gallium: tweak coords in u_gen_mipmap code
[mesa.git] / src / gallium / auxiliary / util / u_gen_mipmap.c
1 /**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * @file
30 * Mipmap generation utility
31 *
32 * @author Brian Paul
33 */
34
35
36 #include "pipe/p_context.h"
37 #include "pipe/p_debug.h"
38 #include "pipe/p_defines.h"
39 #include "pipe/p_inlines.h"
40 #include "pipe/p_util.h"
41 #include "pipe/p_winsys.h"
42 #include "pipe/p_shader_tokens.h"
43
44 #include "util/u_draw_quad.h"
45 #include "util/u_gen_mipmap.h"
46 #include "util/u_simple_shaders.h"
47
48 #include "tgsi/util/tgsi_build.h"
49 #include "tgsi/util/tgsi_dump.h"
50 #include "tgsi/util/tgsi_parse.h"
51
52 #include "cso_cache/cso_context.h"
53
54
55 struct gen_mipmap_state
56 {
57 struct pipe_context *pipe;
58 struct cso_context *cso;
59
60 struct pipe_blend_state blend;
61 struct pipe_depth_stencil_alpha_state depthstencil;
62 struct pipe_rasterizer_state rasterizer;
63 struct pipe_sampler_state sampler;
64 /*struct pipe_viewport_state viewport;*/
65 struct pipe_sampler_state *vs;
66 struct pipe_sampler_state *fs;
67
68 struct pipe_buffer *vbuf; /**< quad vertices */
69 float vertices[4][2][4]; /**< vertex/texcoords for quad */
70 };
71
72
73
74 enum dtype
75 {
76 UBYTE,
77 UBYTE_3_3_2,
78 USHORT,
79 USHORT_4_4_4_4,
80 USHORT_5_6_5,
81 USHORT_1_5_5_5_REV,
82 UINT,
83 FLOAT,
84 HALF_FLOAT
85 };
86
87
88 typedef ushort half_float;
89
90
91 #if 0
92 extern half_float
93 float_to_half(float f);
94
95 extern float
96 half_to_float(half_float h);
97 #endif
98
99
100 /**
101 * Average together two rows of a source image to produce a single new
102 * row in the dest image. It's legal for the two source rows to point
103 * to the same data. The source width must be equal to either the
104 * dest width or two times the dest width.
105 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
106 * \param comps number of components per pixel (1..4)
107 */
108 static void
109 do_row(enum dtype datatype, uint comps, int srcWidth,
110 const void *srcRowA, const void *srcRowB,
111 int dstWidth, void *dstRow)
112 {
113 const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
114 const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
115
116 assert(comps >= 1);
117 assert(comps <= 4);
118
119 /* This assertion is no longer valid with non-power-of-2 textures
120 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
121 */
122
123 if (datatype == UBYTE && comps == 4) {
124 uint i, j, k;
125 const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA;
126 const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB;
127 ubyte(*dst)[4] = (ubyte(*)[4]) dstRow;
128 for (i = j = 0, k = k0; i < (uint) dstWidth;
129 i++, j += colStride, k += colStride) {
130 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
131 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
132 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
133 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
134 }
135 }
136 else if (datatype == UBYTE && comps == 3) {
137 uint i, j, k;
138 const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA;
139 const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB;
140 ubyte(*dst)[3] = (ubyte(*)[3]) dstRow;
141 for (i = j = 0, k = k0; i < (uint) dstWidth;
142 i++, j += colStride, k += colStride) {
143 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
144 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
145 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
146 }
147 }
148 else if (datatype == UBYTE && comps == 2) {
149 uint i, j, k;
150 const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA;
151 const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB;
152 ubyte(*dst)[2] = (ubyte(*)[2]) dstRow;
