2946 mach->CondMask = mach->CondStack[mach->CondStackTop];
2947
2948 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
2949 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
2950
2951 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
2952 mach->ContMask = mach->ContStack[mach->ContStackTop];
2953
2954 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
2955 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
2956
2957 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
2958 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
2959
2960 assert(mach->FuncStackTop > 0);
2961 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
2962
2963 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
2964
2965 UPDATE_EXEC_MASK(mach);
2966 }
2967 break;
2968
2969 case TGSI_OPCODE_SSG:
2970 exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
2971 break;
2972
2973 case TGSI_OPCODE_CMP:
2974 FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
2975 FETCH(&r[0], 0, chan_index);
2976 FETCH(&r[1], 1, chan_index);
2977 FETCH(&r[2], 2, chan_index);
2978 micro_lt(&d[chan_index], &r[0], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], &r[1], &r[2]);
2979 }
2980 FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
2981 STORE(&d[chan_index], 0, chan_index);
2982 }
2983 break;
2984
2985 case TGSI_OPCODE_SCS:
2986 if( IS_CHANNEL_ENABLED( *inst, CHAN_X ) || IS_CHANNEL_ENABLED( *inst, CHAN_Y ) ) {
2987 FETCH( &r[0], 0, CHAN_X );
2988 if (IS_CHANNEL_ENABLED(*inst, CHAN_X)) {
2989 micro_cos(&r[1], &r[0]);
2990 STORE(&r[1], 0, CHAN_X);
2991 }
2992 if (IS_CHANNEL_ENABLED(*inst, CHAN_Y)) {
2993 micro_sin(&r[1], &r[0]);
2994 STORE(&r[1], 0, CHAN_Y);
2995 }
2996 }
2997 if( IS_CHANNEL_ENABLED( *inst, CHAN_Z ) ) {
2998 STORE( &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], 0, CHAN_Z );
2999 }
3000 if( IS_CHANNEL_ENABLED( *inst, CHAN_W ) ) {
3001 STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
3002 }
3003 break;
3004
3005 case TGSI_OPCODE_NRM:
3006 /* 3-component vector normalize */
3007 if(IS_CHANNEL_ENABLED(*inst, CHAN_X) ||
3008 IS_CHANNEL_ENABLED(*inst, CHAN_Y) ||
3009 IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
3010 /* r3 = sqrt(dp3(src0, src0)) */
3011 FETCH(&r[0], 0, CHAN_X);
3012 micro_mul(&r[3], &r[0], &r[0]);
3013 FETCH(&r[1], 0, CHAN_Y);
3014 micro_mul(&r[4], &r[1], &r[1]);
3015 micro_add(&r[3], &r[3], &r[4]);
3016 FETCH(&r[2], 0, CHAN_Z);
3017 micro_mul(&r[4], &r[2], &r[2]);
3018 micro_add(&r[3], &r[3], &r[4]);
3019 micro_sqrt(&r[3], &r[3]);
3020
3021 if (IS_CHANNEL_ENABLED(*inst, CHAN_X)) {
3022 micro_div(&r[0], &r[0], &r[3]);
3023 STORE(&r[0], 0, CHAN_X);
3024 }
3025 if (IS_CHANNEL_ENABLED(*inst, CHAN_Y)) {
3026 micro_div(&r[1], &r[1], &r[3]);
3027 STORE(&r[1], 0, CHAN_Y);
3028 }
3029 if (IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
3030 micro_div(&r[2], &r[2], &r[3]);
3031 STORE(&r[2], 0, CHAN_Z);
3032 }
3033 }
3034 if (IS_CHANNEL_ENABLED(*inst, CHAN_W)) {
3035 STORE(&mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W);
3036 }
3037 break;
3038
3039 case TGSI_OPCODE_NRM4:
3040 /* 4-component vector normalize */
3041 {
3042 union tgsi_exec_channel tmp, dot;
3043
3044 /* tmp = dp4(src0, src0): */
3045 FETCH( &r[0], 0, CHAN_X );
3046 micro_mul( &tmp, &r[0], &r[0] );
3047
3048 FETCH( &r[1], 0, CHAN_Y );
3049 micro_mul( &dot, &r[1], &r[1] );
3050 micro_add( &tmp, &tmp, &dot );
3051
3052 FETCH( &r[2], 0, CHAN_Z );
3053 micro_mul( &dot, &r[2], &r[2] );
3054 micro_add( &tmp, &tmp, &dot );
3055
3056 FETCH( &r[3], 0, CHAN_W );
3057 micro_mul( &dot, &r[3], &r[3] );
3058 micro_add( &tmp, &tmp, &dot );
3059
3060 /* tmp = 1 / sqrt(tmp) */
3061 micro_sqrt( &tmp, &tmp );
3062 micro_div( &tmp, &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], &tmp );
3063
3064 FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
3065 /* chan = chan * tmp */
3066 micro_mul( &r[chan_index], &tmp, &r[chan_index] );
3067 STORE( &r[chan_index], 0, chan_index );
3068 }
3069 }
3070 break;
3071
3072 case TGSI_OPCODE_DIV:
3073 assert( 0 );
3074 break;
3075
3076 case TGSI_OPCODE_DP2:
3077 FETCH( &r[0], 0, CHAN_X );
