tgsi: add TXQ support. (v2)
[mesa.git] / src / gallium / auxiliary / tgsi / tgsi_exec.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2009-2010 VMware, Inc. All rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * TGSI interpreter/executor.
31 *
32 * Flow control information:
33 *
34 * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
35 * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
36 * care since a condition may be true for some quad components but false
37 * for other components.
38 *
39 * We basically execute all statements (even if they're in the part of
40 * an IF/ELSE clause that's "not taken") and use a special mask to
41 * control writing to destination registers. This is the ExecMask.
42 * See store_dest().
43 *
44 * The ExecMask is computed from three other masks (CondMask, LoopMask and
45 * ContMask) which are controlled by the flow control instructions (namely:
46 * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
47 *
48 *
49 * Authors:
50 * Michal Krol
51 * Brian Paul
52 */
53
54 #include "pipe/p_compiler.h"
55 #include "pipe/p_state.h"
56 #include "pipe/p_shader_tokens.h"
57 #include "tgsi/tgsi_dump.h"
58 #include "tgsi/tgsi_parse.h"
59 #include "tgsi/tgsi_util.h"
60 #include "tgsi_exec.h"
61 #include "util/u_memory.h"
62 #include "util/u_math.h"
63
64
65 #define FAST_MATH 1
66
67 #define TILE_TOP_LEFT 0
68 #define TILE_TOP_RIGHT 1
69 #define TILE_BOTTOM_LEFT 2
70 #define TILE_BOTTOM_RIGHT 3
71
72 static void
73 micro_abs(union tgsi_exec_channel *dst,
74 const union tgsi_exec_channel *src)
75 {
76 dst->f[0] = fabsf(src->f[0]);
77 dst->f[1] = fabsf(src->f[1]);
78 dst->f[2] = fabsf(src->f[2]);
79 dst->f[3] = fabsf(src->f[3]);
80 }
81
82 static void
83 micro_arl(union tgsi_exec_channel *dst,
84 const union tgsi_exec_channel *src)
85 {
86 dst->i[0] = (int)floorf(src->f[0]);
87 dst->i[1] = (int)floorf(src->f[1]);
88 dst->i[2] = (int)floorf(src->f[2]);
89 dst->i[3] = (int)floorf(src->f[3]);
90 }
91
92 static void
93 micro_arr(union tgsi_exec_channel *dst,
94 const union tgsi_exec_channel *src)
95 {
96 dst->i[0] = (int)floorf(src->f[0] + 0.5f);
97 dst->i[1] = (int)floorf(src->f[1] + 0.5f);
98 dst->i[2] = (int)floorf(src->f[2] + 0.5f);
99 dst->i[3] = (int)floorf(src->f[3] + 0.5f);
100 }
101
102 static void
103 micro_ceil(union tgsi_exec_channel *dst,
104 const union tgsi_exec_channel *src)
105 {
106 dst->f[0] = ceilf(src->f[0]);
107 dst->f[1] = ceilf(src->f[1]);
108 dst->f[2] = ceilf(src->f[2]);
109 dst->f[3] = ceilf(src->f[3]);
110 }
111
112 static void
113 micro_clamp(union tgsi_exec_channel *dst,
114 const union tgsi_exec_channel *src0,
115 const union tgsi_exec_channel *src1,
116 const union tgsi_exec_channel *src2)
117 {
118 dst->f[0] = src0->f[0] < src1->f[0] ? src1->f[0] : src0->f[0] > src2->f[0] ? src2->f[0] : src0->f[0];
119 dst->f[1] = src0->f[1] < src1->f[1] ? src1->f[1] : src0->f[1] > src2->f[1] ? src2->f[1] : src0->f[1];
120 dst->f[2] = src0->f[2] < src1->f[2] ? src1->f[2] : src0->f[2] > src2->f[2] ? src2->f[2] : src0->f[2];
121 dst->f[3] = src0->f[3] < src1->f[3] ? src1->f[3] : src0->f[3] > src2->f[3] ? src2->f[3] : src0->f[3];
122 }
123
124 static void
125 micro_cmp(union tgsi_exec_channel *dst,
126 const union tgsi_exec_channel *src0,
127 const union tgsi_exec_channel *src1,
128 const union tgsi_exec_channel *src2)
129 {
130 dst->f[0] = src0->f[0] < 0.0f ? src1->f[0] : src2->f[0];
131 dst->f[1] = src0->f[1] < 0.0f ? src1->f[1] : src2->f[1];
132 dst->f[2] = src0->f[2] < 0.0f ? src1->f[2] : src2->f[2];
133 dst->f[3] = src0->f[3] < 0.0f ? src1->f[3] : src2->f[3];
134 }
135
136 static void
137 micro_cnd(union tgsi_exec_channel *dst,
138 const union tgsi_exec_channel *src0,
139 const union tgsi_exec_channel *src1,
140 const union tgsi_exec_channel *src2)
141 {
142 dst->f[0] = src2->f[0] > 0.5f ? src0->f[0] : src1->f[0];
143 dst->f[1] = src2->f[1] > 0.5f ? src0->f[1] : src1->f[1];
144 dst->f[2] = src2->f[2] > 0.5f ? src0->f[2] : src1->f[2];
145 dst->f[3] = src2->f[3] > 0.5f ? src0->f[3] : src1->f[3];
146 }
147
148 static void
149 micro_cos(union tgsi_exec_channel *dst,
150 const union tgsi_exec_channel *src)
151 {
152 dst->f[0] = cosf(src->f[0]);
153 dst->f[1] = cosf(src->f[1]);
154 dst->f[2] = cosf(src->f[2]);
155 dst->f[3] = cosf(src->f[3]);
156 }
157
158 static void
159 micro_ddx(union tgsi_exec_channel *dst,
160 const union tgsi_exec_channel *src)
161 {
162 dst->f[0] =
163 dst->f[1] =
164 dst->f[2] =
165 dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
166 }
167
168 static void
169 micro_ddy(union tgsi_exec_channel *dst,
170 const union tgsi_exec_channel *src)
171 {
172 dst->f[0] =
173 dst->f[1] =
174 dst->f[2] =
175 dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
176 }
177
178 static void
179 micro_exp2(union tgsi_exec_channel *dst,
180 const union tgsi_exec_channel *src)
181 {
182 #if FAST_MATH
183 dst->f[0] = util_fast_exp2(src->f[0]);
184 dst->f[1] = util_fast_exp2(src->f[1]);
185 dst->f[2] = util_fast_exp2(src->f[2]);
186 dst->f[3] = util_fast_exp2(src->f[3]);
187 #else
188 #if DEBUG
189 /* Inf is okay for this instruction, so clamp it to silence assertions. */
190 uint i;
191 union tgsi_exec_channel clamped;
192
193 for (i = 0; i < 4; i++) {
194 if (src->f[i] > 127.99999f) {
195 clamped.f[i] = 127.99999f;
196 } else if (src->f[i] < -126.99999f) {
197 clamped.f[i] = -126.99999f;
198 } else {
199 clamped.f[i] = src->f[i];
200 }
201 }
202 src = &clamped;
203 #endif /* DEBUG */
204
205 dst->f[0] = powf(2.0f, src->f[0]);
206 dst->f[1] = powf(2.0f, src->f[1]);
207 dst->f[2] = powf(2.0f, src->f[2]);
208 dst->f[3] = powf(2.0f, src->f[3]);
209 #endif /* FAST_MATH */
210 }
211
212 static void
213 micro_flr(union tgsi_exec_channel *dst,
214 const union tgsi_exec_channel *src)
215 {
216 dst->f[0] = floorf(src->f[0]);
217 dst->f[1] = floorf(src->f[1]);
218 dst->f[2] = floorf(src->f[2]);
219 dst->f[3] = floorf(src->f[3]);
220 }
221
222 static void
223 micro_frc(union tgsi_exec_channel *dst,
224 const union tgsi_exec_channel *src)
225 {
226 dst->f[0] = src->f[0] - floorf(src->f[0]);
227 dst->f[1] = src->f[1] - floorf(src->f[1]);
228 dst->f[2] = src->f[2] - floorf(src->f[2]);
229 dst->f[3] = src->f[3] - floorf(src->f[3]);
230 }
231
232 static void
233 micro_iabs(union tgsi_exec_channel *dst,
234 const union tgsi_exec_channel *src)
235 {
236 dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0];
237 dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1];
238 dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2];
239 dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3];
240 }
241
242 static void
243 micro_ineg(union tgsi_exec_channel *dst,
244 const union tgsi_exec_channel *src)
245 {
246 dst->i[0] = -src->i[0];
247 dst->i[1] = -src->i[1];
248 dst->i[2] = -src->i[2];
249 dst->i[3] = -src->i[3];
250 }
251
252 static void
253 micro_lg2(union tgsi_exec_channel *dst,
254 const union tgsi_exec_channel *src)
255 {
256 #if FAST_MATH
257 dst->f[0] = util_fast_log2(src->f[0]);
258 dst->f[1] = util_fast_log2(src->f[1]);
259 dst->f[2] = util_fast_log2(src->f[2]);
260 dst->f[3] = util_fast_log2(src->f[3]);
261 #else
262 dst->f[0] = logf(src->f[0]) * 1.442695f;
263 dst->f[1] = logf(src->f[1]) * 1.442695f;
264 dst->f[2] = logf(src->f[2]) * 1.442695f;
265 dst->f[3] = logf(src->f[3]) * 1.442695f;
266 #endif
267 }
268
269 static void
270 micro_lrp(union tgsi_exec_channel *dst,
271 const union tgsi_exec_channel *src0,
272 const union tgsi_exec_channel *src1,
273 const union tgsi_exec_channel *src2)
274 {
275 dst->f[0] = src0->f[0] * (src1->f[0] - src2->f[0]) + src2->f[0];
276 dst->f[1] = src0->f[1] * (src1->f[1] - src2->f[1]) + src2->f[1];
277 dst->f[2] = src0->f[2] * (src1->f[2] - src2->f[2]) + src2->f[2];
278 dst->f[3] = src0->f[3] * (src1->f[3] - src2->f[3]) + src2->f[3];
279 }
280
281 static void
282 micro_mad(union tgsi_exec_channel *dst,
283 const union tgsi_exec_channel *src0,
284 const union tgsi_exec_channel *src1,
285 const union tgsi_exec_channel *src2)
286 {
287 dst->f[0] = src0->f[0] * src1->f[0] + src2->f[0];
288 dst->f[1] = src0->f[1] * src1->f[1] + src2->f[1];
289 dst->f[2] = src0->f[2] * src1->f[2] + src2->f[2];
290 dst->f[3] = src0->f[3] * src1->f[3] + src2->f[3];
291 }
292
293 static void
294 micro_mov(union tgsi_exec_channel *dst,
295 const union tgsi_exec_channel *src)
296 {
297 dst->u[0] = src->u[0];
298 dst->u[1] = src->u[1];
299 dst->u[2] = src->u[2];
300 dst->u[3] = src->u[3];
301 }
302
303 static void
304 micro_rcp(union tgsi_exec_channel *dst,
305 const union tgsi_exec_channel *src)
306 {
307 #if 0 /* for debugging */
308 assert(src->f[0] != 0.0f);
309 assert(src->f[1] != 0.0f);
310 assert(src->f[2] != 0.0f);
311 assert(src->f[3] != 0.0f);
312 #endif
313 dst->f[0] = 1.0f / src->f[0];
314 dst->f[1] = 1.0f / src->f[1];
315 dst->f[2] = 1.0f / src->f[2];
316 dst->f[3] = 1.0f / src->f[3];
317 }
318
319 static void
320 micro_rnd(union tgsi_exec_channel *dst,
321 const union tgsi_exec_channel *src)
322 {
323 dst->f[0] = floorf(src->f[0] + 0.5f);
324 dst->f[1] = floorf(src->f[1] + 0.5f);
325 dst->f[2] = floorf(src->f[2] + 0.5f);
326 dst->f[3] = floorf(src->f[3] + 0.5f);
327 }
328
329 static void
330 micro_rsq(union tgsi_exec_channel *dst,
331 const union tgsi_exec_channel *src)
332 {
333 #if 0 /* for debugging */
334 assert(src->f[0] != 0.0f);
335 assert(src->f[1] != 0.0f);
336 assert(src->f[2] != 0.0f);
337 assert(src->f[3] != 0.0f);
338 #endif
339 dst->f[0] = 1.0f / sqrtf(fabsf(src->f[0]));
340 dst->f[1] = 1.0f / sqrtf(fabsf(src->f[1]));
341 dst->f[2] = 1.0f / sqrtf(fabsf(src->f[2]));
342 dst->f[3] = 1.0f / sqrtf(fabsf(src->f[3]));
343 }
344
345 static void
346 micro_seq(union tgsi_exec_channel *dst,
347 const union tgsi_exec_channel *src0,
348 const union tgsi_exec_channel *src1)
349 {
350 dst->f[0] = src0->f[0] == src1->f[0] ? 1.0f : 0.0f;
351 dst->f[1] = src0->f[1] == src1->f[1] ? 1.0f : 0.0f;
352 dst->f[2] = src0->f[2] == src1->f[2] ? 1.0f : 0.0f;
353 dst->f[3] = src0->f[3] == src1->f[3] ? 1.0f : 0.0f;
354 }
355
356 static void
357 micro_sge(union tgsi_exec_channel *dst,
358 const union tgsi_exec_channel *src0,
359 const union tgsi_exec_channel *src1)
360 {
361 dst->f[0] = src0->f[0] >= src1->f[0] ? 1.0f : 0.0f;
362 dst->f[1] = src0->f[1] >= src1->f[1] ? 1.0f : 0.0f;
363 dst->f[2] = src0->f[2] >= src1->f[2] ? 1.0f : 0.0f;
364 dst->f[3] = src0->f[3] >= src1->f[3] ? 1.0f : 0.0f;
365 }
366
367 static void
368 micro_sgn(union tgsi_exec_channel *dst,
369 const union tgsi_exec_channel *src)
370 {
371 dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f;
372 dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f;
373 dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f;
374 dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f;
375 }
376
377 static void
378 micro_sgt(union tgsi_exec_channel *dst,
379 const union tgsi_exec_channel *src0,
380 const union tgsi_exec_channel *src1)
381 {
382 dst->f[0] = src0->f[0] > src1->f[0] ? 1.0f : 0.0f;
383 dst->f[1] = src0->f[1] > src1->f[1] ? 1.0f : 0.0f;
384 dst->f[2] = src0->f[2] > src1->f[2] ? 1.0f : 0.0f;
385 dst->f[3] = src0->f[3] > src1->f[3] ? 1.0f : 0.0f;
386 }
387
388 static void
389 micro_sin(union tgsi_exec_channel *dst,
390 const union tgsi_exec_channel *src)
391 {
392 dst->f[0] = sinf(src->f[0]);
393 dst->f[1] = sinf(src->f[1]);
394 dst->f[2] = sinf(src->f[2]);
395 dst->f[3] = sinf(src->f[3]);
396 }
397
398 static void
399 micro_sle(union tgsi_exec_channel *dst,
400 const union tgsi_exec_channel *src0,
401 const union tgsi_exec_channel *src1)
402 {
403 dst->f[0] = src0->f[0] <= src1->f[0] ? 1.0f : 0.0f;
404 dst->f[1] = src0->f[1] <= src1->f[1] ? 1.0f : 0.0f;
405 dst->f[2] = src0->f[2] <= src1->f[2] ? 1.0f : 0.0f;
406 dst->f[3] = src0->f[3] <= src1->f[3] ? 1.0f : 0.0f;
407 }
408
409 static void
410 micro_slt(union tgsi_exec_channel *dst,
411 const union tgsi_exec_channel *src0,
412 const union tgsi_exec_channel *src1)
413 {
414 dst->f[0] = src0->f[0] < src1->f[0] ? 1.0f : 0.0f;
415 dst->f[1] = src0->f[1] < src1->f[1] ? 1.0f : 0.0f;
416 dst->f[2] = src0->f[2] < src1->f[2] ? 1.0f : 0.0f;
417 dst->f[3] = src0->f[3] < src1->f[3] ? 1.0f : 0.0f;
418 }
419
420 static void
421 micro_sne(union tgsi_exec_channel *dst,
422 const union tgsi_exec_channel *src0,
423 const union tgsi_exec_channel *src1)
424 {
425 dst->f[0] = src0->f[0] != src1->f[0] ? 1.0f : 0.0f;
426 dst->f[1] = src0->f[1] != src1->f[1] ? 1.0f : 0.0f;
427 dst->f[2] = src0->f[2] != src1->f[2] ? 1.0f : 0.0f;
428 dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f;
429 }
430
431 static void
432 micro_sfl(union tgsi_exec_channel *dst)
433 {
434 dst->f[0] = 0.0f;
435 dst->f[1] = 0.0f;
436 dst->f[2] = 0.0f;
437 dst->f[3] = 0.0f;
438 }
439
440 static void
441 micro_str(union tgsi_exec_channel *dst)
442 {
443 dst->f[0] = 1.0f;
444 dst->f[1] = 1.0f;
445 dst->f[2] = 1.0f;
446 dst->f[3] = 1.0f;
447 }
448
449 static void
450 micro_trunc(union tgsi_exec_channel *dst,
451 const union tgsi_exec_channel *src)
452 {
453 dst->f[0] = (float)(int)src->f[0];
454 dst->f[1] = (float)(int)src->f[1];
455 dst->f[2] = (float)(int)src->f[2];
456 dst->f[3] = (float)(int)src->f[3];
457 }
458
459
460 #define CHAN_X 0
461 #define CHAN_Y 1
462 #define CHAN_Z 2
463 #define CHAN_W 3
464
465 enum tgsi_exec_datatype {
466 TGSI_EXEC_DATA_FLOAT,
467 TGSI_EXEC_DATA_INT,
468 TGSI_EXEC_DATA_UINT
469 };
470
471 /*
472 * Shorthand locations of various utility registers (_I = Index, _C = Channel)
473 */
474 #define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I
475 #define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C
476 #define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I
477 #define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C
478 #define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I
479 #define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C
480
481
482 /** The execution mask depends on the conditional mask and the loop mask */
483 #define UPDATE_EXEC_MASK(MACH) \
484 MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
485
486
487 static const union tgsi_exec_channel ZeroVec =
488 { { 0.0, 0.0, 0.0, 0.0 } };
489
490 static const union tgsi_exec_channel OneVec = {
491 {1.0f, 1.0f, 1.0f, 1.0f}
492 };
493
494 static const union tgsi_exec_channel P128Vec = {
495 {128.0f, 128.0f, 128.0f, 128.0f}
496 };
497
498 static const union tgsi_exec_channel M128Vec = {
499 {-128.0f, -128.0f, -128.0f, -128.0f}
500 };
501
502
503 /**
504 * Assert that none of the float values in 'chan' are infinite or NaN.
