1e00e2e54ed50a50e7474f363e3038c6f3b4799c
[mesa.git] / src / gallium / auxiliary / tgsi / tgsi_ppc.c
1 /**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * TGSI to PowerPC code generation.
30 */
31
32 #include "pipe/p_config.h"
33
34 #if defined(PIPE_ARCH_PPC)
35
36 #include "util/u_debug.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "util/u_math.h"
39 #include "util/u_memory.h"
40 #include "util/u_sse.h"
41 #include "tgsi/tgsi_info.h"
42 #include "tgsi/tgsi_parse.h"
43 #include "tgsi/tgsi_util.h"
44 #include "tgsi_dump.h"
45 #include "tgsi_exec.h"
46 #include "tgsi_ppc.h"
47 #include "rtasm/rtasm_ppc.h"
48
49
50 /**
51 * Since it's pretty much impossible to form PPC vector immediates, load
52 * them from memory here:
53 */
54 PIPE_ALIGN_VAR(16) const float
55 ppc_builtin_constants[] = {
56 1.0f, -128.0f, 128.0, 0.0
57 };
58
59 /**
60 * How many TGSI temps should be implemented with real PPC vector registers
61 * rather than memory.
62 */
63 #define MAX_PPC_TEMPS 3
64
65
66 /**
67 * Context/state used during code gen.
68 */
69 struct gen_context
70 {
71 struct ppc_function *f;
72 int inputs_reg; /**< GP register pointing to input params */
73 int outputs_reg; /**< GP register pointing to output params */
74 int temps_reg; /**< GP register pointing to temporary "registers" */
75 int immed_reg; /**< GP register pointing to immediates buffer */
76 int const_reg; /**< GP register pointing to constants buffer */
77 int builtins_reg; /**< GP register pointint to built-in constants */
78
79 int offset_reg; /**< used to reduce redundant li instructions */
80 int offset_value;
81
82 int one_vec; /**< vector register with {1.0, 1.0, 1.0, 1.0} */
83 int bit31_vec; /**< vector register with {1<<31, 1<<31, 1<<31, 1<<31} */
84
85 /**
86 * Map TGSI temps to PPC vector temps.
87 * We have 32 PPC vector regs. Use 16 of them for storing 4 TGSI temps.
88 * XXX currently only do this for TGSI temps [0..MAX_PPC_TEMPS-1].
89 */
90 int temps_map[MAX_PPC_TEMPS][4];
91
92 /**
93 * Cache of src registers.
94 * This is used to avoid redundant load instructions.
95 */
96 struct {
97 struct tgsi_full_src_register src;
98 uint chan;
99 uint vec;
100 } regs[12]; /* 3 src regs, 4 channels */
101 uint num_regs;
102 };
103
104
105 /**
106 * Initialize code generation context.
107 */
108 static void
109 init_gen_context(struct gen_context *gen, struct ppc_function *func)
110 {
111 uint i;
112
113 memset(gen, 0, sizeof(*gen));
114 gen->f = func;
115 gen->inputs_reg = ppc_reserve_register(func, 3); /* first function param */
116 gen->outputs_reg = ppc_reserve_register(func, 4); /* second function param */
117 gen->temps_reg = ppc_reserve_register(func, 5); /* ... */
118 gen->immed_reg = ppc_reserve_register(func, 6);
119 gen->const_reg = ppc_reserve_register(func, 7);
120 gen->builtins_reg = ppc_reserve_register(func, 8);
121 gen->one_vec = -1;
122 gen->bit31_vec = -1;
123 gen->offset_reg = -1;
124 gen->offset_value = -9999999;
125 for (i = 0; i < MAX_PPC_TEMPS; i++) {
126 gen->temps_map[i][0] = ppc_allocate_vec_register(gen->f);
127 gen->temps_map[i][1] = ppc_allocate_vec_register(gen->f);
128 gen->temps_map[i][2] = ppc_allocate_vec_register(gen->f);
129 gen->temps_map[i][3] = ppc_allocate_vec_register(gen->f);
130 }
131 }
132
133
134 /**
135 * Is the given TGSI register stored as a real PPC vector register?
136 */
137 static boolean
138 is_ppc_vec_temporary(const struct tgsi_full_src_register *reg)
139 {
140 return (reg->Register.File == TGSI_FILE_TEMPORARY &&
141 reg->Register.Index < MAX_PPC_TEMPS);
142 }
143
144
145 /**
146 * Is the given TGSI register stored as a real PPC vector register?
147 */
148 static boolean
149 is_ppc_vec_temporary_dst(const struct tgsi_full_dst_register *reg)
150 {
151 return (reg->Register.File == TGSI_FILE_TEMPORARY &&
152 reg->Register.Index < MAX_PPC_TEMPS);
153 }
154
155
156
157 /**
158 * All PPC vector load/store instructions form an effective address
159 * by adding the contents of two registers. For example:
160 * lvx v2,r8,r9 # v2 = memory[r8 + r9]
161 * stvx v2,r8,r9 # memory[r8 + r9] = v2;
162 * So our lvx/stvx instructions are typically preceded by an 'li' instruction
163 * to load r9 (above) with an immediate (an offset).
164 * This code emits that 'li' instruction, but only if the offset value is
165 * different than the previous 'li'.
166 * This optimization seems to save about 10% in the instruction count.
167 * Note that we need to unconditionally emit an 'li' inside basic blocks
168 * (such as inside loops).
169 */
170 static int
171 emit_li_offset(struct gen_context *gen, int offset)
172 {
173 if (gen->offset_reg <= 0) {
174 /* allocate a GP register for storing load/store offset */
175 gen->offset_reg = ppc_allocate_register(gen->f);
176 }
177
178 /* emit new 'li' if offset is changing */
179 if (gen->offset_value < 0 || gen->offset_value != offset) {
180 gen->offset_value = offset;
181 ppc_li(gen->f, gen->offset_reg, offset);
182 }
183
184 return gen->offset_reg;
185 }
186
187
188 /**
189 * Forces subsequent emit_li_offset() calls to emit an 'li'.
190 * To be called at the top of basic blocks.
