gallium: remove the swizzling parts of ExtSwizzle
[mesa.git] / src / gallium / auxiliary / tgsi / tgsi_ppc.c
1 /**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * TGSI to PowerPC code generation.
30 */
31
32 #include "pipe/p_config.h"
33
34 #if defined(PIPE_ARCH_PPC)
35
36 #include "util/u_debug.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "util/u_math.h"
39 #include "util/u_memory.h"
40 #include "util/u_sse.h"
41 #include "tgsi/tgsi_info.h"
42 #include "tgsi/tgsi_parse.h"
43 #include "tgsi/tgsi_util.h"
44 #include "tgsi_dump.h"
45 #include "tgsi_exec.h"
46 #include "tgsi_ppc.h"
47 #include "rtasm/rtasm_ppc.h"
48
49
50 /**
51 * Since it's pretty much impossible to form PPC vector immediates, load
52 * them from memory here:
53 */
54 const float ppc_builtin_constants[] ALIGN16_ATTRIB = {
55 1.0f, -128.0f, 128.0, 0.0
56 };
57
58
59 #define FOR_EACH_CHANNEL( CHAN )\
60 for (CHAN = 0; CHAN < NUM_CHANNELS; CHAN++)
61
62 #define IS_DST0_CHANNEL_ENABLED( INST, CHAN )\
63 ((INST).FullDstRegisters[0].DstRegister.WriteMask & (1 << (CHAN)))
64
65 #define IF_IS_DST0_CHANNEL_ENABLED( INST, CHAN )\
66 if (IS_DST0_CHANNEL_ENABLED( INST, CHAN ))
67
68 #define FOR_EACH_DST0_ENABLED_CHANNEL( INST, CHAN )\
69 FOR_EACH_CHANNEL( CHAN )\
70 IF_IS_DST0_CHANNEL_ENABLED( INST, CHAN )
71
72 #define CHAN_X 0
73 #define CHAN_Y 1
74 #define CHAN_Z 2
75 #define CHAN_W 3
76
77
78 /**
79 * How many TGSI temps should be implemented with real PPC vector registers
80 * rather than memory.
81 */
82 #define MAX_PPC_TEMPS 3
83
84
85 /**
86 * Context/state used during code gen.
87 */
88 struct gen_context
89 {
90 struct ppc_function *f;
91 int inputs_reg; /**< GP register pointing to input params */
92 int outputs_reg; /**< GP register pointing to output params */
93 int temps_reg; /**< GP register pointing to temporary "registers" */
94 int immed_reg; /**< GP register pointing to immediates buffer */
95 int const_reg; /**< GP register pointing to constants buffer */
96 int builtins_reg; /**< GP register pointint to built-in constants */
97
98 int offset_reg; /**< used to reduce redundant li instructions */
99 int offset_value;
100
101 int one_vec; /**< vector register with {1.0, 1.0, 1.0, 1.0} */
102 int bit31_vec; /**< vector register with {1<<31, 1<<31, 1<<31, 1<<31} */
103
104 /**
105 * Map TGSI temps to PPC vector temps.
106 * We have 32 PPC vector regs. Use 16 of them for storing 4 TGSI temps.
107 * XXX currently only do this for TGSI temps [0..MAX_PPC_TEMPS-1].
108 */
109 int temps_map[MAX_PPC_TEMPS][4];
110
111 /**
112 * Cache of src registers.
113 * This is used to avoid redundant load instructions.
114 */
115 struct {
116 struct tgsi_full_src_register src;
117 uint chan;
118 uint vec;
119 } regs[12]; /* 3 src regs, 4 channels */
120 uint num_regs;
121 };
122
123
124 /**
125 * Initialize code generation context.
126 */
127 static void
128 init_gen_context(struct gen_context *gen, struct ppc_function *func)
129 {
130 uint i;
131
132 memset(gen, 0, sizeof(*gen));
133 gen->f = func;
134 gen->inputs_reg = ppc_reserve_register(func, 3); /* first function param */
135 gen->outputs_reg = ppc_reserve_register(func, 4); /* second function param */
136 gen->temps_reg = ppc_reserve_register(func, 5); /* ... */
137 gen->immed_reg = ppc_reserve_register(func, 6);
138 gen->const_reg = ppc_reserve_register(func, 7);
139 gen->builtins_reg = ppc_reserve_register(func, 8);
140 gen->one_vec = -1;
141 gen->bit31_vec = -1;
142 gen->offset_reg = -1;
143 gen->offset_value = -9999999;
144 for (i = 0; i < MAX_PPC_TEMPS; i++) {
145 gen->temps_map[i][0] = ppc_allocate_vec_register(gen->f);
146 gen->temps_map[i][1] = ppc_allocate_vec_register(gen->f);
147 gen->temps_map[i][2] = ppc_allocate_vec_register(gen->f);
148 gen->temps_map[i][3] = ppc_allocate_vec_register(gen->f);
149 }
150 }
151
152
153 /**
154 * Is the given TGSI register stored as a real PPC vector register?
155 */
156 static boolean
157 is_ppc_vec_temporary(const struct tgsi_full_src_register *reg)
158 {
159 return (reg->SrcRegister.File == TGSI_FILE_TEMPORARY &&
160 reg->SrcRegister.Index < MAX_PPC_TEMPS);
161 }
162
163
164 /**
165 * Is the given TGSI register stored as a real PPC vector register?
166 */
167 static boolean
168 is_ppc_vec_temporary_dst(const struct tgsi_full_dst_register *reg)
169 {
170 return (reg->DstRegister.File == TGSI_FILE_TEMPORARY &&
171 reg->DstRegister.Index < MAX_PPC_TEMPS);
172 }
173
174
175
176 /**
177 * All PPC vector load/store instructions form an effective address
178 * by adding the contents of two registers. For example:
179 * lvx v2,r8,r9 # v2 = memory[r8 + r9]
180 * stvx v2,r8,r9 # memory[r8 + r9] = v2;
181 * So our lvx/stvx instructions are typically preceded by an 'li' instruction
182 * to load r9 (above) with an immediate (an offset).
183 * This code emits that 'li' instruction, but only if the offset value is
184 * different than the previous 'li'.
185 * This optimization seems to save about 10% in the instruction count.
186 * Note that we need to unconditionally emit an 'li' inside basic blocks
187 * (such as inside loops).