505 * NaN and Inf may occur normally during program execution and should
506 * not lead to crashes, etc. But when debugging, it's helpful to catch
507 * them.
508 */
509 static INLINE void
510 check_inf_or_nan(const union tgsi_exec_channel *chan)
511 {
512 assert(!util_is_inf_or_nan((chan)->f[0]));
513 assert(!util_is_inf_or_nan((chan)->f[1]));
514 assert(!util_is_inf_or_nan((chan)->f[2]));
515 assert(!util_is_inf_or_nan((chan)->f[3]));
516 }
517
518
519 #ifdef DEBUG
520 static void
521 print_chan(const char *msg, const union tgsi_exec_channel *chan)
522 {
523 debug_printf("%s = {%f, %f, %f, %f}\n",
524 msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]);
525 }
526 #endif
527
528
529 #ifdef DEBUG
530 static void
531 print_temp(const struct tgsi_exec_machine *mach, uint index)
532 {
533 const struct tgsi_exec_vector *tmp = &mach->Temps[index];
534 int i;
535 debug_printf("Temp[%u] =\n", index);
536 for (i = 0; i < 4; i++) {
537 debug_printf(" %c: { %f, %f, %f, %f }\n",
538 "XYZW"[i],
539 tmp->xyzw[i].f[0],
540 tmp->xyzw[i].f[1],
541 tmp->xyzw[i].f[2],
542 tmp->xyzw[i].f[3]);
543 }
544 }
545 #endif
546
547
548 void
549 tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach,
550 unsigned num_bufs,
551 const void **bufs,
552 const unsigned *buf_sizes)
553 {
554 unsigned i;
555
556 for (i = 0; i < num_bufs; i++) {
557 mach->Consts[i] = bufs[i];
558 mach->ConstsSize[i] = buf_sizes[i];
559 }
560 }
561
562
563 /**
564 * Check if there's a potential src/dst register data dependency when
565 * using SOA execution.
566 * Example:
567 * MOV T, T.yxwz;
568 * This would expand into:
569 * MOV t0, t1;
570 * MOV t1, t0;
571 * MOV t2, t3;
572 * MOV t3, t2;
573 * The second instruction will have the wrong value for t0 if executed as-is.
574 */
575 boolean
576 tgsi_check_soa_dependencies(const struct tgsi_full_instruction *inst)
577 {
578 uint i, chan;
579
580 uint writemask = inst->Dst[0].Register.WriteMask;
581 if (writemask == TGSI_WRITEMASK_X ||
582 writemask == TGSI_WRITEMASK_Y ||
583 writemask == TGSI_WRITEMASK_Z ||
584 writemask == TGSI_WRITEMASK_W ||
585 writemask == TGSI_WRITEMASK_NONE) {
586 /* no chance of data dependency */
587 return FALSE;
588 }
589
590 /* loop over src regs */
591 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
592 if ((inst->Src[i].Register.File ==
593 inst->Dst[0].Register.File) &&
594 ((inst->Src[i].Register.Index ==
595 inst->Dst[0].Register.Index) ||
596 inst->Src[i].Register.Indirect ||
597 inst->Dst[0].Register.Indirect)) {
598 /* loop over dest channels */
599 uint channelsWritten = 0x0;
600 for (chan = 0; chan < NUM_CHANNELS; chan++) {
601 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
602 /* check if we're reading a channel that's been written */
603 uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan);
604 if (channelsWritten & (1 << swizzle)) {
605 return TRUE;
606 }
607
608 channelsWritten |= (1 << chan);
609 }
610 }
611 }
612 }
613 return FALSE;
614 }
615
616
617 /**
618 * Initialize machine state by expanding tokens to full instructions,
619 * allocating temporary storage, setting up constants, etc.
620 * After this, we can call tgsi_exec_machine_run() many times.
621 */
622 void
623 tgsi_exec_machine_bind_shader(
624 struct tgsi_exec_machine *mach,
625 const struct tgsi_token *tokens,
626 uint numSamplers,
627 struct tgsi_sampler **samplers)
628 {
629 uint k;
630 struct tgsi_parse_context parse;
631 struct tgsi_full_instruction *instructions;
632 struct tgsi_full_declaration *declarations;
633 uint maxInstructions = 10, numInstructions = 0;
634 uint maxDeclarations = 10, numDeclarations = 0;
635
636 #if 0
637 tgsi_dump(tokens, 0);
638 #endif
639
640 util_init_math();
641
642 if (numSamplers) {
643 assert(samplers);
644 }
645
646 mach->Tokens = tokens;
647 mach->Samplers = samplers;
648
649 if (!tokens) {
650 /* unbind and free all */
651 if (mach->Declarations) {
652 FREE( mach->Declarations );
653 }
654 mach->Declarations = NULL;
655 mach->NumDeclarations = 0;
656
657 if (mach->Instructions) {
658 FREE( mach->Instructions );
659 }
660 mach->Instructions = NULL;
661 mach->NumInstructions = 0;
662
663 return;
664 }
665
666 k = tgsi_parse_init (&parse, mach->Tokens);
667 if (k != TGSI_PARSE_OK) {
668 debug_printf( "Problem parsing!\n" );
669 return;
670 }
671
672 mach->Processor = parse.FullHeader.Processor.Processor;
673 mach->ImmLimit = 0;
674
675 if (mach->Processor == TGSI_PROCESSOR_GEOMETRY &&
676 !mach->UsedGeometryShader) {
677 struct tgsi_exec_vector *inputs =
678 align_malloc(sizeof(struct tgsi_exec_vector) *
679 TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS,
680 16);
681 struct tgsi_exec_vector *outputs =
682 align_malloc(sizeof(struct tgsi_exec_vector) *
683 TGSI_MAX_TOTAL_VERTICES, 16);
684
685 if (!inputs)
686 return;
687 if (!outputs) {
688 align_free(inputs);
689 return;
690 }
691
692 align_free(mach->Inputs);
693 align_free(mach->Outputs);
694
695 mach->Inputs = inputs;
696 mach->Outputs = outputs;
697 mach->UsedGeometryShader = TRUE;
698 }
699
700 declarations = (struct tgsi_full_declaration *)
701 MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) );
702
703 if (!declarations) {
704 return;
705 }
706
707 instructions = (struct tgsi_full_instruction *)
708 MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) );
709
710 if (!instructions) {
711 FREE( declarations );
712 return;
713 }
714
715 while( !tgsi_parse_end_of_tokens( &parse ) ) {
716 uint i;
717
718 tgsi_parse_token( &parse );
719 switch( parse.FullToken.Token.Type ) {
720 case TGSI_TOKEN_TYPE_DECLARATION:
721 /* save expanded declaration */
722 if (numDeclarations == maxDeclarations) {
723 declarations = REALLOC(declarations,
724 maxDeclarations
725 * sizeof(struct tgsi_full_declaration),
726 (maxDeclarations + 10)
727 * sizeof(struct tgsi_full_declaration));
728 maxDeclarations += 10;
729 }
730 if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT) {
731 unsigned reg;
732 for (reg = parse.FullToken.FullDeclaration.Range.First;
733 reg <= parse.FullToken.FullDeclaration.Range.Last;
734 ++reg) {
735 ++mach->NumOutputs;
736 }
737 }
738 if (parse.FullToken.FullDeclaration.Declaration.File ==
739 TGSI_FILE_IMMEDIATE_ARRAY) {
740 unsigned reg;
741 struct tgsi_full_declaration *decl =
742 &parse.FullToken.FullDeclaration;
743 debug_assert(decl->Range.Last < TGSI_EXEC_NUM_IMMEDIATES);
744 for (reg = decl->Range.First; reg <= decl->Range.Last; ++reg) {
745 for( i = 0; i < 4; i++ ) {
746 int idx = reg * 4 + i;
747 mach->ImmArray[reg][i] = decl->ImmediateData.u[idx].Float;
748 }
749 }
750 }
751 memcpy(declarations + numDeclarations,
752 &parse.FullToken.FullDeclaration,
753 sizeof(declarations[0]));
754 numDeclarations++;
755 break;
756
757 case TGSI_TOKEN_TYPE_IMMEDIATE:
758 {
759 uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
760 assert( size <= 4 );
761 assert( mach->ImmLimit + 1 <= TGSI_EXEC_NUM_IMMEDIATES );
762
763 for( i = 0; i < size; i++ ) {
764 mach->Imms[mach->ImmLimit][i] =
765 parse.FullToken.FullImmediate.u[i].Float;
766 }
767 mach->ImmLimit += 1;
768 }
769 break;
770
771 case TGSI_TOKEN_TYPE_INSTRUCTION:
772
773 /* save expanded instruction */
774 if (numInstructions == maxInstructions) {
775 instructions = REALLOC(instructions,
776 maxInstructions
777 * sizeof(struct tgsi_full_instruction),
778 (maxInstructions + 10)
779 * sizeof(struct tgsi_full_instruction));
780 maxInstructions += 10;
781 }
782
783 memcpy(instructions + numInstructions,
784 &parse.FullToken.FullInstruction,
785 sizeof(instructions[0]));
786
787 numInstructions++;
788 break;
789
790 case TGSI_TOKEN_TYPE_PROPERTY:
791 break;
792
793 default:
794 assert( 0 );
795 }
796 }
797 tgsi_parse_free (&parse);
798
799 if (mach->Declarations) {
800 FREE( mach->Declarations );
801 }
802 mach->Declarations = declarations;
803 mach->NumDeclarations = numDeclarations;
804
805 if (mach->Instructions) {
806 FREE( mach->Instructions );
807 }
808 mach->Instructions = instructions;
809 mach->NumInstructions = numInstructions;
810 }
811
812
813 struct tgsi_exec_machine *
814 tgsi_exec_machine_create( void )
815 {
816 struct tgsi_exec_machine *mach;
817 uint i;
818
819 mach = align_malloc( sizeof *mach, 16 );
820 if (!mach)
821 goto fail;
822
823 memset(mach, 0, sizeof(*mach));
824
825 mach->Addrs = &mach->Temps[TGSI_EXEC_TEMP_ADDR];
826 mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES;
827 mach->Predicates = &mach->Temps[TGSI_EXEC_TEMP_P0];
828
829 mach->Inputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_ATTRIBS, 16);
830 mach->Outputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_ATTRIBS, 16);
831 if (!mach->Inputs || !mach->Outputs)
832 goto fail;
833
834 /* Setup constants needed by the SSE2 executor. */
835 for( i = 0; i < 4; i++ ) {
836 mach->Temps[TGSI_EXEC_TEMP_00000000_I].xyzw[TGSI_EXEC_TEMP_00000000_C].u[i] = 0x00000000;
837 mach->Temps[TGSI_EXEC_TEMP_7FFFFFFF_I].xyzw[TGSI_EXEC_TEMP_7FFFFFFF_C].u[i] = 0x7FFFFFFF;
838 mach->Temps[TGSI_EXEC_TEMP_80000000_I].xyzw[TGSI_EXEC_TEMP_80000000_C].u[i] = 0x80000000;
839 mach->Temps[TGSI_EXEC_TEMP_FFFFFFFF_I].xyzw[TGSI_EXEC_TEMP_FFFFFFFF_C].u[i] = 0xFFFFFFFF; /* not used */
840 mach->Temps[TGSI_EXEC_TEMP_ONE_I].xyzw[TGSI_EXEC_TEMP_ONE_C].f[i] = 1.0f;
841 mach->Temps[TGSI_EXEC_TEMP_TWO_I].xyzw[TGSI_EXEC_TEMP_TWO_C].f[i] = 2.0f; /* not used */
842 mach->Temps[TGSI_EXEC_TEMP_128_I].xyzw[TGSI_EXEC_TEMP_128_C].f[i] = 128.0f;
843 mach->Temps[TGSI_EXEC_TEMP_MINUS_128_I].xyzw[TGSI_EXEC_TEMP_MINUS_128_C].f[i] = -128.0f;
844 mach->Temps[TGSI_EXEC_TEMP_THREE_I].xyzw[TGSI_EXEC_TEMP_THREE_C].f[i] = 3.0f;
845 mach->Temps[TGSI_EXEC_TEMP_HALF_I].xyzw[TGSI_EXEC_TEMP_HALF_C].f[i] = 0.5f;
846 }
847
848 #ifdef DEBUG
849 /* silence warnings */
850 (void) print_chan;
851 (void) print_temp;
852 #endif
853
854 return mach;
855
856 fail:
857 if (mach) {
858 align_free(mach->Inputs);
859 align_free(mach->Outputs);
860 align_free(mach);
861 }
862 return NULL;
863 }
864
865
866 void
867 tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach)
868 {
869 if (mach) {
870 if (mach->Instructions)
871 FREE(mach->Instructions);
872 if (mach->Declarations)
873 FREE(mach->Declarations);
874
875 align_free(mach->Inputs);
876 align_free(mach->Outputs);
877
878 align_free(mach);
879 }
880 }
881
882 static void
883 micro_add(union tgsi_exec_channel *dst,
884 const union tgsi_exec_channel *src0,
885 const union tgsi_exec_channel *src1)
886 {
887 dst->f[0] = src0->f[0] + src1->f[0];
888 dst->f[1] = src0->f[1] + src1->f[1];
889 dst->f[2] = src0->f[2] + src1->f[2];
890 dst->f[3] = src0->f[3] + src1->f[3];
891 }
892
893 static void
894 micro_div(
895 union tgsi_exec_channel *dst,
896 const union tgsi_exec_channel *src0,
897 const union tgsi_exec_channel *src1 )
898 {
899 if (src1->f[0] != 0) {
900 dst->f[0] = src0->f[0] / src1->f[0];
901 }
902 if (src1->f[1] != 0) {
903 dst->f[1] = src0->f[1] / src1->f[1];
904 }
905 if (src1->f[2] != 0) {
906 dst->f[2] = src0->f[2] / src1->f[2];
907 }
908 if (src1->f[3] != 0) {
909 dst->f[3] = src0->f[3] / src1->f[3];
910 }
911 }
912
913 static void
914 micro_rcc(union tgsi_exec_channel *dst,
915 const union tgsi_exec_channel *src)
916 {
917 uint i;
918
919 for (i = 0; i < 4; i++) {
920 float recip = 1.0f / src->f[i];
921
922 if (recip > 0.0f) {
923 if (recip > 1.884467e+019f) {
924 dst->f[i] = 1.884467e+019f;
925 }
926 else if (recip < 5.42101e-020f) {
927 dst->f[i] = 5.42101e-020f;
928 }
929 else {
930 dst->f[i] = recip;
931 }
932 }
933 else {
934 if (recip < -1.884467e+019f) {
935 dst->f[i] = -1.884467e+019f;
936 }
937 else if (recip > -5.42101e-020f) {
938 dst->f[i] = -5.42101e-020f;
939 }
940 else {
941 dst->f[i] = recip;
942 }
943 }
944 }
945 }
946
947 static void
948 micro_lt(
949 union tgsi_exec_channel *dst,
950 const union tgsi_exec_channel *src0,
951 const union tgsi_exec_channel *src1,
952 const union tgsi_exec_channel *src2,
953 const union tgsi_exec_channel *src3 )
954 {
955 dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
956 dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
957 dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
958 dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
959 }
960
961 static void
962 micro_max(union tgsi_exec_channel *dst,
963 const union tgsi_exec_channel *src0,
964 const union tgsi_exec_channel *src1)
965 {
966 dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0];
967 dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1];
968 dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2];
969 dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3];
970 }
971
972 static void
973 micro_min(union tgsi_exec_channel *dst,
974 const union tgsi_exec_channel *src0,
975 const union tgsi_exec_channel *src1)
976 {
977 dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0];
978 dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1];
979 dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2];
980 dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3];
981 }
982
983 static void
984 micro_mul(union tgsi_exec_channel *dst,
985 const union tgsi_exec_channel *src0,
986 const union tgsi_exec_channel *src1)
987 {
988 dst->f[0] = src0->f[0] * src1->f[0];
989 dst->f[1] = src0->f[1] * src1->f[1];
990 dst->f[2] = src0->f[2] * src1->f[2];
991 dst->f[3] = src0->f[3] * src1->f[3];
992 }
993
994 static void
995 micro_neg(
996 union tgsi_exec_channel *dst,
997 const union tgsi_exec_channel *src )
998 {
999 dst->f[0] = -src->f[0];
1000 dst->f[1] = -src->f[1];
1001 dst->f[2] = -src->f[2];
1002 dst->f[3] = -src->f[3];
1003 }
1004
1005 static void
1006 micro_pow(
1007 union tgsi_exec_channel *dst,
1008 const union tgsi_exec_channel *src0,
1009 const union tgsi_exec_channel *src1 )
1010 {
1011 #if FAST_MATH
1012 dst->f[0] = util_fast_pow( src0->f[0], src1->f[0] );
1013 dst->f[1] = util_fast_pow( src0->f[1], src1->f[1] );
1014 dst->f[2] = util_fast_pow( src0->f[2], src1->f[2] );
1015 dst->f[3] = util_fast_pow( src0->f[3], src1->f[3] );
1016 #else
1017 dst->f[0] = powf( src0->f[0], src1->f[0] );
1018 dst->f[1] = powf( src0->f[1], src1->f[1] );
1019 dst->f[2] = powf( src0->f[2], src1->f[2] );
1020 dst->f[3] = powf( src0->f[3], src1->f[3] );
1021 #endif
1022 }
1023
1024 static void
1025 micro_sub(union tgsi_exec_channel *dst,
1026 const union tgsi_exec_channel *src0,
1027 const union tgsi_exec_channel *src1)
1028 {
1029 dst->f[0] = src0->f[0] - src1->f[0];
1030 dst->f[1] = src0->f[1] - src1->f[1];
1031 dst->f[2] = src0->f[2] - src1->f[2];
1032 dst->f[3] = src0->f[3] - src1->f[3];
1033 }
1034
1035 static void
1036 fetch_src_file_channel(const struct tgsi_exec_machine *mach,
1037 const uint file,
1038 const uint swizzle,
1039 const union tgsi_exec_channel *index,
1040 const union tgsi_exec_channel *index2D,
1041 union tgsi_exec_channel *chan)
1042 {
1043 uint i;
1044
1045 assert(swizzle < 4);
1046
1047 switch (file) {
1048 case TGSI_FILE_CONSTANT:
1049 for (i = 0; i < QUAD_SIZE; i++) {
1050 assert(index2D->i[i] >= 0 && index2D->i[i] < PIPE_MAX_CONSTANT_BUFFERS);
1051 assert(mach->Consts[index2D->i[i]]);
1052
1053 if (index->i[i] < 0) {
1054 chan->u[i] = 0;
1055 } else {
1056 /* NOTE: copying the const value as a uint instead of float */
1057 const uint constbuf = index2D->i[i];
1058 const uint *buf = (const uint *)mach->Consts[constbuf];
1059 const int pos = index->i[i] * 4 + swizzle;
1060 /* const buffer bounds check */
1061 if (pos < 0 || pos >= mach->ConstsSize[constbuf]) {
1062 if (0) {
1063 /* Debug: print warning */
1064 static int count = 0;
1065 if (count++ < 100)
1066 debug_printf("TGSI Exec: const buffer index %d"
1067 " out of bounds\n", pos);
1068 }
1069 chan->u[i] = 0;
1070 }
1071 else
1072 chan->u[i] = buf[pos];
1073 }
1074 }
1075 break;
1076
1077 case TGSI_FILE_INPUT:
1078 for (i = 0; i < QUAD_SIZE; i++) {
1079 /*
1080 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1081 debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n",
1082 index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i],
1083 index2D->i[i], index->i[i]);
1084 }*/
1085 int pos = index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i];
1086 assert(pos >= 0);
1087 assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS);
1088 chan->u[i] = mach->Inputs[pos].xyzw[swizzle].u[i];
1089 }
1090 break;
1091
1092 case TGSI_FILE_SYSTEM_VALUE:
1093 /* XXX no swizzling at this point. Will be needed if we put
1094 * gl_FragCoord, for example, in a sys value register.