3078 FETCH( &r[1], 1, CHAN_X );
3079 micro_mul( &r[0], &r[0], &r[1] );
3080
3081 FETCH( &r[1], 0, CHAN_Y );
3082 FETCH( &r[2], 1, CHAN_Y );
3083 micro_mul( &r[1], &r[1], &r[2] );
3084 micro_add( &r[0], &r[0], &r[1] );
3085
3086 FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
3087 STORE( &r[0], 0, chan_index );
3088 }
3089 break;
3090
3091 case TGSI_OPCODE_IF:
3092 /* push CondMask */
3093 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
3094 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
3095 FETCH( &r[0], 0, CHAN_X );
3096 /* update CondMask */
3097 if( ! r[0].u[0] ) {
3098 mach->CondMask &= ~0x1;
3099 }
3100 if( ! r[0].u[1] ) {
3101 mach->CondMask &= ~0x2;
3102 }
3103 if( ! r[0].u[2] ) {
3104 mach->CondMask &= ~0x4;
3105 }
3106 if( ! r[0].u[3] ) {
3107 mach->CondMask &= ~0x8;
3108 }
3109 UPDATE_EXEC_MASK(mach);
3110 /* Todo: If CondMask==0, jump to ELSE */
3111 break;
3112
3113 case TGSI_OPCODE_ELSE:
3114 /* invert CondMask wrt previous mask */
3115 {
3116 uint prevMask;
3117 assert(mach->CondStackTop > 0);
3118 prevMask = mach->CondStack[mach->CondStackTop - 1];
3119 mach->CondMask = ~mach->CondMask & prevMask;
3120 UPDATE_EXEC_MASK(mach);
3121 /* Todo: If CondMask==0, jump to ENDIF */
3122 }
3123 break;
3124
3125 case TGSI_OPCODE_ENDIF:
3126 /* pop CondMask */
3127 assert(mach->CondStackTop > 0);
3128 mach->CondMask = mach->CondStack[--mach->CondStackTop];
3129 UPDATE_EXEC_MASK(mach);
3130 break;
3131
3132 case TGSI_OPCODE_END:
3133 /* halt execution */
3134 *pc = -1;
3135 break;
3136
3137 case TGSI_OPCODE_REP:
3138 assert (0);
3139 break;
3140
3141 case TGSI_OPCODE_ENDREP:
3142 assert (0);
3143 break;
3144
3145 case TGSI_OPCODE_PUSHA:
3146 assert (0);
3147 break;
3148
3149 case TGSI_OPCODE_POPA:
3150 assert (0);
3151 break;
3152
3153 case TGSI_OPCODE_CEIL:
3154 exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3155 break;
3156
3157 case TGSI_OPCODE_I2F:
3158 exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT);
3159 break;
3160
3161 case TGSI_OPCODE_NOT:
3162 exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3163 break;
3164
3165 case TGSI_OPCODE_TRUNC:
3166 exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3167 break;
3168
3169 case TGSI_OPCODE_SHL:
3170 exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3171 break;
3172
3173 case TGSI_OPCODE_AND:
3174 exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3175 break;
3176
3177 case TGSI_OPCODE_OR:
3178 exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3179 break;
3180
3181 case TGSI_OPCODE_MOD:
3182 assert (0);
3183 break;
3184
3185 case TGSI_OPCODE_XOR:
3186 exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3187 break;
3188
3189 case TGSI_OPCODE_SAD:
3190 assert (0);
3191 break;
3192
3193 case TGSI_OPCODE_TXF:
3194 assert (0);
3195 break;
3196
3197 case TGSI_OPCODE_TXQ:
3198 assert (0);
3199 break;
3200
3201 case TGSI_OPCODE_EMIT:
3202 emit_vertex(mach);
3203 break;
3204
3205 case TGSI_OPCODE_ENDPRIM:
3206 emit_primitive(mach);
3207 break;
3208
3209 case TGSI_OPCODE_BGNFOR:
3210 assert(mach->LoopCounterStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3211 for (chan_index = 0; chan_index < 3; chan_index++) {
3212 FETCH( &mach->LoopCounterStack[mach->LoopCounterStackTop].xyzw[chan_index], 0, chan_index );
3213 }
3214 ++mach->LoopCounterStackTop;
3215 STORE(&mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[CHAN_X], 0, CHAN_X);
3216 /* update LoopMask */
3217 if (mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[CHAN_Y].f[0] <= 0.0f) {
3218 mach->LoopMask &= ~0x1;
3219 }
3220 if (mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[CHAN_Y].f[1] <= 0.0f) {
3221 mach->LoopMask &= ~0x2;
3222 }
3223 if (mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[CHAN_Y].f[2] <= 0.0f) {
3224 mach->LoopMask &= ~0x4;
3225 }
3226 if (mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[CHAN_Y].f[3] <= 0.0f) {
3227 mach->LoopMask &= ~0x8;
3228 }
3229 /* TODO: if mach->LoopMask == 0, jump to end of loop */
3230 UPDATE_EXEC_MASK(mach);
3231 /* fall-through (for now) */
3232 case TGSI_OPCODE_BGNLOOP:
