gallium: set sample mask to ~0 for clear, blit and gen_mipmap
[mesa.git] / src / gallium / auxiliary / util / u_gen_mipmap.c
1 /**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2008 VMware, Inc. All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Mipmap generation utility
32 *
33 * @author Brian Paul
34 */
35
36
37 #include "pipe/p_context.h"
38 #include "util/u_debug.h"
39 #include "pipe/p_defines.h"
40 #include "util/u_inlines.h"
41 #include "pipe/p_shader_tokens.h"
42 #include "pipe/p_state.h"
43
44 #include "util/u_format.h"
45 #include "util/u_memory.h"
46 #include "util/u_draw_quad.h"
47 #include "util/u_gen_mipmap.h"
48 #include "util/u_simple_shaders.h"
49 #include "util/u_math.h"
50 #include "util/u_texture.h"
51 #include "util/u_half.h"
52 #include "util/u_surface.h"
53
54 #include "cso_cache/cso_context.h"
55
56
57 struct gen_mipmap_state
58 {
59 struct pipe_context *pipe;
60 struct cso_context *cso;
61
62 struct pipe_blend_state blend_keep_color, blend_write_color;
63 struct pipe_depth_stencil_alpha_state dsa_keep_depth, dsa_write_depth;
64 struct pipe_rasterizer_state rasterizer;
65 struct pipe_sampler_state sampler;
66 struct pipe_vertex_element velem[2];
67
68 void *vs;
69
70 /** Not all are used, but simplifies code */
71 void *fs_color[TGSI_TEXTURE_COUNT];
72 void *fs_depth[TGSI_TEXTURE_COUNT];
73
74 struct pipe_resource *vbuf; /**< quad vertices */
75 unsigned vbuf_slot;
76
77 float vertices[4][2][4]; /**< vertex/texcoords for quad */
78 };
79
80
81
82 enum dtype
83 {
84 DTYPE_UBYTE,
85 DTYPE_UBYTE_3_3_2,
86 DTYPE_USHORT,
87 DTYPE_USHORT_4_4_4_4,
88 DTYPE_USHORT_5_6_5,
89 DTYPE_USHORT_1_5_5_5_REV,
90 DTYPE_UINT,
91 DTYPE_FLOAT,
92 DTYPE_HALF_FLOAT
93 };
94
95
96 typedef uint16_t half_float;
97
98
99 /**
100 * \name Support macros for do_row and do_row_3d
101 *
102 * The macro madness is here for two reasons. First, it compacts the code
103 * slightly. Second, it makes it much easier to adjust the specifics of the
104 * filter to tune the rounding characteristics.
105 */
106 /*@{*/
107 #define DECLARE_ROW_POINTERS(t, e) \
108 const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
109 const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
110 const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
111 const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
112 t(*dst)[e] = (t(*)[e]) dstRow
113
114 #define DECLARE_ROW_POINTERS0(t) \
115 const t *rowA = (const t *) srcRowA; \
116 const t *rowB = (const t *) srcRowB; \
117 const t *rowC = (const t *) srcRowC; \
118 const t *rowD = (const t *) srcRowD; \
119 t *dst = (t *) dstRow
120
121 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
122 ((unsigned) Aj + (unsigned) Ak \
123 + (unsigned) Bj + (unsigned) Bk \
124 + (unsigned) Cj + (unsigned) Ck \
125 + (unsigned) Dj + (unsigned) Dk \
126 + 4) >> 3
127
128 #define FILTER_3D(e) \
129 do { \
130 dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
131 rowB[j][e], rowB[k][e], \
132 rowC[j][e], rowC[k][e], \
133 rowD[j][e], rowD[k][e]); \
134 } while(0)
135
136 #define FILTER_F_3D(e) \
137 do { \
138 dst[i][e] = (rowA[j][e] + rowA[k][e] \
139 + rowB[j][e] + rowB[k][e] \
140 + rowC[j][e] + rowC[k][e] \
141 + rowD[j][e] + rowD[k][e]) * 0.125F; \
142 } while(0)
143
144 #define FILTER_HF_3D(e) \
145 do { \
146 const float aj = util_half_to_float(rowA[j][e]); \
147 const float ak = util_half_to_float(rowA[k][e]); \
148 const float bj = util_half_to_float(rowB[j][e]); \
149 const float bk = util_half_to_float(rowB[k][e]); \
150 const float cj = util_half_to_float(rowC[j][e]); \
151 const float ck = util_half_to_float(rowC[k][e]); \
152 const float dj = util_half_to_float(rowD[j][e]); \
153 const float dk = util_half_to_float(rowD[k][e]); \
154 dst[i][e] = util_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
155 * 0.125F); \
156 } while(0)
157 /*@}*/
158
159
160 /**
161 * Average together two rows of a source image to produce a single new
162 * row in the dest image. It's legal for the two source rows to point
163 * to the same data. The source width must be equal to either the
164 * dest width or two times the dest width.