1095 */
1096 for (i = 0; i < QUAD_SIZE; i++) {
1097 chan->f[i] = mach->SystemValue[index->i[i]][0];
1098 }
1099 break;
1100
1101 case TGSI_FILE_TEMPORARY:
1102 for (i = 0; i < QUAD_SIZE; i++) {
1103 assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1104 assert(index2D->i[i] == 0);
1105
1106 chan->u[i] = mach->Temps[index->i[i]].xyzw[swizzle].u[i];
1107 }
1108 break;
1109
1110 case TGSI_FILE_TEMPORARY_ARRAY:
1111 for (i = 0; i < QUAD_SIZE; i++) {
1112 assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1113 assert(index2D->i[i] < TGSI_EXEC_NUM_TEMP_ARRAYS);
1114
1115 chan->u[i] =
1116 mach->TempArray[index2D->i[i]][index->i[i]].xyzw[swizzle].u[i];
1117 }
1118 break;
1119
1120 case TGSI_FILE_IMMEDIATE:
1121 for (i = 0; i < QUAD_SIZE; i++) {
1122 assert(index->i[i] >= 0 && index->i[i] < (int)mach->ImmLimit);
1123 assert(index2D->i[i] == 0);
1124
1125 chan->f[i] = mach->Imms[index->i[i]][swizzle];
1126 }
1127 break;
1128
1129 case TGSI_FILE_IMMEDIATE_ARRAY:
1130 for (i = 0; i < QUAD_SIZE; i++) {
1131 assert(index2D->i[i] == 0);
1132
1133 chan->f[i] = mach->ImmArray[index->i[i]][swizzle];
1134 }
1135 break;
1136
1137 case TGSI_FILE_ADDRESS:
1138 for (i = 0; i < QUAD_SIZE; i++) {
1139 assert(index->i[i] >= 0);
1140 assert(index2D->i[i] == 0);
1141
1142 chan->u[i] = mach->Addrs[index->i[i]].xyzw[swizzle].u[i];
1143 }
1144 break;
1145
1146 case TGSI_FILE_PREDICATE:
1147 for (i = 0; i < QUAD_SIZE; i++) {
1148 assert(index->i[i] >= 0 && index->i[i] < TGSI_EXEC_NUM_PREDS);
1149 assert(index2D->i[i] == 0);
1150
1151 chan->u[i] = mach->Predicates[0].xyzw[swizzle].u[i];
1152 }
1153 break;
1154
1155 case TGSI_FILE_OUTPUT:
1156 /* vertex/fragment output vars can be read too */
1157 for (i = 0; i < QUAD_SIZE; i++) {
1158 assert(index->i[i] >= 0);
1159 assert(index2D->i[i] == 0);
1160
1161 chan->u[i] = mach->Outputs[index->i[i]].xyzw[swizzle].u[i];
1162 }
1163 break;
1164
1165 default:
1166 assert(0);
1167 for (i = 0; i < QUAD_SIZE; i++) {
1168 chan->u[i] = 0;
1169 }
1170 }
1171 }
1172
1173 static void
1174 fetch_source(const struct tgsi_exec_machine *mach,
1175 union tgsi_exec_channel *chan,
1176 const struct tgsi_full_src_register *reg,
1177 const uint chan_index,
1178 enum tgsi_exec_datatype src_datatype)
1179 {
1180 union tgsi_exec_channel index;
1181 union tgsi_exec_channel index2D;
1182 uint swizzle;
1183
1184 /* We start with a direct index into a register file.
1185 *
1186 * file[1],
1187 * where:
1188 * file = Register.File
1189 * [1] = Register.Index
1190 */
1191 index.i[0] =
1192 index.i[1] =
1193 index.i[2] =
1194 index.i[3] = reg->Register.Index;
1195
1196 /* There is an extra source register that indirectly subscripts
1197 * a register file. The direct index now becomes an offset
1198 * that is being added to the indirect register.
1199 *
1200 * file[ind[2].x+1],
1201 * where:
1202 * ind = Indirect.File
1203 * [2] = Indirect.Index
1204 * .x = Indirect.SwizzleX
1205 */
1206 if (reg->Register.Indirect) {
1207 union tgsi_exec_channel index2;
1208 union tgsi_exec_channel indir_index;
1209 const uint execmask = mach->ExecMask;
1210 uint i;
1211
1212 /* which address register (always zero now) */
1213 index2.i[0] =
1214 index2.i[1] =
1215 index2.i[2] =
1216 index2.i[3] = reg->Indirect.Index;
1217 assert(reg->Indirect.File == TGSI_FILE_ADDRESS);
1218 /* get current value of address register[swizzle] */
1219 swizzle = tgsi_util_get_src_register_swizzle( &reg->Indirect, CHAN_X );
1220 fetch_src_file_channel(mach,
1221 reg->Indirect.File,
1222 swizzle,
1223 &index2,
1224 &ZeroVec,
1225 &indir_index);
1226
1227 /* add value of address register to the offset */
1228 index.i[0] += indir_index.i[0];
1229 index.i[1] += indir_index.i[1];
1230 index.i[2] += indir_index.i[2];
1231 index.i[3] += indir_index.i[3];
1232
1233 /* for disabled execution channels, zero-out the index to
1234 * avoid using a potential garbage value.
1235 */
1236 for (i = 0; i < QUAD_SIZE; i++) {
1237 if ((execmask & (1 << i)) == 0)
1238 index.i[i] = 0;
1239 }
1240 }
1241
1242 /* There is an extra source register that is a second
1243 * subscript to a register file. Effectively it means that
1244 * the register file is actually a 2D array of registers.
1245 *
1246 * file[3][1],
1247 * where:
1248 * [3] = Dimension.Index
1249 */
1250 if (reg->Register.Dimension) {
1251 index2D.i[0] =
1252 index2D.i[1] =
1253 index2D.i[2] =
1254 index2D.i[3] = reg->Dimension.Index;
1255
1256 /* Again, the second subscript index can be addressed indirectly
1257 * identically to the first one.
1258 * Nothing stops us from indirectly addressing the indirect register,
1259 * but there is no need for that, so we won't exercise it.
1260 *
1261 * file[ind[4].y+3][1],
1262 * where:
1263 * ind = DimIndirect.File
1264 * [4] = DimIndirect.Index
1265 * .y = DimIndirect.SwizzleX
1266 */
1267 if (reg->Dimension.Indirect) {
1268 union tgsi_exec_channel index2;
1269 union tgsi_exec_channel indir_index;
1270 const uint execmask = mach->ExecMask;
1271 uint i;
1272
1273 index2.i[0] =
1274 index2.i[1] =
1275 index2.i[2] =
1276 index2.i[3] = reg->DimIndirect.Index;
1277
1278 swizzle = tgsi_util_get_src_register_swizzle( &reg->DimIndirect, CHAN_X );
1279 fetch_src_file_channel(mach,
1280 reg->DimIndirect.File,
1281 swizzle,
1282 &index2,
1283 &ZeroVec,
1284 &indir_index);
1285
1286 index2D.i[0] += indir_index.i[0];
1287 index2D.i[1] += indir_index.i[1];
1288 index2D.i[2] += indir_index.i[2];
1289 index2D.i[3] += indir_index.i[3];
1290
1291 /* for disabled execution channels, zero-out the index to
1292 * avoid using a potential garbage value.
1293 */
1294 for (i = 0; i < QUAD_SIZE; i++) {
1295 if ((execmask & (1 << i)) == 0) {
1296 index2D.i[i] = 0;
1297 }
1298 }
1299 }
1300
1301 /* If by any chance there was a need for a 3D array of register
1302 * files, we would have to check whether Dimension is followed
1303 * by a dimension register and continue the saga.
1304 */
1305 } else {
1306 index2D.i[0] =
1307 index2D.i[1] =
1308 index2D.i[2] =
1309 index2D.i[3] = 0;
1310 }
1311
1312 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
1313 fetch_src_file_channel(mach,
1314 reg->Register.File,
1315 swizzle,
1316 &index,
1317 &index2D,
1318 chan);
1319
1320 if (reg->Register.Absolute) {
1321 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1322 micro_abs(chan, chan);
1323 } else {
1324 micro_iabs(chan, chan);
1325 }
1326 }
1327
1328 if (reg->Register.Negate) {
1329 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1330 micro_neg(chan, chan);
1331 } else {
1332 micro_ineg(chan, chan);
1333 }
1334 }
1335 }
1336
1337 static void
1338 store_dest(struct tgsi_exec_machine *mach,
1339 const union tgsi_exec_channel *chan,
1340 const struct tgsi_full_dst_register *reg,
1341 const struct tgsi_full_instruction *inst,
1342 uint chan_index,
1343 enum tgsi_exec_datatype dst_datatype)
1344 {
1345 uint i;
1346 union tgsi_exec_channel null;
1347 union tgsi_exec_channel *dst;
1348 union tgsi_exec_channel index2D;
1349 uint execmask = mach->ExecMask;
1350 int offset = 0; /* indirection offset */
1351 int index;
1352
1353 /* for debugging */
1354 if (0 && dst_datatype == TGSI_EXEC_DATA_FLOAT) {
1355 check_inf_or_nan(chan);
1356 }
1357
1358 /* There is an extra source register that indirectly subscripts
1359 * a register file. The direct index now becomes an offset
1360 * that is being added to the indirect register.
1361 *
1362 * file[ind[2].x+1],
1363 * where:
1364 * ind = Indirect.File
1365 * [2] = Indirect.Index
1366 * .x = Indirect.SwizzleX
1367 */
1368 if (reg->Register.Indirect) {
1369 union tgsi_exec_channel index;
1370 union tgsi_exec_channel indir_index;
1371 uint swizzle;
1372
1373 /* which address register (always zero for now) */
1374 index.i[0] =
1375 index.i[1] =
1376 index.i[2] =
1377 index.i[3] = reg->Indirect.Index;
1378
1379 /* get current value of address register[swizzle] */
1380 swizzle = tgsi_util_get_src_register_swizzle( &reg->Indirect, CHAN_X );
1381
1382 /* fetch values from the address/indirection register */
1383 fetch_src_file_channel(mach,
1384 reg->Indirect.File,
1385 swizzle,
1386 &index,
1387 &ZeroVec,
1388 &indir_index);
1389
1390 /* save indirection offset */
1391 offset = indir_index.i[0];
1392 }
1393
1394 /* There is an extra source register that is a second
1395 * subscript to a register file. Effectively it means that
1396 * the register file is actually a 2D array of registers.
1397 *
1398 * file[3][1],
1399 * where:
1400 * [3] = Dimension.Index
1401 */
1402 if (reg->Register.Dimension) {
1403 index2D.i[0] =
1404 index2D.i[1] =
1405 index2D.i[2] =
1406 index2D.i[3] = reg->Dimension.Index;
1407
1408 /* Again, the second subscript index can be addressed indirectly
1409 * identically to the first one.
1410 * Nothing stops us from indirectly addressing the indirect register,
1411 * but there is no need for that, so we won't exercise it.
1412 *
1413 * file[ind[4].y+3][1],
1414 * where:
1415 * ind = DimIndirect.File
1416 * [4] = DimIndirect.Index
1417 * .y = DimIndirect.SwizzleX
1418 */
1419 if (reg->Dimension.Indirect) {
1420 union tgsi_exec_channel index2;
1421 union tgsi_exec_channel indir_index;
1422 const uint execmask = mach->ExecMask;
1423 unsigned swizzle;
1424 uint i;
1425
1426 index2.i[0] =
1427 index2.i[1] =
1428 index2.i[2] =
1429 index2.i[3] = reg->DimIndirect.Index;
1430
1431 swizzle = tgsi_util_get_src_register_swizzle( &reg->DimIndirect, CHAN_X );
1432 fetch_src_file_channel(mach,
1433 reg->DimIndirect.File,
1434 swizzle,
1435 &index2,
1436 &ZeroVec,
1437 &indir_index);
1438
1439 index2D.i[0] += indir_index.i[0];
1440 index2D.i[1] += indir_index.i[1];
1441 index2D.i[2] += indir_index.i[2];
1442 index2D.i[3] += indir_index.i[3];
1443
1444 /* for disabled execution channels, zero-out the index to
1445 * avoid using a potential garbage value.
1446 */
1447 for (i = 0; i < QUAD_SIZE; i++) {
1448 if ((execmask & (1 << i)) == 0) {
1449 index2D.i[i] = 0;
1450 }
1451 }
1452 }
1453
1454 /* If by any chance there was a need for a 3D array of register
1455 * files, we would have to check whether Dimension is followed
1456 * by a dimension register and continue the saga.