191 */
192 static void
193 reset_li_offset(struct gen_context *gen)
194 {
195 gen->offset_value = -9999999;
196 }
197
198
199
200 /**
201 * Load the given vector register with {value, value, value, value}.
202 * The value must be in the ppu_builtin_constants[] array.
203 * We wouldn't need this if there was a simple way to load PPC vector
204 * registers with immediate values!
205 */
206 static void
207 load_constant_vec(struct gen_context *gen, int dst_vec, float value)
208 {
209 uint pos;
210 for (pos = 0; pos < Elements(ppc_builtin_constants); pos++) {
211 if (ppc_builtin_constants[pos] == value) {
212 int offset = pos * 4;
213 int offset_reg = emit_li_offset(gen, offset);
214
215 /* Load 4-byte word into vector register.
216 * The vector slot depends on the effective address we load from.
217 * We know that our builtins start at a 16-byte boundary so we
218 * know that 'swizzle' tells us which vector slot will have the
219 * loaded word. The other vector slots will be undefined.
220 */
221 ppc_lvewx(gen->f, dst_vec, gen->builtins_reg, offset_reg);
222 /* splat word[pos % 4] across the vector reg */
223 ppc_vspltw(gen->f, dst_vec, dst_vec, pos % 4);
224 return;
225 }
226 }
227 assert(0 && "Need to add new constant to ppc_builtin_constants array");
228 }
229
230
231 /**
232 * Return index of vector register containing {1.0, 1.0, 1.0, 1.0}.
233 */
234 static int
235 gen_one_vec(struct gen_context *gen)
236 {
237 if (gen->one_vec < 0) {
238 gen->one_vec = ppc_allocate_vec_register(gen->f);
239 load_constant_vec(gen, gen->one_vec, 1.0f);
240 }
241 return gen->one_vec;
242 }
243
244 /**
245 * Return index of vector register containing {1<<31, 1<<31, 1<<31, 1<<31}.
246 */
247 static int
248 gen_get_bit31_vec(struct gen_context *gen)
249 {
250 if (gen->bit31_vec < 0) {
251 gen->bit31_vec = ppc_allocate_vec_register(gen->f);
252 ppc_vspltisw(gen->f, gen->bit31_vec, -1);
253 ppc_vslw(gen->f, gen->bit31_vec, gen->bit31_vec, gen->bit31_vec);
254 }
255 return gen->bit31_vec;
256 }
257
258
259 /**
260 * Register fetch. Return PPC vector register with result.
261 */
262 static int
263 emit_fetch(struct gen_context *gen,
264 const struct tgsi_full_src_register *reg,
265 const unsigned chan_index)
266 {
267 uint swizzle = tgsi_util_get_full_src_register_swizzle(reg, chan_index);
268 int dst_vec = -1;
269
270 switch (swizzle) {
271 case TGSI_SWIZZLE_X:
272 case TGSI_SWIZZLE_Y:
273 case TGSI_SWIZZLE_Z:
274 case TGSI_SWIZZLE_W:
275 switch (reg->Register.File) {
276 case TGSI_FILE_INPUT:
277 {
278 int offset = (reg->Register.Index * 4 + swizzle) * 16;
279 int offset_reg = emit_li_offset(gen, offset);
280 dst_vec = ppc_allocate_vec_register(gen->f);
281 ppc_lvx(gen->f, dst_vec, gen->inputs_reg, offset_reg);
282 }
283 break;
284 case TGSI_FILE_SYSTEM_VALUE:
285 assert(!"unhandled system value in tgsi_ppc.c");
286 break;
287 case TGSI_FILE_TEMPORARY:
288 if (is_ppc_vec_temporary(reg)) {
289 /* use PPC vec register */
290 dst_vec = gen->temps_map[reg->Register.Index][swizzle];
291 }
292 else {
293 /* use memory-based temp register "file" */
294 int offset = (reg->Register.Index * 4 + swizzle) * 16;
295 int offset_reg = emit_li_offset(gen, offset);
296 dst_vec = ppc_allocate_vec_register(gen->f);
297 ppc_lvx(gen->f, dst_vec, gen->temps_reg, offset_reg);
298 }
299 break;
300 case TGSI_FILE_IMMEDIATE:
301 {
302 int offset = (reg->Register.Index * 4 + swizzle) * 4;
303 int offset_reg = emit_li_offset(gen, offset);
304 dst_vec = ppc_allocate_vec_register(gen->f);
305 /* Load 4-byte word into vector register.
306 * The vector slot depends on the effective address we load from.
307 * We know that our immediates start at a 16-byte boundary so we
308 * know that 'swizzle' tells us which vector slot will have the
309 * loaded word. The other vector slots will be undefined.
310 */
311 ppc_lvewx(gen->f, dst_vec, gen->immed_reg, offset_reg);
312 /* splat word[swizzle] across the vector reg */
313 ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
314 }
315 break;
316 case TGSI_FILE_CONSTANT:
317 {
318 int offset = (reg->Register.Index * 4 + swizzle) * 4;
319 int offset_reg = emit_li_offset(gen, offset);
320 dst_vec = ppc_allocate_vec_register(gen->f);
321 /* Load 4-byte word into vector register.
322 * The vector slot depends on the effective address we load from.
323 * We know that our constants start at a 16-byte boundary so we
324 * know that 'swizzle' tells us which vector slot will have the
325 * loaded word. The other vector slots will be undefined.