165 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
166 * \param comps number of components per pixel (1..4)
167 */
168 static void
169 do_row(enum dtype datatype, uint comps, int srcWidth,
170 const void *srcRowA, const void *srcRowB,
171 int dstWidth, void *dstRow)
172 {
173 const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
174 const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
175
176 assert(comps >= 1);
177 assert(comps <= 4);
178
179 /* This assertion is no longer valid with non-power-of-2 textures
180 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
181 */
182
183 if (datatype == DTYPE_UBYTE && comps == 4) {
184 uint i, j, k;
185 const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA;
186 const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB;
187 ubyte(*dst)[4] = (ubyte(*)[4]) dstRow;
188 for (i = j = 0, k = k0; i < (uint) dstWidth;
189 i++, j += colStride, k += colStride) {
190 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
191 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
192 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
193 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
194 }
195 }
196 else if (datatype == DTYPE_UBYTE && comps == 3) {
197 uint i, j, k;
198 const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA;
199 const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB;
200 ubyte(*dst)[3] = (ubyte(*)[3]) dstRow;
201 for (i = j = 0, k = k0; i < (uint) dstWidth;
202 i++, j += colStride, k += colStride) {
203 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
204 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
205 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
206 }
207 }
208 else if (datatype == DTYPE_UBYTE && comps == 2) {
209 uint i, j, k;
210 const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA;
211 const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB;
212 ubyte(*dst)[2] = (ubyte(*)[2]) dstRow;
213 for (i = j = 0, k = k0; i < (uint) dstWidth;
214 i++, j += colStride, k += colStride) {
215 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
216 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
217 }
218 }
219 else if (datatype == DTYPE_UBYTE && comps == 1) {
220 uint i, j, k;
221 const ubyte *rowA = (const ubyte *) srcRowA;
222 const ubyte *rowB = (const ubyte *) srcRowB;
223 ubyte *dst = (ubyte *) dstRow;
224 for (i = j = 0, k = k0; i < (uint) dstWidth;
225 i++, j += colStride, k += colStride) {
226 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
227 }
228 }
229
230 else if (datatype == DTYPE_USHORT && comps == 4) {
231 uint i, j, k;
232 const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA;
233 const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB;
234 ushort(*dst)[4] = (ushort(*)[4]) dstRow;
235 for (i = j = 0, k = k0; i < (uint) dstWidth;
236 i++, j += colStride, k += colStride) {
237 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
238 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
239 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
240 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
241 }
242 }
243 else if (datatype == DTYPE_USHORT && comps == 3) {
244 uint i, j, k;
245 const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA;
246 const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB;
247 ushort(*dst)[3] = (ushort(*)[3]) dstRow;