1457 */
1458 } else {
1459 index2D.i[0] =
1460 index2D.i[1] =
1461 index2D.i[2] =
1462 index2D.i[3] = 0;
1463 }
1464
1465 switch (reg->Register.File) {
1466 case TGSI_FILE_NULL:
1467 dst = &null;
1468 break;
1469
1470 case TGSI_FILE_OUTPUT:
1471 index = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
1472 + reg->Register.Index;
1473 dst = &mach->Outputs[offset + index].xyzw[chan_index];
1474 #if 0
1475 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1476 fprintf(stderr, "STORING OUT[%d] mask(%d), = (", offset + index, execmask);
1477 for (i = 0; i < QUAD_SIZE; i++)
1478 if (execmask & (1 << i))
1479 fprintf(stderr, "%f, ", chan->f[i]);
1480 fprintf(stderr, ")\n");
1481 }
1482 #endif
1483 break;
1484
1485 case TGSI_FILE_TEMPORARY:
1486 index = reg->Register.Index;
1487 assert( index < TGSI_EXEC_NUM_TEMPS );
1488 dst = &mach->Temps[offset + index].xyzw[chan_index];
1489 break;
1490
1491 case TGSI_FILE_TEMPORARY_ARRAY:
1492 index = reg->Register.Index;
1493 assert( index < TGSI_EXEC_NUM_TEMPS );
1494 assert( index2D.i[0] < TGSI_EXEC_NUM_TEMP_ARRAYS );
1495 /* XXX we use index2D.i[0] here but somehow we might
1496 * end up with someone trying to store indirectly in
1497 * different buffers */
1498 dst = &mach->TempArray[index2D.i[0]][offset + index].xyzw[chan_index];
1499 break;
1500
1501 case TGSI_FILE_ADDRESS:
1502 index = reg->Register.Index;
1503 dst = &mach->Addrs[index].xyzw[chan_index];
1504 break;
1505
1506 case TGSI_FILE_PREDICATE:
1507 index = reg->Register.Index;
1508 assert(index < TGSI_EXEC_NUM_PREDS);
1509 dst = &mach->Predicates[index].xyzw[chan_index];
1510 break;
1511
1512 default:
1513 assert( 0 );
1514 return;
1515 }
1516
1517 if (inst->Instruction.Predicate) {
1518 uint swizzle;
1519 union tgsi_exec_channel *pred;
1520
1521 switch (chan_index) {
1522 case CHAN_X:
1523 swizzle = inst->Predicate.SwizzleX;
1524 break;
1525 case CHAN_Y:
1526 swizzle = inst->Predicate.SwizzleY;
1527 break;
1528 case CHAN_Z:
1529 swizzle = inst->Predicate.SwizzleZ;
1530 break;
1531 case CHAN_W:
1532 swizzle = inst->Predicate.SwizzleW;
1533 break;
1534 default:
1535 assert(0);
1536 return;
1537 }
1538
1539 assert(inst->Predicate.Index == 0);
1540
1541 pred = &mach->Predicates[inst->Predicate.Index].xyzw[swizzle];
1542
1543 if (inst->Predicate.Negate) {
1544 for (i = 0; i < QUAD_SIZE; i++) {
1545 if (pred->u[i]) {
1546 execmask &= ~(1 << i);
1547 }
1548 }
1549 } else {
1550 for (i = 0; i < QUAD_SIZE; i++) {
1551 if (!pred->u[i]) {
1552 execmask &= ~(1 << i);
1553 }
1554 }
1555 }
1556 }
1557
1558 switch (inst->Instruction.Saturate) {
1559 case TGSI_SAT_NONE:
1560 for (i = 0; i < QUAD_SIZE; i++)
1561 if (execmask & (1 << i))
1562 dst->i[i] = chan->i[i];
1563 break;
1564
1565 case TGSI_SAT_ZERO_ONE:
1566 for (i = 0; i < QUAD_SIZE; i++)
1567 if (execmask & (1 << i)) {
1568 if (chan->f[i] < 0.0f)
1569 dst->f[i] = 0.0f;
1570 else if (chan->f[i] > 1.0f)
1571 dst->f[i] = 1.0f;
1572 else
1573 dst->i[i] = chan->i[i];
1574 }
1575 break;
1576
1577 case TGSI_SAT_MINUS_PLUS_ONE:
1578 for (i = 0; i < QUAD_SIZE; i++)
1579 if (execmask & (1 << i)) {
1580 if (chan->f[i] < -1.0f)
1581 dst->f[i] = -1.0f;
1582 else if (chan->f[i] > 1.0f)
1583 dst->f[i] = 1.0f;
1584 else
1585 dst->i[i] = chan->i[i];
1586 }
1587 break;
1588
1589 default:
1590 assert( 0 );
1591 }
1592 }
1593
1594 #define FETCH(VAL,INDEX,CHAN)\
1595 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
1596
1597
1598 /**
1599 * Execute ARB-style KIL which is predicated by a src register.
1600 * Kill fragment if any of the four values is less than zero.
1601 */
1602 static void
1603 exec_kil(struct tgsi_exec_machine *mach,
1604 const struct tgsi_full_instruction *inst)
1605 {
1606 uint uniquemask;
1607 uint chan_index;
1608 uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1609 union tgsi_exec_channel r[1];
1610
1611 /* This mask stores component bits that were already tested. */
1612 uniquemask = 0;
1613
1614 for (chan_index = 0; chan_index < 4; chan_index++)
1615 {
1616 uint swizzle;
1617 uint i;
1618
1619 /* unswizzle channel */
1620 swizzle = tgsi_util_get_full_src_register_swizzle (
1621 &inst->Src[0],
1622 chan_index);
1623
1624 /* check if the component has not been already tested */
1625 if (uniquemask & (1 << swizzle))
1626 continue;
1627 uniquemask |= 1 << swizzle;
1628
1629 FETCH(&r[0], 0, chan_index);
1630 for (i = 0; i < 4; i++)
1631 if (r[0].f[i] < 0.0f)
1632 kilmask |= 1 << i;
1633 }
1634
1635 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
1636 }
1637
1638 /**
1639 * Execute NVIDIA-style KIL which is predicated by a condition code.
1640 * Kill fragment if the condition code is TRUE.
1641 */
1642 static void
1643 exec_kilp(struct tgsi_exec_machine *mach,
1644 const struct tgsi_full_instruction *inst)
1645 {
1646 uint kilmask; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1647
1648 /* "unconditional" kil */
1649 kilmask = mach->ExecMask;
1650 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
1651 }
1652
1653 static void
1654 emit_vertex(struct tgsi_exec_machine *mach)
1655 {
1656 /* FIXME: check for exec mask correctly
1657 unsigned i;
1658 for (i = 0; i < QUAD_SIZE; ++i) {
1659 if ((mach->ExecMask & (1 << i)))
1660 */
1661 if (mach->ExecMask) {
1662 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += mach->NumOutputs;
1663 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++;
1664 }
1665 }
1666
1667 static void
1668 emit_primitive(struct tgsi_exec_machine *mach)
1669 {
1670 unsigned *prim_count = &mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0];
1671 /* FIXME: check for exec mask correctly
1672 unsigned i;
1673 for (i = 0; i < QUAD_SIZE; ++i) {
1674 if ((mach->ExecMask & (1 << i)))
1675 */
1676 if (mach->ExecMask) {
1677 ++(*prim_count);
1678 debug_assert((*prim_count * mach->NumOutputs) < mach->MaxGeometryShaderOutputs);
1679 mach->Primitives[*prim_count] = 0;
1680 }
1681 }
1682
1683 static void
1684 conditional_emit_primitive(struct tgsi_exec_machine *mach)
1685 {
1686 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1687 int emitted_verts =
1688 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]];
1689 if (emitted_verts) {
1690 emit_primitive(mach);
1691 }
1692 }
1693 }
1694
1695
1696 /*
1697 * Fetch four texture samples using STR texture coordinates.
1698 */
1699 static void
1700 fetch_texel( struct tgsi_sampler *sampler,
1701 const union tgsi_exec_channel *s,
1702 const union tgsi_exec_channel *t,
1703 const union tgsi_exec_channel *p,
1704 const union tgsi_exec_channel *c0,
1705 enum tgsi_sampler_control control,
1706 union tgsi_exec_channel *r,
1707 union tgsi_exec_channel *g,
1708 union tgsi_exec_channel *b,
1709 union tgsi_exec_channel *a )
1710 {
1711 uint j;
1712 float rgba[NUM_CHANNELS][QUAD_SIZE];
1713
1714 sampler->get_samples(sampler, s->f, t->f, p->f, c0->f, control, rgba);
1715
1716 for (j = 0; j < 4; j++) {
1717 r->f[j] = rgba[0][j];
1718 g->f[j] = rgba[1][j];
1719 b->f[j] = rgba[2][j];
1720 a->f[j] = rgba[3][j];
1721 }
1722 }
1723
1724
1725 #define TEX_MODIFIER_NONE 0
1726 #define TEX_MODIFIER_PROJECTED 1
1727 #define TEX_MODIFIER_LOD_BIAS 2
1728 #define TEX_MODIFIER_EXPLICIT_LOD 3
1729
1730
1731 static void
1732 exec_tex(struct tgsi_exec_machine *mach,
1733 const struct tgsi_full_instruction *inst,
1734 uint modifier)
1735 {
1736 const uint unit = inst->Src[1].Register.Index;
1737 union tgsi_exec_channel r[4];
1738 const union tgsi_exec_channel *lod = &ZeroVec;
1739 enum tgsi_sampler_control control;
1740 uint chan;
1741
1742 if (modifier != TEX_MODIFIER_NONE) {
1743 FETCH(&r[3], 0, CHAN_W);
1744 if (modifier != TEX_MODIFIER_PROJECTED) {
1745 lod = &r[3];
1746 }
1747 }
1748
1749 if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
1750 control = tgsi_sampler_lod_explicit;
1751 } else {
1752 control = tgsi_sampler_lod_bias;
1753 }
1754
1755 switch (inst->Texture.Texture) {
1756 case TGSI_TEXTURE_1D:
1757 case TGSI_TEXTURE_SHADOW1D:
1758 FETCH(&r[0], 0, CHAN_X);
1759
1760 if (modifier == TEX_MODIFIER_PROJECTED) {
1761 micro_div(&r[0], &r[0], &r[3]);
1762 }
1763
1764 fetch_texel(mach->Samplers[unit],
1765 &r[0], &ZeroVec, &ZeroVec, lod, /* S, T, P, LOD */
1766 control,
1767 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1768 break;
1769
1770 case TGSI_TEXTURE_2D:
1771 case TGSI_TEXTURE_RECT:
1772 case TGSI_TEXTURE_SHADOW2D:
1773 case TGSI_TEXTURE_SHADOWRECT:
1774 FETCH(&r[0], 0, CHAN_X);
1775 FETCH(&r[1], 0, CHAN_Y);
1776 FETCH(&r[2], 0, CHAN_Z);
1777
1778 if (modifier == TEX_MODIFIER_PROJECTED) {
1779 micro_div(&r[0], &r[0], &r[3]);
1780 micro_div(&r[1], &r[1], &r[3]);
1781 micro_div(&r[2], &r[2], &r[3]);
1782 }
1783
1784 fetch_texel(mach->Samplers[unit],
1785 &r[0], &r[1], &r[2], lod, /* S, T, P, LOD */
1786 control,
1787 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1788 break;
1789
1790 case TGSI_TEXTURE_1D_ARRAY:
1791 FETCH(&r[0], 0, CHAN_X);
1792 FETCH(&r[1], 0, CHAN_Y);
1793
1794 if (modifier == TEX_MODIFIER_PROJECTED) {
1795 micro_div(&r[0], &r[0], &r[3]);
1796 }
1797
1798 fetch_texel(mach->Samplers[unit],
1799 &r[0], &r[1], &r[2], lod, /* S, T, P, LOD */
1800 control,
1801 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1802 break;
1803
1804 case TGSI_TEXTURE_2D_ARRAY:
1805 FETCH(&r[0], 0, CHAN_X);
1806 FETCH(&r[1], 0, CHAN_Y);
1807 FETCH(&r[2], 0, CHAN_Z);
1808
1809 if (modifier == TEX_MODIFIER_PROJECTED) {
1810 micro_div(&r[0], &r[0], &r[3]);
1811 micro_div(&r[1], &r[1], &r[3]);
1812 }
1813
1814 fetch_texel(mach->Samplers[unit],
1815 &r[0], &r[1], &r[2], lod, /* S, T, P, LOD */
1816 control,
1817 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1818 break;
1819
1820 case TGSI_TEXTURE_3D:
1821 case TGSI_TEXTURE_CUBE:
1822 FETCH(&r[0], 0, CHAN_X);
1823 FETCH(&r[1], 0, CHAN_Y);
1824 FETCH(&r[2], 0, CHAN_Z);
1825
1826 if (modifier == TEX_MODIFIER_PROJECTED) {
1827 micro_div(&r[0], &r[0], &r[3]);
1828 micro_div(&r[1], &r[1], &r[3]);
1829 micro_div(&r[2], &r[2], &r[3]);
1830 }
1831
1832 fetch_texel(mach->Samplers[unit],
1833 &r[0], &r[1], &r[2], lod,
1834 control,
1835 &r[0], &r[1], &r[2], &r[3]);
1836 break;
1837
1838 default:
1839 assert(0);
1840 }
1841
1842 #if 0
1843 debug_printf("fetch r: %g %g %g %g\n",
1844 r[0].f[0], r[0].f[1], r[0].f[2], r[0].f[3]);
1845 debug_printf("fetch g: %g %g %g %g\n",
1846 r[1].f[0], r[1].f[1], r[1].f[2], r[1].f[3]);
1847 debug_printf("fetch b: %g %g %g %g\n",
1848 r[2].f[0], r[2].f[1], r[2].f[2], r[2].f[3]);
1849 debug_printf("fetch a: %g %g %g %g\n",
1850 r[3].f[0], r[3].f[1], r[3].f[2], r[3].f[3]);
1851 #endif
1852
1853 for (chan = 0; chan < NUM_CHANNELS; chan++) {
1854 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1855 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
1856 }
1857 }
1858 }
1859
1860 static void
1861 exec_txd(struct tgsi_exec_machine *mach,
1862 const struct tgsi_full_instruction *inst)
1863 {
1864 const uint unit = inst->Src[3].Register.Index;
1865 union tgsi_exec_channel r[4];
1866 uint chan;
1867
1868 /*
1869 * XXX: This is fake TXD -- the derivatives are not taken into account, yet.