326 */
327 ppc_lvewx(gen->f, dst_vec, gen->const_reg, offset_reg);
328 /* splat word[swizzle] across the vector reg */
329 ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
330 }
331 break;
332 default:
333 assert( 0 );
334 }
335 break;
336 default:
337 assert( 0 );
338 }
339
340 assert(dst_vec >= 0);
341
342 {
343 uint sign_op = tgsi_util_get_full_src_register_sign_mode(reg, chan_index);
344 if (sign_op != TGSI_UTIL_SIGN_KEEP) {
345 int bit31_vec = gen_get_bit31_vec(gen);
346 int dst_vec2;
347
348 if (is_ppc_vec_temporary(reg)) {
349 /* need to use a new temp */
350 dst_vec2 = ppc_allocate_vec_register(gen->f);
351 }
352 else {
353 dst_vec2 = dst_vec;
354 }
355
356 switch (sign_op) {
357 case TGSI_UTIL_SIGN_CLEAR:
358 /* vec = vec & ~bit31 */
359 ppc_vandc(gen->f, dst_vec2, dst_vec, bit31_vec);
360 break;
361 case TGSI_UTIL_SIGN_SET:
362 /* vec = vec | bit31 */
363 ppc_vor(gen->f, dst_vec2, dst_vec, bit31_vec);
364 break;
365 case TGSI_UTIL_SIGN_TOGGLE:
366 /* vec = vec ^ bit31 */
367 ppc_vxor(gen->f, dst_vec2, dst_vec, bit31_vec);
368 break;
369 default:
370 assert(0);
371 }
372 return dst_vec2;
373 }
374 }
375
376 return dst_vec;
377 }
378
379
380
381 /**
382 * Test if two TGSI src registers refer to the same memory location.
383 * We use this to avoid redundant register loads.
384 */
385 static boolean
386 equal_src_locs(const struct tgsi_full_src_register *a, uint chan_a,
387 const struct tgsi_full_src_register *b, uint chan_b)
388 {
389 int swz_a, swz_b;
390 int sign_a, sign_b;
391 if (a->Register.File != b->Register.File)
392 return FALSE;
393 if (a->Register.Index != b->Register.Index)
394 return FALSE;
395 swz_a = tgsi_util_get_full_src_register_swizzle(a, chan_a);
396 swz_b = tgsi_util_get_full_src_register_swizzle(b, chan_b);
397 if (swz_a != swz_b)
398 return FALSE;
399 sign_a = tgsi_util_get_full_src_register_sign_mode(a, chan_a);
400 sign_b = tgsi_util_get_full_src_register_sign_mode(b, chan_b);
401 if (sign_a != sign_b)
402 return FALSE;
403 return TRUE;
404 }
405
406
407 /**
408 * Given a TGSI src register and channel index, return the PPC vector
409 * register containing the value. We use a cache to prevent re-loading
410 * the same register multiple times.
411 * \return index of PPC vector register with the desired src operand
412 */
413 static int
414 get_src_vec(struct gen_context *gen,
415 struct tgsi_full_instruction *inst, int src_reg, uint chan)
416 {
417 const const struct tgsi_full_src_register *src =
418 &inst->Src[src_reg];
419 int vec;
420 uint i;
421
422 /* check the cache */
423 for (i = 0; i < gen->num_regs; i++) {
424 if (equal_src_locs(&gen->regs[i].src, gen->regs[i].chan, src, chan)) {
425 /* cache hit */
426 assert(gen->regs[i].vec >= 0);
427 return gen->regs[i].vec;
428 }
429 }
430
431 /* cache miss: allocate new vec reg and emit fetch/load code */
432 vec = emit_fetch(gen, src, chan);
433 gen->regs[gen->num_regs].src = *src;
434 gen->regs[gen->num_regs].chan = chan;
435 gen->regs[gen->num_regs].vec = vec;
436 gen->num_regs++;
437
438 assert(gen->num_regs <= Elements(gen->regs));
439
440 assert(vec >= 0);
441
442 return vec;
443 }
444
445
446 /**
447 * Clear the src operand cache. To be called at the end of each emit function.
448 */
449 static void
450 release_src_vecs(struct gen_context *gen)
451 {
452 uint i;
453 for (i = 0; i < gen->num_regs; i++) {
454 const const struct tgsi_full_src_register src = gen->regs[i].src;
455 if (!is_ppc_vec_temporary(&src)) {
456 ppc_release_vec_register(gen->f, gen->regs[i].vec);
457 }
458 }
459 gen->num_regs = 0;
460 }
461
462
463
464 static int
465 get_dst_vec(struct gen_context *gen,
466 const struct tgsi_full_instruction *inst,
467 unsigned chan_index)
468 {
469 const struct tgsi_full_dst_register *reg = &inst->Dst[0];
470
471 if (is_ppc_vec_temporary_dst(reg)) {
472 int vec = gen->temps_map[reg->Register.Index][chan_index];
473 return vec;
474 }
475 else {
476 return ppc_allocate_vec_register(gen->f);
477 }
478 }
479
480
481 /**
482 * Register store. Store 'src_vec' at location indicated by 'reg'.
483 * \param free_vec Should the src_vec be released when done?
