tgsi: add properties and system value register
[mesa.git] / src / gallium / auxiliary / tgsi / tgsi_ppc.c
1 /**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * TGSI to PowerPC code generation.
30 */
31
32 #include "pipe/p_config.h"
33
34 #if defined(PIPE_ARCH_PPC)
35
36 #include "util/u_debug.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "util/u_math.h"
39 #include "util/u_memory.h"
40 #include "util/u_sse.h"
41 #include "tgsi/tgsi_info.h"
42 #include "tgsi/tgsi_parse.h"
43 #include "tgsi/tgsi_util.h"
44 #include "tgsi_dump.h"
45 #include "tgsi_exec.h"
46 #include "tgsi_ppc.h"
47 #include "rtasm/rtasm_ppc.h"
48
49
50 /**
51 * Since it's pretty much impossible to form PPC vector immediates, load
52 * them from memory here:
53 */
54 const float ppc_builtin_constants[] ALIGN16_ATTRIB = {
55 1.0f, -128.0f, 128.0, 0.0
56 };
57
58
59 #define FOR_EACH_CHANNEL( CHAN )\
60 for (CHAN = 0; CHAN < NUM_CHANNELS; CHAN++)
61
62 #define IS_DST0_CHANNEL_ENABLED( INST, CHAN )\
63 ((INST).Dst[0].Register.WriteMask & (1 << (CHAN)))
64
65 #define IF_IS_DST0_CHANNEL_ENABLED( INST, CHAN )\
66 if (IS_DST0_CHANNEL_ENABLED( INST, CHAN ))
67
68 #define FOR_EACH_DST0_ENABLED_CHANNEL( INST, CHAN )\
69 FOR_EACH_CHANNEL( CHAN )\
70 IF_IS_DST0_CHANNEL_ENABLED( INST, CHAN )
71
72 #define CHAN_X 0
73 #define CHAN_Y 1
74 #define CHAN_Z 2
75 #define CHAN_W 3
76
77
78 /**
79 * How many TGSI temps should be implemented with real PPC vector registers
80 * rather than memory.
81 */
82 #define MAX_PPC_TEMPS 3
83
84
85 /**
86 * Context/state used during code gen.
87 */
88 struct gen_context
89 {
90 struct ppc_function *f;
91 int inputs_reg; /**< GP register pointing to input params */
92 int outputs_reg; /**< GP register pointing to output params */
93 int temps_reg; /**< GP register pointing to temporary "registers" */
94 int immed_reg; /**< GP register pointing to immediates buffer */
95 int const_reg; /**< GP register pointing to constants buffer */
96 int builtins_reg; /**< GP register pointint to built-in constants */
97
98 int offset_reg; /**< used to reduce redundant li instructions */
99 int offset_value;
100
101 int one_vec; /**< vector register with {1.0, 1.0, 1.0, 1.0} */
102 int bit31_vec; /**< vector register with {1<<31, 1<<31, 1<<31, 1<<31} */
103
104 /**
105 * Map TGSI temps to PPC vector temps.
106 * We have 32 PPC vector regs. Use 16 of them for storing 4 TGSI temps.
107 * XXX currently only do this for TGSI temps [0..MAX_PPC_TEMPS-1].
108 */
109 int temps_map[MAX_PPC_TEMPS][4];
110
111 /**
112 * Cache of src registers.
113 * This is used to avoid redundant load instructions.
114 */
115 struct {
116 struct tgsi_full_src_register src;
117 uint chan;
118 uint vec;
119 } regs[12]; /* 3 src regs, 4 channels */
120 uint num_regs;
121 };
122
123
124 /**
125 * Initialize code generation context.
126 */
127 static void
128 init_gen_context(struct gen_context *gen, struct ppc_function *func)
129 {
130 uint i;
131
132 memset(gen, 0, sizeof(*gen));
133 gen->f = func;
134 gen->inputs_reg = ppc_reserve_register(func, 3); /* first function param */
135 gen->outputs_reg = ppc_reserve_register(func, 4); /* second function param */
136 gen->temps_reg = ppc_reserve_register(func, 5); /* ... */
137 gen->immed_reg = ppc_reserve_register(func, 6);
138 gen->const_reg = ppc_reserve_register(func, 7);
139 gen->builtins_reg = ppc_reserve_register(func, 8);
140 gen->one_vec = -1;
141 gen->bit31_vec = -1;
142 gen->offset_reg = -1;
143 gen->offset_value = -9999999;
144 for (i = 0; i < MAX_PPC_TEMPS; i++) {
145 gen->temps_map[i][0] = ppc_allocate_vec_register(gen->f);
146 gen->temps_map[i][1] = ppc_allocate_vec_register(gen->f);
147 gen->temps_map[i][2] = ppc_allocate_vec_register(gen->f);
148 gen->temps_map[i][3] = ppc_allocate_vec_register(gen->f);
149 }
150 }
151
152
153 /**
154 * Is the given TGSI register stored as a real PPC vector register?
155 */
156 static boolean
157 is_ppc_vec_temporary(const struct tgsi_full_src_register *reg)
158 {
159 return (reg->Register.File == TGSI_FILE_TEMPORARY &&
160 reg->Register.Index < MAX_PPC_TEMPS);
161 }
162
163
164 /**
165 * Is the given TGSI register stored as a real PPC vector register?
166 */
167 static boolean
168 is_ppc_vec_temporary_dst(const struct tgsi_full_dst_register *reg)
169 {
170 return (reg->Register.File == TGSI_FILE_TEMPORARY &&
171 reg->Register.Index < MAX_PPC_TEMPS);
172 }
173
174
175
176 /**
177 * All PPC vector load/store instructions form an effective address
178 * by adding the contents of two registers. For example:
179 * lvx v2,r8,r9 # v2 = memory[r8 + r9]
180 * stvx v2,r8,r9 # memory[r8 + r9] = v2;
181 * So our lvx/stvx instructions are typically preceded by an 'li' instruction
182 * to load r9 (above) with an immediate (an offset).
183 * This code emits that 'li' instruction, but only if the offset value is
184 * different than the previous 'li'.
185 * This optimization seems to save about 10% in the instruction count.
186 * Note that we need to unconditionally emit an 'li' inside basic blocks
187 * (such as inside loops).