188 */
189 static int
190 emit_li_offset(struct gen_context *gen, int offset)
191 {
192 if (gen->offset_reg <= 0) {
193 /* allocate a GP register for storing load/store offset */
194 gen->offset_reg = ppc_allocate_register(gen->f);
195 }
196
197 /* emit new 'li' if offset is changing */
198 if (gen->offset_value < 0 || gen->offset_value != offset) {
199 gen->offset_value = offset;
200 ppc_li(gen->f, gen->offset_reg, offset);
201 }
202
203 return gen->offset_reg;
204 }
205
206
207 /**
208 * Forces subsequent emit_li_offset() calls to emit an 'li'.
209 * To be called at the top of basic blocks.
210 */
211 static void
212 reset_li_offset(struct gen_context *gen)
213 {
214 gen->offset_value = -9999999;
215 }
216
217
218
219 /**
220 * Load the given vector register with {value, value, value, value}.
221 * The value must be in the ppu_builtin_constants[] array.
222 * We wouldn't need this if there was a simple way to load PPC vector
223 * registers with immediate values!
224 */
225 static void
226 load_constant_vec(struct gen_context *gen, int dst_vec, float value)
227 {
228 uint pos;
229 for (pos = 0; pos < Elements(ppc_builtin_constants); pos++) {
230 if (ppc_builtin_constants[pos] == value) {
231 int offset = pos * 4;
232 int offset_reg = emit_li_offset(gen, offset);
233
234 /* Load 4-byte word into vector register.
235 * The vector slot depends on the effective address we load from.
236 * We know that our builtins start at a 16-byte boundary so we
237 * know that 'swizzle' tells us which vector slot will have the
238 * loaded word. The other vector slots will be undefined.
239 */
240 ppc_lvewx(gen->f, dst_vec, gen->builtins_reg, offset_reg);
241 /* splat word[pos % 4] across the vector reg */
242 ppc_vspltw(gen->f, dst_vec, dst_vec, pos % 4);
243 return;
244 }
245 }
246 assert(0 && "Need to add new constant to ppc_builtin_constants array");
247 }
248
249
250 /**
251 * Return index of vector register containing {1.0, 1.0, 1.0, 1.0}.
252 */
253 static int
254 gen_one_vec(struct gen_context *gen)
255 {
256 if (gen->one_vec < 0) {
257 gen->one_vec = ppc_allocate_vec_register(gen->f);
258 load_constant_vec(gen, gen->one_vec, 1.0f);
259 }
260 return gen->one_vec;
261 }
262
263 /**
264 * Return index of vector register containing {1<<31, 1<<31, 1<<31, 1<<31}.
265 */
266 static int
267 gen_get_bit31_vec(struct gen_context *gen)
268 {
269 if (gen->bit31_vec < 0) {
270 gen->bit31_vec = ppc_allocate_vec_register(gen->f);
271 ppc_vspltisw(gen->f, gen->bit31_vec, -1);
272 ppc_vslw(gen->f, gen->bit31_vec, gen->bit31_vec, gen->bit31_vec);
273 }
274 return gen->bit31_vec;
275 }
276
277
278 /**
279 * Register fetch. Return PPC vector register with result.
280 */
281 static int
282 emit_fetch(struct gen_context *gen,
283 const struct tgsi_full_src_register *reg,
284 const unsigned chan_index)
285 {
286 uint swizzle = tgsi_util_get_full_src_register_swizzle(reg, chan_index);
287 int dst_vec = -1;
288
289 switch (swizzle) {
290 case TGSI_SWIZZLE_X:
291 case TGSI_SWIZZLE_Y:
292 case TGSI_SWIZZLE_Z:
293 case TGSI_SWIZZLE_W:
294 switch (reg->SrcRegister.File) {
295 case TGSI_FILE_INPUT:
296 {
297 int offset = (reg->SrcRegister.Index * 4 + swizzle) * 16;
298 int offset_reg = emit_li_offset(gen, offset);
299 dst_vec = ppc_allocate_vec_register(gen->f);
300 ppc_lvx(gen->f, dst_vec, gen->inputs_reg, offset_reg);
301 }
302 break;
303 case TGSI_FILE_TEMPORARY:
304 if (is_ppc_vec_temporary(reg)) {
305 /* use PPC vec register */
306 dst_vec = gen->temps_map[reg->SrcRegister.Index][swizzle];
307 }
308 else {
309 /* use memory-based temp register "file" */
310 int offset = (reg->SrcRegister.Index * 4 + swizzle) * 16;
311 int offset_reg = emit_li_offset(gen, offset);
312 dst_vec = ppc_allocate_vec_register(gen->f);
313 ppc_lvx(gen->f, dst_vec, gen->temps_reg, offset_reg);
314 }
315 break;
316 case TGSI_FILE_IMMEDIATE:
317 {
318 int offset = (reg->SrcRegister.Index * 4 + swizzle) * 4;
319 int offset_reg = emit_li_offset(gen, offset);
320 dst_vec = ppc_allocate_vec_register(gen->f);
321 /* Load 4-byte word into vector register.
322 * The vector slot depends on the effective address we load from.
323 * We know that our immediates start at a 16-byte boundary so we
324 * know that 'swizzle' tells us which vector slot will have the
325 * loaded word. The other vector slots will be undefined.
326 */
327 ppc_lvewx(gen->f, dst_vec, gen->immed_reg, offset_reg);
328 /* splat word[swizzle] across the vector reg */
329 ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
330 }
331 break;
332 case TGSI_FILE_CONSTANT:
333 {
334 int offset = (reg->SrcRegister.Index * 4 + swizzle) * 4;
335 int offset_reg = emit_li_offset(gen, offset);
336 dst_vec = ppc_allocate_vec_register(gen->f);
337 /* Load 4-byte word into vector register.
338 * The vector slot depends on the effective address we load from.
339 * We know that our constants start at a 16-byte boundary so we
340 * know that 'swizzle' tells us which vector slot will have the
341 * loaded word. The other vector slots will be undefined.