484 */
485 static void
486 emit_store(struct gen_context *gen,
487 int src_vec,
488 const struct tgsi_full_instruction *inst,
489 unsigned chan_index,
490 boolean free_vec)
491 {
492 const struct tgsi_full_dst_register *reg = &inst->Dst[0];
493
494 switch (reg->Register.File) {
495 case TGSI_FILE_OUTPUT:
496 {
497 int offset = (reg->Register.Index * 4 + chan_index) * 16;
498 int offset_reg = emit_li_offset(gen, offset);
499 ppc_stvx(gen->f, src_vec, gen->outputs_reg, offset_reg);
500 }
501 break;
502 case TGSI_FILE_TEMPORARY:
503 if (is_ppc_vec_temporary_dst(reg)) {
504 if (!free_vec) {
505 int dst_vec = gen->temps_map[reg->Register.Index][chan_index];
506 if (dst_vec != src_vec)
507 ppc_vmove(gen->f, dst_vec, src_vec);
508 }
509 free_vec = FALSE;
510 }
511 else {
512 int offset = (reg->Register.Index * 4 + chan_index) * 16;
513 int offset_reg = emit_li_offset(gen, offset);
514 ppc_stvx(gen->f, src_vec, gen->temps_reg, offset_reg);
515 }
516 break;
517 #if 0
518 case TGSI_FILE_ADDRESS:
519 emit_addrs(
520 func,
521 xmm,
522 reg->Register.Index,
523 chan_index );
524 break;
525 #endif
526 default:
527 assert( 0 );
528 }
529
530 #if 0
531 switch( inst->Instruction.Saturate ) {
532 case TGSI_SAT_NONE:
533 break;
534
535 case TGSI_SAT_ZERO_ONE:
536 /* assert( 0 ); */
537 break;
538
539 case TGSI_SAT_MINUS_PLUS_ONE:
540 assert( 0 );
541 break;
542 }
543 #endif
544
545 if (free_vec)
546 ppc_release_vec_register(gen->f, src_vec);
547 }
548
549
550 static void
551 emit_scalar_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
552 {
553 int v0, v1;
554 uint chan_index;
555
556 v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
557 v1 = ppc_allocate_vec_register(gen->f);
558
559 switch (inst->Instruction.Opcode) {
560 case TGSI_OPCODE_RSQ:
561 /* v1 = 1.0 / sqrt(v0) */
562 ppc_vrsqrtefp(gen->f, v1, v0);
563 break;
564 case TGSI_OPCODE_RCP:
565 /* v1 = 1.0 / v0 */
566 ppc_vrefp(gen->f, v1, v0);
567 break;
568 default:
569 assert(0);
570 }
571
572 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
573 emit_store(gen, v1, inst, chan_index, FALSE);
574 }
575
576 release_src_vecs(gen);
577 ppc_release_vec_register(gen->f, v1);
578 }
579
580
581 static void
582 emit_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
583 {
584 uint chan_index;
585
586 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan_index) {
587 int v0 = get_src_vec(gen, inst, 0, chan_index); /* v0 = srcreg[0] */
588 int v1 = get_dst_vec(gen, inst, chan_index);
589 switch (inst->Instruction.Opcode) {
590 case TGSI_OPCODE_ABS:
591 /* turn off the most significant bit of each vector float word */
592 {
593 int bit31_vec = gen_get_bit31_vec(gen);
594 ppc_vandc(gen->f, v1, v0, bit31_vec); /* v1 = v0 & ~bit31 */
595 }
596 break;
597 case TGSI_OPCODE_FLR:
598 ppc_vrfim(gen->f, v1, v0); /* v1 = floor(v0) */
599 break;
600 case TGSI_OPCODE_FRC:
601 ppc_vrfim(gen->f, v1, v0); /* tmp = floor(v0) */
602 ppc_vsubfp(gen->f, v1, v0, v1); /* v1 = v0 - v1 */
603 break;
604 case TGSI_OPCODE_EX2:
605 ppc_vexptefp(gen->f, v1, v0); /* v1 = 2^v0 */
606 break;
607 case TGSI_OPCODE_LG2:
608 /* XXX this may be broken! */
609 ppc_vlogefp(gen->f, v1, v0); /* v1 = log2(v0) */
610 break;
611 case TGSI_OPCODE_MOV:
612 if (v0 != v1)
613 ppc_vmove(gen->f, v1, v0);
614 break;
615 default:
616 assert(0);
617 }
618 emit_store(gen, v1, inst, chan_index, TRUE); /* store v0 */
619 }
620
621 release_src_vecs(gen);
622 }
623
624
625 static void
626 emit_binop(struct gen_context *gen, struct tgsi_full_instruction *inst)
627 {
628 int zero_vec = -1;
629 uint chan;
630
631 if (inst->Instruction.Opcode == TGSI_OPCODE_MUL) {
632 zero_vec = ppc_allocate_vec_register(gen->f);
633 ppc_vzero(gen->f, zero_vec);
634 }
635
636 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
637 /* fetch src operands */
638 int v0 = get_src_vec(gen, inst, 0, chan);
639 int v1 = get_src_vec(gen, inst, 1, chan);
640 int v2 = get_dst_vec(gen, inst, chan);
641
642 /* emit binop */
643 switch (inst->Instruction.Opcode) {
644 case TGSI_OPCODE_ADD:
645 ppc_vaddfp(gen->f, v2, v0, v1);
646 break;
647 case TGSI_OPCODE_SUB:
648 ppc_vsubfp(gen->f, v2, v0, v1);
649 break;
650 case TGSI_OPCODE_MUL:
651 ppc_vmaddfp(gen->f, v2, v0, v1, zero_vec);
652 break;
653 case TGSI_OPCODE_MIN:
654 ppc_vminfp(gen->f, v2, v0, v1);
655 break;
656 case TGSI_OPCODE_MAX:
657 ppc_vmaxfp(gen->f, v2, v0, v1);
658 break;
659 default:
660 assert(0);
661 }
662
663 /* store v2 */
664 emit_store(gen, v2, inst, chan, TRUE);
665 }
666
667 if (inst->Instruction.Opcode == TGSI_OPCODE_MUL)
668 ppc_release_vec_register(gen->f, zero_vec);
669
670 release_src_vecs(gen);
671 }
672
673
674 static void
675 emit_triop(struct gen_context *gen, struct tgsi_full_instruction *inst)
676 {
677 uint chan;
678
679 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
680 /* fetch src operands */
681 int v0 = get_src_vec(gen, inst, 0, chan);
682 int v1 = get_src_vec(gen, inst, 1, chan);
683 int v2 = get_src_vec(gen, inst, 2, chan);
684 int v3 = get_dst_vec(gen, inst, chan);
685
686 /* emit ALU */
687 switch (inst->Instruction.Opcode) {
688 case TGSI_OPCODE_MAD:
689 ppc_vmaddfp(gen->f, v3, v0, v1, v2); /* v3 = v0 * v1 + v2 */
690 break;
691 case TGSI_OPCODE_LRP:
692 ppc_vsubfp(gen->f, v3, v1, v2); /* v3 = v1 - v2 */
693 ppc_vmaddfp(gen->f, v3, v0, v3, v2); /* v3 = v0 * v3 + v2 */
694 break;
695 default:
696 assert(0);
697 }
698
699 /* store v3 */
700 emit_store(gen, v3, inst, chan, TRUE);
701 }
702
703 release_src_vecs(gen);
704 }
705
706
707 /**
708 * Vector comparisons, resulting in 1.0 or 0.0 values.