153 for (i = j = 0, k = k0; i < (uint) dstWidth;
154 i++, j += colStride, k += colStride) {
155 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
156 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
157 }
158 }
159 else if (datatype == UBYTE && comps == 1) {
160 uint i, j, k;
161 const ubyte *rowA = (const ubyte *) srcRowA;
162 const ubyte *rowB = (const ubyte *) srcRowB;
163 ubyte *dst = (ubyte *) dstRow;
164 for (i = j = 0, k = k0; i < (uint) dstWidth;
165 i++, j += colStride, k += colStride) {
166 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
167 }
168 }
169
170 else if (datatype == USHORT && comps == 4) {
171 uint i, j, k;
172 const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA;
173 const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB;
174 ushort(*dst)[4] = (ushort(*)[4]) dstRow;
175 for (i = j = 0, k = k0; i < (uint) dstWidth;
176 i++, j += colStride, k += colStride) {
177 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
178 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
179 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
180 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
181 }
182 }
183 else if (datatype == USHORT && comps == 3) {
184 uint i, j, k;
185 const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA;
186 const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB;
187 ushort(*dst)[3] = (ushort(*)[3]) dstRow;
188 for (i = j = 0, k = k0; i < (uint) dstWidth;
189 i++, j += colStride, k += colStride) {
190 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
191 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
192 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
193 }
194 }
195 else if (datatype == USHORT && comps == 2) {
196 uint i, j, k;
197 const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA;
198 const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB;
199 ushort(*dst)[2] = (ushort(*)[2]) dstRow;
200 for (i = j = 0, k = k0; i < (uint) dstWidth;
201 i++, j += colStride, k += colStride) {
202 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
203 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
204 }
205 }
206 else if (datatype == USHORT && comps == 1) {
207 uint i, j, k;
208 const ushort *rowA = (const ushort *) srcRowA;
209 const ushort *rowB = (const ushort *) srcRowB;
210 ushort *dst = (ushort *) dstRow;
211 for (i = j = 0, k = k0; i < (uint) dstWidth;
212 i++, j += colStride, k += colStride) {
213 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
214 }
215 }
216
217 else if (datatype == FLOAT && comps == 4) {
218 uint i, j, k;
219 const float(*rowA)[4] = (const float(*)[4]) srcRowA;
220 const float(*rowB)[4] = (const float(*)[4]) srcRowB;
221 float(*dst)[4] = (float(*)[4]) dstRow;
222 for (i = j = 0, k = k0; i < (uint) dstWidth;
223 i++, j += colStride, k += colStride) {
224 dst[i][0] = (rowA[j][0] + rowA[k][0] +
225 rowB[j][0] + rowB[k][0]) * 0.25F;
226 dst[i][1] = (rowA[j][1] + rowA[k][1] +
227 rowB[j][1] + rowB[k][1]) * 0.25F;
228 dst[i][2] = (rowA[j][2] + rowA[k][2] +
229 rowB[j][2] + rowB[k][2]) * 0.25F;
230 dst[i][3] = (rowA[j][3] + rowA[k][3] +
231 rowB[j][3] + rowB[k][3]) * 0.25F;
232 }
233 }
234 else if (datatype == FLOAT && comps == 3) {
235 uint i, j, k;
236 const float(*rowA)[3] = (const float(*)[3]) srcRowA;
237 const float(*rowB)[3] = (const float(*)[3]) srcRowB;
238 float(*dst)[3] = (float(*)[3]) dstRow;
239 for (i = j = 0, k = k0; i < (uint) dstWidth;
240 i++, j += colStride, k += colStride) {
241 dst[i][0] = (rowA[j][0] + rowA[k][0] +
242 rowB[j][0] + rowB[k][0]) * 0.25F;
243 dst[i][1] = (rowA[j][1] + rowA[k][1] +
244 rowB[j][1] + rowB[k][1]) * 0.25F;
245 dst[i][2] = (rowA[j][2] + rowA[k][2] +
246 rowB[j][2] + rowB[k][2]) * 0.25F;
247 }
248 }