342 */
343 ppc_lvewx(gen->f, dst_vec, gen->const_reg, offset_reg);
344 /* splat word[swizzle] across the vector reg */
345 ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
346 }
347 break;
348 default:
349 assert( 0 );
350 }
351 break;
352 default:
353 assert( 0 );
354 }
355
356 assert(dst_vec >= 0);
357
358 {
359 uint sign_op = tgsi_util_get_full_src_register_sign_mode(reg, chan_index);
360 if (sign_op != TGSI_UTIL_SIGN_KEEP) {
361 int bit31_vec = gen_get_bit31_vec(gen);
362 int dst_vec2;
363
364 if (is_ppc_vec_temporary(reg)) {
365 /* need to use a new temp */
366 dst_vec2 = ppc_allocate_vec_register(gen->f);
367 }
368 else {
369 dst_vec2 = dst_vec;
370 }
371
372 switch (sign_op) {
373 case TGSI_UTIL_SIGN_CLEAR:
374 /* vec = vec & ~bit31 */
375 ppc_vandc(gen->f, dst_vec2, dst_vec, bit31_vec);
376 break;
377 case TGSI_UTIL_SIGN_SET:
378 /* vec = vec | bit31 */
379 ppc_vor(gen->f, dst_vec2, dst_vec, bit31_vec);
380 break;
381 case TGSI_UTIL_SIGN_TOGGLE:
382 /* vec = vec ^ bit31 */
383 ppc_vxor(gen->f, dst_vec2, dst_vec, bit31_vec);
384 break;
385 default:
386 assert(0);
387 }
388 return dst_vec2;
389 }
390 }
391
392 return dst_vec;
393 }
394
395
396
397 /**
398 * Test if two TGSI src registers refer to the same memory location.
399 * We use this to avoid redundant register loads.
400 */
401 static boolean
402 equal_src_locs(const struct tgsi_full_src_register *a, uint chan_a,
403 const struct tgsi_full_src_register *b, uint chan_b)
404 {
405 int swz_a, swz_b;
406 int sign_a, sign_b;
407 if (a->SrcRegister.File != b->SrcRegister.File)
408 return FALSE;
409 if (a->SrcRegister.Index != b->SrcRegister.Index)
410 return FALSE;
411 swz_a = tgsi_util_get_full_src_register_swizzle(a, chan_a);
412 swz_b = tgsi_util_get_full_src_register_swizzle(b, chan_b);
413 if (swz_a != swz_b)
414 return FALSE;
415 sign_a = tgsi_util_get_full_src_register_sign_mode(a, chan_a);
416 sign_b = tgsi_util_get_full_src_register_sign_mode(b, chan_b);
417 if (sign_a != sign_b)
418 return FALSE;
419 return TRUE;
420 }
421
422
423 /**
424 * Given a TGSI src register and channel index, return the PPC vector
425 * register containing the value. We use a cache to prevent re-loading
426 * the same register multiple times.
427 * \return index of PPC vector register with the desired src operand
428 */
429 static int
430 get_src_vec(struct gen_context *gen,
431 struct tgsi_full_instruction *inst, int src_reg, uint chan)
432 {
433 const const struct tgsi_full_src_register *src =
434 &inst->FullSrcRegisters[src_reg];
435 int vec;
436 uint i;
437
438 /* check the cache */
439 for (i = 0; i < gen->num_regs; i++) {
440 if (equal_src_locs(&gen->regs[i].src, gen->regs[i].chan, src, chan)) {
441 /* cache hit */
442 assert(gen->regs[i].vec >= 0);
443 return gen->regs[i].vec;
444 }
445 }
446
447 /* cache miss: allocate new vec reg and emit fetch/load code */
448 vec = emit_fetch(gen, src, chan);
449 gen->regs[gen->num_regs].src = *src;
450 gen->regs[gen->num_regs].chan = chan;
451 gen->regs[gen->num_regs].vec = vec;
452 gen->num_regs++;
453
454 assert(gen->num_regs <= Elements(gen->regs));
455
456 assert(vec >= 0);
457
458 return vec;
459 }
460
461
462 /**
463 * Clear the src operand cache. To be called at the end of each emit function.
464 */
465 static void
466 release_src_vecs(struct gen_context *gen)
467 {
468 uint i;
469 for (i = 0; i < gen->num_regs; i++) {
470 const const struct tgsi_full_src_register src = gen->regs[i].src;
471 if (!is_ppc_vec_temporary(&src)) {
472 ppc_release_vec_register(gen->f, gen->regs[i].vec);
473 }
474 }
475 gen->num_regs = 0;
476 }
477
478
479
480 static int
481 get_dst_vec(struct gen_context *gen,
482 const struct tgsi_full_instruction *inst,
483 unsigned chan_index)
484 {
485 const struct tgsi_full_dst_register *reg = &inst->FullDstRegisters[0];
486
487 if (is_ppc_vec_temporary_dst(reg)) {
488 int vec = gen->temps_map[reg->DstRegister.Index][chan_index];
489 return vec;
490 }
491 else {
492 return ppc_allocate_vec_register(gen->f);
493 }
494 }
495
496
497 /**
498 * Register store. Store 'src_vec' at location indicated by 'reg'.
499 * \param free_vec Should the src_vec be released when done?