709 */
710 static void
711 emit_inequality(struct gen_context *gen, struct tgsi_full_instruction *inst)
712 {
713 uint chan;
714 int one_vec = gen_one_vec(gen);
715
716 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
717 /* fetch src operands */
718 int v0 = get_src_vec(gen, inst, 0, chan);
719 int v1 = get_src_vec(gen, inst, 1, chan);
720 int v2 = get_dst_vec(gen, inst, chan);
721 boolean complement = FALSE;
722
723 switch (inst->Instruction.Opcode) {
724 case TGSI_OPCODE_SNE:
725 complement = TRUE;
726 /* fall-through */
727 case TGSI_OPCODE_SEQ:
728 ppc_vcmpeqfpx(gen->f, v2, v0, v1); /* v2 = v0 == v1 ? ~0 : 0 */
729 break;
730
731 case TGSI_OPCODE_SGE:
732 complement = TRUE;
733 /* fall-through */
734 case TGSI_OPCODE_SLT:
735 ppc_vcmpgtfpx(gen->f, v2, v1, v0); /* v2 = v1 > v0 ? ~0 : 0 */
736 break;
737
738 case TGSI_OPCODE_SLE:
739 complement = TRUE;
740 /* fall-through */
741 case TGSI_OPCODE_SGT:
742 ppc_vcmpgtfpx(gen->f, v2, v0, v1); /* v2 = v0 > v1 ? ~0 : 0 */
743 break;
744 default:
745 assert(0);
746 }
747
748 /* v2 is now {0,0,0,0} or {~0,~0,~0,~0} */
749
750 if (complement)
751 ppc_vandc(gen->f, v2, one_vec, v2); /* v2 = one_vec & ~v2 */
752 else
753 ppc_vand(gen->f, v2, one_vec, v2); /* v2 = one_vec & v2 */
754
755 /* store v2 */
756 emit_store(gen, v2, inst, chan, TRUE);
757 }
758
759 release_src_vecs(gen);
760 }
761
762
763 static void
764 emit_dotprod(struct gen_context *gen, struct tgsi_full_instruction *inst)
765 {
766 int v0, v1, v2;
767 uint chan_index;
768
769 v2 = ppc_allocate_vec_register(gen->f);
770
771 ppc_vzero(gen->f, v2); /* v2 = {0, 0, 0, 0} */
772
773 v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_X); /* v0 = src0.XXXX */
774 v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_X); /* v1 = src1.XXXX */
775 ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
776
777 v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_Y); /* v0 = src0.YYYY */
778 v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_Y); /* v1 = src1.YYYY */
779 ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
780
781 v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_Z); /* v0 = src0.ZZZZ */
782 v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_Z); /* v1 = src1.ZZZZ */
783 ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
784
785 if (inst->Instruction.Opcode == TGSI_OPCODE_DP4) {
786 v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_W); /* v0 = src0.WWWW */
787 v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_W); /* v1 = src1.WWWW */
788 ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
789 }
790 else if (inst->Instruction.Opcode == TGSI_OPCODE_DPH) {
791 v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_W); /* v1 = src1.WWWW */
792 ppc_vaddfp(gen->f, v2, v2, v1); /* v2 = v2 + v1 */
793 }
794
795 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan_index) {
796 emit_store(gen, v2, inst, chan_index, FALSE); /* store v2, free v2 later */
797 }
798
799 release_src_vecs(gen);
800
801 ppc_release_vec_register(gen->f, v2);
802 }
803
804
805 /** Approximation for vr = pow(va, vb) */
806 static void
807 ppc_vec_pow(struct ppc_function *f, int vr, int va, int vb)
808 {
809 /* pow(a,b) ~= exp2(log2(a) * b) */
810 int t_vec = ppc_allocate_vec_register(f);
811 int zero_vec = ppc_allocate_vec_register(f);
812
813 ppc_vzero(f, zero_vec);
814
815 ppc_vlogefp(f, t_vec, va); /* t = log2(va) */
816 ppc_vmaddfp(f, t_vec, t_vec, vb, zero_vec); /* t = t * vb + zero */
817 ppc_vexptefp(f, vr, t_vec); /* vr = 2^t */
818
819 ppc_release_vec_register(f, t_vec);
820 ppc_release_vec_register(f, zero_vec);
821 }
822
823
824 static void
825 emit_lit(struct gen_context *gen, struct tgsi_full_instruction *inst)
826 {
827 int one_vec = gen_one_vec(gen);
828
829 /* Compute X */
830 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X)) {
831 emit_store(gen, one_vec, inst, TGSI_CHAN_X, FALSE);
832 }
833
834 /* Compute Y, Z */
835 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y) ||
836 TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
837 int x_vec;
838 int zero_vec = ppc_allocate_vec_register(gen->f);
839
840 x_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X); /* x_vec = src[0].x */
841
842 ppc_vzero(gen->f, zero_vec); /* zero = {0,0,0,0} */
843 ppc_vmaxfp(gen->f, x_vec, x_vec, zero_vec); /* x_vec = max(x_vec, 0) */
844
845 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
846 emit_store(gen, x_vec, inst, TGSI_CHAN_Y, FALSE);
847 }
848
849 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
850 int y_vec, w_vec;
851 int z_vec = ppc_allocate_vec_register(gen->f);
852 int pow_vec = ppc_allocate_vec_register(gen->f);
853 int pos_vec = ppc_allocate_vec_register(gen->f);
854 int p128_vec = ppc_allocate_vec_register(gen->f);
855 int n128_vec = ppc_allocate_vec_register(gen->f);
856
857 y_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_Y); /* y_vec = src[0].y */
858 ppc_vmaxfp(gen->f, y_vec, y_vec, zero_vec); /* y_vec = max(y_vec, 0) */
859
860 w_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_W); /* w_vec = src[0].w */