1870 */
1871
1872 switch (inst->Texture.Texture) {
1873 case TGSI_TEXTURE_1D:
1874 case TGSI_TEXTURE_SHADOW1D:
1875
1876 FETCH(&r[0], 0, CHAN_X);
1877
1878 fetch_texel(mach->Samplers[unit],
1879 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, BIAS */
1880 tgsi_sampler_lod_bias,
1881 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1882 break;
1883
1884 case TGSI_TEXTURE_2D:
1885 case TGSI_TEXTURE_RECT:
1886 case TGSI_TEXTURE_SHADOW2D:
1887 case TGSI_TEXTURE_SHADOWRECT:
1888
1889 FETCH(&r[0], 0, CHAN_X);
1890 FETCH(&r[1], 0, CHAN_Y);
1891 FETCH(&r[2], 0, CHAN_Z);
1892
1893 fetch_texel(mach->Samplers[unit],
1894 &r[0], &r[1], &r[2], &ZeroVec, /* inputs */
1895 tgsi_sampler_lod_bias,
1896 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1897 break;
1898
1899 case TGSI_TEXTURE_3D:
1900 case TGSI_TEXTURE_CUBE:
1901
1902 FETCH(&r[0], 0, CHAN_X);
1903 FETCH(&r[1], 0, CHAN_Y);
1904 FETCH(&r[2], 0, CHAN_Z);
1905
1906 fetch_texel(mach->Samplers[unit],
1907 &r[0], &r[1], &r[2], &ZeroVec,
1908 tgsi_sampler_lod_bias,
1909 &r[0], &r[1], &r[2], &r[3]);
1910 break;
1911
1912 default:
1913 assert(0);
1914 }
1915
1916 for (chan = 0; chan < NUM_CHANNELS; chan++) {
1917 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1918 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
1919 }
1920 }
1921 }
1922
1923 static void
1924 exec_txq(struct tgsi_exec_machine *mach,
1925 const struct tgsi_full_instruction *inst)
1926 {
1927 struct tgsi_sampler *sampler;
1928 const uint unit = inst->Src[1].Register.Index;
1929 int result[4];
1930 union tgsi_exec_channel r[4], src;
1931 uint chan;
1932 int i,j;
1933
1934 fetch_source(mach, &src, &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_INT);
1935 sampler = mach->Samplers[unit];
1936
1937 sampler->get_dims(sampler, src.i[0], result);
1938
1939 for (i = 0; i < QUAD_SIZE; i++) {
1940 for (j = 0; j < 4; j++) {
1941 r[j].i[i] = result[j];
1942 }
1943 }
1944
1945 for (chan = 0; chan < NUM_CHANNELS; chan++) {
1946 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1947 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
1948 TGSI_EXEC_DATA_INT);
1949 }
1950 }
1951 }
1952
1953 static void
1954 exec_sample(struct tgsi_exec_machine *mach,
1955 const struct tgsi_full_instruction *inst,
1956 uint modifier)
1957 {
1958 const uint resource_unit = inst->Src[1].Register.Index;
1959 const uint sampler_unit = inst->Src[2].Register.Index;
1960 union tgsi_exec_channel r[4];
1961 const union tgsi_exec_channel *lod = &ZeroVec;
1962 enum tgsi_sampler_control control;
1963 uint chan;
1964
1965 if (modifier != TEX_MODIFIER_NONE) {
1966 if (modifier == TEX_MODIFIER_LOD_BIAS)
1967 FETCH(&r[3], 3, CHAN_X);
1968 else /*TEX_MODIFIER_LOD*/
1969 FETCH(&r[3], 0, CHAN_W);
1970
1971 if (modifier != TEX_MODIFIER_PROJECTED) {
1972 lod = &r[3];
1973 }
1974 }
1975
1976 if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
1977 control = tgsi_sampler_lod_explicit;
1978 } else {
1979 control = tgsi_sampler_lod_bias;
1980 }
1981
1982 switch (mach->Resources[resource_unit].Resource) {
1983 case TGSI_TEXTURE_1D:
1984 case TGSI_TEXTURE_SHADOW1D:
1985 FETCH(&r[0], 0, CHAN_X);
1986
1987 if (modifier == TEX_MODIFIER_PROJECTED) {
1988 micro_div(&r[0], &r[0], &r[3]);
1989 }
1990
1991 fetch_texel(mach->Samplers[sampler_unit],
1992 &r[0], &ZeroVec, &ZeroVec, lod, /* S, T, P, LOD */
1993 control,
1994 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1995 break;
1996
1997 case TGSI_TEXTURE_2D:
1998 case TGSI_TEXTURE_RECT:
1999 case TGSI_TEXTURE_SHADOW2D:
2000 case TGSI_TEXTURE_SHADOWRECT:
2001 FETCH(&r[0], 0, CHAN_X);
2002 FETCH(&r[1], 0, CHAN_Y);
2003 FETCH(&r[2], 0, CHAN_Z);
2004
2005 if (modifier == TEX_MODIFIER_PROJECTED) {
2006 micro_div(&r[0], &r[0], &r[3]);
2007 micro_div(&r[1], &r[1], &r[3]);
2008 micro_div(&r[2], &r[2], &r[3]);
2009 }
2010
2011 fetch_texel(mach->Samplers[sampler_unit],
2012 &r[0], &r[1], &r[2], lod, /* S, T, P, LOD */
2013 control,
2014 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2015 break;
2016
2017 case TGSI_TEXTURE_3D:
2018 case TGSI_TEXTURE_CUBE:
2019 FETCH(&r[0], 0, CHAN_X);
2020 FETCH(&r[1], 0, CHAN_Y);
2021 FETCH(&r[2], 0, CHAN_Z);
2022
2023 if (modifier == TEX_MODIFIER_PROJECTED) {
2024 micro_div(&r[0], &r[0], &r[3]);
2025 micro_div(&r[1], &r[1], &r[3]);
2026 micro_div(&r[2], &r[2], &r[3]);
2027 }
2028
2029 fetch_texel(mach->Samplers[sampler_unit],
2030 &r[0], &r[1], &r[2], lod,
2031 control,
2032 &r[0], &r[1], &r[2], &r[3]);
2033 break;
2034
2035 default:
2036 assert(0);
2037 }
2038
2039 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2040 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2041 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2042 }
2043 }
2044 }
2045
2046 static void
2047 exec_sample_d(struct tgsi_exec_machine *mach,
2048 const struct tgsi_full_instruction *inst)
2049 {
2050 const uint resource_unit = inst->Src[1].Register.Index;
2051 const uint sampler_unit = inst->Src[2].Register.Index;
2052 union tgsi_exec_channel r[4];
2053 uint chan;
2054 /*
2055 * XXX: This is fake SAMPLE_D -- the derivatives are not taken into account, yet.
2056 */
2057
2058 switch (mach->Resources[resource_unit].Resource) {
2059 case TGSI_TEXTURE_1D:
2060 case TGSI_TEXTURE_SHADOW1D:
2061
2062 FETCH(&r[0], 0, CHAN_X);
2063
2064 fetch_texel(mach->Samplers[sampler_unit],
2065 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, BIAS */
2066 tgsi_sampler_lod_bias,
2067 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2068 break;
2069
2070 case TGSI_TEXTURE_2D:
2071 case TGSI_TEXTURE_RECT:
2072 case TGSI_TEXTURE_SHADOW2D:
2073 case TGSI_TEXTURE_SHADOWRECT:
2074
2075 FETCH(&r[0], 0, CHAN_X);
2076 FETCH(&r[1], 0, CHAN_Y);
2077 FETCH(&r[2], 0, CHAN_Z);
2078
2079 fetch_texel(mach->Samplers[sampler_unit],
2080 &r[0], &r[1], &r[2], &ZeroVec, /* inputs */
2081 tgsi_sampler_lod_bias,
2082 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2083 break;
2084
2085 case TGSI_TEXTURE_3D:
2086 case TGSI_TEXTURE_CUBE:
2087
2088 FETCH(&r[0], 0, CHAN_X);
2089 FETCH(&r[1], 0, CHAN_Y);
2090 FETCH(&r[2], 0, CHAN_Z);
2091
2092 fetch_texel(mach->Samplers[sampler_unit],
2093 &r[0], &r[1], &r[2], &ZeroVec,
2094 tgsi_sampler_lod_bias,
2095 &r[0], &r[1], &r[2], &r[3]);
2096 break;
2097
2098 default:
2099 assert(0);
2100 }
2101
2102 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2103 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2104 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2105 }
2106 }
2107 }
2108
2109
2110 /**
2111 * Evaluate a constant-valued coefficient at the position of the
2112 * current quad.
2113 */
2114 static void
2115 eval_constant_coef(
2116 struct tgsi_exec_machine *mach,
2117 unsigned attrib,
2118 unsigned chan )
2119 {
2120 unsigned i;
2121
2122 for( i = 0; i < QUAD_SIZE; i++ ) {
2123 mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
2124 }
2125 }
2126
2127 /**
2128 * Evaluate a linear-valued coefficient at the position of the
2129 * current quad.
2130 */
2131 static void
2132 eval_linear_coef(
2133 struct tgsi_exec_machine *mach,
2134 unsigned attrib,
2135 unsigned chan )
2136 {
2137 const float x = mach->QuadPos.xyzw[0].f[0];
2138 const float y = mach->QuadPos.xyzw[1].f[0];
2139 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2140 const float dady = mach->InterpCoefs[attrib].dady[chan];
2141 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2142 mach->Inputs[attrib].xyzw[chan].f[0] = a0;
2143 mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
2144 mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
2145 mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
2146 }
2147
2148 /**
2149 * Evaluate a perspective-valued coefficient at the position of the
2150 * current quad.
2151 */
2152 static void
2153 eval_perspective_coef(
2154 struct tgsi_exec_machine *mach,
2155 unsigned attrib,
2156 unsigned chan )
2157 {
2158 const float x = mach->QuadPos.xyzw[0].f[0];
2159 const float y = mach->QuadPos.xyzw[1].f[0];
2160 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2161 const float dady = mach->InterpCoefs[attrib].dady[chan];
2162 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2163 const float *w = mach->QuadPos.xyzw[3].f;
2164 /* divide by W here */
2165 mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
2166 mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
2167 mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
2168 mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
2169 }
2170
2171
2172 typedef void (* eval_coef_func)(
2173 struct tgsi_exec_machine *mach,
2174 unsigned attrib,
2175 unsigned chan );
2176
2177 static void
2178 exec_declaration(struct tgsi_exec_machine *mach,
2179 const struct tgsi_full_declaration *decl)
2180 {
2181 if (decl->Declaration.File == TGSI_FILE_RESOURCE) {
2182 mach->Resources[decl->Range.First] = decl->Resource;
2183 return;
2184 }
2185
2186 if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
2187 if (decl->Declaration.File == TGSI_FILE_INPUT) {
2188 uint first, last, mask;
2189
2190 first = decl->Range.First;
2191 last = decl->Range.Last;
2192 mask = decl->Declaration.UsageMask;
2193
2194 /* XXX we could remove this special-case code since
2195 * mach->InterpCoefs[first].a0 should already have the
2196 * front/back-face value. But we should first update the
2197 * ureg code to emit the right UsageMask value (WRITEMASK_X).
2198 * Then, we could remove the tgsi_exec_machine::Face field.
2199 */
2200 /* XXX make FACE a system value */
2201 if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
2202 uint i;
2203
2204 assert(decl->Semantic.Index == 0);
2205 assert(first == last);
2206
2207 for (i = 0; i < QUAD_SIZE; i++) {
2208 mach->Inputs[first].xyzw[0].f[i] = mach->Face;
2209 }
2210 } else {
2211 eval_coef_func eval;
2212 uint i, j;
2213
2214 switch (decl->Declaration.Interpolate) {
2215 case TGSI_INTERPOLATE_CONSTANT:
2216 eval = eval_constant_coef;
2217 break;
2218
2219 case TGSI_INTERPOLATE_LINEAR:
2220 eval = eval_linear_coef;
2221 break;
2222
2223 case TGSI_INTERPOLATE_PERSPECTIVE:
2224 eval = eval_perspective_coef;
2225 break;
2226
2227 default:
2228 assert(0);
2229 return;
2230 }
2231
2232 for (j = 0; j < NUM_CHANNELS; j++) {
2233 if (mask & (1 << j)) {
2234 for (i = first; i <= last; i++) {
2235 eval(mach, i, j);
2236 }
2237 }
2238 }
2239 }
2240 }
2241 }
2242
2243 if (decl->Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
2244 mach->SysSemanticToIndex[decl->Declaration.Semantic] = decl->Range.First;
2245 }
2246 }
2247
2248
2249 typedef void (* micro_op)(union tgsi_exec_channel *dst);
2250
2251 static void
2252 exec_vector(struct tgsi_exec_machine *mach,
2253 const struct tgsi_full_instruction *inst,
2254 micro_op op,
2255 enum tgsi_exec_datatype dst_datatype)
2256 {
2257 unsigned int chan;
2258
2259 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2260 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2261 union tgsi_exec_channel dst;
2262
2263 op(&dst);
2264 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2265 }
2266 }
2267 }
2268
2269 typedef void (* micro_unary_op)(union tgsi_exec_channel *dst,
2270 const union tgsi_exec_channel *src);
2271
2272 static void
2273 exec_scalar_unary(struct tgsi_exec_machine *mach,
2274 const struct tgsi_full_instruction *inst,
2275 micro_unary_op op,
2276 enum tgsi_exec_datatype dst_datatype,
2277 enum tgsi_exec_datatype src_datatype)
2278 {
2279 unsigned int chan;
2280 union tgsi_exec_channel src;
2281 union tgsi_exec_channel dst;
2282
2283 fetch_source(mach, &src, &inst->Src[0], CHAN_X, src_datatype);
2284 op(&dst, &src);
2285 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2286 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2287 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2288 }
2289 }
2290 }
2291
2292 static void
2293 exec_vector_unary(struct tgsi_exec_machine *mach,
2294 const struct tgsi_full_instruction *inst,
2295 micro_unary_op op,
2296 enum tgsi_exec_datatype dst_datatype,
2297 enum tgsi_exec_datatype src_datatype)
2298 {
2299 unsigned int chan;
2300 struct tgsi_exec_vector dst;
2301
2302 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2303 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2304 union tgsi_exec_channel src;
2305
2306 fetch_source(mach, &src, &inst->Src[0], chan, src_datatype);
2307 op(&dst.xyzw[chan], &src);
2308 }
2309 }
2310 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2311 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2312 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2313 }
2314 }
2315 }
2316
2317 typedef void (* micro_binary_op)(union tgsi_exec_channel *dst,
2318 const union tgsi_exec_channel *src0,
2319 const union tgsi_exec_channel *src1);
2320
2321 static void
2322 exec_scalar_binary(struct tgsi_exec_machine *mach,
2323 const struct tgsi_full_instruction *inst,
2324 micro_binary_op op,
2325 enum tgsi_exec_datatype dst_datatype,
2326 enum tgsi_exec_datatype src_datatype)
2327 {
2328 unsigned int chan;
2329 union tgsi_exec_channel src[2];
2330 union tgsi_exec_channel dst;
2331
2332 fetch_source(mach, &src[0], &inst->Src[0], CHAN_X, src_datatype);
2333 fetch_source(mach, &src[1], &inst->Src[1], CHAN_Y, src_datatype);
2334 op(&dst, &src[0], &src[1]);
2335 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2336 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2337 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2338 }
2339 }
2340 }
2341
2342 static void
2343 exec_vector_binary(struct tgsi_exec_machine *mach,
2344 const struct tgsi_full_instruction *inst,
2345 micro_binary_op op,
2346 enum tgsi_exec_datatype dst_datatype,
2347 enum tgsi_exec_datatype src_datatype)
2348 {
2349 unsigned int chan;
2350 struct tgsi_exec_vector dst;
2351
2352 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2353 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2354 union tgsi_exec_channel src[2];
2355
2356 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2357 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2358 op(&dst.xyzw[chan], &src[0], &src[1]);
2359 }
2360 }
2361 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2362 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2363 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2364 }
2365 }
2366 }
2367
2368 typedef void (* micro_trinary_op)(union tgsi_exec_channel *dst,
2369 const union tgsi_exec_channel *src0,
2370 const union tgsi_exec_channel *src1,
2371 const union tgsi_exec_channel *src2);
2372
2373 static void
2374 exec_vector_trinary(struct tgsi_exec_machine *mach,
2375 const struct tgsi_full_instruction *inst,
2376 micro_trinary_op op,
2377 enum tgsi_exec_datatype dst_datatype,
2378 enum tgsi_exec_datatype src_datatype)
2379 {
2380 unsigned int chan;
2381 struct tgsi_exec_vector dst;
2382
2383 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2384 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2385 union tgsi_exec_channel src[3];
2386
2387 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2388 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2389 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
2390 op(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
2391 }
2392 }
2393 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2394 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2395 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2396 }
2397 }
2398 }
2399
2400 static void
2401 exec_dp3(struct tgsi_exec_machine *mach,
2402 const struct tgsi_full_instruction *inst)
2403 {
2404 unsigned int chan;
2405 union tgsi_exec_channel arg[3];
2406
2407 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2408 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2409 micro_mul(&arg[2], &arg[0], &arg[1]);
2410
2411 for (chan = CHAN_Y; chan <= CHAN_Z; chan++) {
2412 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2413 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
2414 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2415 }
2416
2417 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2418 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2419 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2420 }
2421 }
2422 }
2423
2424 static void
2425 exec_dp4(struct tgsi_exec_machine *mach,
2426 const struct tgsi_full_instruction *inst)
2427 {
2428 unsigned int chan;
2429 union tgsi_exec_channel arg[3];
2430
2431 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2432 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2433 micro_mul(&arg[2], &arg[0], &arg[1]);
2434
2435 for (chan = CHAN_Y; chan <= CHAN_W; chan++) {
2436 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2437 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
2438 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2439 }
2440
2441 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2442 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2443 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2444 }
2445 }
2446 }
2447
2448 static void
2449 exec_dp2a(struct tgsi_exec_machine *mach,
2450 const struct tgsi_full_instruction *inst)
2451 {
2452 unsigned int chan;
2453 union tgsi_exec_channel arg[3];
2454
2455 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2456 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2457 micro_mul(&arg[2], &arg[0], &arg[1]);
2458
2459 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2460 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2461 micro_mad(&arg[0], &arg[0], &arg[1], &arg[2]);