500 */
501 static void
502 emit_store(struct gen_context *gen,
503 int src_vec,
504 const struct tgsi_full_instruction *inst,
505 unsigned chan_index,
506 boolean free_vec)
507 {
508 const struct tgsi_full_dst_register *reg = &inst->FullDstRegisters[0];
509
510 switch (reg->DstRegister.File) {
511 case TGSI_FILE_OUTPUT:
512 {
513 int offset = (reg->DstRegister.Index * 4 + chan_index) * 16;
514 int offset_reg = emit_li_offset(gen, offset);
515 ppc_stvx(gen->f, src_vec, gen->outputs_reg, offset_reg);
516 }
517 break;
518 case TGSI_FILE_TEMPORARY:
519 if (is_ppc_vec_temporary_dst(reg)) {
520 if (!free_vec) {
521 int dst_vec = gen->temps_map[reg->DstRegister.Index][chan_index];
522 if (dst_vec != src_vec)
523 ppc_vmove(gen->f, dst_vec, src_vec);
524 }
525 free_vec = FALSE;
526 }
527 else {
528 int offset = (reg->DstRegister.Index * 4 + chan_index) * 16;
529 int offset_reg = emit_li_offset(gen, offset);
530 ppc_stvx(gen->f, src_vec, gen->temps_reg, offset_reg);
531 }
532 break;
533 #if 0
534 case TGSI_FILE_ADDRESS:
535 emit_addrs(
536 func,
537 xmm,
538 reg->DstRegister.Index,
539 chan_index );
540 break;
541 #endif
542 default:
543 assert( 0 );
544 }
545
546 #if 0
547 switch( inst->Instruction.Saturate ) {
548 case TGSI_SAT_NONE:
549 break;
550
551 case TGSI_SAT_ZERO_ONE:
552 /* assert( 0 ); */
553 break;
554
555 case TGSI_SAT_MINUS_PLUS_ONE:
556 assert( 0 );
557 break;
558 }
559 #endif
560
561 if (free_vec)
562 ppc_release_vec_register(gen->f, src_vec);
563 }
564
565
566 static void
567 emit_scalar_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
568 {
569 int v0, v1;
570 uint chan_index;
571
572 v0 = get_src_vec(gen, inst, 0, CHAN_X);
573 v1 = ppc_allocate_vec_register(gen->f);
574
575 switch (inst->Instruction.Opcode) {
576 case TGSI_OPCODE_RSQ:
577 /* v1 = 1.0 / sqrt(v0) */
578 ppc_vrsqrtefp(gen->f, v1, v0);
579 break;
580 case TGSI_OPCODE_RCP:
581 /* v1 = 1.0 / v0 */
582 ppc_vrefp(gen->f, v1, v0);
583 break;
584 default:
585 assert(0);
586 }
587
588 FOR_EACH_DST0_ENABLED_CHANNEL( *inst, chan_index ) {
589 emit_store(gen, v1, inst, chan_index, FALSE);
590 }
591
592 release_src_vecs(gen);
593 ppc_release_vec_register(gen->f, v1);
594 }
595
596
597 static void
598 emit_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
599 {
600 uint chan_index;
601
602 FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan_index) {
603 int v0 = get_src_vec(gen, inst, 0, chan_index); /* v0 = srcreg[0] */
604 int v1 = get_dst_vec(gen, inst, chan_index);
605 switch (inst->Instruction.Opcode) {
606 case TGSI_OPCODE_ABS:
607 /* turn off the most significant bit of each vector float word */
608 {
609 int bit31_vec = gen_get_bit31_vec(gen);
610 ppc_vandc(gen->f, v1, v0, bit31_vec); /* v1 = v0 & ~bit31 */
611 }
612 break;
613 case TGSI_OPCODE_FLR:
614 ppc_vrfim(gen->f, v1, v0); /* v1 = floor(v0) */
615 break;
616 case TGSI_OPCODE_FRC:
617 ppc_vrfim(gen->f, v1, v0); /* tmp = floor(v0) */
618 ppc_vsubfp(gen->f, v1, v0, v1); /* v1 = v0 - v1 */
619 break;
620 case TGSI_OPCODE_EX2:
621 ppc_vexptefp(gen->f, v1, v0); /* v1 = 2^v0 */
622 break;
623 case TGSI_OPCODE_LG2:
624 /* XXX this may be broken! */
625 ppc_vlogefp(gen->f, v1, v0); /* v1 = log2(v0) */
626 break;
627 case TGSI_OPCODE_MOV:
628 if (v0 != v1)
629 ppc_vmove(gen->f, v1, v0);
630 break;
631 default:
632 assert(0);
633 }
634 emit_store(gen, v1, inst, chan_index, TRUE); /* store v0 */
635 }
636
637 release_src_vecs(gen);
638 }
639
640
641 static void
642 emit_binop(struct gen_context *gen, struct tgsi_full_instruction *inst)
643 {
644 int zero_vec = -1;
645 uint chan;
646
647 if (inst->Instruction.Opcode == TGSI_OPCODE_MUL) {
648 zero_vec = ppc_allocate_vec_register(gen->f);
649 ppc_vzero(gen->f, zero_vec);
650 }
651
652 FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan) {
653 /* fetch src operands */
654 int v0 = get_src_vec(gen, inst, 0, chan);
655 int v1 = get_src_vec(gen, inst, 1, chan);
656 int v2 = get_dst_vec(gen, inst, chan);
657
658 /* emit binop */
659 switch (inst->Instruction.Opcode) {
660 case TGSI_OPCODE_ADD:
661 ppc_vaddfp(gen->f, v2, v0, v1);
662 break;
663 case TGSI_OPCODE_SUB:
664 ppc_vsubfp(gen->f, v2, v0, v1);
665 break;
666 case TGSI_OPCODE_MUL:
667 ppc_vmaddfp(gen->f, v2, v0, v1, zero_vec);
668 break;
669 case TGSI_OPCODE_MIN:
670 ppc_vminfp(gen->f, v2, v0, v1);
671 break;
672 case TGSI_OPCODE_MAX:
673 ppc_vmaxfp(gen->f, v2, v0, v1);
674 break;
675 default:
676 assert(0);
677 }
678
679 /* store v2 */
680 emit_store(gen, v2, inst, chan, TRUE);
681 }
682
683 if (inst->Instruction.Opcode == TGSI_OPCODE_MUL)
684 ppc_release_vec_register(gen->f, zero_vec);
685
686 release_src_vecs(gen);
687 }
688
689
690 static void
691 emit_triop(struct gen_context *gen, struct tgsi_full_instruction *inst)
692 {
693 uint chan;
694
695 FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan) {
696 /* fetch src operands */
697 int v0 = get_src_vec(gen, inst, 0, chan);
698 int v1 = get_src_vec(gen, inst, 1, chan);
699 int v2 = get_src_vec(gen, inst, 2, chan);
700 int v3 = get_dst_vec(gen, inst, chan);
701
702 /* emit ALU */
703 switch (inst->Instruction.Opcode) {
704 case TGSI_OPCODE_MAD:
705 ppc_vmaddfp(gen->f, v3, v0, v1, v2); /* v3 = v0 * v1 + v2 */
706 break;
707 case TGSI_OPCODE_LRP:
708 ppc_vsubfp(gen->f, v3, v1, v2); /* v3 = v1 - v2 */
709 ppc_vmaddfp(gen->f, v3, v0, v3, v2); /* v3 = v0 * v3 + v2 */
710 break;
711 default:
712 assert(0);
713 }
714
715 /* store v3 */
716 emit_store(gen, v3, inst, chan, TRUE);
717 }
718
719 release_src_vecs(gen);
720 }
721
722
723 /**
724 * Vector comparisons, resulting in 1.0 or 0.0 values.