861
862 /* clamp W to [-128, 128] */
863 load_constant_vec(gen, p128_vec, 128.0f);
864 load_constant_vec(gen, n128_vec, -128.0f);
865 ppc_vmaxfp(gen->f, w_vec, w_vec, n128_vec); /* w = max(w, -128) */
866 ppc_vminfp(gen->f, w_vec, w_vec, p128_vec); /* w = min(w, 128) */
867
868 /* if temp.x > 0
869 * z = pow(tmp.y, tmp.w)
870 * else
871 * z = 0.0
872 */
873 ppc_vec_pow(gen->f, pow_vec, y_vec, w_vec); /* pow = pow(y, w) */
874 ppc_vcmpgtfpx(gen->f, pos_vec, x_vec, zero_vec); /* pos = x > 0 */
875 ppc_vand(gen->f, z_vec, pow_vec, pos_vec); /* z = pow & pos */
876
877 emit_store(gen, z_vec, inst, TGSI_CHAN_Z, FALSE);
878
879 ppc_release_vec_register(gen->f, z_vec);
880 ppc_release_vec_register(gen->f, pow_vec);
881 ppc_release_vec_register(gen->f, pos_vec);
882 ppc_release_vec_register(gen->f, p128_vec);
883 ppc_release_vec_register(gen->f, n128_vec);
884 }
885
886 ppc_release_vec_register(gen->f, zero_vec);
887 }
888
889 /* Compute W */
890 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_W)) {
891 emit_store(gen, one_vec, inst, TGSI_CHAN_W, FALSE);
892 }
893
894 release_src_vecs(gen);
895 }
896
897
898 static void
899 emit_exp(struct gen_context *gen, struct tgsi_full_instruction *inst)
900 {
901 const int one_vec = gen_one_vec(gen);
902 int src_vec;
903
904 /* get src arg */
905 src_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
906
907 /* Compute X = 2^floor(src) */
908 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X)) {
909 int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_X);
910 int tmp_vec = ppc_allocate_vec_register(gen->f);
911 ppc_vrfim(gen->f, tmp_vec, src_vec); /* tmp = floor(src); */
912 ppc_vexptefp(gen->f, dst_vec, tmp_vec); /* dst = 2 ^ tmp */
913 emit_store(gen, dst_vec, inst, TGSI_CHAN_X, TRUE);
914 ppc_release_vec_register(gen->f, tmp_vec);
915 }
916
917 /* Compute Y = src - floor(src) */
918 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
919 int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_Y);
920 int tmp_vec = ppc_allocate_vec_register(gen->f);
921 ppc_vrfim(gen->f, tmp_vec, src_vec); /* tmp = floor(src); */
922 ppc_vsubfp(gen->f, dst_vec, src_vec, tmp_vec); /* dst = src - tmp */
923 emit_store(gen, dst_vec, inst, TGSI_CHAN_Y, TRUE);
924 ppc_release_vec_register(gen->f, tmp_vec);
925 }
926
927 /* Compute Z = RoughApprox2ToX(src) */
928 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
929 int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_Z);
930 ppc_vexptefp(gen->f, dst_vec, src_vec); /* dst = 2 ^ src */
931 emit_store(gen, dst_vec, inst, TGSI_CHAN_Z, TRUE);
932 }
933
934 /* Compute W = 1.0 */
935 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_W)) {
936 emit_store(gen, one_vec, inst, TGSI_CHAN_W, FALSE);
937 }
938
939 release_src_vecs(gen);
940 }
941
942
943 static void
944 emit_log(struct gen_context *gen, struct tgsi_full_instruction *inst)
945 {
946 const int bit31_vec = gen_get_bit31_vec(gen);
947 const int one_vec = gen_one_vec(gen);
948 int src_vec, abs_vec;
949
950 /* get src arg */
951 src_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
952
953 /* compute abs(src) */
954 abs_vec = ppc_allocate_vec_register(gen->f);
955 ppc_vandc(gen->f, abs_vec, src_vec, bit31_vec); /* abs = src & ~bit31 */
956
957 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) &&
958 TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
959
960 /* compute tmp = floor(log2(abs)) */
961 int tmp_vec = ppc_allocate_vec_register(gen->f);
962 ppc_vlogefp(gen->f, tmp_vec, abs_vec); /* tmp = log2(abs) */
963 ppc_vrfim(gen->f, tmp_vec, tmp_vec); /* tmp = floor(tmp); */
964
965 /* Compute X = tmp */
966 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X)) {
967 emit_store(gen, tmp_vec, inst, TGSI_CHAN_X, FALSE);
968 }
969
970 /* Compute Y = abs / 2^tmp */
971 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
972 const int zero_vec = ppc_allocate_vec_register(gen->f);
973 ppc_vzero(gen->f, zero_vec);
974 ppc_vexptefp(gen->f, tmp_vec, tmp_vec); /* tmp = 2 ^ tmp */
975 ppc_vrefp(gen->f, tmp_vec, tmp_vec); /* tmp = 1 / tmp */
976 /* tmp = abs * tmp + zero */
977 ppc_vmaddfp(gen->f, tmp_vec, abs_vec, tmp_vec, zero_vec);
978 emit_store(gen, tmp_vec, inst, TGSI_CHAN_Y, FALSE);
979 ppc_release_vec_register(gen->f, zero_vec);
980 }
981
982 ppc_release_vec_register(gen->f, tmp_vec);
983 }
984
985 /* Compute Z = RoughApproxLog2(abs) */
986 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
987 int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_Z);
988 ppc_vlogefp(gen->f, dst_vec, abs_vec); /* dst = log2(abs) */
989 emit_store(gen, dst_vec, inst, TGSI_CHAN_Z, TRUE);
990 }
991
992 /* Compute W = 1.0 */
993 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_W)) {
994 emit_store(gen, one_vec, inst, TGSI_CHAN_W, FALSE);
995 }
996
997 ppc_release_vec_register(gen->f, abs_vec);
998 release_src_vecs(gen);
999 }
1000
1001
1002 static void
1003 emit_pow(struct gen_context *gen, struct tgsi_full_instruction *inst)
1004 {