249 else if (datatype == FLOAT && comps == 2) {
250 uint i, j, k;
251 const float(*rowA)[2] = (const float(*)[2]) srcRowA;
252 const float(*rowB)[2] = (const float(*)[2]) srcRowB;
253 float(*dst)[2] = (float(*)[2]) dstRow;
254 for (i = j = 0, k = k0; i < (uint) dstWidth;
255 i++, j += colStride, k += colStride) {
256 dst[i][0] = (rowA[j][0] + rowA[k][0] +
257 rowB[j][0] + rowB[k][0]) * 0.25F;
258 dst[i][1] = (rowA[j][1] + rowA[k][1] +
259 rowB[j][1] + rowB[k][1]) * 0.25F;
260 }
261 }
262 else if (datatype == FLOAT && comps == 1) {
263 uint i, j, k;
264 const float *rowA = (const float *) srcRowA;
265 const float *rowB = (const float *) srcRowB;
266 float *dst = (float *) dstRow;
267 for (i = j = 0, k = k0; i < (uint) dstWidth;
268 i++, j += colStride, k += colStride) {
269 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
270 }
271 }
272
273 #if 0
274 else if (datatype == HALF_FLOAT && comps == 4) {
275 uint i, j, k, comp;
276 const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA;
277 const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB;
278 half_float(*dst)[4] = (half_float(*)[4]) dstRow;
279 for (i = j = 0, k = k0; i < (uint) dstWidth;
280 i++, j += colStride, k += colStride) {
281 for (comp = 0; comp < 4; comp++) {
282 float aj, ak, bj, bk;
283 aj = half_to_float(rowA[j][comp]);
284 ak = half_to_float(rowA[k][comp]);
285 bj = half_to_float(rowB[j][comp]);
286 bk = half_to_float(rowB[k][comp]);
287 dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
288 }
289 }
290 }
291 else if (datatype == HALF_FLOAT && comps == 3) {
292 uint i, j, k, comp;
293 const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA;
294 const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB;
295 half_float(*dst)[3] = (half_float(*)[3]) dstRow;
296 for (i = j = 0, k = k0; i < (uint) dstWidth;
297 i++, j += colStride, k += colStride) {
298 for (comp = 0; comp < 3; comp++) {
299 float aj, ak, bj, bk;
300 aj = half_to_float(rowA[j][comp]);
301 ak = half_to_float(rowA[k][comp]);
302 bj = half_to_float(rowB[j][comp]);
303 bk = half_to_float(rowB[k][comp]);
304 dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
305 }
306 }
307 }
308 else if (datatype == HALF_FLOAT && comps == 2) {
309 uint i, j, k, comp;
310 const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA;
311 const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB;
312 half_float(*dst)[2] = (half_float(*)[2]) dstRow;
313 for (i = j = 0, k = k0; i < (uint) dstWidth;
314 i++, j += colStride, k += colStride) {
315 for (comp = 0; comp < 2; comp++) {
316 float aj, ak, bj, bk;
317 aj = half_to_float(rowA[j][comp]);
318 ak = half_to_float(rowA[k][comp]);
319 bj = half_to_float(rowB[j][comp]);
320 bk = half_to_float(rowB[k][comp]);
321 dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
322 }
323 }
324 }
325 else if (datatype == HALF_FLOAT && comps == 1) {
326 uint i, j, k;
327 const half_float *rowA = (const half_float *) srcRowA;
328 const half_float *rowB = (const half_float *) srcRowB;
329 half_float *dst = (half_float *) dstRow;
330 for (i = j = 0, k = k0; i < (uint) dstWidth;
331 i++, j += colStride, k += colStride) {
332 float aj, ak, bj, bk;
333 aj = half_to_float(rowA[j]);
334 ak = half_to_float(rowA[k]);
335 bj = half_to_float(rowB[j]);
336 bk = half_to_float(rowB[k]);
337 dst[i] = float_to_half((aj + ak + bj + bk) * 0.25F);
338 }
339 }
340 #endif
341
342 else if (datatype == UINT && comps == 1) {
343 uint i, j, k;
344 const uint *rowA = (const uint *) srcRowA;
345 const uint *rowB = (const uint *) srcRowB;
346 uint *dst = (uint *) dstRow;
347 for (i = j = 0, k = k0; i < (uint) dstWidth;
348 i++, j += colStride, k += colStride) {
349 dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
350 }
351 }
352