248 for (i = j = 0, k = k0; i < (uint) dstWidth;
249 i++, j += colStride, k += colStride) {
250 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
251 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
252 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
253 }
254 }
255 else if (datatype == DTYPE_USHORT && comps == 2) {
256 uint i, j, k;
257 const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA;
258 const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB;
259 ushort(*dst)[2] = (ushort(*)[2]) dstRow;
260 for (i = j = 0, k = k0; i < (uint) dstWidth;
261 i++, j += colStride, k += colStride) {
262 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
263 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
264 }
265 }
266 else if (datatype == DTYPE_USHORT && comps == 1) {
267 uint i, j, k;
268 const ushort *rowA = (const ushort *) srcRowA;
269 const ushort *rowB = (const ushort *) srcRowB;
270 ushort *dst = (ushort *) dstRow;
271 for (i = j = 0, k = k0; i < (uint) dstWidth;
272 i++, j += colStride, k += colStride) {
273 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
274 }
275 }
276
277 else if (datatype == DTYPE_FLOAT && comps == 4) {
278 uint i, j, k;
279 const float(*rowA)[4] = (const float(*)[4]) srcRowA;
280 const float(*rowB)[4] = (const float(*)[4]) srcRowB;
281 float(*dst)[4] = (float(*)[4]) dstRow;
282 for (i = j = 0, k = k0; i < (uint) dstWidth;
283 i++, j += colStride, k += colStride) {
284 dst[i][0] = (rowA[j][0] + rowA[k][0] +
285 rowB[j][0] + rowB[k][0]) * 0.25F;
286 dst[i][1] = (rowA[j][1] + rowA[k][1] +
287 rowB[j][1] + rowB[k][1]) * 0.25F;
288 dst[i][2] = (rowA[j][2] + rowA[k][2] +
289 rowB[j][2] + rowB[k][2]) * 0.25F;
290 dst[i][3] = (rowA[j][3] + rowA[k][3] +
291 rowB[j][3] + rowB[k][3]) * 0.25F;
292 }
293 }
294 else if (datatype == DTYPE_FLOAT && comps == 3) {
295 uint i, j, k;
296 const float(*rowA)[3] = (const float(*)[3]) srcRowA;
297 const float(*rowB)[3] = (const float(*)[3]) srcRowB;
298 float(*dst)[3] = (float(*)[3]) dstRow;
299 for (i = j = 0, k = k0; i < (uint) dstWidth;
300 i++, j += colStride, k += colStride) {
301 dst[i][0] = (rowA[j][0] + rowA[k][0] +
302 rowB[j][0] + rowB[k][0]) * 0.25F;
303 dst[i][1] = (rowA[j][1] + rowA[k][1] +
304 rowB[j][1] + rowB[k][1]) * 0.25F;
305 dst[i][2] = (rowA[j][2] + rowA[k][2] +
306 rowB[j][2] + rowB[k][2]) * 0.25F;
307 }
308 }
309 else if (datatype == DTYPE_FLOAT && comps == 2) {
310 uint i, j, k;
311 const float(*rowA)[2] = (const float(*)[2]) srcRowA;
312 const float(*rowB)[2] = (const float(*)[2]) srcRowB;
313 float(*dst)[2] = (float(*)[2]) dstRow;
314 for (i = j = 0, k = k0; i < (uint) dstWidth;
315 i++, j += colStride, k += colStride) {
316 dst[i][0] = (rowA[j][0] + rowA[k][0] +
317 rowB[j][0] + rowB[k][0]) * 0.25F;
318 dst[i][1] = (rowA[j][1] + rowA[k][1] +
319 rowB[j][1] + rowB[k][1]) * 0.25F;
320 }
321 }
322 else if (datatype == DTYPE_FLOAT && comps == 1) {
323 uint i, j, k;
324 const float *rowA = (const float *) srcRowA;
325 const float *rowB = (const float *) srcRowB;
326 float *dst = (float *) dstRow;
327 for (i = j = 0, k = k0; i < (uint) dstWidth;
328 i++, j += colStride, k += colStride) {
329 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
330 }
331 }
332
333 else if (datatype == DTYPE_HALF_FLOAT && comps == 4) {
334 uint i, j, k, comp;
335 const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA;