725 */
726 static void
727 emit_inequality(struct gen_context *gen, struct tgsi_full_instruction *inst)
728 {
729 uint chan;
730 int one_vec = gen_one_vec(gen);
731
732 FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan) {
733 /* fetch src operands */
734 int v0 = get_src_vec(gen, inst, 0, chan);
735 int v1 = get_src_vec(gen, inst, 1, chan);
736 int v2 = get_dst_vec(gen, inst, chan);
737 boolean complement = FALSE;
738
739 switch (inst->Instruction.Opcode) {
740 case TGSI_OPCODE_SNE:
741 complement = TRUE;
742 /* fall-through */
743 case TGSI_OPCODE_SEQ:
744 ppc_vcmpeqfpx(gen->f, v2, v0, v1); /* v2 = v0 == v1 ? ~0 : 0 */
745 break;
746
747 case TGSI_OPCODE_SGE:
748 complement = TRUE;
749 /* fall-through */
750 case TGSI_OPCODE_SLT:
751 ppc_vcmpgtfpx(gen->f, v2, v1, v0); /* v2 = v1 > v0 ? ~0 : 0 */
752 break;
753
754 case TGSI_OPCODE_SLE:
755 complement = TRUE;
756 /* fall-through */
757 case TGSI_OPCODE_SGT:
758 ppc_vcmpgtfpx(gen->f, v2, v0, v1); /* v2 = v0 > v1 ? ~0 : 0 */
759 break;
760 default:
761 assert(0);
762 }
763
764 /* v2 is now {0,0,0,0} or {~0,~0,~0,~0} */
765
766 if (complement)
767 ppc_vandc(gen->f, v2, one_vec, v2); /* v2 = one_vec & ~v2 */
768 else
769 ppc_vand(gen->f, v2, one_vec, v2); /* v2 = one_vec & v2 */
770
771 /* store v2 */
772 emit_store(gen, v2, inst, chan, TRUE);
773 }
774
775 release_src_vecs(gen);
776 }
777
778
779 static void
780 emit_dotprod(struct gen_context *gen, struct tgsi_full_instruction *inst)
781 {
782 int v0, v1, v2;
783 uint chan_index;
784
785 v2 = ppc_allocate_vec_register(gen->f);
786
787 ppc_vzero(gen->f, v2); /* v2 = {0, 0, 0, 0} */
788
789 v0 = get_src_vec(gen, inst, 0, CHAN_X); /* v0 = src0.XXXX */
790 v1 = get_src_vec(gen, inst, 1, CHAN_X); /* v1 = src1.XXXX */
791 ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
792
793 v0 = get_src_vec(gen, inst, 0, CHAN_Y); /* v0 = src0.YYYY */
794 v1 = get_src_vec(gen, inst, 1, CHAN_Y); /* v1 = src1.YYYY */
795 ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
796
797 v0 = get_src_vec(gen, inst, 0, CHAN_Z); /* v0 = src0.ZZZZ */
798 v1 = get_src_vec(gen, inst, 1, CHAN_Z); /* v1 = src1.ZZZZ */
799 ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
800
801 if (inst->Instruction.Opcode == TGSI_OPCODE_DP4) {
802 v0 = get_src_vec(gen, inst, 0, CHAN_W); /* v0 = src0.WWWW */
803 v1 = get_src_vec(gen, inst, 1, CHAN_W); /* v1 = src1.WWWW */
804 ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
805 }
806 else if (inst->Instruction.Opcode == TGSI_OPCODE_DPH) {
807 v1 = get_src_vec(gen, inst, 1, CHAN_W); /* v1 = src1.WWWW */
808 ppc_vaddfp(gen->f, v2, v2, v1); /* v2 = v2 + v1 */
809 }
810
811 FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan_index) {
812 emit_store(gen, v2, inst, chan_index, FALSE); /* store v2, free v2 later */
813 }
814
815 release_src_vecs(gen);
816
817 ppc_release_vec_register(gen->f, v2);
818 }
819
820
821 /** Approximation for vr = pow(va, vb) */
822 static void
823 ppc_vec_pow(struct ppc_function *f, int vr, int va, int vb)
824 {
825 /* pow(a,b) ~= exp2(log2(a) * b) */
826 int t_vec = ppc_allocate_vec_register(f);
827 int zero_vec = ppc_allocate_vec_register(f);
828
829 ppc_vzero(f, zero_vec);
830
831 ppc_vlogefp(f, t_vec, va); /* t = log2(va) */
832 ppc_vmaddfp(f, t_vec, t_vec, vb, zero_vec); /* t = t * vb + zero */
833 ppc_vexptefp(f, vr, t_vec); /* vr = 2^t */
834
835 ppc_release_vec_register(f, t_vec);
836 ppc_release_vec_register(f, zero_vec);
837 }
838
839
840 static void
841 emit_lit(struct gen_context *gen, struct tgsi_full_instruction *inst)
842 {
843 int one_vec = gen_one_vec(gen);
844
845 /* Compute X */
846 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X)) {
847 emit_store(gen, one_vec, inst, CHAN_X, FALSE);
848 }
849
850 /* Compute Y, Z */
851 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y) ||
852 IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
853 int x_vec;
854 int zero_vec = ppc_allocate_vec_register(gen->f);
855
856 x_vec = get_src_vec(gen, inst, 0, CHAN_X); /* x_vec = src[0].x */
857
858 ppc_vzero(gen->f, zero_vec); /* zero = {0,0,0,0} */
859 ppc_vmaxfp(gen->f, x_vec, x_vec, zero_vec); /* x_vec = max(x_vec, 0) */
860
861 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
862 emit_store(gen, x_vec, inst, CHAN_Y, FALSE);
863 }
864
865 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
866 int y_vec, w_vec;
867 int z_vec = ppc_allocate_vec_register(gen->f);
868 int pow_vec = ppc_allocate_vec_register(gen->f);
869 int pos_vec = ppc_allocate_vec_register(gen->f);
870 int p128_vec = ppc_allocate_vec_register(gen->f);
871 int n128_vec = ppc_allocate_vec_register(gen->f);
872
873 y_vec = get_src_vec(gen, inst, 0, CHAN_Y); /* y_vec = src[0].y */
874 ppc_vmaxfp(gen->f, y_vec, y_vec, zero_vec); /* y_vec = max(y_vec, 0) */
875
876 w_vec = get_src_vec(gen, inst, 0, CHAN_W); /* w_vec = src[0].w */
877