188 */
189 static int
190 emit_li_offset(struct gen_context *gen, int offset)
191 {
192 if (gen->offset_reg <= 0) {
193 /* allocate a GP register for storing load/store offset */
194 gen->offset_reg = ppc_allocate_register(gen->f);
195 }
196
197 /* emit new 'li' if offset is changing */
198 if (gen->offset_value < 0 || gen->offset_value != offset) {
199 gen->offset_value = offset;
200 ppc_li(gen->f, gen->offset_reg, offset);
201 }
202
203 return gen->offset_reg;
204 }
205
206
207 /**
208 * Forces subsequent emit_li_offset() calls to emit an 'li'.
209 * To be called at the top of basic blocks.
210 */
211 static void
212 reset_li_offset(struct gen_context *gen)
213 {
214 gen->offset_value = -9999999;
215 }
216
217
218
219 /**
220 * Load the given vector register with {value, value, value, value}.
221 * The value must be in the ppu_builtin_constants[] array.
222 * We wouldn't need this if there was a simple way to load PPC vector
223 * registers with immediate values!
224 */
225 static void
226 load_constant_vec(struct gen_context *gen, int dst_vec, float value)
227 {
228 uint pos;
229 for (pos = 0; pos < Elements(ppc_builtin_constants); pos++) {
230 if (ppc_builtin_constants[pos] == value) {
231 int offset = pos * 4;
232 int offset_reg = emit_li_offset(gen, offset);
233
234 /* Load 4-byte word into vector register.
235 * The vector slot depends on the effective address we load from.
236 * We know that our builtins start at a 16-byte boundary so we
237 * know that 'swizzle' tells us which vector slot will have the
238 * loaded word. The other vector slots will be undefined.
239 */
240 ppc_lvewx(gen->f, dst_vec, gen->builtins_reg, offset_reg);
241 /* splat word[pos % 4] across the vector reg */
242 ppc_vspltw(gen->f, dst_vec, dst_vec, pos % 4);
243 return;
244 }
245 }
246 assert(0 && "Need to add new constant to ppc_builtin_constants array");
247 }
248
249
250 /**
251 * Return index of vector register containing {1.0, 1.0, 1.0, 1.0}.
252 */
253 static int
254 gen_one_vec(struct gen_context *gen)
255 {
256 if (gen->one_vec < 0) {
257 gen->one_vec = ppc_allocate_vec_register(gen->f);
258 load_constant_vec(gen, gen->one_vec, 1.0f);
259 }
260 return gen->one_vec;
261 }
262
263 /**
264 * Return index of vector register containing {1<<31, 1<<31, 1<<31, 1<<31}.
265 */
266 static int
267 gen_get_bit31_vec(struct gen_context *gen)
268 {
269 if (gen->bit31_vec < 0) {
270 gen->bit31_vec = ppc_allocate_vec_register(gen->f);
271 ppc_vspltisw(gen->f, gen->bit31_vec, -1);
272 ppc_vslw(gen->f, gen->bit31_vec, gen->bit31_vec, gen->bit31_vec);
273 }
274 return gen->bit31_vec;
275 }
276
277
278 /**
279 * Register fetch. Return PPC vector register with result.
280 */
281 static int
282 emit_fetch(struct gen_context *gen,
283 const struct tgsi_full_src_register *reg,
284 const unsigned chan_index)
285 {
286 uint swizzle = tgsi_util_get_full_src_register_swizzle(reg, chan_index);
287 int dst_vec = -1;
288
289 switch (swizzle) {
290 case TGSI_SWIZZLE_X:
291 case TGSI_SWIZZLE_Y:
292 case TGSI_SWIZZLE_Z:
293 case TGSI_SWIZZLE_W:
294 switch (reg->Register.File) {
295 case TGSI_FILE_INPUT:
296 case TGSI_FILE_SYSTEM_VALUE:
297 {
298 int offset = (reg->Register.Index * 4 + swizzle) * 16;
299 int offset_reg = emit_li_offset(gen, offset);
300 dst_vec = ppc_allocate_vec_register(gen->f);
301 ppc_lvx(gen->f, dst_vec, gen->inputs_reg, offset_reg);
302 }
303 break;
304 case TGSI_FILE_TEMPORARY:
305 if (is_ppc_vec_temporary(reg)) {
306 /* use PPC vec register */
307 dst_vec = gen->temps_map[reg->Register.Index][swizzle];
308 }
309 else {
310 /* use memory-based temp register "file" */
311 int offset = (reg->Register.Index * 4 + swizzle) * 16;
312 int offset_reg = emit_li_offset(gen, offset);
313 dst_vec = ppc_allocate_vec_register(gen->f);
314 ppc_lvx(gen->f, dst_vec, gen->temps_reg, offset_reg);
315 }
316 break;
317 case TGSI_FILE_IMMEDIATE:
318 {
319 int offset = (reg->Register.Index * 4 + swizzle) * 4;
320 int offset_reg = emit_li_offset(gen, offset);
321 dst_vec = ppc_allocate_vec_register(gen->f);
322 /* Load 4-byte word into vector register.
323 * The vector slot depends on the effective address we load from.
324 * We know that our immediates start at a 16-byte boundary so we
325 * know that 'swizzle' tells us which vector slot will have the
326 * loaded word. The other vector slots will be undefined.
327 */
328 ppc_lvewx(gen->f, dst_vec, gen->immed_reg, offset_reg);
329 /* splat word[swizzle] across the vector reg */
330 ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
331 }
332 break;
333 case TGSI_FILE_CONSTANT:
334 {
335 int offset = (reg->Register.Index * 4 + swizzle) * 4;
336 int offset_reg = emit_li_offset(gen, offset);
337 dst_vec = ppc_allocate_vec_register(gen->f);
338 /* Load 4-byte word into vector register.
339 * The vector slot depends on the effective address we load from.
340 * We know that our constants start at a 16-byte boundary so we
341 * know that 'swizzle' tells us which vector slot will have the
342 * loaded word. The other vector slots will be undefined.