336 const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB;
337 half_float(*dst)[4] = (half_float(*)[4]) dstRow;
338 for (i = j = 0, k = k0; i < (uint) dstWidth;
339 i++, j += colStride, k += colStride) {
340 for (comp = 0; comp < 4; comp++) {
341 float aj, ak, bj, bk;
342 aj = util_half_to_float(rowA[j][comp]);
343 ak = util_half_to_float(rowA[k][comp]);
344 bj = util_half_to_float(rowB[j][comp]);
345 bk = util_half_to_float(rowB[k][comp]);
346 dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
347 }
348 }
349 }
350 else if (datatype == DTYPE_HALF_FLOAT && comps == 3) {
351 uint i, j, k, comp;
352 const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA;
353 const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB;
354 half_float(*dst)[3] = (half_float(*)[3]) dstRow;
355 for (i = j = 0, k = k0; i < (uint) dstWidth;
356 i++, j += colStride, k += colStride) {
357 for (comp = 0; comp < 3; comp++) {
358 float aj, ak, bj, bk;
359 aj = util_half_to_float(rowA[j][comp]);
360 ak = util_half_to_float(rowA[k][comp]);
361 bj = util_half_to_float(rowB[j][comp]);
362 bk = util_half_to_float(rowB[k][comp]);
363 dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
364 }
365 }
366 }
367 else if (datatype == DTYPE_HALF_FLOAT && comps == 2) {
368 uint i, j, k, comp;
369 const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA;
370 const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB;
371 half_float(*dst)[2] = (half_float(*)[2]) dstRow;
372 for (i = j = 0, k = k0; i < (uint) dstWidth;
373 i++, j += colStride, k += colStride) {
374 for (comp = 0; comp < 2; comp++) {
375 float aj, ak, bj, bk;
376 aj = util_half_to_float(rowA[j][comp]);
377 ak = util_half_to_float(rowA[k][comp]);
378 bj = util_half_to_float(rowB[j][comp]);
379 bk = util_half_to_float(rowB[k][comp]);
380 dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
381 }
382 }
383 }
384 else if (datatype == DTYPE_HALF_FLOAT && comps == 1) {
385 uint i, j, k;
386 const half_float *rowA = (const half_float *) srcRowA;
387 const half_float *rowB = (const half_float *) srcRowB;
388 half_float *dst = (half_float *) dstRow;
389 for (i = j = 0, k = k0; i < (uint) dstWidth;
390 i++, j += colStride, k += colStride) {
391 float aj, ak, bj, bk;
392 aj = util_half_to_float(rowA[j]);
393 ak = util_half_to_float(rowA[k]);
394 bj = util_half_to_float(rowB[j]);
395 bk = util_half_to_float(rowB[k]);
396 dst[i] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
397 }
398 }
399
400 else if (datatype == DTYPE_UINT && comps == 1) {
401 uint i, j, k;
402 const uint *rowA = (const uint *) srcRowA;
403 const uint *rowB = (const uint *) srcRowB;
404 uint *dst = (uint *) dstRow;
405 for (i = j = 0, k = k0; i < (uint) dstWidth;
406 i++, j += colStride, k += colStride) {
407 dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
408 }
409 }
410
411 else if (datatype == DTYPE_USHORT_5_6_5 && comps == 3) {
412 uint i, j, k;
413 const ushort *rowA = (const ushort *) srcRowA;
414 const ushort *rowB = (const ushort *) srcRowB;
415 ushort *dst = (ushort *) dstRow;
416 for (i = j = 0, k = k0; i < (uint) dstWidth;
417 i++, j += colStride, k += colStride) {
418 const int rowAr0 = rowA[j] & 0x1f;
419 const int rowAr1 = rowA[k] & 0x1f;
420 const int rowBr0 = rowB[j] & 0x1f;
421 const int rowBr1 = rowB[k] & 0x1f;
422 const int rowAg0 = (rowA[j] >> 5) & 0x3f;
423 const int rowAg1 = (rowA[k] >> 5) & 0x3f;