3233 /* push LoopMask and ContMasks */
3234 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3235 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3236 assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3237 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3238
3239 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
3240 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
3241 mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1;
3242 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3243 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP;
3244 break;
3245
3246 case TGSI_OPCODE_ENDFOR:
3247 assert(mach->LoopCounterStackTop > 0);
3248 micro_sub(&mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[CHAN_Y],
3249 &mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[CHAN_Y],
3250 &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C]);
3251 /* update LoopMask */
3252 if (mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[CHAN_Y].f[0] <= 0.0f) {
3253 mach->LoopMask &= ~0x1;
3254 }
3255 if (mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[CHAN_Y].f[1] <= 0.0f) {
3256 mach->LoopMask &= ~0x2;
3257 }
3258 if (mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[CHAN_Y].f[2] <= 0.0f) {
3259 mach->LoopMask &= ~0x4;
3260 }
3261 if (mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[CHAN_Y].f[3] <= 0.0f) {
3262 mach->LoopMask &= ~0x8;
3263 }
3264 micro_add(&mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[CHAN_X],
3265 &mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[CHAN_X],
3266 &mach->LoopCounterStack[mach->LoopCounterStackTop - 1].xyzw[CHAN_Z]);
3267 assert(mach->LoopLabelStackTop > 0);
3268 inst = mach->Instructions + mach->LoopLabelStack[mach->LoopLabelStackTop - 1];
3269 STORE(&mach->LoopCounterStack[mach->LoopCounterStackTop].xyzw[CHAN_X], 0, CHAN_X);
3270 /* Restore ContMask, but don't pop */
3271 assert(mach->ContStackTop > 0);
3272 mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
3273 UPDATE_EXEC_MASK(mach);
3274 if (mach->ExecMask) {
3275 /* repeat loop: jump to instruction just past BGNLOOP */
3276 assert(mach->LoopLabelStackTop > 0);
3277 *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
3278 }
3279 else {
3280 /* exit loop: pop LoopMask */
3281 assert(mach->LoopStackTop > 0);
3282 mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
3283 /* pop ContMask */
3284 assert(mach->ContStackTop > 0);
3285 mach->ContMask = mach->ContStack[--mach->ContStackTop];
3286 assert(mach->LoopLabelStackTop > 0);
3287 --mach->LoopLabelStackTop;
3288 assert(mach->LoopCounterStackTop > 0);
3289 --mach->LoopCounterStackTop;
3290
3291 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3292 }
3293 UPDATE_EXEC_MASK(mach);
3294 break;
3295
3296 case TGSI_OPCODE_ENDLOOP:
3297 /* Restore ContMask, but don't pop */
3298 assert(mach->ContStackTop > 0);
3299 mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
3300 UPDATE_EXEC_MASK(mach);
3301 if (mach->ExecMask) {
3302 /* repeat loop: jump to instruction just past BGNLOOP */
3303 assert(mach->LoopLabelStackTop > 0);
3304 *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
3305 }
3306 else {
3307 /* exit loop: pop LoopMask */
3308 assert(mach->LoopStackTop > 0);
3309 mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
3310 /* pop ContMask */
3311 assert(mach->ContStackTop > 0);
3312 mach->ContMask = mach->ContStack[--mach->ContStackTop];
3313 assert(mach->LoopLabelStackTop > 0);
3314 --mach->LoopLabelStackTop;
3315
3316 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3317 }
3318 UPDATE_EXEC_MASK(mach);
3319 break;
3320
3321 case TGSI_OPCODE_BRK:
3322 exec_break(mach);
3323 break;
3324
3325 case TGSI_OPCODE_CONT:
3326 /* turn off cont channels for each enabled exec channel */
3327 mach->ContMask &= ~mach->ExecMask;
3328 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3329 UPDATE_EXEC_MASK(mach);
3330 break;
3331
3332 case TGSI_OPCODE_BGNSUB:
3333 /* no-op */
3334 break;
3335
3336 case TGSI_OPCODE_ENDSUB:
3337 /*
3338 * XXX: This really should be a no-op. We should never reach this opcode.