878 /* clamp W to [-128, 128] */
879 load_constant_vec(gen, p128_vec, 128.0f);
880 load_constant_vec(gen, n128_vec, -128.0f);
881 ppc_vmaxfp(gen->f, w_vec, w_vec, n128_vec); /* w = max(w, -128) */
882 ppc_vminfp(gen->f, w_vec, w_vec, p128_vec); /* w = min(w, 128) */
883
884 /* if temp.x > 0
885 * z = pow(tmp.y, tmp.w)
886 * else
887 * z = 0.0
888 */
889 ppc_vec_pow(gen->f, pow_vec, y_vec, w_vec); /* pow = pow(y, w) */
890 ppc_vcmpgtfpx(gen->f, pos_vec, x_vec, zero_vec); /* pos = x > 0 */
891 ppc_vand(gen->f, z_vec, pow_vec, pos_vec); /* z = pow & pos */
892
893 emit_store(gen, z_vec, inst, CHAN_Z, FALSE);
894
895 ppc_release_vec_register(gen->f, z_vec);
896 ppc_release_vec_register(gen->f, pow_vec);
897 ppc_release_vec_register(gen->f, pos_vec);
898 ppc_release_vec_register(gen->f, p128_vec);
899 ppc_release_vec_register(gen->f, n128_vec);
900 }
901
902 ppc_release_vec_register(gen->f, zero_vec);
903 }
904
905 /* Compute W */
906 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_W)) {
907 emit_store(gen, one_vec, inst, CHAN_W, FALSE);
908 }
909
910 release_src_vecs(gen);
911 }
912
913
914 static void
915 emit_exp(struct gen_context *gen, struct tgsi_full_instruction *inst)
916 {
917 const int one_vec = gen_one_vec(gen);
918 int src_vec;
919
920 /* get src arg */
921 src_vec = get_src_vec(gen, inst, 0, CHAN_X);
922
923 /* Compute X = 2^floor(src) */
924 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X)) {
925 int dst_vec = get_dst_vec(gen, inst, CHAN_X);
926 int tmp_vec = ppc_allocate_vec_register(gen->f);
927 ppc_vrfim(gen->f, tmp_vec, src_vec); /* tmp = floor(src); */
928 ppc_vexptefp(gen->f, dst_vec, tmp_vec); /* dst = 2 ^ tmp */
929 emit_store(gen, dst_vec, inst, CHAN_X, TRUE);
930 ppc_release_vec_register(gen->f, tmp_vec);
931 }
932
933 /* Compute Y = src - floor(src) */
934 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
935 int dst_vec = get_dst_vec(gen, inst, CHAN_Y);
936 int tmp_vec = ppc_allocate_vec_register(gen->f);
937 ppc_vrfim(gen->f, tmp_vec, src_vec); /* tmp = floor(src); */
938 ppc_vsubfp(gen->f, dst_vec, src_vec, tmp_vec); /* dst = src - tmp */
939 emit_store(gen, dst_vec, inst, CHAN_Y, TRUE);
940 ppc_release_vec_register(gen->f, tmp_vec);
941 }
942
943 /* Compute Z = RoughApprox2ToX(src) */
944 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
945 int dst_vec = get_dst_vec(gen, inst, CHAN_Z);
946 ppc_vexptefp(gen->f, dst_vec, src_vec); /* dst = 2 ^ src */
947 emit_store(gen, dst_vec, inst, CHAN_Z, TRUE);
948 }
949
950 /* Compute W = 1.0 */
951 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_W)) {
952 emit_store(gen, one_vec, inst, CHAN_W, FALSE);
953 }
954
955 release_src_vecs(gen);
956 }
957
958
959 static void
960 emit_log(struct gen_context *gen, struct tgsi_full_instruction *inst)
961 {
962 const int bit31_vec = gen_get_bit31_vec(gen);
963 const int one_vec = gen_one_vec(gen);
964 int src_vec, abs_vec;
965
966 /* get src arg */
967 src_vec = get_src_vec(gen, inst, 0, CHAN_X);
968
969 /* compute abs(src) */
970 abs_vec = ppc_allocate_vec_register(gen->f);
971 ppc_vandc(gen->f, abs_vec, src_vec, bit31_vec); /* abs = src & ~bit31 */
972
973 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X) &&
974 IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
975
976 /* compute tmp = floor(log2(abs)) */
977 int tmp_vec = ppc_allocate_vec_register(gen->f);
978 ppc_vlogefp(gen->f, tmp_vec, abs_vec); /* tmp = log2(abs) */
979 ppc_vrfim(gen->f, tmp_vec, tmp_vec); /* tmp = floor(tmp); */
980
981 /* Compute X = tmp */
982 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X)) {
983 emit_store(gen, tmp_vec, inst, CHAN_X, FALSE);
984 }
985
986 /* Compute Y = abs / 2^tmp */
987 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
988 const int zero_vec = ppc_allocate_vec_register(gen->f);
989 ppc_vzero(gen->f, zero_vec);
990 ppc_vexptefp(gen->f, tmp_vec, tmp_vec); /* tmp = 2 ^ tmp */
991 ppc_vrefp(gen->f, tmp_vec, tmp_vec); /* tmp = 1 / tmp */
992 /* tmp = abs * tmp + zero */
993 ppc_vmaddfp(gen->f, tmp_vec, abs_vec, tmp_vec, zero_vec);
994 emit_store(gen, tmp_vec, inst, CHAN_Y, FALSE);
995 ppc_release_vec_register(gen->f, zero_vec);
996 }
997
998 ppc_release_vec_register(gen->f, tmp_vec);
999 }
1000
1001 /* Compute Z = RoughApproxLog2(abs) */
1002 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
1003 int dst_vec = get_dst_vec(gen, inst, CHAN_Z);
1004 ppc_vlogefp(gen->f, dst_vec, abs_vec); /* dst = log2(abs) */
1005 emit_store(gen, dst_vec, inst, CHAN_Z, TRUE);
1006 }
1007
1008 /* Compute W = 1.0 */
1009 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_W)) {
1010 emit_store(gen, one_vec, inst, CHAN_W, FALSE);
1011 }
1012
1013 ppc_release_vec_register(gen->f, abs_vec);
1014 release_src_vecs(gen);
1015 }
1016
1017
1018 static void
1019 emit_pow(struct gen_context *gen, struct tgsi_full_instruction *inst)
1020 {
1021 int s0_vec = get_src_vec(gen, inst, 0, CHAN_X);