1005 int s0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
1006 int s1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_X);
1007 int pow_vec = ppc_allocate_vec_register(gen->f);
1008 int chan;
1009
1010 ppc_vec_pow(gen->f, pow_vec, s0_vec, s1_vec);
1011
1012 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
1013 emit_store(gen, pow_vec, inst, chan, FALSE);
1014 }
1015
1016 ppc_release_vec_register(gen->f, pow_vec);
1017
1018 release_src_vecs(gen);
1019 }
1020
1021
1022 static void
1023 emit_xpd(struct gen_context *gen, struct tgsi_full_instruction *inst)
1024 {
1025 int x0_vec, y0_vec, z0_vec;
1026 int x1_vec, y1_vec, z1_vec;
1027 int zero_vec, tmp_vec;
1028 int tmp2_vec;
1029
1030 zero_vec = ppc_allocate_vec_register(gen->f);
1031 ppc_vzero(gen->f, zero_vec);
1032
1033 tmp_vec = ppc_allocate_vec_register(gen->f);
1034 tmp2_vec = ppc_allocate_vec_register(gen->f);
1035
1036 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y) ||
1037 TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
1038 x0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
1039 x1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_X);
1040 }
1041 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) ||
1042 TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
1043 y0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_Y);
1044 y1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_Y);
1045 }
1046 if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) ||
1047 TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
1048 z0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_Z);
1049 z1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_Z);
1050 }
1051
1052 TGSI_IF_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) {
1053 /* tmp = y0 * z1 */
1054 ppc_vmaddfp(gen->f, tmp_vec, y0_vec, z1_vec, zero_vec);
1055 /* tmp = tmp - z0 * y1*/
1056 ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, z0_vec, y1_vec);
1057 emit_store(gen, tmp_vec, inst, TGSI_CHAN_X, FALSE);
1058 }
1059 TGSI_IF_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y) {
1060 /* tmp = z0 * x1 */
1061 ppc_vmaddfp(gen->f, tmp_vec, z0_vec, x1_vec, zero_vec);
1062 /* tmp = tmp - x0 * z1 */
1063 ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, x0_vec, z1_vec);
1064 emit_store(gen, tmp_vec, inst, TGSI_CHAN_Y, FALSE);
1065 }
1066 TGSI_IF_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z) {
1067 /* tmp = x0 * y1 */
1068 ppc_vmaddfp(gen->f, tmp_vec, x0_vec, y1_vec, zero_vec);
1069 /* tmp = tmp - y0 * x1 */
1070 ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, y0_vec, x1_vec);
1071 emit_store(gen, tmp_vec, inst, TGSI_CHAN_Z, FALSE);
1072 }
1073 /* W is undefined */
1074
1075 ppc_release_vec_register(gen->f, tmp_vec);
1076 ppc_release_vec_register(gen->f, zero_vec);
1077 release_src_vecs(gen);
1078 }
1079
1080 static int
1081 emit_instruction(struct gen_context *gen,
1082 struct tgsi_full_instruction *inst)
1083 {
1084
1085 /* we don't handle saturation/clamping yet */
1086 if (inst->Instruction.Saturate != TGSI_SAT_NONE)
1087 return 0;
1088
1089 /* need to use extra temps to fix SOA dependencies : */
1090 if (tgsi_check_soa_dependencies(inst))
1091 return FALSE;
1092
1093 switch (inst->Instruction.Opcode) {
1094 case TGSI_OPCODE_MOV:
1095 case TGSI_OPCODE_ABS:
1096 case TGSI_OPCODE_FLR:
1097 case TGSI_OPCODE_FRC:
1098 case TGSI_OPCODE_EX2:
1099 case TGSI_OPCODE_LG2:
1100 emit_unaryop(gen, inst);
1101 break;
1102 case TGSI_OPCODE_RSQ:
1103 case TGSI_OPCODE_RCP:
1104 emit_scalar_unaryop(gen, inst);
1105 break;
1106 case TGSI_OPCODE_ADD:
1107 case TGSI_OPCODE_SUB:
1108 case TGSI_OPCODE_MUL:
1109 case TGSI_OPCODE_MIN:
1110 case TGSI_OPCODE_MAX:
1111 emit_binop(gen, inst);
1112 break;
1113 case TGSI_OPCODE_SEQ:
1114 case TGSI_OPCODE_SNE:
1115 case TGSI_OPCODE_SLT:
1116 case TGSI_OPCODE_SGT:
1117 case TGSI_OPCODE_SLE:
1118 case TGSI_OPCODE_SGE:
1119 emit_inequality(gen, inst);
1120 break;
1121 case TGSI_OPCODE_MAD:
1122 case TGSI_OPCODE_LRP:
1123 emit_triop(gen, inst);
1124 break;
1125 case TGSI_OPCODE_DP3:
1126 case TGSI_OPCODE_DP4:
1127 case TGSI_OPCODE_DPH:
1128 emit_dotprod(gen, inst);
1129 break;
1130 case TGSI_OPCODE_LIT:
1131 emit_lit(gen, inst);
1132 break;
1133 case TGSI_OPCODE_LOG:
1134 emit_log(gen, inst);
1135 break;
1136 case TGSI_OPCODE_EXP:
1137 emit_exp(gen, inst);
1138 break;
1139 case TGSI_OPCODE_POW:
1140 emit_pow(gen, inst);
1141 break;
1142 case TGSI_OPCODE_XPD:
1143 emit_xpd(gen, inst);
1144 break;
1145 case TGSI_OPCODE_END:
1146 /* normal end */
1147 return 1;
1148 default:
1149 return 0;
1150 }
1151 return 1;
1152 }
1153
1154
1155 static void
1156 emit_declaration(
1157 struct ppc_function *func,
1158 struct tgsi_full_declaration *decl )
1159 {
1160 if( decl->Declaration.File == TGSI_FILE_INPUT ||
1161 decl->Declaration.File == TGSI_FILE_SYSTEM_VALUE ) {
1162 #if 0
1163 unsigned first, last, mask;
1164 unsigned i, j;
1165
1166 first = decl->Range.First;
1167 last = decl->Range.Last;
1168 mask = decl->Declaration.UsageMask;
1169
1170 for( i = first; i <= last; i++ ) {