353 else if (datatype == USHORT_5_6_5 && comps == 3) {
354 uint i, j, k;
355 const ushort *rowA = (const ushort *) srcRowA;
356 const ushort *rowB = (const ushort *) srcRowB;
357 ushort *dst = (ushort *) dstRow;
358 for (i = j = 0, k = k0; i < (uint) dstWidth;
359 i++, j += colStride, k += colStride) {
360 const int rowAr0 = rowA[j] & 0x1f;
361 const int rowAr1 = rowA[k] & 0x1f;
362 const int rowBr0 = rowB[j] & 0x1f;
363 const int rowBr1 = rowB[k] & 0x1f;
364 const int rowAg0 = (rowA[j] >> 5) & 0x3f;
365 const int rowAg1 = (rowA[k] >> 5) & 0x3f;
366 const int rowBg0 = (rowB[j] >> 5) & 0x3f;
367 const int rowBg1 = (rowB[k] >> 5) & 0x3f;
368 const int rowAb0 = (rowA[j] >> 11) & 0x1f;
369 const int rowAb1 = (rowA[k] >> 11) & 0x1f;
370 const int rowBb0 = (rowB[j] >> 11) & 0x1f;
371 const int rowBb1 = (rowB[k] >> 11) & 0x1f;
372 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
373 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
374 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
375 dst[i] = (blue << 11) | (green << 5) | red;
376 }
377 }
378 else if (datatype == USHORT_4_4_4_4 && comps == 4) {
379 uint i, j, k;
380 const ushort *rowA = (const ushort *) srcRowA;
381 const ushort *rowB = (const ushort *) srcRowB;
382 ushort *dst = (ushort *) dstRow;
383 for (i = j = 0, k = k0; i < (uint) dstWidth;
384 i++, j += colStride, k += colStride) {
385 const int rowAr0 = rowA[j] & 0xf;
386 const int rowAr1 = rowA[k] & 0xf;
387 const int rowBr0 = rowB[j] & 0xf;
388 const int rowBr1 = rowB[k] & 0xf;
389 const int rowAg0 = (rowA[j] >> 4) & 0xf;
390 const int rowAg1 = (rowA[k] >> 4) & 0xf;
391 const int rowBg0 = (rowB[j] >> 4) & 0xf;
392 const int rowBg1 = (rowB[k] >> 4) & 0xf;
393 const int rowAb0 = (rowA[j] >> 8) & 0xf;
394 const int rowAb1 = (rowA[k] >> 8) & 0xf;
395 const int rowBb0 = (rowB[j] >> 8) & 0xf;
396 const int rowBb1 = (rowB[k] >> 8) & 0xf;
397 const int rowAa0 = (rowA[j] >> 12) & 0xf;
398 const int rowAa1 = (rowA[k] >> 12) & 0xf;
399 const int rowBa0 = (rowB[j] >> 12) & 0xf;
400 const int rowBa1 = (rowB[k] >> 12) & 0xf;
401 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
402 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
403 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
404 const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
405 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
406 }
407 }
408 else if (datatype == USHORT_1_5_5_5_REV && comps == 4) {
409 uint i, j, k;
410 const ushort *rowA = (const ushort *) srcRowA;
411 const ushort *rowB = (const ushort *) srcRowB;
412 ushort *dst = (ushort *) dstRow;
413 for (i = j = 0, k = k0; i < (uint) dstWidth;
414 i++, j += colStride, k += colStride) {
415 const int rowAr0 = rowA[j] & 0x1f;
416 const int rowAr1 = rowA[k] & 0x1f;
417 const int rowBr0 = rowB[j] & 0x1f;
418 const int rowBr1 = rowB[k] & 0xf;
419 const int rowAg0 = (rowA[j] >> 5) & 0x1f;
420 const int rowAg1 = (rowA[k] >> 5) & 0x1f;
421 const int rowBg0 = (rowB[j] >> 5) & 0x1f;
422 const int rowBg1 = (rowB[k] >> 5) & 0x1f;
423 const int rowAb0 = (rowA[j] >> 10) & 0x1f;
424 const int rowAb1 = (rowA[k] >> 10) & 0x1f;
425 const int rowBb0 = (rowB[j] >> 10) & 0x1f;
426 const int rowBb1 = (rowB[k] >> 10) & 0x1f;
427 const int rowAa0 = (rowA[j] >> 15) & 0x1;
428 const int rowAa1 = (rowA[k] >> 15) & 0x1;
429 const int rowBa0 = (rowB[j] >> 15) & 0x1;
430 const int rowBa1 = (rowB[k] >> 15) & 0x1;
431 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
432 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
433 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
434 const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
435 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
436 }
437 }
438 else if (datatype == UBYTE_3_3_2 && comps == 3) {
439 uint i, j, k;