2462
2463 fetch_source(mach, &arg[1], &inst->Src[2], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2464 micro_add(&arg[0], &arg[0], &arg[1]);
2465
2466 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2467 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2468 store_dest(mach, &arg[0], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2469 }
2470 }
2471 }
2472
2473 static void
2474 exec_dph(struct tgsi_exec_machine *mach,
2475 const struct tgsi_full_instruction *inst)
2476 {
2477 unsigned int chan;
2478 union tgsi_exec_channel arg[3];
2479
2480 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2481 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2482 micro_mul(&arg[2], &arg[0], &arg[1]);
2483
2484 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2485 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2486 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2487
2488 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2489 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2490 micro_mad(&arg[0], &arg[0], &arg[1], &arg[2]);
2491
2492 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_W, TGSI_EXEC_DATA_FLOAT);
2493 micro_add(&arg[0], &arg[0], &arg[1]);
2494
2495 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2496 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2497 store_dest(mach, &arg[0], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2498 }
2499 }
2500 }
2501
2502 static void
2503 exec_dp2(struct tgsi_exec_machine *mach,
2504 const struct tgsi_full_instruction *inst)
2505 {
2506 unsigned int chan;
2507 union tgsi_exec_channel arg[3];
2508
2509 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2510 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2511 micro_mul(&arg[2], &arg[0], &arg[1]);
2512
2513 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2514 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2515 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2516
2517 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2518 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2519 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2520 }
2521 }
2522 }
2523
2524 static void
2525 exec_nrm4(struct tgsi_exec_machine *mach,
2526 const struct tgsi_full_instruction *inst)
2527 {
2528 unsigned int chan;
2529 union tgsi_exec_channel arg[4];
2530 union tgsi_exec_channel scale;
2531
2532 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2533 micro_mul(&scale, &arg[0], &arg[0]);
2534
2535 for (chan = CHAN_Y; chan <= CHAN_W; chan++) {
2536 union tgsi_exec_channel product;
2537
2538 fetch_source(mach, &arg[chan], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2539 micro_mul(&product, &arg[chan], &arg[chan]);
2540 micro_add(&scale, &scale, &product);
2541 }
2542
2543 micro_rsq(&scale, &scale);
2544
2545 for (chan = CHAN_X; chan <= CHAN_W; chan++) {
2546 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2547 micro_mul(&arg[chan], &arg[chan], &scale);
2548 store_dest(mach, &arg[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2549 }
2550 }
2551 }
2552
2553 static void
2554 exec_nrm3(struct tgsi_exec_machine *mach,
2555 const struct tgsi_full_instruction *inst)
2556 {
2557 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
2558 unsigned int chan;
2559 union tgsi_exec_channel arg[3];
2560 union tgsi_exec_channel scale;
2561
2562 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2563 micro_mul(&scale, &arg[0], &arg[0]);
2564
2565 for (chan = CHAN_Y; chan <= CHAN_Z; chan++) {
2566 union tgsi_exec_channel product;
2567
2568 fetch_source(mach, &arg[chan], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2569 micro_mul(&product, &arg[chan], &arg[chan]);
2570 micro_add(&scale, &scale, &product);
2571 }
2572
2573 micro_rsq(&scale, &scale);
2574
2575 for (chan = CHAN_X; chan <= CHAN_Z; chan++) {
2576 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2577 micro_mul(&arg[chan], &arg[chan], &scale);
2578 store_dest(mach, &arg[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2579 }
2580 }
2581 }
2582
2583 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2584 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2585 }
2586 }
2587
2588 static void
2589 exec_scs(struct tgsi_exec_machine *mach,
2590 const struct tgsi_full_instruction *inst)
2591 {
2592 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) {
2593 union tgsi_exec_channel arg;
2594 union tgsi_exec_channel result;
2595
2596 fetch_source(mach, &arg, &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2597
2598 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2599 micro_cos(&result, &arg);
2600 store_dest(mach, &result, &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2601 }
2602 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2603 micro_sin(&result, &arg);
2604 store_dest(mach, &result, &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2605 }
2606 }
2607 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2608 store_dest(mach, &ZeroVec, &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2609 }
2610 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2611 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2612 }
2613 }
2614
2615 static void
2616 exec_x2d(struct tgsi_exec_machine *mach,
2617 const struct tgsi_full_instruction *inst)
2618 {
2619 union tgsi_exec_channel r[4];
2620 union tgsi_exec_channel d[2];
2621
2622 fetch_source(mach, &r[0], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2623 fetch_source(mach, &r[1], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2624 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XZ) {
2625 fetch_source(mach, &r[2], &inst->Src[2], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2626 micro_mul(&r[2], &r[2], &r[0]);
2627 fetch_source(mach, &r[3], &inst->Src[2], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2628 micro_mul(&r[3], &r[3], &r[1]);
2629 micro_add(&r[2], &r[2], &r[3]);
2630 fetch_source(mach, &r[3], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2631 micro_add(&d[0], &r[2], &r[3]);
2632 }
2633 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YW) {
2634 fetch_source(mach, &r[2], &inst->Src[2], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2635 micro_mul(&r[2], &r[2], &r[0]);
2636 fetch_source(mach, &r[3], &inst->Src[2], CHAN_W, TGSI_EXEC_DATA_FLOAT);
2637 micro_mul(&r[3], &r[3], &r[1]);
2638 micro_add(&r[2], &r[2], &r[3]);
2639 fetch_source(mach, &r[3], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2640 micro_add(&d[1], &r[2], &r[3]);
2641 }
2642 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2643 store_dest(mach, &d[0], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2644 }
2645 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2646 store_dest(mach, &d[1], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2647 }
2648 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2649 store_dest(mach, &d[0], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2650 }
2651 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2652 store_dest(mach, &d[1], &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2653 }
2654 }
2655
2656 static void
2657 exec_rfl(struct tgsi_exec_machine *mach,
2658 const struct tgsi_full_instruction *inst)
2659 {
2660 union tgsi_exec_channel r[9];
2661
2662 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
2663 /* r0 = dp3(src0, src0) */
2664 fetch_source(mach, &r[2], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2665 micro_mul(&r[0], &r[2], &r[2]);
2666 fetch_source(mach, &r[4], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2667 micro_mul(&r[8], &r[4], &r[4]);
2668 micro_add(&r[0], &r[0], &r[8]);
2669 fetch_source(mach, &r[6], &inst->Src[0], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2670 micro_mul(&r[8], &r[6], &r[6]);
2671 micro_add(&r[0], &r[0], &r[8]);
2672
2673 /* r1 = dp3(src0, src1) */
2674 fetch_source(mach, &r[3], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2675 micro_mul(&r[1], &r[2], &r[3]);
2676 fetch_source(mach, &r[5], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2677 micro_mul(&r[8], &r[4], &r[5]);
2678 micro_add(&r[1], &r[1], &r[8]);
2679 fetch_source(mach, &r[7], &inst->Src[1], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2680 micro_mul(&r[8], &r[6], &r[7]);
2681 micro_add(&r[1], &r[1], &r[8]);
2682
2683 /* r1 = 2 * r1 / r0 */
2684 micro_add(&r[1], &r[1], &r[1]);
2685 micro_div(&r[1], &r[1], &r[0]);
2686
2687 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2688 micro_mul(&r[2], &r[2], &r[1]);
2689 micro_sub(&r[2], &r[2], &r[3]);
2690 store_dest(mach, &r[2], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2691 }
2692 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2693 micro_mul(&r[4], &r[4], &r[1]);
2694 micro_sub(&r[4], &r[4], &r[5]);
2695 store_dest(mach, &r[4], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2696 }
2697 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2698 micro_mul(&r[6], &r[6], &r[1]);
2699 micro_sub(&r[6], &r[6], &r[7]);
2700 store_dest(mach, &r[6], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2701 }
2702 }
2703 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2704 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2705 }
2706 }
2707
2708 static void
2709 exec_xpd(struct tgsi_exec_machine *mach,
2710 const struct tgsi_full_instruction *inst)
2711 {
2712 union tgsi_exec_channel r[6];
2713 union tgsi_exec_channel d[3];
2714
2715 fetch_source(mach, &r[0], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2716 fetch_source(mach, &r[1], &inst->Src[1], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2717
2718 micro_mul(&r[2], &r[0], &r[1]);
2719
2720 fetch_source(mach, &r[3], &inst->Src[0], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2721 fetch_source(mach, &r[4], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2722
2723 micro_mul(&r[5], &r[3], &r[4] );
2724 micro_sub(&d[CHAN_X], &r[2], &r[5]);
2725
2726 fetch_source(mach, &r[2], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2727
2728 micro_mul(&r[3], &r[3], &r[2]);
2729
2730 fetch_source(mach, &r[5], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2731
2732 micro_mul(&r[1], &r[1], &r[5]);
2733 micro_sub(&d[CHAN_Y], &r[3], &r[1]);
2734
2735 micro_mul(&r[5], &r[5], &r[4]);
2736 micro_mul(&r[0], &r[0], &r[2]);
2737 micro_sub(&d[CHAN_Z], &r[5], &r[0]);
2738
2739 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2740 store_dest(mach, &d[CHAN_X], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2741 }
2742 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2743 store_dest(mach, &d[CHAN_Y], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2744 }
2745 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2746 store_dest(mach, &d[CHAN_Z], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2747 }
2748 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2749 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2750 }
2751 }
2752
2753 static void
2754 exec_dst(struct tgsi_exec_machine *mach,
2755 const struct tgsi_full_instruction *inst)
2756 {
2757 union tgsi_exec_channel r[2];
2758 union tgsi_exec_channel d[4];
2759
2760 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2761 fetch_source(mach, &r[0], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2762 fetch_source(mach, &r[1], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2763 micro_mul(&d[CHAN_Y], &r[0], &r[1]);
2764 }
2765 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2766 fetch_source(mach, &d[CHAN_Z], &inst->Src[0], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2767 }
2768 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2769 fetch_source(mach, &d[CHAN_W], &inst->Src[1], CHAN_W, TGSI_EXEC_DATA_FLOAT);
2770 }
2771
2772 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2773 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2774 }
2775 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2776 store_dest(mach, &d[CHAN_Y], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2777 }
2778 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2779 store_dest(mach, &d[CHAN_Z], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2780 }
2781 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2782 store_dest(mach, &d[CHAN_W], &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2783 }
2784 }
2785
2786 static void
2787 exec_log(struct tgsi_exec_machine *mach,
2788 const struct tgsi_full_instruction *inst)
2789 {
2790 union tgsi_exec_channel r[3];
2791
2792 fetch_source(mach, &r[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2793 micro_abs(&r[2], &r[0]); /* r2 = abs(r0) */
2794 micro_lg2(&r[1], &r[2]); /* r1 = lg2(r2) */
2795 micro_flr(&r[0], &r[1]); /* r0 = floor(r1) */
2796 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2797 store_dest(mach, &r[0], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2798 }
2799 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2800 micro_exp2(&r[0], &r[0]); /* r0 = 2 ^ r0 */
2801 micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */
2802 store_dest(mach, &r[0], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2803 }
2804 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2805 store_dest(mach, &r[1], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2806 }
2807 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2808 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2809 }
2810 }
2811
2812 static void
2813 exec_exp(struct tgsi_exec_machine *mach,
2814 const struct tgsi_full_instruction *inst)
2815 {
2816 union tgsi_exec_channel r[3];
2817
2818 fetch_source(mach, &r[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2819 micro_flr(&r[1], &r[0]); /* r1 = floor(r0) */
2820 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2821 micro_exp2(&r[2], &r[1]); /* r2 = 2 ^ r1 */
2822 store_dest(mach, &r[2], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2823 }
2824 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2825 micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */
2826 store_dest(mach, &r[2], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2827 }
2828 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2829 micro_exp2(&r[2], &r[0]); /* r2 = 2 ^ r0 */
2830 store_dest(mach, &r[2], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2831 }
2832 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2833 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2834 }
2835 }
2836
2837 static void
2838 exec_lit(struct tgsi_exec_machine *mach,
2839 const struct tgsi_full_instruction *inst)
2840 {
2841 union tgsi_exec_channel r[3];
2842 union tgsi_exec_channel d[3];
2843
2844 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2845 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2846 }
2847 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) {
2848 fetch_source(mach, &r[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2849 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2850 micro_max(&d[CHAN_Y], &r[0], &ZeroVec);
2851 store_dest(mach, &d[CHAN_Y], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2852 }
2853
2854 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2855 fetch_source(mach, &r[1], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2856 micro_max(&r[1], &r[1], &ZeroVec);
2857
2858 fetch_source(mach, &r[2], &inst->Src[0], CHAN_W, TGSI_EXEC_DATA_FLOAT);
2859 micro_min(&r[2], &r[2], &P128Vec);
2860 micro_max(&r[2], &r[2], &M128Vec);
2861 micro_pow(&r[1], &r[1], &r[2]);
2862 micro_lt(&d[CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec);
2863 store_dest(mach, &d[CHAN_Z], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2864 }
2865 }
2866 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2867 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2868 }
2869 }
2870
2871 static void
2872 exec_break(struct tgsi_exec_machine *mach)
2873 {
2874 if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) {
2875 /* turn off loop channels for each enabled exec channel */
2876 mach->LoopMask &= ~mach->ExecMask;
2877 /* Todo: if mach->LoopMask == 0, jump to end of loop */
2878 UPDATE_EXEC_MASK(mach);
2879 } else {
2880 assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH);
2881
2882 mach->Switch.mask = 0x0;
2883
2884 UPDATE_EXEC_MASK(mach);
2885 }
2886 }
2887
2888 static void
2889 exec_switch(struct tgsi_exec_machine *mach,
2890 const struct tgsi_full_instruction *inst)
2891 {
2892 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
2893 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
2894
2895 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
2896 fetch_source(mach, &mach->Switch.selector, &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_UINT);
2897 mach->Switch.mask = 0x0;
2898 mach->Switch.defaultMask = 0x0;
2899
2900 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
2901 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH;
2902
2903 UPDATE_EXEC_MASK(mach);
2904 }
2905
2906 static void
2907 exec_case(struct tgsi_exec_machine *mach,
2908 const struct tgsi_full_instruction *inst)
2909 {
2910 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
2911 union tgsi_exec_channel src;
2912 uint mask = 0;
2913
2914 fetch_source(mach, &src, &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_UINT);
2915
2916 if (mach->Switch.selector.u[0] == src.u[0]) {
2917 mask |= 0x1;
2918 }
2919 if (mach->Switch.selector.u[1] == src.u[1]) {
2920 mask |= 0x2;
2921 }
2922 if (mach->Switch.selector.u[2] == src.u[2]) {