343 */
344 ppc_lvewx(gen->f, dst_vec, gen->const_reg, offset_reg);
345 /* splat word[swizzle] across the vector reg */
346 ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
347 }
348 break;
349 default:
350 assert( 0 );
351 }
352 break;
353 default:
354 assert( 0 );
355 }
356
357 assert(dst_vec >= 0);
358
359 {
360 uint sign_op = tgsi_util_get_full_src_register_sign_mode(reg, chan_index);
361 if (sign_op != TGSI_UTIL_SIGN_KEEP) {
362 int bit31_vec = gen_get_bit31_vec(gen);
363 int dst_vec2;
364
365 if (is_ppc_vec_temporary(reg)) {
366 /* need to use a new temp */
367 dst_vec2 = ppc_allocate_vec_register(gen->f);
368 }
369 else {
370 dst_vec2 = dst_vec;
371 }
372
373 switch (sign_op) {
374 case TGSI_UTIL_SIGN_CLEAR:
375 /* vec = vec & ~bit31 */
376 ppc_vandc(gen->f, dst_vec2, dst_vec, bit31_vec);
377 break;
378 case TGSI_UTIL_SIGN_SET:
379 /* vec = vec | bit31 */
380 ppc_vor(gen->f, dst_vec2, dst_vec, bit31_vec);
381 break;
382 case TGSI_UTIL_SIGN_TOGGLE:
383 /* vec = vec ^ bit31 */
384 ppc_vxor(gen->f, dst_vec2, dst_vec, bit31_vec);
385 break;
386 default:
387 assert(0);
388 }
389 return dst_vec2;
390 }
391 }
392
393 return dst_vec;
394 }
395
396
397
398 /**
399 * Test if two TGSI src registers refer to the same memory location.
400 * We use this to avoid redundant register loads.
401 */
402 static boolean
403 equal_src_locs(const struct tgsi_full_src_register *a, uint chan_a,
404 const struct tgsi_full_src_register *b, uint chan_b)
405 {
406 int swz_a, swz_b;
407 int sign_a, sign_b;
408 if (a->Register.File != b->Register.File)
409 return FALSE;
410 if (a->Register.Index != b->Register.Index)
411 return FALSE;
412 swz_a = tgsi_util_get_full_src_register_swizzle(a, chan_a);
413 swz_b = tgsi_util_get_full_src_register_swizzle(b, chan_b);
414 if (swz_a != swz_b)
415 return FALSE;
416 sign_a = tgsi_util_get_full_src_register_sign_mode(a, chan_a);
417 sign_b = tgsi_util_get_full_src_register_sign_mode(b, chan_b);
418 if (sign_a != sign_b)
419 return FALSE;
420 return TRUE;
421 }
422
423
424 /**
425 * Given a TGSI src register and channel index, return the PPC vector
426 * register containing the value. We use a cache to prevent re-loading
427 * the same register multiple times.
428 * \return index of PPC vector register with the desired src operand
429 */
430 static int
431 get_src_vec(struct gen_context *gen,
432 struct tgsi_full_instruction *inst, int src_reg, uint chan)
433 {
434 const const struct tgsi_full_src_register *src =
435 &inst->Src[src_reg];
436 int vec;
437 uint i;
438
439 /* check the cache */
440 for (i = 0; i < gen->num_regs; i++) {
441 if (equal_src_locs(&gen->regs[i].src, gen->regs[i].chan, src, chan)) {
442 /* cache hit */
443 assert(gen->regs[i].vec >= 0);
444 return gen->regs[i].vec;
445 }
446 }
447
448 /* cache miss: allocate new vec reg and emit fetch/load code */
449 vec = emit_fetch(gen, src, chan);
450 gen->regs[gen->num_regs].src = *src;
451 gen->regs[gen->num_regs].chan = chan;
452 gen->regs[gen->num_regs].vec = vec;
453 gen->num_regs++;
454
455 assert(gen->num_regs <= Elements(gen->regs));
456
457 assert(vec >= 0);
458
459 return vec;
460 }
461
462
463 /**
464 * Clear the src operand cache. To be called at the end of each emit function.
465 */
466 static void
467 release_src_vecs(struct gen_context *gen)
468 {
469 uint i;
470 for (i = 0; i < gen->num_regs; i++) {
471 const const struct tgsi_full_src_register src = gen->regs[i].src;
472 if (!is_ppc_vec_temporary(&src)) {
473 ppc_release_vec_register(gen->f, gen->regs[i].vec);
474 }
475 }
476 gen->num_regs = 0;
477 }
478
479
480
481 static int
482 get_dst_vec(struct gen_context *gen,
483 const struct tgsi_full_instruction *inst,
484 unsigned chan_index)
485 {
486 const struct tgsi_full_dst_register *reg = &inst->Dst[0];
487
488 if (is_ppc_vec_temporary_dst(reg)) {
489 int vec = gen->temps_map[reg->Register.Index][chan_index];
490 return vec;
491 }
492 else {
493 return ppc_allocate_vec_register(gen->f);
494 }
495 }
496
497
498 /**
499 * Register store. Store 'src_vec' at location indicated by 'reg'.
500 * \param free_vec Should the src_vec be released when done?