440 const ubyte *rowA = (const ubyte *) srcRowA;
441 const ubyte *rowB = (const ubyte *) srcRowB;
442 ubyte *dst = (ubyte *) dstRow;
443 for (i = j = 0, k = k0; i < (uint) dstWidth;
444 i++, j += colStride, k += colStride) {
445 const int rowAr0 = rowA[j] & 0x3;
446 const int rowAr1 = rowA[k] & 0x3;
447 const int rowBr0 = rowB[j] & 0x3;
448 const int rowBr1 = rowB[k] & 0x3;
449 const int rowAg0 = (rowA[j] >> 2) & 0x7;
450 const int rowAg1 = (rowA[k] >> 2) & 0x7;
451 const int rowBg0 = (rowB[j] >> 2) & 0x7;
452 const int rowBg1 = (rowB[k] >> 2) & 0x7;
453 const int rowAb0 = (rowA[j] >> 5) & 0x7;
454 const int rowAb1 = (rowA[k] >> 5) & 0x7;
455 const int rowBb0 = (rowB[j] >> 5) & 0x7;
456 const int rowBb1 = (rowB[k] >> 5) & 0x7;
457 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
458 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
459 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
460 dst[i] = (blue << 5) | (green << 2) | red;
461 }
462 }
463 else {
464 debug_printf("bad format in do_row()");
465 }
466 }
467
468
469 static void
470 format_to_type_comps(enum pipe_format pformat,
471 enum dtype *datatype, uint *comps)
472 {
473 switch (pformat) {
474 case PIPE_FORMAT_A8R8G8B8_UNORM:
475 case PIPE_FORMAT_B8G8R8A8_UNORM:
476 *datatype = UBYTE;
477 *comps = 4;
478 return;
479 case PIPE_FORMAT_A1R5G5B5_UNORM:
480 *datatype = USHORT_1_5_5_5_REV;
481 *comps = 4;
482 return;
483 case PIPE_FORMAT_A4R4G4B4_UNORM:
484 *datatype = USHORT_4_4_4_4;
485 *comps = 4;
486 return;
487 case PIPE_FORMAT_R5G6B5_UNORM:
488 *datatype = USHORT_5_6_5;
489 *comps = 3;
490 return;
491 case PIPE_FORMAT_U_L8:
492 case PIPE_FORMAT_U_A8:
493 case PIPE_FORMAT_U_I8:
494 *datatype = UBYTE;
495 *comps = 1;
496 return;
497 case PIPE_FORMAT_U_A8_L8:
498 *datatype = UBYTE;
499 *comps = 2;
500 return;
501 default:
502 assert(0);
503 }
504 }
505
506
507 static void
508 reduce_1d(enum pipe_format pformat,
509 int srcWidth, const ubyte *srcPtr,
510 int dstWidth, ubyte *dstPtr)
511 {
512 enum dtype datatype;
513 uint comps;
514
515 format_to_type_comps(pformat, &datatype, &comps);
516
517 /* we just duplicate the input row, kind of hack, saves code */
518 do_row(datatype, comps,
519 srcWidth, srcPtr, srcPtr,
520 dstWidth, dstPtr);
521 }
522
523
524 /**
525 * Strides are in bytes. If zero, it'll be computed as width * bpp.
526 */
527 static void
528 reduce_2d(enum pipe_format pformat,
529 int srcWidth, int srcHeight,
530 int srcRowStride, const ubyte *srcPtr,
531 int dstWidth, int dstHeight,
532 int dstRowStride, ubyte *dstPtr)
533 {
534 enum dtype datatype;
535 uint comps;
536 const int bpt = pf_get_size(pformat);
537 const ubyte *srcA, *srcB;
538 ubyte *dst;
539 int row;
540
541 format_to_type_comps(pformat, &datatype, &comps);
542
543 if (!srcRowStride)
544 srcRowStride = bpt * srcWidth;
545
546 if (!dstRowStride)
547 dstRowStride = bpt * dstWidth;
548
549 /* Compute src and dst pointers */
550 srcA = srcPtr;
551 if (srcHeight > 1)
552 srcB = srcA + srcRowStride;
553 else
554 srcB = srcA;
555 dst = dstPtr;
556
557 for (row = 0; row < dstHeight; row++) {
558 do_row(datatype, comps,
559 srcWidth, srcA, srcB,
560 dstWidth, dst);
561 srcA += 2 * srcRowStride;
562 srcB += 2 * srcRowStride;
563 dst += dstRowStride;
564 }
565 }
566
567
568 static void
569 make_1d_mipmap(struct gen_mipmap_state *ctx,
570 struct pipe_texture *pt,
571 uint face, uint baseLevel, uint lastLevel)
572 {
573 struct pipe_context *pipe = ctx->pipe;
574 struct pipe_screen *screen = pipe->screen;
575 struct pipe_winsys *winsys = pipe->winsys;
576 const uint zslice = 0;
577 uint dstLevel;
578
579 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
580 const uint srcLevel = dstLevel - 1;
581 struct pipe_surface *srcSurf, *dstSurf;