424 const int rowBg0 = (rowB[j] >> 5) & 0x3f;
425 const int rowBg1 = (rowB[k] >> 5) & 0x3f;
426 const int rowAb0 = (rowA[j] >> 11) & 0x1f;
427 const int rowAb1 = (rowA[k] >> 11) & 0x1f;
428 const int rowBb0 = (rowB[j] >> 11) & 0x1f;
429 const int rowBb1 = (rowB[k] >> 11) & 0x1f;
430 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
431 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
432 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
433 dst[i] = (blue << 11) | (green << 5) | red;
434 }
435 }
436 else if (datatype == DTYPE_USHORT_4_4_4_4 && comps == 4) {
437 uint i, j, k;
438 const ushort *rowA = (const ushort *) srcRowA;
439 const ushort *rowB = (const ushort *) srcRowB;
440 ushort *dst = (ushort *) dstRow;
441 for (i = j = 0, k = k0; i < (uint) dstWidth;
442 i++, j += colStride, k += colStride) {
443 const int rowAr0 = rowA[j] & 0xf;
444 const int rowAr1 = rowA[k] & 0xf;
445 const int rowBr0 = rowB[j] & 0xf;
446 const int rowBr1 = rowB[k] & 0xf;
447 const int rowAg0 = (rowA[j] >> 4) & 0xf;
448 const int rowAg1 = (rowA[k] >> 4) & 0xf;
449 const int rowBg0 = (rowB[j] >> 4) & 0xf;
450 const int rowBg1 = (rowB[k] >> 4) & 0xf;
451 const int rowAb0 = (rowA[j] >> 8) & 0xf;
452 const int rowAb1 = (rowA[k] >> 8) & 0xf;
453 const int rowBb0 = (rowB[j] >> 8) & 0xf;
454 const int rowBb1 = (rowB[k] >> 8) & 0xf;
455 const int rowAa0 = (rowA[j] >> 12) & 0xf;
456 const int rowAa1 = (rowA[k] >> 12) & 0xf;
457 const int rowBa0 = (rowB[j] >> 12) & 0xf;
458 const int rowBa1 = (rowB[k] >> 12) & 0xf;
459 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
460 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
461 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
462 const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
463 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
464 }
465 }
466 else if (datatype == DTYPE_USHORT_1_5_5_5_REV && comps == 4) {
467 uint i, j, k;
468 const ushort *rowA = (const ushort *) srcRowA;
469 const ushort *rowB = (const ushort *) srcRowB;
470 ushort *dst = (ushort *) dstRow;
471 for (i = j = 0, k = k0; i < (uint) dstWidth;
472 i++, j += colStride, k += colStride) {
473 const int rowAr0 = rowA[j] & 0x1f;
474 const int rowAr1 = rowA[k] & 0x1f;
475 const int rowBr0 = rowB[j] & 0x1f;
476 const int rowBr1 = rowB[k] & 0x1f;
477 const int rowAg0 = (rowA[j] >> 5) & 0x1f;
478 const int rowAg1 = (rowA[k] >> 5) & 0x1f;
479 const int rowBg0 = (rowB[j] >> 5) & 0x1f;
480 const int rowBg1 = (rowB[k] >> 5) & 0x1f;
481 const int rowAb0 = (rowA[j] >> 10) & 0x1f;
482 const int rowAb1 = (rowA[k] >> 10) & 0x1f;
483 const int rowBb0 = (rowB[j] >> 10) & 0x1f;
484 const int rowBb1 = (rowB[k] >> 10) & 0x1f;
485 const int rowAa0 = (rowA[j] >> 15) & 0x1;
486 const int rowAa1 = (rowA[k] >> 15) & 0x1;
487 const int rowBa0 = (rowB[j] >> 15) & 0x1;
488 const int rowBa1 = (rowB[k] >> 15) & 0x1;
489 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
490 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
491 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
492 const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
493 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
494 }
495 }
496 else if (datatype == DTYPE_UBYTE_3_3_2 && comps == 3) {
497 uint i, j, k;
498 const ubyte *rowA = (const ubyte *) srcRowA;
499 const ubyte *rowB = (const ubyte *) srcRowB;