3339 */
3340
3341 assert(mach->CallStackTop > 0);
3342 mach->CallStackTop--;
3343
3344 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
3345 mach->CondMask = mach->CondStack[mach->CondStackTop];
3346
3347 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
3348 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
3349
3350 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
3351 mach->ContMask = mach->ContStack[mach->ContStackTop];
3352
3353 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
3354 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
3355
3356 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
3357 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
3358
3359 assert(mach->FuncStackTop > 0);
3360 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
3361
3362 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
3363
3364 UPDATE_EXEC_MASK(mach);
3365 break;
3366
3367 case TGSI_OPCODE_NOP:
3368 break;
3369
3370 case TGSI_OPCODE_BREAKC:
3371 FETCH(&r[0], 0, CHAN_X);
3372 /* update CondMask */
3373 if (r[0].u[0] && (mach->ExecMask & 0x1)) {
3374 mach->LoopMask &= ~0x1;
3375 }
3376 if (r[0].u[1] && (mach->ExecMask & 0x2)) {
3377 mach->LoopMask &= ~0x2;
3378 }
3379 if (r[0].u[2] && (mach->ExecMask & 0x4)) {
3380 mach->LoopMask &= ~0x4;
3381 }
3382 if (r[0].u[3] && (mach->ExecMask & 0x8)) {
3383 mach->LoopMask &= ~0x8;
3384 }
3385 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3386 UPDATE_EXEC_MASK(mach);
3387 break;
3388
3389 case TGSI_OPCODE_F2I:
3390 exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
3391 break;
3392
3393 case TGSI_OPCODE_IDIV:
3394 exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3395 break;
3396
3397 case TGSI_OPCODE_IMAX:
3398 exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3399 break;
3400
3401 case TGSI_OPCODE_IMIN:
3402 exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3403 break;
3404
3405 case TGSI_OPCODE_INEG:
3406 exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3407 break;
3408
3409 case TGSI_OPCODE_ISGE:
3410 exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3411 break;
3412
3413 case TGSI_OPCODE_ISHR:
3414 exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3415 break;
3416
3417 case TGSI_OPCODE_ISLT:
3418 exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3419 break;
3420
3421 case TGSI_OPCODE_F2U:
3422 exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
3423 break;
3424
3425 case TGSI_OPCODE_U2F:
3426 exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_UINT);
3427 break;
3428
3429 case TGSI_OPCODE_UADD:
3430 exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3431 break;
3432
3433 case TGSI_OPCODE_UDIV:
3434 exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3435 break;
3436
3437 case TGSI_OPCODE_UMAD:
3438 exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3439 break;
3440
3441 case TGSI_OPCODE_UMAX:
3442 exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3443 break;
3444
3445 case TGSI_OPCODE_UMIN:
3446 exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3447 break;
3448
3449 case TGSI_OPCODE_UMOD:
3450 exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3451 break;
3452
3453 case TGSI_OPCODE_UMUL:
3454 exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3455 break;
3456
3457 case TGSI_OPCODE_USEQ:
3458 exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3459 break;
3460
3461 case TGSI_OPCODE_USGE:
3462 exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3463 break;
3464
3465 case TGSI_OPCODE_USHR:
3466 exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3467 break;
3468
3469 case TGSI_OPCODE_USLT:
3470 exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3471 break;
3472
3473 case TGSI_OPCODE_USNE:
3474 exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3475 break;
3476
3477 case TGSI_OPCODE_SWITCH:
3478 exec_switch(mach, inst);
3479 break;
3480
3481 case TGSI_OPCODE_CASE:
3482 exec_case(mach, inst);
3483 break;
3484
3485 case TGSI_OPCODE_DEFAULT:
3486 exec_default(mach);
3487 break;
3488
3489 case TGSI_OPCODE_ENDSWITCH:
3490 exec_endswitch(mach);
3491 break;
3492
3493 default:
3494 assert( 0 );
3495 }
3496 }
3497
3498
3499 #define DEBUG_EXECUTION 0
3500
3501
3502 /**
3503 * Run TGSI interpreter.