582 void *srcMap, *dstMap;
583
584 srcSurf = screen->get_tex_surface(screen, pt, face, srcLevel, zslice);
585 dstSurf = screen->get_tex_surface(screen, pt, face, dstLevel, zslice);
586
587 srcMap = ((ubyte *) winsys->buffer_map(winsys, srcSurf->buffer,
588 PIPE_BUFFER_USAGE_CPU_READ)
589 + srcSurf->offset);
590 dstMap = ((ubyte *) winsys->buffer_map(winsys, dstSurf->buffer,
591 PIPE_BUFFER_USAGE_CPU_WRITE)
592 + dstSurf->offset);
593
594 reduce_1d(pt->format,
595 srcSurf->width, srcMap,
596 dstSurf->width, dstMap);
597
598 winsys->buffer_unmap(winsys, srcSurf->buffer);
599 winsys->buffer_unmap(winsys, dstSurf->buffer);
600
601 pipe_surface_reference(&srcSurf, NULL);
602 pipe_surface_reference(&dstSurf, NULL);
603 }
604 }
605
606
607 static void
608 make_2d_mipmap(struct gen_mipmap_state *ctx,
609 struct pipe_texture *pt,
610 uint face, uint baseLevel, uint lastLevel)
611 {
612 struct pipe_context *pipe = ctx->pipe;
613 struct pipe_screen *screen = pipe->screen;
614 struct pipe_winsys *winsys = pipe->winsys;
615 const uint zslice = 0;
616 uint dstLevel;
617 const int bpt = pf_get_size(pt->format);
618
619 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
620 const uint srcLevel = dstLevel - 1;
621 struct pipe_surface *srcSurf, *dstSurf;
622 ubyte *srcMap, *dstMap;
623
624 srcSurf = screen->get_tex_surface(screen, pt, face, srcLevel, zslice);
625 dstSurf = screen->get_tex_surface(screen, pt, face, dstLevel, zslice);
626
627 srcMap = ((ubyte *) winsys->buffer_map(winsys, srcSurf->buffer,
628 PIPE_BUFFER_USAGE_CPU_READ)
629 + srcSurf->offset);
630 dstMap = ((ubyte *) winsys->buffer_map(winsys, dstSurf->buffer,
631 PIPE_BUFFER_USAGE_CPU_WRITE)
632 + dstSurf->offset);
633
634 reduce_2d(pt->format,
635 srcSurf->width, srcSurf->height,
636 srcSurf->pitch * bpt, srcMap,
637 dstSurf->width, dstSurf->height,
638 dstSurf->pitch * bpt, dstMap);
639
640 winsys->buffer_unmap(winsys, srcSurf->buffer);
641 winsys->buffer_unmap(winsys, dstSurf->buffer);
642
643 pipe_surface_reference(&srcSurf, NULL);
644 pipe_surface_reference(&dstSurf, NULL);
645 }
646 }
647
648
649 static void
650 make_3d_mipmap(struct gen_mipmap_state *ctx,
651 struct pipe_texture *pt,
652 uint face, uint baseLevel, uint lastLevel)
653 {
654 }
655
656
657 static void
658 fallback_gen_mipmap(struct gen_mipmap_state *ctx,
659 struct pipe_texture *pt,
660 uint face, uint baseLevel, uint lastLevel)
661 {
662 switch (pt->target) {
663 case PIPE_TEXTURE_1D:
664 make_1d_mipmap(ctx, pt, face, baseLevel, lastLevel);
665 break;
666 case PIPE_TEXTURE_2D:
667 case PIPE_TEXTURE_CUBE:
668 make_2d_mipmap(ctx, pt, face, baseLevel, lastLevel);
669 break;
670 case PIPE_TEXTURE_3D:
671 make_3d_mipmap(ctx, pt, face, baseLevel, lastLevel);
672 break;
673 default:
674 assert(0);
675 }
676 }
677
678
679 /**
680 * Create a mipmap generation context.
681 * The idea is to create one of these and re-use it each time we need to
682 * generate a mipmap.
683 */
684 struct gen_mipmap_state *
685 util_create_gen_mipmap(struct pipe_context *pipe,
686 struct cso_context *cso)
687 {
688 struct gen_mipmap_state *ctx;
689 uint i;
690
691 ctx = CALLOC_STRUCT(gen_mipmap_state);
692 if (!ctx)
693 return NULL;
694
695 ctx->pipe = pipe;
696 ctx->cso = cso;
697
698 /* disabled blending/masking */
699 memset(&ctx->blend, 0, sizeof(ctx->blend));
700 ctx->blend.rgb_src_factor = PIPE_BLENDFACTOR_ONE;
701 ctx->blend.alpha_src_factor = PIPE_BLENDFACTOR_ONE;
702 ctx->blend.rgb_dst_factor = PIPE_BLENDFACTOR_ZERO;
703 ctx->blend.alpha_dst_factor = PIPE_BLENDFACTOR_ZERO;
704 ctx->blend.colormask = PIPE_MASK_RGBA;
705
706 /* no-op depth/stencil/alpha */
707 memset(&ctx->depthstencil, 0, sizeof(ctx->depthstencil));
708
709 /* rasterizer */
710 memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer));