2923 mask |= 0x4;
2924 }
2925 if (mach->Switch.selector.u[3] == src.u[3]) {
2926 mask |= 0x8;
2927 }
2928
2929 mach->Switch.defaultMask |= mask;
2930
2931 mach->Switch.mask |= mask & prevMask;
2932
2933 UPDATE_EXEC_MASK(mach);
2934 }
2935
2936 static void
2937 exec_default(struct tgsi_exec_machine *mach)
2938 {
2939 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
2940
2941 mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask;
2942
2943 UPDATE_EXEC_MASK(mach);
2944 }
2945
2946 static void
2947 exec_endswitch(struct tgsi_exec_machine *mach)
2948 {
2949 mach->Switch = mach->SwitchStack[--mach->SwitchStackTop];
2950 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
2951
2952 UPDATE_EXEC_MASK(mach);
2953 }
2954
2955 static void
2956 micro_i2f(union tgsi_exec_channel *dst,
2957 const union tgsi_exec_channel *src)
2958 {
2959 dst->f[0] = (float)src->i[0];
2960 dst->f[1] = (float)src->i[1];
2961 dst->f[2] = (float)src->i[2];
2962 dst->f[3] = (float)src->i[3];
2963 }
2964
2965 static void
2966 micro_not(union tgsi_exec_channel *dst,
2967 const union tgsi_exec_channel *src)
2968 {
2969 dst->u[0] = ~src->u[0];
2970 dst->u[1] = ~src->u[1];
2971 dst->u[2] = ~src->u[2];
2972 dst->u[3] = ~src->u[3];
2973 }
2974
2975 static void
2976 micro_shl(union tgsi_exec_channel *dst,
2977 const union tgsi_exec_channel *src0,
2978 const union tgsi_exec_channel *src1)
2979 {
2980 dst->u[0] = src0->u[0] << src1->u[0];
2981 dst->u[1] = src0->u[1] << src1->u[1];
2982 dst->u[2] = src0->u[2] << src1->u[2];
2983 dst->u[3] = src0->u[3] << src1->u[3];
2984 }
2985
2986 static void
2987 micro_and(union tgsi_exec_channel *dst,
2988 const union tgsi_exec_channel *src0,
2989 const union tgsi_exec_channel *src1)
2990 {
2991 dst->u[0] = src0->u[0] & src1->u[0];
2992 dst->u[1] = src0->u[1] & src1->u[1];
2993 dst->u[2] = src0->u[2] & src1->u[2];
2994 dst->u[3] = src0->u[3] & src1->u[3];
2995 }
2996
2997 static void
2998 micro_or(union tgsi_exec_channel *dst,
2999 const union tgsi_exec_channel *src0,
3000 const union tgsi_exec_channel *src1)
3001 {
3002 dst->u[0] = src0->u[0] | src1->u[0];
3003 dst->u[1] = src0->u[1] | src1->u[1];
3004 dst->u[2] = src0->u[2] | src1->u[2];
3005 dst->u[3] = src0->u[3] | src1->u[3];
3006 }
3007
3008 static void
3009 micro_xor(union tgsi_exec_channel *dst,
3010 const union tgsi_exec_channel *src0,
3011 const union tgsi_exec_channel *src1)
3012 {
3013 dst->u[0] = src0->u[0] ^ src1->u[0];
3014 dst->u[1] = src0->u[1] ^ src1->u[1];
3015 dst->u[2] = src0->u[2] ^ src1->u[2];
3016 dst->u[3] = src0->u[3] ^ src1->u[3];
3017 }
3018
3019 static void
3020 micro_mod(union tgsi_exec_channel *dst,
3021 const union tgsi_exec_channel *src0,
3022 const union tgsi_exec_channel *src1)
3023 {
3024 dst->i[0] = src0->i[0] % src1->i[0];
3025 dst->i[1] = src0->i[1] % src1->i[1];
3026 dst->i[2] = src0->i[2] % src1->i[2];
3027 dst->i[3] = src0->i[3] % src1->i[3];
3028 }
3029
3030 static void
3031 micro_f2i(union tgsi_exec_channel *dst,
3032 const union tgsi_exec_channel *src)
3033 {
3034 dst->i[0] = (int)src->f[0];
3035 dst->i[1] = (int)src->f[1];
3036 dst->i[2] = (int)src->f[2];
3037 dst->i[3] = (int)src->f[3];
3038 }
3039
3040 static void
3041 micro_idiv(union tgsi_exec_channel *dst,
3042 const union tgsi_exec_channel *src0,
3043 const union tgsi_exec_channel *src1)
3044 {
3045 dst->i[0] = src0->i[0] / src1->i[0];
3046 dst->i[1] = src0->i[1] / src1->i[1];
3047 dst->i[2] = src0->i[2] / src1->i[2];
3048 dst->i[3] = src0->i[3] / src1->i[3];
3049 }
3050
3051 static void
3052 micro_imax(union tgsi_exec_channel *dst,
3053 const union tgsi_exec_channel *src0,
3054 const union tgsi_exec_channel *src1)
3055 {
3056 dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0];
3057 dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1];
3058 dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2];
3059 dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3];
3060 }
3061
3062 static void
3063 micro_imin(union tgsi_exec_channel *dst,
3064 const union tgsi_exec_channel *src0,
3065 const union tgsi_exec_channel *src1)
3066 {
3067 dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0];
3068 dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1];
3069 dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2];
3070 dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3];
3071 }
3072
3073 static void
3074 micro_isge(union tgsi_exec_channel *dst,
3075 const union tgsi_exec_channel *src0,
3076 const union tgsi_exec_channel *src1)
3077 {
3078 dst->i[0] = src0->i[0] >= src1->i[0] ? -1 : 0;
3079 dst->i[1] = src0->i[1] >= src1->i[1] ? -1 : 0;
3080 dst->i[2] = src0->i[2] >= src1->i[2] ? -1 : 0;
3081 dst->i[3] = src0->i[3] >= src1->i[3] ? -1 : 0;
3082 }
3083
3084 static void
3085 micro_ishr(union tgsi_exec_channel *dst,
3086 const union tgsi_exec_channel *src0,
3087 const union tgsi_exec_channel *src1)
3088 {
3089 dst->i[0] = src0->i[0] >> src1->i[0];
3090 dst->i[1] = src0->i[1] >> src1->i[1];
3091 dst->i[2] = src0->i[2] >> src1->i[2];
3092 dst->i[3] = src0->i[3] >> src1->i[3];
3093 }
3094
3095 static void
3096 micro_islt(union tgsi_exec_channel *dst,
3097 const union tgsi_exec_channel *src0,
3098 const union tgsi_exec_channel *src1)
3099 {
3100 dst->i[0] = src0->i[0] < src1->i[0] ? -1 : 0;
3101 dst->i[1] = src0->i[1] < src1->i[1] ? -1 : 0;
3102 dst->i[2] = src0->i[2] < src1->i[2] ? -1 : 0;
3103 dst->i[3] = src0->i[3] < src1->i[3] ? -1 : 0;
3104 }
3105
3106 static void
3107 micro_f2u(union tgsi_exec_channel *dst,
3108 const union tgsi_exec_channel *src)
3109 {
3110 dst->u[0] = (uint)src->f[0];
3111 dst->u[1] = (uint)src->f[1];
3112 dst->u[2] = (uint)src->f[2];
3113 dst->u[3] = (uint)src->f[3];
3114 }
3115
3116 static void
3117 micro_u2f(union tgsi_exec_channel *dst,
3118 const union tgsi_exec_channel *src)
3119 {
3120 dst->f[0] = (float)src->u[0];
3121 dst->f[1] = (float)src->u[1];
3122 dst->f[2] = (float)src->u[2];
3123 dst->f[3] = (float)src->u[3];
3124 }
3125
3126 static void
3127 micro_uadd(union tgsi_exec_channel *dst,
3128 const union tgsi_exec_channel *src0,
3129 const union tgsi_exec_channel *src1)
3130 {
3131 dst->u[0] = src0->u[0] + src1->u[0];
3132 dst->u[1] = src0->u[1] + src1->u[1];
3133 dst->u[2] = src0->u[2] + src1->u[2];
3134 dst->u[3] = src0->u[3] + src1->u[3];
3135 }
3136
3137 static void
3138 micro_udiv(union tgsi_exec_channel *dst,
3139 const union tgsi_exec_channel *src0,
3140 const union tgsi_exec_channel *src1)
3141 {
3142 dst->u[0] = src0->u[0] / src1->u[0];
3143 dst->u[1] = src0->u[1] / src1->u[1];
3144 dst->u[2] = src0->u[2] / src1->u[2];
3145 dst->u[3] = src0->u[3] / src1->u[3];
3146 }
3147
3148 static void
3149 micro_umad(union tgsi_exec_channel *dst,
3150 const union tgsi_exec_channel *src0,
3151 const union tgsi_exec_channel *src1,
3152 const union tgsi_exec_channel *src2)
3153 {
3154 dst->u[0] = src0->u[0] * src1->u[0] + src2->u[0];
3155 dst->u[1] = src0->u[1] * src1->u[1] + src2->u[1];
3156 dst->u[2] = src0->u[2] * src1->u[2] + src2->u[2];
3157 dst->u[3] = src0->u[3] * src1->u[3] + src2->u[3];
3158 }
3159
3160 static void
3161 micro_umax(union tgsi_exec_channel *dst,
3162 const union tgsi_exec_channel *src0,
3163 const union tgsi_exec_channel *src1)
3164 {
3165 dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0];
3166 dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1];
3167 dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2];
3168 dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3];
3169 }
3170
3171 static void
3172 micro_umin(union tgsi_exec_channel *dst,
3173 const union tgsi_exec_channel *src0,
3174 const union tgsi_exec_channel *src1)
3175 {
3176 dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0];
3177 dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1];
3178 dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2];
3179 dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3];
3180 }
3181
3182 static void
3183 micro_umod(union tgsi_exec_channel *dst,
3184 const union tgsi_exec_channel *src0,
3185 const union tgsi_exec_channel *src1)
3186 {
3187 dst->u[0] = src0->u[0] % src1->u[0];
3188 dst->u[1] = src0->u[1] % src1->u[1];
3189 dst->u[2] = src0->u[2] % src1->u[2];
3190 dst->u[3] = src0->u[3] % src1->u[3];
3191 }
3192
3193 static void
3194 micro_umul(union tgsi_exec_channel *dst,
3195 const union tgsi_exec_channel *src0,
3196 const union tgsi_exec_channel *src1)
3197 {
3198 dst->u[0] = src0->u[0] * src1->u[0];
3199 dst->u[1] = src0->u[1] * src1->u[1];
3200 dst->u[2] = src0->u[2] * src1->u[2];
3201 dst->u[3] = src0->u[3] * src1->u[3];
3202 }
3203
3204 static void
3205 micro_useq(union tgsi_exec_channel *dst,
3206 const union tgsi_exec_channel *src0,
3207 const union tgsi_exec_channel *src1)
3208 {
3209 dst->u[0] = src0->u[0] == src1->u[0] ? ~0 : 0;
3210 dst->u[1] = src0->u[1] == src1->u[1] ? ~0 : 0;
3211 dst->u[2] = src0->u[2] == src1->u[2] ? ~0 : 0;
3212 dst->u[3] = src0->u[3] == src1->u[3] ? ~0 : 0;
3213 }
3214
3215 static void
3216 micro_usge(union tgsi_exec_channel *dst,
3217 const union tgsi_exec_channel *src0,
3218 const union tgsi_exec_channel *src1)
3219 {
3220 dst->u[0] = src0->u[0] >= src1->u[0] ? ~0 : 0;
3221 dst->u[1] = src0->u[1] >= src1->u[1] ? ~0 : 0;
3222 dst->u[2] = src0->u[2] >= src1->u[2] ? ~0 : 0;
3223 dst->u[3] = src0->u[3] >= src1->u[3] ? ~0 : 0;
3224 }
3225
3226 static void
3227 micro_ushr(union tgsi_exec_channel *dst,
3228 const union tgsi_exec_channel *src0,
3229 const union tgsi_exec_channel *src1)
3230 {
3231 dst->u[0] = src0->u[0] >> src1->u[0];
3232 dst->u[1] = src0->u[1] >> src1->u[1];
3233 dst->u[2] = src0->u[2] >> src1->u[2];
3234 dst->u[3] = src0->u[3] >> src1->u[3];
3235 }
3236
3237 static void
3238 micro_uslt(union tgsi_exec_channel *dst,
3239 const union tgsi_exec_channel *src0,
3240 const union tgsi_exec_channel *src1)
3241 {
3242 dst->u[0] = src0->u[0] < src1->u[0] ? ~0 : 0;
3243 dst->u[1] = src0->u[1] < src1->u[1] ? ~0 : 0;
3244 dst->u[2] = src0->u[2] < src1->u[2] ? ~0 : 0;
3245 dst->u[3] = src0->u[3] < src1->u[3] ? ~0 : 0;
3246 }
3247
3248 static void
3249 micro_usne(union tgsi_exec_channel *dst,
3250 const union tgsi_exec_channel *src0,
3251 const union tgsi_exec_channel *src1)
3252 {
3253 dst->u[0] = src0->u[0] != src1->u[0] ? ~0 : 0;
3254 dst->u[1] = src0->u[1] != src1->u[1] ? ~0 : 0;
3255 dst->u[2] = src0->u[2] != src1->u[2] ? ~0 : 0;
3256 dst->u[3] = src0->u[3] != src1->u[3] ? ~0 : 0;
3257 }
3258
3259 static void
3260 exec_instruction(
3261 struct tgsi_exec_machine *mach,
3262 const struct tgsi_full_instruction *inst,
3263 int *pc )
3264 {
3265 union tgsi_exec_channel r[10];
3266
3267 (*pc)++;
3268
3269 switch (inst->Instruction.Opcode) {
3270 case TGSI_OPCODE_ARL:
3271 exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
3272 break;
3273
3274 case TGSI_OPCODE_MOV:
3275 exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
3276 break;
3277
3278 case TGSI_OPCODE_LIT:
3279 exec_lit(mach, inst);
3280 break;
3281
3282 case TGSI_OPCODE_RCP:
3283 exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3284 break;
3285
3286 case TGSI_OPCODE_RSQ:
3287 exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3288 break;
3289
3290 case TGSI_OPCODE_EXP:
3291 exec_exp(mach, inst);
3292 break;
3293
3294 case TGSI_OPCODE_LOG:
3295 exec_log(mach, inst);
3296 break;
3297
3298 case TGSI_OPCODE_MUL:
3299 exec_vector_binary(mach, inst, micro_mul, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3300 break;
3301
3302 case TGSI_OPCODE_ADD:
3303 exec_vector_binary(mach, inst, micro_add, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3304 break;
3305
3306 case TGSI_OPCODE_DP3:
3307 exec_dp3(mach, inst);
3308 break;
3309
3310 case TGSI_OPCODE_DP4:
3311 exec_dp4(mach, inst);
3312 break;
3313
3314 case TGSI_OPCODE_DST:
3315 exec_dst(mach, inst);
3316 break;
3317
3318 case TGSI_OPCODE_MIN:
3319 exec_vector_binary(mach, inst, micro_min, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3320 break;
3321
3322 case TGSI_OPCODE_MAX:
3323 exec_vector_binary(mach, inst, micro_max, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3324 break;
3325
3326 case TGSI_OPCODE_SLT:
3327 exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3328 break;
3329
3330 case TGSI_OPCODE_SGE:
3331 exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3332 break;
3333
3334 case TGSI_OPCODE_MAD:
3335 exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3336 break;
3337
3338 case TGSI_OPCODE_SUB:
3339 exec_vector_binary(mach, inst, micro_sub, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3340 break;
3341
3342 case TGSI_OPCODE_LRP:
3343 exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3344 break;
3345
3346 case TGSI_OPCODE_CND:
3347 exec_vector_trinary(mach, inst, micro_cnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3348 break;
3349
3350 case TGSI_OPCODE_DP2A:
3351 exec_dp2a(mach, inst);
3352 break;
3353
3354 case TGSI_OPCODE_FRC:
3355 exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3356 break;
3357
3358 case TGSI_OPCODE_CLAMP:
3359 exec_vector_trinary(mach, inst, micro_clamp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3360 break;
3361
3362 case TGSI_OPCODE_FLR:
3363 exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3364 break;
3365
3366 case TGSI_OPCODE_ROUND:
3367 exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3368 break;
3369
3370 case TGSI_OPCODE_EX2:
3371 exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3372 break;
3373
3374 case TGSI_OPCODE_LG2:
3375 exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3376 break;
3377
3378 case TGSI_OPCODE_POW:
3379 exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3380 break;
3381
3382 case TGSI_OPCODE_XPD:
3383 exec_xpd(mach, inst);
3384 break;
3385
3386 case TGSI_OPCODE_ABS:
3387 exec_vector_unary(mach, inst, micro_abs, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3388 break;
3389
3390 case TGSI_OPCODE_RCC:
3391 exec_scalar_unary(mach, inst, micro_rcc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3392 break;
3393
3394 case TGSI_OPCODE_DPH:
3395 exec_dph(mach, inst);
3396 break;
3397
3398 case TGSI_OPCODE_COS:
3399 exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3400 break;
3401
3402 case TGSI_OPCODE_DDX:
3403 exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3404 break;
3405
3406 case TGSI_OPCODE_DDY:
3407 exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3408 break;
3409
3410 case TGSI_OPCODE_KILP:
3411 exec_kilp (mach, inst);
3412 break;
3413
3414 case TGSI_OPCODE_KIL:
3415 exec_kil (mach, inst);
3416 break;
3417
3418 case TGSI_OPCODE_PK2H:
3419 assert (0);
3420 break;
3421
3422 case TGSI_OPCODE_PK2US:
3423 assert (0);
3424 break;
3425
3426 case TGSI_OPCODE_PK4B:
3427 assert (0);
3428 break;
3429
3430 case TGSI_OPCODE_PK4UB:
3431 assert (0);
3432 break;
3433
3434 case TGSI_OPCODE_RFL:
3435 exec_rfl(mach, inst);
3436 break;
3437
3438 case TGSI_OPCODE_SEQ:
3439 exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3440 break;
3441
3442 case TGSI_OPCODE_SFL:
3443 exec_vector(mach, inst, micro_sfl, TGSI_EXEC_DATA_FLOAT);
3444 break;
3445
3446 case TGSI_OPCODE_SGT:
3447 exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3448 break;
3449
3450 case TGSI_OPCODE_SIN:
3451 exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3452 break;
3453
3454 case TGSI_OPCODE_SLE:
3455 exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3456 break;
3457
3458 case TGSI_OPCODE_SNE:
3459 exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3460 break;
3461
3462 case TGSI_OPCODE_STR:
3463 exec_vector(mach, inst, micro_str, TGSI_EXEC_DATA_FLOAT);
3464 break;
3465
3466 case TGSI_OPCODE_TEX:
3467 /* simple texture lookup */
3468 /* src[0] = texcoord */
3469 /* src[1] = sampler unit */
3470 exec_tex(mach, inst, TEX_MODIFIER_NONE);
3471 break;
3472
3473 case TGSI_OPCODE_TXB:
3474 /* Texture lookup with lod bias */
3475 /* src[0] = texcoord (src[0].w = LOD bias) */
3476 /* src[1] = sampler unit */
3477 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS);
3478 break;
3479
3480 case TGSI_OPCODE_TXD:
3481 /* Texture lookup with explict partial derivatives */
3482 /* src[0] = texcoord */
3483 /* src[1] = d[strq]/dx */
3484 /* src[2] = d[strq]/dy */
3485 /* src[3] = sampler unit */
3486 exec_txd(mach, inst);
3487 break;
3488
3489 case TGSI_OPCODE_TXL:
3490 /* Texture lookup with explit LOD */
3491 /* src[0] = texcoord (src[0].w = LOD) */
3492 /* src[1] = sampler unit */
3493 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD);
3494 break;
3495
3496 case TGSI_OPCODE_TXP:
3497 /* Texture lookup with projection */
3498 /* src[0] = texcoord (src[0].w = projection) */
3499 /* src[1] = sampler unit */
3500 exec_tex(mach, inst, TEX_MODIFIER_PROJECTED);
3501 break;
3502
3503 case TGSI_OPCODE_UP2H:
3504 assert (0);
3505 break;
3506
3507 case TGSI_OPCODE_UP2US:
3508 assert (0);
3509 break;
3510
3511 case TGSI_OPCODE_UP4B:
3512 assert (0);
3513 break;
3514
3515 case TGSI_OPCODE_UP4UB:
3516 assert (0);
3517 break;
3518
3519 case TGSI_OPCODE_X2D:
3520 exec_x2d(mach, inst);
3521 break;
3522
3523 case TGSI_OPCODE_ARA:
3524 assert (0);
3525 break;
3526
3527 case TGSI_OPCODE_ARR:
3528 exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
3529 break;
3530
3531 case TGSI_OPCODE_BRA:
3532 assert (0);
3533 break;
3534
3535 case TGSI_OPCODE_CAL:
3536 /* skip the call if no execution channels are enabled */
3537 if (mach->ExecMask) {
3538 /* do the call */
3539
3540 /* First, record the depths of the execution stacks.