501 */
502 static void
503 emit_store(struct gen_context *gen,
504 int src_vec,
505 const struct tgsi_full_instruction *inst,
506 unsigned chan_index,
507 boolean free_vec)
508 {
509 const struct tgsi_full_dst_register *reg = &inst->Dst[0];
510
511 switch (reg->Register.File) {
512 case TGSI_FILE_OUTPUT:
513 {
514 int offset = (reg->Register.Index * 4 + chan_index) * 16;
515 int offset_reg = emit_li_offset(gen, offset);
516 ppc_stvx(gen->f, src_vec, gen->outputs_reg, offset_reg);
517 }
518 break;
519 case TGSI_FILE_TEMPORARY:
520 if (is_ppc_vec_temporary_dst(reg)) {
521 if (!free_vec) {
522 int dst_vec = gen->temps_map[reg->Register.Index][chan_index];
523 if (dst_vec != src_vec)
524 ppc_vmove(gen->f, dst_vec, src_vec);
525 }
526 free_vec = FALSE;
527 }
528 else {
529 int offset = (reg->Register.Index * 4 + chan_index) * 16;
530 int offset_reg = emit_li_offset(gen, offset);
531 ppc_stvx(gen->f, src_vec, gen->temps_reg, offset_reg);
532 }
533 break;
534 #if 0
535 case TGSI_FILE_ADDRESS:
536 emit_addrs(
537 func,
538 xmm,
539 reg->Register.Index,
540 chan_index );
541 break;
542 #endif
543 default:
544 assert( 0 );
545 }
546
547 #if 0
548 switch( inst->Instruction.Saturate ) {
549 case TGSI_SAT_NONE:
550 break;
551
552 case TGSI_SAT_ZERO_ONE:
553 /* assert( 0 ); */
554 break;
555
556 case TGSI_SAT_MINUS_PLUS_ONE:
557 assert( 0 );
558 break;
559 }
560 #endif
561
562 if (free_vec)
563 ppc_release_vec_register(gen->f, src_vec);
564 }
565
566
567 static void
568 emit_scalar_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
569 {
570 int v0, v1;
571 uint chan_index;
572
573 v0 = get_src_vec(gen, inst, 0, CHAN_X);
574 v1 = ppc_allocate_vec_register(gen->f);
575
576 switch (inst->Instruction.Opcode) {
577 case TGSI_OPCODE_RSQ:
578 /* v1 = 1.0 / sqrt(v0) */
579 ppc_vrsqrtefp(gen->f, v1, v0);
580 break;
581 case TGSI_OPCODE_RCP:
582 /* v1 = 1.0 / v0 */
583 ppc_vrefp(gen->f, v1, v0);
584 break;
585 default:
586 assert(0);
587 }
588
589 FOR_EACH_DST0_ENABLED_CHANNEL( *inst, chan_index ) {
590 emit_store(gen, v1, inst, chan_index, FALSE);
591 }
592
593 release_src_vecs(gen);
594 ppc_release_vec_register(gen->f, v1);
595 }
596
597
598 static void
599 emit_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
600 {
601 uint chan_index;
602
603 FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan_index) {
604 int v0 = get_src_vec(gen, inst, 0, chan_index); /* v0 = srcreg[0] */
605 int v1 = get_dst_vec(gen, inst, chan_index);
606 switch (inst->Instruction.Opcode) {
607 case TGSI_OPCODE_ABS:
608 /* turn off the most significant bit of each vector float word */
609 {
610 int bit31_vec = gen_get_bit31_vec(gen);
611 ppc_vandc(gen->f, v1, v0, bit31_vec); /* v1 = v0 & ~bit31 */
612 }
613 break;
614 case TGSI_OPCODE_FLR:
615 ppc_vrfim(gen->f, v1, v0); /* v1 = floor(v0) */
616 break;
617 case TGSI_OPCODE_FRC:
618 ppc_vrfim(gen->f, v1, v0); /* tmp = floor(v0) */
619 ppc_vsubfp(gen->f, v1, v0, v1); /* v1 = v0 - v1 */
620 break;
621 case TGSI_OPCODE_EX2:
622 ppc_vexptefp(gen->f, v1, v0); /* v1 = 2^v0 */
623 break;
624 case TGSI_OPCODE_LG2:
625 /* XXX this may be broken! */
626 ppc_vlogefp(gen->f, v1, v0); /* v1 = log2(v0) */
627 break;
628 case TGSI_OPCODE_MOV:
629 if (v0 != v1)
630 ppc_vmove(gen->f, v1, v0);
631 break;
632 default:
633 assert(0);
634 }
635 emit_store(gen, v1, inst, chan_index, TRUE); /* store v0 */
636 }
637
638 release_src_vecs(gen);
639 }
640
641
642 static void
643 emit_binop(struct gen_context *gen, struct tgsi_full_instruction *inst)
644 {
645 int zero_vec = -1;
646 uint chan;
647
648 if (inst->Instruction.Opcode == TGSI_OPCODE_MUL) {
649 zero_vec = ppc_allocate_vec_register(gen->f);
650 ppc_vzero(gen->f, zero_vec);
651 }
652
653 FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan) {
654 /* fetch src operands */
655 int v0 = get_src_vec(gen, inst, 0, chan);
656 int v1 = get_src_vec(gen, inst, 1, chan);
657 int v2 = get_dst_vec(gen, inst, chan);
658
659 /* emit binop */
660 switch (inst->Instruction.Opcode) {
661 case TGSI_OPCODE_ADD:
662 ppc_vaddfp(gen->f, v2, v0, v1);
663 break;
664 case TGSI_OPCODE_SUB:
665 ppc_vsubfp(gen->f, v2, v0, v1);
666 break;
667 case TGSI_OPCODE_MUL:
668 ppc_vmaddfp(gen->f, v2, v0, v1, zero_vec);
669 break;
670 case TGSI_OPCODE_MIN:
671 ppc_vminfp(gen->f, v2, v0, v1);
672 break;
673 case TGSI_OPCODE_MAX:
674 ppc_vmaxfp(gen->f, v2, v0, v1);
675 break;
676 default:
677 assert(0);
678 }
679
680 /* store v2 */
681 emit_store(gen, v2, inst, chan, TRUE);
682 }
683
684 if (inst->Instruction.Opcode == TGSI_OPCODE_MUL)
685 ppc_release_vec_register(gen->f, zero_vec);
686
687 release_src_vecs(gen);
688 }
689
690
691 static void
692 emit_triop(struct gen_context *gen, struct tgsi_full_instruction *inst)
693 {
694 uint chan;
695
696 FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan) {
697 /* fetch src operands */
698 int v0 = get_src_vec(gen, inst, 0, chan);
699 int v1 = get_src_vec(gen, inst, 1, chan);
700 int v2 = get_src_vec(gen, inst, 2, chan);
701 int v3 = get_dst_vec(gen, inst, chan);
702
703 /* emit ALU */
704 switch (inst->Instruction.Opcode) {
705 case TGSI_OPCODE_MAD:
706 ppc_vmaddfp(gen->f, v3, v0, v1, v2); /* v3 = v0 * v1 + v2 */
707 break;
708 case TGSI_OPCODE_LRP:
709 ppc_vsubfp(gen->f, v3, v1, v2); /* v3 = v1 - v2 */
710 ppc_vmaddfp(gen->f, v3, v0, v3, v2); /* v3 = v0 * v3 + v2 */
711 break;
712 default:
713 assert(0);
714 }
715
716 /* store v3 */
717 emit_store(gen, v3, inst, chan, TRUE);
718 }
719
720 release_src_vecs(gen);
721 }
722
723
724 /**
725 * Vector comparisons, resulting in 1.0 or 0.0 values.