711 ctx->rasterizer.front_winding = PIPE_WINDING_CW;
712 ctx->rasterizer.cull_mode = PIPE_WINDING_NONE;
713 ctx->rasterizer.bypass_clipping = 1; /* bypasses viewport too */
714 /*ctx->rasterizer.bypass_vs = 1;*/
715
716 /* sampler state */
717 memset(&ctx->sampler, 0, sizeof(ctx->sampler));
718 ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
719 ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
720 ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
721 ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST;
722 ctx->sampler.mag_img_filter = PIPE_TEX_FILTER_LINEAR;
723 ctx->sampler.normalized_coords = 1;
724
725
726 #if 0
727 /* viewport */
728 ctx->viewport.scale[0] = 1.0;
729 ctx->viewport.scale[1] = 1.0;
730 ctx->viewport.scale[2] = 1.0;
731 ctx->viewport.scale[3] = 1.0;
732 ctx->viewport.translate[0] = 0.0;
733 ctx->viewport.translate[1] = 0.0;
734 ctx->viewport.translate[2] = 0.0;
735 ctx->viewport.translate[3] = 0.0;
736 #endif
737
738 /* vertex shader */
739 {
740 const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
741 TGSI_SEMANTIC_GENERIC };
742 const uint semantic_indexes[] = { 0, 0 };
743 ctx->vs = util_make_vertex_passthrough_shader(pipe, 2, semantic_names,
744 semantic_indexes);
745 }
746
747 /* fragment shader */
748 ctx->fs = util_make_fragment_tex_shader(pipe);
749
750 ctx->vbuf = pipe->winsys->buffer_create(pipe->winsys,
751 32,
752 PIPE_BUFFER_USAGE_VERTEX,
753 sizeof(ctx->vertices));
754 if (!ctx->vbuf) {
755 FREE(ctx);
756 return NULL;
757 }
758
759 /* vertex data that doesn't change */
760 for (i = 0; i < 4; i++) {
761 ctx->vertices[i][0][2] = 0.0f; /* z */
762 ctx->vertices[i][0][3] = 1.0f; /* w */
763 ctx->vertices[i][1][2] = 0.0f; /* r */
764 ctx->vertices[i][1][3] = 1.0f; /* q */
765 }
766
767 return ctx;
768 }
769
770
771 static void
772 set_vertex_data(struct gen_mipmap_state *ctx, float width, float height)
773 {
774 void *buf;
775
776 ctx->vertices[0][0][0] = -0.5f; /*x*/
777 ctx->vertices[0][0][1] = -0.5f; /*y*/
778 ctx->vertices[0][1][0] = 0.0f; /*s*/
779 ctx->vertices[0][1][1] = 0.0f; /*t*/
780
781 ctx->vertices[1][0][0] = width - 0.5f; /*x*/
782 ctx->vertices[1][0][1] = -0.5f; /*y*/
783 ctx->vertices[1][1][0] = 1.0f; /*s*/
784 ctx->vertices[1][1][1] = 0.0f; /*t*/
785
786 ctx->vertices[2][0][0] = width - 0.5f;
787 ctx->vertices[2][0][1] = height - 0.5f;
788 ctx->vertices[2][1][0] = 1.0f;
789 ctx->vertices[2][1][1] = 1.0f;
790
791 ctx->vertices[3][0][0] = -0.5f;
792 ctx->vertices[3][0][1] = height - 0.5f;
793 ctx->vertices[3][1][0] = 0.0f;
794 ctx->vertices[3][1][1] = 1.0f;
795
796 buf = ctx->pipe->winsys->buffer_map(ctx->pipe->winsys, ctx->vbuf,
797 PIPE_BUFFER_USAGE_CPU_WRITE);
798
799 memcpy(buf, ctx->vertices, sizeof(ctx->vertices));
800
801 ctx->pipe->winsys->buffer_unmap(ctx->pipe->winsys, ctx->vbuf);
802 }
803
804
805
806 /**
807 * Destroy a mipmap generation context
808 */
809 void
810 util_destroy_gen_mipmap(struct gen_mipmap_state *ctx)
811 {
812 struct pipe_context *pipe = ctx->pipe;
813
814 pipe->delete_vs_state(pipe, ctx->vs);
815 pipe->delete_fs_state(pipe, ctx->fs);
816
817 pipe->winsys->buffer_destroy(pipe->winsys, ctx->vbuf);
818
819 FREE(ctx);
820 }
821
822
823 #if 0
824 static void
825 simple_viewport(struct pipe_context *pipe, uint width, uint height)
826 {
827 struct pipe_viewport_state vp;
828
829 vp.scale[0] = 0.5 * width;
830 vp.scale[1] = -0.5 * height;
831 vp.scale[2] = 1.0;
832 vp.scale[3] = 1.0;
833 vp.translate[0] = 0.5 * width;
834 vp.translate[1] = 0.5 * height;
835 vp.translate[2] = 0.0;
836 vp.translate[3] = 0.0;
837
838 pipe->set_viewport_state(pipe, &vp);
839 }
840 #endif
841
842
843 /**
844 * Generate mipmap images. It's assumed all needed texture memory is
845 * already allocated.