3504 * \return bitmask of "alive" quad components
3505 */
3506 uint
3507 tgsi_exec_machine_run( struct tgsi_exec_machine *mach )
3508 {
3509 uint i;
3510 int pc = 0;
3511
3512 mach->CondMask = 0xf;
3513 mach->LoopMask = 0xf;
3514 mach->ContMask = 0xf;
3515 mach->FuncMask = 0xf;
3516 mach->ExecMask = 0xf;
3517
3518 mach->Switch.mask = 0xf;
3519
3520 assert(mach->CondStackTop == 0);
3521 assert(mach->LoopStackTop == 0);
3522 assert(mach->ContStackTop == 0);
3523 assert(mach->SwitchStackTop == 0);
3524 assert(mach->BreakStackTop == 0);
3525 assert(mach->CallStackTop == 0);
3526
3527 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
3528 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;
3529
3530 if( mach->Processor == TGSI_PROCESSOR_GEOMETRY ) {
3531 mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0;
3532 mach->Primitives[0] = 0;
3533 }
3534
3535 for (i = 0; i < QUAD_SIZE; i++) {
3536 mach->Temps[TEMP_CC_I].xyzw[TEMP_CC_C].u[i] =
3537 (TGSI_EXEC_CC_EQ << TGSI_EXEC_CC_X_SHIFT) |
3538 (TGSI_EXEC_CC_EQ << TGSI_EXEC_CC_Y_SHIFT) |
3539 (TGSI_EXEC_CC_EQ << TGSI_EXEC_CC_Z_SHIFT) |
3540 (TGSI_EXEC_CC_EQ << TGSI_EXEC_CC_W_SHIFT);
3541 }
3542
3543 /* execute declarations (interpolants) */
3544 for (i = 0; i < mach->NumDeclarations; i++) {
3545 exec_declaration( mach, mach->Declarations+i );
3546 }
3547
3548 {
3549 #if DEBUG_EXECUTION
3550 struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS];
3551 struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS];
3552 uint inst = 1;
3553
3554 memcpy(temps, mach->Temps, sizeof(temps));
3555 memcpy(outputs, mach->Outputs, sizeof(outputs));
3556 #endif
3557
3558 /* execute instructions, until pc is set to -1 */
3559 while (pc != -1) {
3560
3561 #if DEBUG_EXECUTION
3562 uint i;
3563
3564 tgsi_dump_instruction(&mach->Instructions[pc], inst++);
3565 #endif
3566
3567 assert(pc < (int) mach->NumInstructions);
3568 exec_instruction(mach, mach->Instructions + pc, &pc);
3569
3570 #if DEBUG_EXECUTION
3571 for (i = 0; i < TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS; i++) {
3572 if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) {
3573 uint j;
3574
3575 memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i]));
3576 debug_printf("TEMP[%2u] = ", i);
3577 for (j = 0; j < 4; j++) {
3578 if (j > 0) {
3579 debug_printf(" ");
3580 }
3581 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
3582 temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j],
3583 temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j],
3584 temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j],
3585 temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]);
3586 }
3587 }
3588 }
3589 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
3590 if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) {
3591 uint j;
3592
3593 memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]));
3594 debug_printf("OUT[%2u] = ", i);
3595 for (j = 0; j < 4; j++) {
3596 if (j > 0) {
3597 debug_printf(" ");
3598 }
3599 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
3600 outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j],
3601 outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j],
3602 outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j],
3603 outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]);
3604 }
3605 }
3606 }
3607 #endif
3608 }
3609 }
3610
3611 #if 0
3612 /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
3613 if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
3614 /*
3615 * Scale back depth component.
3616 */
3617 for (i = 0; i < 4; i++)
3618 mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
3619 }
3620 #endif
3621
3622 assert(mach->CondStackTop == 0);
3623 assert(mach->LoopStackTop == 0);
3624 assert(mach->ContStackTop == 0);
3625 assert(mach->SwitchStackTop == 0);
3626 assert(mach->BreakStackTop == 0);
3627 assert(mach->CallStackTop == 0);
3628
3629 return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3630 }