3541 * This is important for deeply nested/looped return statements.
3542 * We have to unwind the stacks by the correct amount. For a
3543 * real code generator, we could determine the number of entries
3544 * to pop off each stack with simple static analysis and avoid
3545 * implementing this data structure at run time.
3546 */
3547 mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop;
3548 mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop;
3549 mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop;
3550 mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop;
3551 mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop;
3552 /* note that PC was already incremented above */
3553 mach->CallStack[mach->CallStackTop].ReturnAddr = *pc;
3554
3555 mach->CallStackTop++;
3556
3557 /* Second, push the Cond, Loop, Cont, Func stacks */
3558 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
3559 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3560 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3561 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3562 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3563 assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
3564
3565 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
3566 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
3567 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
3568 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3569 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3570 mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
3571
3572 /* Finally, jump to the subroutine */
3573 *pc = inst->Label.Label;
3574 }
3575 break;
3576
3577 case TGSI_OPCODE_RET:
3578 mach->FuncMask &= ~mach->ExecMask;
3579 UPDATE_EXEC_MASK(mach);
3580
3581 if (mach->FuncMask == 0x0) {
3582 /* really return now (otherwise, keep executing */
3583
3584 if (mach->CallStackTop == 0) {
3585 /* returning from main() */
3586 mach->CondStackTop = 0;
3587 mach->LoopStackTop = 0;
3588 *pc = -1;
3589 return;
3590 }
3591
3592 assert(mach->CallStackTop > 0);
3593 mach->CallStackTop--;
3594
3595 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
3596 mach->CondMask = mach->CondStack[mach->CondStackTop];
3597
3598 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
3599 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
3600
3601 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
3602 mach->ContMask = mach->ContStack[mach->ContStackTop];
3603
3604 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
3605 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
3606
3607 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
3608 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
3609
3610 assert(mach->FuncStackTop > 0);
3611 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
3612
3613 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
3614
3615 UPDATE_EXEC_MASK(mach);
3616 }
3617 break;
3618
3619 case TGSI_OPCODE_SSG:
3620 exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3621 break;
3622
3623 case TGSI_OPCODE_CMP:
3624 exec_vector_trinary(mach, inst, micro_cmp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3625 break;
3626
3627 case TGSI_OPCODE_SCS:
3628 exec_scs(mach, inst);
3629 break;
3630
3631 case TGSI_OPCODE_NRM:
3632 exec_nrm3(mach, inst);
3633 break;
3634
3635 case TGSI_OPCODE_NRM4:
3636 exec_nrm4(mach, inst);
3637 break;
3638
3639 case TGSI_OPCODE_DIV:
3640 exec_vector_binary(mach, inst, micro_div, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3641 break;
3642
3643 case TGSI_OPCODE_DP2:
3644 exec_dp2(mach, inst);
3645 break;
3646
3647 case TGSI_OPCODE_IF:
3648 /* push CondMask */
3649 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
3650 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
3651 FETCH( &r[0], 0, CHAN_X );
3652 /* update CondMask */
3653 if( ! r[0].u[0] ) {
3654 mach->CondMask &= ~0x1;
3655 }
3656 if( ! r[0].u[1] ) {
3657 mach->CondMask &= ~0x2;
3658 }
3659 if( ! r[0].u[2] ) {
3660 mach->CondMask &= ~0x4;
3661 }
3662 if( ! r[0].u[3] ) {
3663 mach->CondMask &= ~0x8;
3664 }
3665 UPDATE_EXEC_MASK(mach);
3666 /* Todo: If CondMask==0, jump to ELSE */
3667 break;
3668
3669 case TGSI_OPCODE_ELSE:
3670 /* invert CondMask wrt previous mask */
3671 {
3672 uint prevMask;
3673 assert(mach->CondStackTop > 0);
3674 prevMask = mach->CondStack[mach->CondStackTop - 1];
3675 mach->CondMask = ~mach->CondMask & prevMask;
3676 UPDATE_EXEC_MASK(mach);
3677 /* Todo: If CondMask==0, jump to ENDIF */
3678 }
3679 break;
3680
3681 case TGSI_OPCODE_ENDIF:
3682 /* pop CondMask */
3683 assert(mach->CondStackTop > 0);
3684 mach->CondMask = mach->CondStack[--mach->CondStackTop];
3685 UPDATE_EXEC_MASK(mach);
3686 break;
3687
3688 case TGSI_OPCODE_END:
3689 /* make sure we end primitives which haven't
3690 * been explicitly emitted */
3691 conditional_emit_primitive(mach);
3692 /* halt execution */
3693 *pc = -1;
3694 break;
3695
3696 case TGSI_OPCODE_PUSHA:
3697 assert (0);
3698 break;
3699
3700 case TGSI_OPCODE_POPA:
3701 assert (0);
3702 break;
3703
3704 case TGSI_OPCODE_CEIL:
3705 exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3706 break;
3707
3708 case TGSI_OPCODE_I2F:
3709 exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT);
3710 break;
3711
3712 case TGSI_OPCODE_NOT:
3713 exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3714 break;
3715
3716 case TGSI_OPCODE_TRUNC:
3717 exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3718 break;
3719
3720 case TGSI_OPCODE_SHL:
3721 exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3722 break;
3723
3724 case TGSI_OPCODE_AND:
3725 exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3726 break;
3727
3728 case TGSI_OPCODE_OR:
3729 exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3730 break;
3731
3732 case TGSI_OPCODE_MOD:
3733 exec_vector_binary(mach, inst, micro_mod, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3734 break;
3735
3736 case TGSI_OPCODE_XOR:
3737 exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3738 break;
3739
3740 case TGSI_OPCODE_SAD:
3741 assert (0);
3742 break;
3743
3744 case TGSI_OPCODE_TXF:
3745 assert (0);
3746 break;
3747
3748 case TGSI_OPCODE_TXQ:
3749 exec_txq(mach, inst);
3750 break;
3751
3752 case TGSI_OPCODE_EMIT:
3753 emit_vertex(mach);
3754 break;
3755
3756 case TGSI_OPCODE_ENDPRIM:
3757 emit_primitive(mach);
3758 break;
3759
3760 case TGSI_OPCODE_BGNLOOP:
3761 /* push LoopMask and ContMasks */
3762 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3763 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3764 assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3765 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3766
3767 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
3768 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
3769 mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1;
3770 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3771 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP;
3772 break;
3773
3774 case TGSI_OPCODE_ENDLOOP:
3775 /* Restore ContMask, but don't pop */
3776 assert(mach->ContStackTop > 0);
3777 mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
3778 UPDATE_EXEC_MASK(mach);
3779 if (mach->ExecMask) {
3780 /* repeat loop: jump to instruction just past BGNLOOP */
3781 assert(mach->LoopLabelStackTop > 0);
3782 *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
3783 }
3784 else {
3785 /* exit loop: pop LoopMask */
3786 assert(mach->LoopStackTop > 0);
3787 mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
3788 /* pop ContMask */
3789 assert(mach->ContStackTop > 0);
3790 mach->ContMask = mach->ContStack[--mach->ContStackTop];
3791 assert(mach->LoopLabelStackTop > 0);
3792 --mach->LoopLabelStackTop;
3793
3794 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3795 }
3796 UPDATE_EXEC_MASK(mach);
3797 break;
3798
3799 case TGSI_OPCODE_BRK:
3800 exec_break(mach);
3801 break;
3802
3803 case TGSI_OPCODE_CONT:
3804 /* turn off cont channels for each enabled exec channel */
3805 mach->ContMask &= ~mach->ExecMask;
3806 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3807 UPDATE_EXEC_MASK(mach);
3808 break;
3809
3810 case TGSI_OPCODE_BGNSUB:
3811 /* no-op */
3812 break;
3813
3814 case TGSI_OPCODE_ENDSUB:
3815 /*
3816 * XXX: This really should be a no-op. We should never reach this opcode.
3817 */
3818
3819 assert(mach->CallStackTop > 0);
3820 mach->CallStackTop--;
3821
3822 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
3823 mach->CondMask = mach->CondStack[mach->CondStackTop];
3824
3825 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
3826 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
3827
3828 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
3829 mach->ContMask = mach->ContStack[mach->ContStackTop];
3830
3831 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
3832 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
3833
3834 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
3835 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
3836
3837 assert(mach->FuncStackTop > 0);
3838 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
3839
3840 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
3841
3842 UPDATE_EXEC_MASK(mach);
3843 break;
3844
3845 case TGSI_OPCODE_NOP:
3846 break;
3847
3848 case TGSI_OPCODE_BREAKC:
3849 FETCH(&r[0], 0, CHAN_X);
3850 /* update CondMask */
3851 if (r[0].u[0] && (mach->ExecMask & 0x1)) {
3852 mach->LoopMask &= ~0x1;
3853 }
3854 if (r[0].u[1] && (mach->ExecMask & 0x2)) {
3855 mach->LoopMask &= ~0x2;
3856 }
3857 if (r[0].u[2] && (mach->ExecMask & 0x4)) {
3858 mach->LoopMask &= ~0x4;
3859 }
3860 if (r[0].u[3] && (mach->ExecMask & 0x8)) {
3861 mach->LoopMask &= ~0x8;
3862 }
3863 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3864 UPDATE_EXEC_MASK(mach);
3865 break;
3866
3867 case TGSI_OPCODE_F2I:
3868 exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
3869 break;
3870
3871 case TGSI_OPCODE_IDIV:
3872 exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3873 break;
3874
3875 case TGSI_OPCODE_IMAX:
3876 exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3877 break;
3878
3879 case TGSI_OPCODE_IMIN:
3880 exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3881 break;
3882
3883 case TGSI_OPCODE_INEG:
3884 exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3885 break;
3886
3887 case TGSI_OPCODE_ISGE:
3888 exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3889 break;
3890
3891 case TGSI_OPCODE_ISHR:
3892 exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3893 break;
3894
3895 case TGSI_OPCODE_ISLT:
3896 exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3897 break;
3898
3899 case TGSI_OPCODE_F2U:
3900 exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
3901 break;
3902
3903 case TGSI_OPCODE_U2F:
3904 exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_UINT);
3905 break;
3906
3907 case TGSI_OPCODE_UADD:
3908 exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3909 break;
3910
3911 case TGSI_OPCODE_UDIV:
3912 exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3913 break;
3914
3915 case TGSI_OPCODE_UMAD:
3916 exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3917 break;
3918
3919 case TGSI_OPCODE_UMAX:
3920 exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3921 break;
3922
3923 case TGSI_OPCODE_UMIN:
3924 exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3925 break;
3926
3927 case TGSI_OPCODE_UMOD:
3928 exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3929 break;
3930
3931 case TGSI_OPCODE_UMUL:
3932 exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3933 break;
3934
3935 case TGSI_OPCODE_USEQ:
3936 exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3937 break;
3938
3939 case TGSI_OPCODE_USGE:
3940 exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3941 break;
3942
3943 case TGSI_OPCODE_USHR:
3944 exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3945 break;
3946
3947 case TGSI_OPCODE_USLT:
3948 exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3949 break;
3950
3951 case TGSI_OPCODE_USNE:
3952 exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3953 break;
3954
3955 case TGSI_OPCODE_SWITCH:
3956 exec_switch(mach, inst);
3957 break;
3958
3959 case TGSI_OPCODE_CASE:
3960 exec_case(mach, inst);
3961 break;
3962
3963 case TGSI_OPCODE_DEFAULT:
3964 exec_default(mach);
3965 break;
3966
3967 case TGSI_OPCODE_ENDSWITCH:
3968 exec_endswitch(mach);
3969 break;
3970
3971 case TGSI_OPCODE_LOAD:
3972 assert(0);
3973 break;
3974
3975 case TGSI_OPCODE_LOAD_MS:
3976 assert(0);
3977 break;
3978
3979 case TGSI_OPCODE_SAMPLE:
3980 exec_sample(mach, inst, TEX_MODIFIER_NONE);
3981 break;
3982
3983 case TGSI_OPCODE_SAMPLE_B:
3984 exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS);
3985 break;
3986
3987 case TGSI_OPCODE_SAMPLE_C:
3988 exec_sample(mach, inst, TEX_MODIFIER_NONE);
3989 break;
3990
3991 case TGSI_OPCODE_SAMPLE_C_LZ:
3992 exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS);
3993 break;
3994
3995 case TGSI_OPCODE_SAMPLE_D:
3996 exec_sample_d(mach, inst);
3997 break;
3998
3999 case TGSI_OPCODE_SAMPLE_L:
4000 exec_sample(mach, inst, TEX_MODIFIER_EXPLICIT_LOD);
4001 break;
4002
4003 case TGSI_OPCODE_GATHER4:
4004 assert(0);
4005 break;
4006
4007 case TGSI_OPCODE_RESINFO:
4008 assert(0);
4009 break;
4010
4011 case TGSI_OPCODE_SAMPLE_POS:
4012 assert(0);
4013 break;
4014
4015 case TGSI_OPCODE_SAMPLE_INFO:
4016 assert(0);
4017 break;
4018
4019 default:
4020 assert( 0 );
4021 }
4022 }
4023
4024
4025 #define DEBUG_EXECUTION 0
4026
4027
4028 /**
4029 * Run TGSI interpreter.
4030 * \return bitmask of "alive" quad components
4031 */
4032 uint
4033 tgsi_exec_machine_run( struct tgsi_exec_machine *mach )
4034 {
4035 uint i;
4036 int pc = 0;
4037
4038 mach->CondMask = 0xf;
4039 mach->LoopMask = 0xf;
4040 mach->ContMask = 0xf;
4041 mach->FuncMask = 0xf;
4042 mach->ExecMask = 0xf;
4043
4044 mach->Switch.mask = 0xf;
4045
4046 assert(mach->CondStackTop == 0);
4047 assert(mach->LoopStackTop == 0);
4048 assert(mach->ContStackTop == 0);
4049 assert(mach->SwitchStackTop == 0);
4050 assert(mach->BreakStackTop == 0);
4051 assert(mach->CallStackTop == 0);
4052
4053 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
4054 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;
4055
4056 if( mach->Processor == TGSI_PROCESSOR_GEOMETRY ) {
4057 mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0;
4058 mach->Primitives[0] = 0;
4059 }
4060
4061 /* execute declarations (interpolants) */
4062 for (i = 0; i < mach->NumDeclarations; i++) {
4063 exec_declaration( mach, mach->Declarations+i );
4064 }
4065
4066 {
4067 #if DEBUG_EXECUTION
4068 struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS];
4069 struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS];
4070 uint inst = 1;
4071
4072 memcpy(temps, mach->Temps, sizeof(temps));
4073 memcpy(outputs, mach->Outputs, sizeof(outputs));
4074 #endif
4075
4076 /* execute instructions, until pc is set to -1 */
4077 while (pc != -1) {
4078
4079 #if DEBUG_EXECUTION
4080 uint i;
4081
4082 tgsi_dump_instruction(&mach->Instructions[pc], inst++);
4083 #endif
4084
4085 assert(pc < (int) mach->NumInstructions);
4086 exec_instruction(mach, mach->Instructions + pc, &pc);
4087
4088 #if DEBUG_EXECUTION
4089 for (i = 0; i < TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS; i++) {
4090 if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) {
4091 uint j;
4092
4093 memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i]));
4094 debug_printf("TEMP[%2u] = ", i);
4095 for (j = 0; j < 4; j++) {
4096 if (j > 0) {
4097 debug_printf(" ");
4098 }
4099 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
4100 temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j],
4101 temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j],
4102 temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j],
4103 temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]);
4104 }
4105 }
4106 }
4107 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
4108 if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) {
4109 uint j;
4110
4111 memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]));
4112 debug_printf("OUT[%2u] = ", i);
4113 for (j = 0; j < 4; j++) {
4114 if (j > 0) {
4115 debug_printf(" ");
4116 }
4117 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
4118 outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j],
4119 outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j],
4120 outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j],
4121 outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]);
4122 }
4123 }
4124 }
4125 #endif
4126 }
4127 }
4128
4129 #if 0
4130 /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
4131 if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
4132 /*
4133 * Scale back depth component.
4134 */
4135 for (i = 0; i < 4; i++)
4136 mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
4137 }
4138 #endif
4139
4140 /* Strictly speaking, these assertions aren't really needed but they
4141 * can potentially catch some bugs in the control flow code.
4142 */
4143 assert(mach->CondStackTop == 0);
4144 assert(mach->LoopStackTop == 0);
4145 assert(mach->ContStackTop == 0);
4146 assert(mach->SwitchStackTop == 0);
4147 assert(mach->BreakStackTop == 0);
4148 assert(mach->CallStackTop == 0);
4149
4150 return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4151 }