846 *
847 * \param pt the texture to generate mipmap levels for
848 * \param face which cube face to generate mipmaps for (0 for non-cube maps)
849 * \param baseLevel the first mipmap level to use as a src
850 * \param lastLevel the last mipmap level to generate
851 * \param filter the minification filter used to generate mipmap levels with
852 */
853 void
854 util_gen_mipmap_filter(struct gen_mipmap_state *ctx,
855 struct pipe_texture *pt,
856 uint face, uint baseLevel, uint lastLevel, uint filter)
857 {
858 struct pipe_context *pipe = ctx->pipe;
859 struct pipe_screen *screen = pipe->screen;
860 struct pipe_framebuffer_state fb;
861 uint dstLevel;
862 uint zslice = 0;
863
864 /* check if we can render in the texture's format */
865 if (!screen->is_format_supported(screen, pt->format, PIPE_SURFACE)) {
866 fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel);
867 return;
868 }
869
870 /* save state (restored below) */
871 cso_save_blend(ctx->cso);
872 cso_save_depth_stencil_alpha(ctx->cso);
873 cso_save_rasterizer(ctx->cso);
874 cso_save_samplers(ctx->cso);
875 cso_save_sampler_textures(ctx->cso);
876 cso_save_framebuffer(ctx->cso);
877
878 /* bind our state */
879 cso_set_blend(ctx->cso, &ctx->blend);
880 cso_set_depth_stencil_alpha(ctx->cso, &ctx->depthstencil);
881 cso_set_rasterizer(ctx->cso, &ctx->rasterizer);
882
883 pipe->bind_vs_state(pipe, ctx->vs);
884 pipe->bind_fs_state(pipe, ctx->fs);
885 #if 0
886 pipe->set_viewport_state(pipe, &ctx->viewport);
887 #endif
888
889 /* init framebuffer state */
890 memset(&fb, 0, sizeof(fb));
891 fb.num_cbufs = 1;
892
893 /*
894 * XXX for small mipmap levels, it may be faster to use the software
895 * fallback path...
896 */
897 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
898 const uint srcLevel = dstLevel - 1;
899
900 /*
901 * Setup framebuffer / dest surface
902 */
903 fb.cbufs[0] = screen->get_tex_surface(screen, pt, face, dstLevel, zslice);
904 fb.width = pt->width[dstLevel];
905 fb.height = pt->height[dstLevel];
906 cso_set_framebuffer(ctx->cso, &fb);
907
908 /*
909 * Setup sampler state
910 * Note: we should only have to set the min/max LOD clamps to ensure
911 * we grab texels from the right mipmap level. But some hardware
912 * has trouble with min clamping so we also set the lod_bias to
913 * try to work around that.
914 */
915 ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel;
916 ctx->sampler.lod_bias = (float) srcLevel;
917 ctx->sampler.min_img_filter = filter;
918 cso_single_sampler(ctx->cso, 0, &ctx->sampler);
919 cso_single_sampler_done(ctx->cso);
920 #if 0
921 simple_viewport(pipe, pt->width[dstLevel], pt->height[dstLevel]);
922 #endif
923
924 pipe->set_sampler_textures(pipe, 1, &pt);
925
926 /* quad coords in window coords (bypassing clipping, viewport mapping) */
927 set_vertex_data(ctx,
928 (float) pt->width[dstLevel],
929 (float) pt->height[dstLevel]);
930 util_draw_vertex_buffer(ctx->pipe, ctx->vbuf,
931 PIPE_PRIM_TRIANGLE_FAN,
932 4, /* verts */
933 2); /* attribs/vert */
934
935 pipe->flush(pipe, PIPE_FLUSH_WAIT);
936
937 /* need to signal that the texture has changed _after_ rendering to it */
938 pipe->texture_update(pipe, pt, face, (1 << dstLevel));
939 }
940
941 /* restore state we changed */
942 cso_restore_blend(ctx->cso);
943 cso_restore_depth_stencil_alpha(ctx->cso);
944 cso_restore_rasterizer(ctx->cso);
945 cso_restore_samplers(ctx->cso);
946 cso_restore_sampler_textures(ctx->cso);
947 cso_restore_framebuffer(ctx->cso);
948 }
949
950
951 /**
952 * Generate mipmap images with a linear minification filter.
953 * See util_gen_mipmap_filter for more info.
954 *
955 * \param pt the texture to generate mipmap levels for
956 * \param face which cube face to generate mipmaps for (0 for non-cube maps)
957 * \param baseLevel the first mipmap level to use as a src
958 * \param lastLevel the last mipmap level to generate
959 */
960 void
961 util_gen_mipmap(struct gen_mipmap_state *ctx,
962 struct pipe_texture *pt,
963 uint face, uint baseLevel, uint lastLevel)
964 {
965 util_gen_mipmap_filter( ctx, pt, face, baseLevel, lastLevel, PIPE_TEX_FILTER_LINEAR );
966 }