726 */
727 static void
728 emit_inequality(struct gen_context *gen, struct tgsi_full_instruction *inst)
729 {
730 uint chan;
731 int one_vec = gen_one_vec(gen);
732
733 FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan) {
734 /* fetch src operands */
735 int v0 = get_src_vec(gen, inst, 0, chan);
736 int v1 = get_src_vec(gen, inst, 1, chan);
737 int v2 = get_dst_vec(gen, inst, chan);
738 boolean complement = FALSE;
739
740 switch (inst->Instruction.Opcode) {
741 case TGSI_OPCODE_SNE:
742 complement = TRUE;
743 /* fall-through */
744 case TGSI_OPCODE_SEQ:
745 ppc_vcmpeqfpx(gen->f, v2, v0, v1); /* v2 = v0 == v1 ? ~0 : 0 */
746 break;
747
748 case TGSI_OPCODE_SGE:
749 complement = TRUE;
750 /* fall-through */
751 case TGSI_OPCODE_SLT:
752 ppc_vcmpgtfpx(gen->f, v2, v1, v0); /* v2 = v1 > v0 ? ~0 : 0 */
753 break;
754
755 case TGSI_OPCODE_SLE:
756 complement = TRUE;
757 /* fall-through */
758 case TGSI_OPCODE_SGT:
759 ppc_vcmpgtfpx(gen->f, v2, v0, v1); /* v2 = v0 > v1 ? ~0 : 0 */
760 break;
761 default:
762 assert(0);
763 }
764
765 /* v2 is now {0,0,0,0} or {~0,~0,~0,~0} */
766
767 if (complement)
768 ppc_vandc(gen->f, v2, one_vec, v2); /* v2 = one_vec & ~v2 */
769 else
770 ppc_vand(gen->f, v2, one_vec, v2); /* v2 = one_vec & v2 */
771
772 /* store v2 */
773 emit_store(gen, v2, inst, chan, TRUE);
774 }
775
776 release_src_vecs(gen);
777 }
778
779
780 static void
781 emit_dotprod(struct gen_context *gen, struct tgsi_full_instruction *inst)
782 {
783 int v0, v1, v2;
784 uint chan_index;
785
786 v2 = ppc_allocate_vec_register(gen->f);
787
788 ppc_vzero(gen->f, v2); /* v2 = {0, 0, 0, 0} */
789
790 v0 = get_src_vec(gen, inst, 0, CHAN_X); /* v0 = src0.XXXX */
791 v1 = get_src_vec(gen, inst, 1, CHAN_X); /* v1 = src1.XXXX */
792 ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
793
794 v0 = get_src_vec(gen, inst, 0, CHAN_Y); /* v0 = src0.YYYY */
795 v1 = get_src_vec(gen, inst, 1, CHAN_Y); /* v1 = src1.YYYY */
796 ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
797
798 v0 = get_src_vec(gen, inst, 0, CHAN_Z); /* v0 = src0.ZZZZ */
799 v1 = get_src_vec(gen, inst, 1, CHAN_Z); /* v1 = src1.ZZZZ */
800 ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
801
802 if (inst->Instruction.Opcode == TGSI_OPCODE_DP4) {
803 v0 = get_src_vec(gen, inst, 0, CHAN_W); /* v0 = src0.WWWW */
804 v1 = get_src_vec(gen, inst, 1, CHAN_W); /* v1 = src1.WWWW */
805 ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
806 }
807 else if (inst->Instruction.Opcode == TGSI_OPCODE_DPH) {
808 v1 = get_src_vec(gen, inst, 1, CHAN_W); /* v1 = src1.WWWW */
809 ppc_vaddfp(gen->f, v2, v2, v1); /* v2 = v2 + v1 */
810 }
811
812 FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan_index) {
813 emit_store(gen, v2, inst, chan_index, FALSE); /* store v2, free v2 later */
814 }
815
816 release_src_vecs(gen);
817
818 ppc_release_vec_register(gen->f, v2);
819 }
820
821
822 /** Approximation for vr = pow(va, vb) */
823 static void
824 ppc_vec_pow(struct ppc_function *f, int vr, int va, int vb)
825 {
826 /* pow(a,b) ~= exp2(log2(a) * b) */
827 int t_vec = ppc_allocate_vec_register(f);
828 int zero_vec = ppc_allocate_vec_register(f);
829
830 ppc_vzero(f, zero_vec);
831
832 ppc_vlogefp(f, t_vec, va); /* t = log2(va) */
833 ppc_vmaddfp(f, t_vec, t_vec, vb, zero_vec); /* t = t * vb + zero */
834 ppc_vexptefp(f, vr, t_vec); /* vr = 2^t */
835
836 ppc_release_vec_register(f, t_vec);
837 ppc_release_vec_register(f, zero_vec);
838 }
839
840
841 static void
842 emit_lit(struct gen_context *gen, struct tgsi_full_instruction *inst)
843 {
844 int one_vec = gen_one_vec(gen);
845
846 /* Compute X */
847 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X)) {
848 emit_store(gen, one_vec, inst, CHAN_X, FALSE);
849 }
850
851 /* Compute Y, Z */
852 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y) ||
853 IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
854 int x_vec;
855 int zero_vec = ppc_allocate_vec_register(gen->f);
856
857 x_vec = get_src_vec(gen, inst, 0, CHAN_X); /* x_vec = src[0].x */
858
859 ppc_vzero(gen->f, zero_vec); /* zero = {0,0,0,0} */
860 ppc_vmaxfp(gen->f, x_vec, x_vec, zero_vec); /* x_vec = max(x_vec, 0) */
861
862 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
863 emit_store(gen, x_vec, inst, CHAN_Y, FALSE);
864 }
865
866 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
867 int y_vec, w_vec;
868 int z_vec = ppc_allocate_vec_register(gen->f);
869 int pow_vec = ppc_allocate_vec_register(gen->f);
870 int pos_vec = ppc_allocate_vec_register(gen->f);
871 int p128_vec = ppc_allocate_vec_register(gen->f);
872 int n128_vec = ppc_allocate_vec_register(gen->f);
873
874 y_vec = get_src_vec(gen, inst, 0, CHAN_Y); /* y_vec = src[0].y */
875 ppc_vmaxfp(gen->f, y_vec, y_vec, zero_vec); /* y_vec = max(y_vec, 0) */
876
877 w_vec = get_src_vec(gen, inst, 0, CHAN_W); /* w_vec = src[0].w */
878
879 /* clamp W to [-128, 128] */