1022 int s1_vec = get_src_vec(gen, inst, 1, CHAN_X);
1023 int pow_vec = ppc_allocate_vec_register(gen->f);
1024 int chan;
1025
1026 ppc_vec_pow(gen->f, pow_vec, s0_vec, s1_vec);
1027
1028 FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan) {
1029 emit_store(gen, pow_vec, inst, chan, FALSE);
1030 }
1031
1032 ppc_release_vec_register(gen->f, pow_vec);
1033
1034 release_src_vecs(gen);
1035 }
1036
1037
1038 static void
1039 emit_xpd(struct gen_context *gen, struct tgsi_full_instruction *inst)
1040 {
1041 int x0_vec, y0_vec, z0_vec;
1042 int x1_vec, y1_vec, z1_vec;
1043 int zero_vec, tmp_vec;
1044 int tmp2_vec;
1045
1046 zero_vec = ppc_allocate_vec_register(gen->f);
1047 ppc_vzero(gen->f, zero_vec);
1048
1049 tmp_vec = ppc_allocate_vec_register(gen->f);
1050 tmp2_vec = ppc_allocate_vec_register(gen->f);
1051
1052 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y) ||
1053 IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
1054 x0_vec = get_src_vec(gen, inst, 0, CHAN_X);
1055 x1_vec = get_src_vec(gen, inst, 1, CHAN_X);
1056 }
1057 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X) ||
1058 IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
1059 y0_vec = get_src_vec(gen, inst, 0, CHAN_Y);
1060 y1_vec = get_src_vec(gen, inst, 1, CHAN_Y);
1061 }
1062 if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X) ||
1063 IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
1064 z0_vec = get_src_vec(gen, inst, 0, CHAN_Z);
1065 z1_vec = get_src_vec(gen, inst, 1, CHAN_Z);
1066 }
1067
1068 IF_IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X) {
1069 /* tmp = y0 * z1 */
1070 ppc_vmaddfp(gen->f, tmp_vec, y0_vec, z1_vec, zero_vec);
1071 /* tmp = tmp - z0 * y1*/
1072 ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, z0_vec, y1_vec);
1073 emit_store(gen, tmp_vec, inst, CHAN_X, FALSE);
1074 }
1075 IF_IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y) {
1076 /* tmp = z0 * x1 */
1077 ppc_vmaddfp(gen->f, tmp_vec, z0_vec, x1_vec, zero_vec);
1078 /* tmp = tmp - x0 * z1 */
1079 ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, x0_vec, z1_vec);
1080 emit_store(gen, tmp_vec, inst, CHAN_Y, FALSE);
1081 }
1082 IF_IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z) {
1083 /* tmp = x0 * y1 */
1084 ppc_vmaddfp(gen->f, tmp_vec, x0_vec, y1_vec, zero_vec);
1085 /* tmp = tmp - y0 * x1 */
1086 ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, y0_vec, x1_vec);
1087 emit_store(gen, tmp_vec, inst, CHAN_Z, FALSE);
1088 }
1089 /* W is undefined */
1090
1091 ppc_release_vec_register(gen->f, tmp_vec);
1092 ppc_release_vec_register(gen->f, zero_vec);
1093 release_src_vecs(gen);
1094 }
1095
1096 static int
1097 emit_instruction(struct gen_context *gen,
1098 struct tgsi_full_instruction *inst)
1099 {
1100
1101 /* we don't handle saturation/clamping yet */
1102 if (inst->Instruction.Saturate != TGSI_SAT_NONE)
1103 return 0;
1104
1105 /* need to use extra temps to fix SOA dependencies : */
1106 if (tgsi_check_soa_dependencies(inst))
1107 return FALSE;
1108
1109 switch (inst->Instruction.Opcode) {
1110 case TGSI_OPCODE_MOV:
1111 case TGSI_OPCODE_ABS:
1112 case TGSI_OPCODE_FLR:
1113 case TGSI_OPCODE_FRC:
1114 case TGSI_OPCODE_EX2:
1115 case TGSI_OPCODE_LG2:
1116 emit_unaryop(gen, inst);
1117 break;
1118 case TGSI_OPCODE_RSQ:
1119 case TGSI_OPCODE_RCP:
1120 emit_scalar_unaryop(gen, inst);
1121 break;
1122 case TGSI_OPCODE_ADD:
1123 case TGSI_OPCODE_SUB:
1124 case TGSI_OPCODE_MUL:
1125 case TGSI_OPCODE_MIN:
1126 case TGSI_OPCODE_MAX:
1127 emit_binop(gen, inst);
1128 break;
1129 case TGSI_OPCODE_SEQ:
1130 case TGSI_OPCODE_SNE:
1131 case TGSI_OPCODE_SLT:
1132 case TGSI_OPCODE_SGT:
1133 case TGSI_OPCODE_SLE:
1134 case TGSI_OPCODE_SGE:
1135 emit_inequality(gen, inst);
1136 break;
1137 case TGSI_OPCODE_MAD:
1138 case TGSI_OPCODE_LRP:
1139 emit_triop(gen, inst);
1140 break;
1141 case TGSI_OPCODE_DP3:
1142 case TGSI_OPCODE_DP4:
1143 case TGSI_OPCODE_DPH:
1144 emit_dotprod(gen, inst);
1145 break;
1146 case TGSI_OPCODE_LIT:
1147 emit_lit(gen, inst);
1148 break;
1149 case TGSI_OPCODE_LOG:
1150 emit_log(gen, inst);
1151 break;
1152 case TGSI_OPCODE_EXP:
1153 emit_exp(gen, inst);
1154 break;
1155 case TGSI_OPCODE_POW:
1156 emit_pow(gen, inst);
1157 break;
1158 case TGSI_OPCODE_XPD:
1159 emit_xpd(gen, inst);
1160 break;
1161 case TGSI_OPCODE_END:
1162 /* normal end */
1163 return 1;
1164 default:
1165 return 0;
1166 }
1167 return 1;
1168 }
1169
1170
1171 static void
1172 emit_declaration(
1173 struct ppc_function *func,
1174 struct tgsi_full_declaration *decl )
1175 {
1176 if( decl->Declaration.File == TGSI_FILE_INPUT ) {
1177 #if 0
1178 unsigned first, last, mask;
1179 unsigned i, j;
1180
1181 first = decl->DeclarationRange.First;
1182 last = decl->DeclarationRange.Last;
1183 mask = decl->Declaration.UsageMask;
1184
1185 for( i = first; i <= last; i++ ) {