1171 for( j = 0; j < NUM_CHANNELS; j++ ) {
1172 if( mask & (1 << j) ) {
1173 switch( decl->Declaration.Interpolate ) {
1174 case TGSI_INTERPOLATE_CONSTANT:
1175 emit_coef_a0( func, 0, i, j );
1176 emit_inputs( func, 0, i, j );
1177 break;
1178
1179 case TGSI_INTERPOLATE_LINEAR:
1180 emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
1181 emit_coef_dadx( func, 1, i, j );
1182 emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
1183 emit_coef_dady( func, 3, i, j );
1184 emit_mul( func, 0, 1 ); /* x * dadx */
1185 emit_coef_a0( func, 4, i, j );
1186 emit_mul( func, 2, 3 ); /* y * dady */
1187 emit_add( func, 0, 4 ); /* x * dadx + a0 */
1188 emit_add( func, 0, 2 ); /* x * dadx + y * dady + a0 */
1189 emit_inputs( func, 0, i, j );
1190 break;
1191
1192 case TGSI_INTERPOLATE_PERSPECTIVE:
1193 emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
1194 emit_coef_dadx( func, 1, i, j );
1195 emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
1196 emit_coef_dady( func, 3, i, j );
1197 emit_mul( func, 0, 1 ); /* x * dadx */
1198 emit_tempf( func, 4, 0, TGSI_SWIZZLE_W );
1199 emit_coef_a0( func, 5, i, j );
1200 emit_rcp( func, 4, 4 ); /* 1.0 / w */
1201 emit_mul( func, 2, 3 ); /* y * dady */
1202 emit_add( func, 0, 5 ); /* x * dadx + a0 */
1203 emit_add( func, 0, 2 ); /* x * dadx + y * dady + a0 */
1204 emit_mul( func, 0, 4 ); /* (x * dadx + y * dady + a0) / w */
1205 emit_inputs( func, 0, i, j );
1206 break;
1207
1208 default:
1209 assert( 0 );
1210 break;
1211 }
1212 }
1213 }
1214 }
1215 #endif
1216 }
1217 }
1218
1219
1220
1221 static void
1222 emit_prologue(struct ppc_function *func)
1223 {
1224 /* XXX set up stack frame */
1225 }
1226
1227
1228 static void
1229 emit_epilogue(struct ppc_function *func)
1230 {
1231 ppc_comment(func, -4, "Epilogue:");
1232 ppc_return(func);
1233 /* XXX restore prev stack frame */
1234 #if 0
1235 debug_printf("PPC: Emitted %u instructions\n", func->num_inst);
1236 #endif
1237 }
1238
1239
1240
1241 /**
1242 * Translate a TGSI vertex/fragment shader to PPC code.
1243 *
1244 * \param tokens the TGSI input shader
1245 * \param func the output PPC code/function
1246 * \param immediates buffer to place immediates, later passed to PPC func
1247 * \return TRUE for success, FALSE if translation failed
1248 */
1249 boolean
1250 tgsi_emit_ppc(const struct tgsi_token *tokens,
1251 struct ppc_function *func,
1252 float (*immediates)[4],
1253 boolean do_swizzles )
1254 {
1255 static int use_ppc_asm = -1;
1256 struct tgsi_parse_context parse;
1257 /*boolean instruction_phase = FALSE;*/
1258 unsigned ok = 1;
1259 uint num_immediates = 0;
1260 struct gen_context gen;
1261 uint ic = 0;
1262
1263 if (use_ppc_asm < 0) {
1264 /* If GALLIUM_NOPPC is set, don't use PPC codegen */
1265 use_ppc_asm = !debug_get_bool_option("GALLIUM_NOPPC", FALSE);
1266 }
1267 if (!use_ppc_asm)
1268 return FALSE;
1269
1270 if (0) {
1271 debug_printf("\n********* TGSI->PPC ********\n");
1272 tgsi_dump(tokens, 0);
1273 }
1274
1275 util_init_math();
1276
1277 init_gen_context(&gen, func);
1278
1279 emit_prologue(func);
1280
1281 tgsi_parse_init( &parse, tokens );
1282
1283 while (!tgsi_parse_end_of_tokens(&parse) && ok) {
1284 tgsi_parse_token(&parse);
1285
1286 switch (parse.FullToken.Token.Type) {
1287 case TGSI_TOKEN_TYPE_DECLARATION:
1288 if (parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
1289 emit_declaration(func, &parse.FullToken.FullDeclaration );
1290 }
1291 break;
1292
1293 case TGSI_TOKEN_TYPE_INSTRUCTION:
1294 if (func->print) {
1295 _debug_printf("# ");
1296 ic++;
1297 tgsi_dump_instruction(&parse.FullToken.FullInstruction, ic);
1298 }
1299
1300 ok = emit_instruction(&gen, &parse.FullToken.FullInstruction);
1301
1302 if (!ok) {
1303 uint opcode = parse.FullToken.FullInstruction.Instruction.Opcode;
1304 debug_printf("failed to translate tgsi opcode %d (%s) to PPC (%s)\n",
1305 opcode,
1306 tgsi_get_opcode_name(opcode),
1307 parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_VERTEX ?
1308 "vertex shader" : "fragment shader");
1309 }
1310 break;
1311
1312 case TGSI_TOKEN_TYPE_IMMEDIATE:
1313 /* splat each immediate component into a float[4] vector for SoA */
1314 {
1315 const uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
1316 uint i;
1317 assert(size <= 4);
1318 assert(num_immediates < TGSI_EXEC_NUM_IMMEDIATES);
1319 for (i = 0; i < size; i++) {
1320 immediates[num_immediates][i] =
1321 parse.FullToken.FullImmediate.u[i].Float;
1322 }
1323 num_immediates++;
1324 }
1325 break;
1326
1327 case TGSI_TOKEN_TYPE_PROPERTY:
1328 break;
1329
1330 default:
1331 ok = 0;
1332 assert( 0 );
1333 }
1334 }
1335
1336 emit_epilogue(func);
1337
1338 tgsi_parse_free( &parse );
1339
1340 if (ppc_num_instructions(func) == 0) {
1341 /* ran out of memory for instructions */
1342 ok = FALSE;
1343 }
1344
1345 if (!ok)
1346 debug_printf("TGSI->PPC translation failed\n");
1347
1348 return ok;
1349 }
1350
1351 #else
1352
1353 void ppc_dummy_func(void);
1354
1355 void ppc_dummy_func(void)
1356 {
1357 }
1358
1359 #endif /* PIPE_ARCH_PPC */