880 load_constant_vec(gen, p128_vec, 128.0f);
881 load_constant_vec(gen, n128_vec, -128.0f);
882 ppc_vmaxfp(gen->f, w_vec, w_vec, n128_vec); /* w = max(w, -128) */
883 ppc_vminfp(gen->f, w_vec, w_vec, p128_vec); /* w = min(w, 128) */
884
885 /* if temp.x > 0
886 * z = pow(tmp.y, tmp.w)
887 * else
888 * z = 0.0
889 */
890 ppc_vec_pow(gen->f, pow_vec, y_vec, w_vec); /* pow = pow(y, w) */
891 ppc_vcmpgtfpx(gen->f, pos_vec, x_vec, zero_vec); /* pos = x > 0 */
892 ppc_vand(gen->f, z_vec, pow_vec, pos_vec); /* z = pow & pos */
893
894 emit_store(gen, z_vec, inst, CHAN_Z, FALSE);
895
896 ppc_release_vec_register(gen->f, z_vec);
897 ppc_release_vec_register(gen->f, pow_vec);
898 ppc_release_vec_register(gen->f, pos_vec);
899 ppc_release_vec_register(gen->f, p128_vec);
900 ppc_release_vec_register(gen->f, n128_vec);
901 }
902
903 ppc_release_vec_register(gen->f, zero_vec);
904 }
905
906 /* Compute W */
907 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_W)) {
908 emit_store(gen, one_vec, inst, CHAN_W, FALSE);
909 }
910
911 release_src_vecs(gen);
912 }
913
914
915 static void
916 emit_exp(struct gen_context *gen, struct tgsi_full_instruction *inst)
917 {
918 const int one_vec = gen_one_vec(gen);
919 int src_vec;
920
921 /* get src arg */
922 src_vec = get_src_vec(gen, inst, 0, CHAN_X);
923
924 /* Compute X = 2^floor(src) */
925 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X)) {
926 int dst_vec = get_dst_vec(gen, inst, CHAN_X);
927 int tmp_vec = ppc_allocate_vec_register(gen->f);
928 ppc_vrfim(gen->f, tmp_vec, src_vec); /* tmp = floor(src); */
929 ppc_vexptefp(gen->f, dst_vec, tmp_vec); /* dst = 2 ^ tmp */
930 emit_store(gen, dst_vec, inst, CHAN_X, TRUE);
931 ppc_release_vec_register(gen->f, tmp_vec);
932 }
933
934 /* Compute Y = src - floor(src) */
935 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
936 int dst_vec = get_dst_vec(gen, inst, CHAN_Y);
937 int tmp_vec = ppc_allocate_vec_register(gen->f);
938 ppc_vrfim(gen->f, tmp_vec, src_vec); /* tmp = floor(src); */
939 ppc_vsubfp(gen->f, dst_vec, src_vec, tmp_vec); /* dst = src - tmp */
940 emit_store(gen, dst_vec, inst, CHAN_Y, TRUE);
941 ppc_release_vec_register(gen->f, tmp_vec);
942 }
943
944 /* Compute Z = RoughApprox2ToX(src) */
945 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
946 int dst_vec = get_dst_vec(gen, inst, CHAN_Z);
947 ppc_vexptefp(gen->f, dst_vec, src_vec); /* dst = 2 ^ src */
948 emit_store(gen, dst_vec, inst, CHAN_Z, TRUE);
949 }
950
951 /* Compute W = 1.0 */
952 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_W)) {
953 emit_store(gen, one_vec, inst, CHAN_W, FALSE);
954 }
955
956 release_src_vecs(gen);
957 }
958
959
960 static void
961 emit_log(struct gen_context *gen, struct tgsi_full_instruction *inst)
962 {
963 const int bit31_vec = gen_get_bit31_vec(gen);
964 const int one_vec = gen_one_vec(gen);
965 int src_vec, abs_vec;
966
967 /* get src arg */
968 src_vec = get_src_vec(gen, inst, 0, CHAN_X);
969
970 /* compute abs(src) */
971 abs_vec = ppc_allocate_vec_register(gen->f);
972 ppc_vandc(gen->f, abs_vec, src_vec, bit31_vec); /* abs = src & ~bit31 */
973
974 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X) &&
975 IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
976
977 /* compute tmp = floor(log2(abs)) */
978 int tmp_vec = ppc_allocate_vec_register(gen->f);
979 ppc_vlogefp(gen->f, tmp_vec, abs_vec); /* tmp = log2(abs) */
980 ppc_vrfim(gen->f, tmp_vec, tmp_vec); /* tmp = floor(tmp); */
981
982 /* Compute X = tmp */
983 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X)) {
984 emit_store(gen, tmp_vec, inst, CHAN_X, FALSE);
985 }
986
987 /* Compute Y = abs / 2^tmp */
988 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
989 const int zero_vec = ppc_allocate_vec_register(gen->f);
990 ppc_vzero(gen->f, zero_vec);
991 ppc_vexptefp(gen->f, tmp_vec, tmp_vec); /* tmp = 2 ^ tmp */
992 ppc_vrefp(gen->f, tmp_vec, tmp_vec); /* tmp = 1 / tmp */
993 /* tmp = abs * tmp + zero */
994 ppc_vmaddfp(gen->f, tmp_vec, abs_vec, tmp_vec, zero_vec);
995 emit_store(gen, tmp_vec, inst, CHAN_Y, FALSE);
996 ppc_release_vec_register(gen->f, zero_vec);
997 }
998
999 ppc_release_vec_register(gen->f, tmp_vec);
1000 }
1001
1002 /* Compute Z = RoughApproxLog2(abs) */
1003 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
1004 int dst_vec = get_dst_vec(gen, inst, CHAN_Z);
1005 ppc_vlogefp(gen->f, dst_vec, abs_vec); /* dst = log2(abs) */
1006 emit_store(gen, dst_vec, inst, CHAN_Z, TRUE);
1007 }
1008
1009 /* Compute W = 1.0 */
1010 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_W)) {
1011 emit_store(gen, one_vec, inst, CHAN_W, FALSE);
1012 }
1013
1014 ppc_release_vec_register(gen->f, abs_vec);
1015 release_src_vecs(gen);
1016 }
1017
1018
1019 static void
1020 emit_pow(struct gen_context *gen, struct tgsi_full_instruction *inst)
1021 {
1022 int s0_vec = get_src_vec(gen, inst, 0, CHAN_X);