1186 for( j = 0; j < NUM_CHANNELS; j++ ) {
1187 if( mask & (1 << j) ) {
1188 switch( decl->Declaration.Interpolate ) {
1189 case TGSI_INTERPOLATE_CONSTANT:
1190 emit_coef_a0( func, 0, i, j );
1191 emit_inputs( func, 0, i, j );
1192 break;
1193
1194 case TGSI_INTERPOLATE_LINEAR:
1195 emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
1196 emit_coef_dadx( func, 1, i, j );
1197 emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
1198 emit_coef_dady( func, 3, i, j );
1199 emit_mul( func, 0, 1 ); /* x * dadx */
1200 emit_coef_a0( func, 4, i, j );
1201 emit_mul( func, 2, 3 ); /* y * dady */
1202 emit_add( func, 0, 4 ); /* x * dadx + a0 */
1203 emit_add( func, 0, 2 ); /* x * dadx + y * dady + a0 */
1204 emit_inputs( func, 0, i, j );
1205 break;
1206
1207 case TGSI_INTERPOLATE_PERSPECTIVE:
1208 emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
1209 emit_coef_dadx( func, 1, i, j );
1210 emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
1211 emit_coef_dady( func, 3, i, j );
1212 emit_mul( func, 0, 1 ); /* x * dadx */
1213 emit_tempf( func, 4, 0, TGSI_SWIZZLE_W );
1214 emit_coef_a0( func, 5, i, j );
1215 emit_rcp( func, 4, 4 ); /* 1.0 / w */
1216 emit_mul( func, 2, 3 ); /* y * dady */
1217 emit_add( func, 0, 5 ); /* x * dadx + a0 */
1218 emit_add( func, 0, 2 ); /* x * dadx + y * dady + a0 */
1219 emit_mul( func, 0, 4 ); /* (x * dadx + y * dady + a0) / w */
1220 emit_inputs( func, 0, i, j );
1221 break;
1222
1223 default:
1224 assert( 0 );
1225 break;
1226 }
1227 }
1228 }
1229 }
1230 #endif
1231 }
1232 }
1233
1234
1235
1236 static void
1237 emit_prologue(struct ppc_function *func)
1238 {
1239 /* XXX set up stack frame */
1240 }
1241
1242
1243 static void
1244 emit_epilogue(struct ppc_function *func)
1245 {
1246 ppc_comment(func, -4, "Epilogue:");
1247 ppc_return(func);
1248 /* XXX restore prev stack frame */
1249 #if 0
1250 debug_printf("PPC: Emitted %u instructions\n", func->num_inst);
1251 #endif
1252 }
1253
1254
1255
1256 /**
1257 * Translate a TGSI vertex/fragment shader to PPC code.
1258 *
1259 * \param tokens the TGSI input shader
1260 * \param func the output PPC code/function
1261 * \param immediates buffer to place immediates, later passed to PPC func
1262 * \return TRUE for success, FALSE if translation failed
1263 */
1264 boolean
1265 tgsi_emit_ppc(const struct tgsi_token *tokens,
1266 struct ppc_function *func,
1267 float (*immediates)[4],
1268 boolean do_swizzles )
1269 {
1270 static int use_ppc_asm = -1;
1271 struct tgsi_parse_context parse;
1272 /*boolean instruction_phase = FALSE;*/
1273 unsigned ok = 1;
1274 uint num_immediates = 0;
1275 struct gen_context gen;
1276 uint ic = 0;
1277
1278 if (use_ppc_asm < 0) {
1279 /* If GALLIUM_NOPPC is set, don't use PPC codegen */
1280 use_ppc_asm = !debug_get_bool_option("GALLIUM_NOPPC", FALSE);
1281 }
1282 if (!use_ppc_asm)
1283 return FALSE;
1284
1285 if (0) {
1286 debug_printf("\n********* TGSI->PPC ********\n");
1287 tgsi_dump(tokens, 0);
1288 }
1289
1290 util_init_math();
1291
1292 init_gen_context(&gen, func);
1293
1294 emit_prologue(func);
1295
1296 tgsi_parse_init( &parse, tokens );
1297
1298 while (!tgsi_parse_end_of_tokens(&parse) && ok) {
1299 tgsi_parse_token(&parse);
1300
1301 switch (parse.FullToken.Token.Type) {
1302 case TGSI_TOKEN_TYPE_DECLARATION:
1303 if (parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
1304 emit_declaration(func, &parse.FullToken.FullDeclaration );
1305 }
1306 break;
1307
1308 case TGSI_TOKEN_TYPE_INSTRUCTION:
1309 if (func->print) {
1310 _debug_printf("# ");
1311 ic++;
1312 tgsi_dump_instruction(&parse.FullToken.FullInstruction, ic);
1313 }
1314
1315 ok = emit_instruction(&gen, &parse.FullToken.FullInstruction);
1316
1317 if (!ok) {
1318 uint opcode = parse.FullToken.FullInstruction.Instruction.Opcode;
1319 debug_printf("failed to translate tgsi opcode %d (%s) to PPC (%s)\n",
1320 opcode,
1321 tgsi_get_opcode_name(opcode),
1322 parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_VERTEX ?
1323 "vertex shader" : "fragment shader");
1324 }
1325 break;
1326
1327 case TGSI_TOKEN_TYPE_IMMEDIATE:
1328 /* splat each immediate component into a float[4] vector for SoA */
1329 {
1330 const uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
1331 uint i;
1332 assert(size <= 4);
1333 assert(num_immediates < TGSI_EXEC_NUM_IMMEDIATES);
1334 for (i = 0; i < size; i++) {
1335 immediates[num_immediates][i] =
1336 parse.FullToken.FullImmediate.u[i].Float;
1337 }
1338 num_immediates++;
1339 }
1340 break;
1341
1342 default:
1343 ok = 0;
1344 assert( 0 );
1345 }
1346 }
1347
1348 emit_epilogue(func);
1349
1350 tgsi_parse_free( &parse );
1351
1352 if (ppc_num_instructions(func) == 0) {
1353 /* ran out of memory for instructions */
1354 ok = FALSE;
1355 }
1356
1357 if (!ok)
1358 debug_printf("TGSI->PPC translation failed\n");
1359
1360 return ok;
1361 }
1362
1363 #endif /* PIPE_ARCH_PPC */