1023 int s1_vec = get_src_vec(gen, inst, 1, CHAN_X);
1024 int pow_vec = ppc_allocate_vec_register(gen->f);
1025 int chan;
1026
1027 ppc_vec_pow(gen->f, pow_vec, s0_vec, s1_vec);
1028
1029 FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan) {
1030 emit_store(gen, pow_vec, inst, chan, FALSE);
1031 }
1032
1033 ppc_release_vec_register(gen->f, pow_vec);
1034
1035 release_src_vecs(gen);
1036 }
1037
1038
1039 static void
1040 emit_xpd(struct gen_context *gen, struct tgsi_full_instruction *inst)
1041 {
1042 int x0_vec, y0_vec, z0_vec;
1043 int x1_vec, y1_vec, z1_vec;
1044 int zero_vec, tmp_vec;
1045 int tmp2_vec;
1046
1047 zero_vec = ppc_allocate_vec_register(gen->f);
1048 ppc_vzero(gen->f, zero_vec);
1049
1050 tmp_vec = ppc_allocate_vec_register(gen->f);
1051 tmp2_vec = ppc_allocate_vec_register(gen->f);
1052
1053 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y) ||
1054 IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
1055 x0_vec = get_src_vec(gen, inst, 0, CHAN_X);
1056 x1_vec = get_src_vec(gen, inst, 1, CHAN_X);
1057 }
1058 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X) ||
1059 IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
1060 y0_vec = get_src_vec(gen, inst, 0, CHAN_Y);
1061 y1_vec = get_src_vec(gen, inst, 1, CHAN_Y);
1062 }
1063 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X) ||
1064 IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
1065 z0_vec = get_src_vec(gen, inst, 0, CHAN_Z);
1066 z1_vec = get_src_vec(gen, inst, 1, CHAN_Z);
1067 }
1068
1069 IF_IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X) {
1070 /* tmp = y0 * z1 */
1071 ppc_vmaddfp(gen->f, tmp_vec, y0_vec, z1_vec, zero_vec);
1072 /* tmp = tmp - z0 * y1*/
1073 ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, z0_vec, y1_vec);
1074 emit_store(gen, tmp_vec, inst, CHAN_X, FALSE);
1075 }
1076 IF_IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y) {
1077 /* tmp = z0 * x1 */
1078 ppc_vmaddfp(gen->f, tmp_vec, z0_vec, x1_vec, zero_vec);
1079 /* tmp = tmp - x0 * z1 */
1080 ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, x0_vec, z1_vec);
1081 emit_store(gen, tmp_vec, inst, CHAN_Y, FALSE);
1082 }
1083 IF_IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z) {
1084 /* tmp = x0 * y1 */
1085 ppc_vmaddfp(gen->f, tmp_vec, x0_vec, y1_vec, zero_vec);
1086 /* tmp = tmp - y0 * x1 */
1087 ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, y0_vec, x1_vec);
1088 emit_store(gen, tmp_vec, inst, CHAN_Z, FALSE);
1089 }
1090 /* W is undefined */
1091
1092 ppc_release_vec_register(gen->f, tmp_vec);
1093 ppc_release_vec_register(gen->f, zero_vec);
1094 release_src_vecs(gen);
1095 }
1096
1097 static int
1098 emit_instruction(struct gen_context *gen,
1099 struct tgsi_full_instruction *inst)
1100 {
1101
1102 /* we don't handle saturation/clamping yet */
1103 if (inst->Instruction.Saturate != TGSI_SAT_NONE)
1104 return 0;
1105
1106 /* need to use extra temps to fix SOA dependencies : */
1107 if (tgsi_check_soa_dependencies(inst))
1108 return FALSE;
1109
1110 switch (inst->Instruction.Opcode) {
1111 case TGSI_OPCODE_MOV:
1112 case TGSI_OPCODE_ABS:
1113 case TGSI_OPCODE_FLR:
1114 case TGSI_OPCODE_FRC:
1115 case TGSI_OPCODE_EX2:
1116 case TGSI_OPCODE_LG2:
1117 emit_unaryop(gen, inst);
1118 break;
1119 case TGSI_OPCODE_RSQ:
1120 case TGSI_OPCODE_RCP:
1121 emit_scalar_unaryop(gen, inst);
1122 break;
1123 case TGSI_OPCODE_ADD:
1124 case TGSI_OPCODE_SUB:
1125 case TGSI_OPCODE_MUL:
1126 case TGSI_OPCODE_MIN:
1127 case TGSI_OPCODE_MAX:
1128 emit_binop(gen, inst);
1129 break;
1130 case TGSI_OPCODE_SEQ:
1131 case TGSI_OPCODE_SNE:
1132 case TGSI_OPCODE_SLT:
1133 case TGSI_OPCODE_SGT:
1134 case TGSI_OPCODE_SLE:
1135 case TGSI_OPCODE_SGE:
1136 emit_inequality(gen, inst);
1137 break;
1138 case TGSI_OPCODE_MAD:
1139 case TGSI_OPCODE_LRP:
1140 emit_triop(gen, inst);
1141 break;
1142 case TGSI_OPCODE_DP3:
1143 case TGSI_OPCODE_DP4:
1144 case TGSI_OPCODE_DPH:
1145 emit_dotprod(gen, inst);
1146 break;
1147 case TGSI_OPCODE_LIT:
1148 emit_lit(gen, inst);
1149 break;
1150 case TGSI_OPCODE_LOG:
1151 emit_log(gen, inst);
1152 break;
1153 case TGSI_OPCODE_EXP:
1154 emit_exp(gen, inst);
1155 break;
1156 case TGSI_OPCODE_POW:
1157 emit_pow(gen, inst);
1158 break;
1159 case TGSI_OPCODE_XPD:
1160 emit_xpd(gen, inst);
1161 break;
1162 case TGSI_OPCODE_END:
1163 /* normal end */
1164 return 1;
1165 default:
1166 return 0;
1167 }
1168 return 1;
1169 }
1170
1171
1172 static void
1173 emit_declaration(
1174 struct ppc_function *func,
1175 struct tgsi_full_declaration *decl )
1176 {
1177 if( decl->Declaration.File == TGSI_FILE_INPUT ||
1178 decl->Declaration.File == TGSI_FILE_SYSTEM_VALUE ) {
1179 #if 0
1180 unsigned first, last, mask;
1181 unsigned i, j;
1182
1183 first = decl->Range.First;
1184 last = decl->Range.Last;
1185 mask = decl->Declaration.UsageMask;
1186
1187 for( i = first; i <= last; i++ ) {
1188 for( j = 0; j < NUM_CHANNELS; j++ ) {
1189 if( mask & (1 << j) ) {
1190 switch( decl->Declaration.Interpolate ) {
1191 case TGSI_INTERPOLATE_CONSTANT:
1192 emit_coef_a0( func, 0, i, j );
1193 emit_inputs( func, 0, i, j );
1194 break;
1195
1196 case TGSI_INTERPOLATE_LINEAR:
1197 emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
1198 emit_coef_dadx( func, 1, i, j );
1199 emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
1200 emit_coef_dady( func, 3, i, j );
1201 emit_mul( func, 0, 1 ); /* x * dadx */
1202 emit_coef_a0( func, 4, i, j );
1203 emit_mul( func, 2, 3 ); /* y * dady */
1204 emit_add( func, 0, 4 ); /* x * dadx + a0 */
1205 emit_add( func, 0, 2 ); /* x * dadx + y * dady + a0 */
1206 emit_inputs( func, 0, i, j );
1207 break;
1208
1209 case TGSI_INTERPOLATE_PERSPECTIVE:
1210 emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
1211 emit_coef_dadx( func, 1, i, j );
1212 emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
1213 emit_coef_dady( func, 3, i, j );
1214 emit_mul( func, 0, 1 ); /* x * dadx */
1215 emit_tempf( func, 4, 0, TGSI_SWIZZLE_W );
1216 emit_coef_a0( func, 5, i, j );
1217 emit_rcp( func, 4, 4 ); /* 1.0 / w */
1218 emit_mul( func, 2, 3 ); /* y * dady */
1219 emit_add( func, 0, 5 ); /* x * dadx + a0 */
1220 emit_add( func, 0, 2 ); /* x * dadx + y * dady + a0 */
1221 emit_mul( func, 0, 4 ); /* (x * dadx + y * dady + a0) / w */
1222 emit_inputs( func, 0, i, j );
1223 break;
1224
1225 default:
1226 assert( 0 );
1227 break;
1228 }
1229 }
1230 }
1231 }
1232 #endif
1233 }
1234 }
1235
1236
1237
1238 static void
1239 emit_prologue(struct ppc_function *func)
1240 {
1241 /* XXX set up stack frame */
1242 }
1243
1244
1245 static void
1246 emit_epilogue(struct ppc_function *func)
1247 {
1248 ppc_comment(func, -4, "Epilogue:");
1249 ppc_return(func);
1250 /* XXX restore prev stack frame */
1251 #if 0
1252 debug_printf("PPC: Emitted %u instructions\n", func->num_inst);
1253 #endif
1254 }
1255
1256
1257
1258 /**
1259 * Translate a TGSI vertex/fragment shader to PPC code.
1260 *
1261 * \param tokens the TGSI input shader
1262 * \param func the output PPC code/function
1263 * \param immediates buffer to place immediates, later passed to PPC func
1264 * \return TRUE for success, FALSE if translation failed
1265 */
1266 boolean
1267 tgsi_emit_ppc(const struct tgsi_token *tokens,
1268 struct ppc_function *func,
1269 float (*immediates)[4],
1270 boolean do_swizzles )
1271 {
1272 static int use_ppc_asm = -1;
1273 struct tgsi_parse_context parse;
1274 /*boolean instruction_phase = FALSE;*/
1275 unsigned ok = 1;
1276 uint num_immediates = 0;
1277 struct gen_context gen;
1278 uint ic = 0;
1279
1280 if (use_ppc_asm < 0) {
1281 /* If GALLIUM_NOPPC is set, don't use PPC codegen */
1282 use_ppc_asm = !debug_get_bool_option("GALLIUM_NOPPC", FALSE);
1283 }
1284 if (!use_ppc_asm)
1285 return FALSE;
1286
1287 if (0) {
1288 debug_printf("\n********* TGSI->PPC ********\n");
1289 tgsi_dump(tokens, 0);
1290 }
1291
1292 util_init_math();
1293
1294 init_gen_context(&gen, func);
1295
1296 emit_prologue(func);
1297
1298 tgsi_parse_init( &parse, tokens );
1299
1300 while (!tgsi_parse_end_of_tokens(&parse) && ok) {
1301 tgsi_parse_token(&parse);
1302
1303 switch (parse.FullToken.Token.Type) {
1304 case TGSI_TOKEN_TYPE_DECLARATION:
1305 if (parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
1306 emit_declaration(func, &parse.FullToken.FullDeclaration );
1307 }
1308 break;
1309
1310 case TGSI_TOKEN_TYPE_INSTRUCTION:
1311 if (func->print) {
1312 _debug_printf("# ");
1313 ic++;
1314 tgsi_dump_instruction(&parse.FullToken.FullInstruction, ic);
1315 }
1316
1317 ok = emit_instruction(&gen, &parse.FullToken.FullInstruction);
1318
1319 if (!ok) {
1320 uint opcode = parse.FullToken.FullInstruction.Instruction.Opcode;
1321 debug_printf("failed to translate tgsi opcode %d (%s) to PPC (%s)\n",
1322 opcode,
1323 tgsi_get_opcode_name(opcode),
1324 parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_VERTEX ?
1325 "vertex shader" : "fragment shader");
1326 }
1327 break;
1328
1329 case TGSI_TOKEN_TYPE_IMMEDIATE:
1330 /* splat each immediate component into a float[4] vector for SoA */
1331 {
1332 const uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
1333 uint i;
1334 assert(size <= 4);
1335 assert(num_immediates < TGSI_EXEC_NUM_IMMEDIATES);
1336 for (i = 0; i < size; i++) {
1337 immediates[num_immediates][i] =
1338 parse.FullToken.FullImmediate.u[i].Float;
1339 }
1340 num_immediates++;
1341 }
1342 break;
1343
1344 case TGSI_TOKEN_TYPE_PROPERTY:
1345 break;
1346
1347 default:
1348 ok = 0;
1349 assert( 0 );
1350 }
1351 }
1352
1353 emit_epilogue(func);
1354
1355 tgsi_parse_free( &parse );
1356
1357 if (ppc_num_instructions(func) == 0) {
1358 /* ran out of memory for instructions */
1359 ok = FALSE;
1360 }
1361
1362 if (!ok)
1363 debug_printf("TGSI->PPC translation failed\n");
1364
1365 return ok;
1366 }
1367
1368 #endif /* PIPE_ARCH_PPC */