500 ubyte *dst = (ubyte *) dstRow;
501 for (i = j = 0, k = k0; i < (uint) dstWidth;
502 i++, j += colStride, k += colStride) {
503 const int rowAr0 = rowA[j] & 0x3;
504 const int rowAr1 = rowA[k] & 0x3;
505 const int rowBr0 = rowB[j] & 0x3;
506 const int rowBr1 = rowB[k] & 0x3;
507 const int rowAg0 = (rowA[j] >> 2) & 0x7;
508 const int rowAg1 = (rowA[k] >> 2) & 0x7;
509 const int rowBg0 = (rowB[j] >> 2) & 0x7;
510 const int rowBg1 = (rowB[k] >> 2) & 0x7;
511 const int rowAb0 = (rowA[j] >> 5) & 0x7;
512 const int rowAb1 = (rowA[k] >> 5) & 0x7;
513 const int rowBb0 = (rowB[j] >> 5) & 0x7;
514 const int rowBb1 = (rowB[k] >> 5) & 0x7;
515 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
516 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
517 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
518 dst[i] = (blue << 5) | (green << 2) | red;
519 }
520 }
521 else {
522 debug_printf("bad format in do_row()");
523 }
524 }
525
526
527 /**
528 * Average together four rows of a source image to produce a single new
529 * row in the dest image. It's legal for the two source rows to point
530 * to the same data. The source width must be equal to either the
531 * dest width or two times the dest width.
532 *
533 * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
534 * \c GL_FLOAT, etc.
535 * \param comps number of components per pixel (1..4)
536 * \param srcWidth Width of a row in the source data
537 * \param srcRowA Pointer to one of the rows of source data
538 * \param srcRowB Pointer to one of the rows of source data
539 * \param srcRowC Pointer to one of the rows of source data
540 * \param srcRowD Pointer to one of the rows of source data
541 * \param dstWidth Width of a row in the destination data
542 * \param srcRowA Pointer to the row of destination data
543 */
544 static void
545 do_row_3D(enum dtype datatype, uint comps, int srcWidth,
546 const void *srcRowA, const void *srcRowB,
547 const void *srcRowC, const void *srcRowD,
548 int dstWidth, void *dstRow)
549 {
550 const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
551 const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
552 uint i, j, k;
553
554 assert(comps >= 1);
555 assert(comps <= 4);
556
557 if ((datatype == DTYPE_UBYTE) && (comps == 4)) {
558 DECLARE_ROW_POINTERS(ubyte, 4);
559
560 for (i = j = 0, k = k0; i < (uint) dstWidth;
561 i++, j += colStride, k += colStride) {
562 FILTER_3D(0);
563 FILTER_3D(1);
564 FILTER_3D(2);
565 FILTER_3D(3);
566 }
567 }
568 else if ((datatype == DTYPE_UBYTE) && (comps == 3)) {
569 DECLARE_ROW_POINTERS(ubyte, 3);
570
571 for (i = j = 0, k = k0; i < (uint) dstWidth;
572 i++, j += colStride, k += colStride) {
573 FILTER_3D(0);
574 FILTER_3D(1);
575 FILTER_3D(2);
576 }
577 }
578 else if ((datatype == DTYPE_UBYTE) && (comps == 2)) {
579 DECLARE_ROW_POINTERS(ubyte, 2);
580
581 for (i = j = 0, k = k0; i < (uint) dstWidth;
582 i++, j += colStride, k += colStride) {
583 FILTER_3D(0);
584 FILTER_3D(1);
585 }
586 }
587 else if ((datatype == DTYPE_UBYTE) && (comps == 1)) {
588 DECLARE_ROW_POINTERS(ubyte, 1);
589
590 for (i = j = 0, k = k0; i < (uint) dstWidth;
591 i++, j += colStride, k += colStride) {
592 FILTER_3D(0);
593 }
594 }
595 else if ((datatype == DTYPE_USHORT) && (comps == 4)) {
596 DECLARE_ROW_POINTERS(ushort, 4);
597
598 for (i = j = 0, k = k0; i < (uint) dstWidth;
599 i++, j += colStride, k += colStride) {
600 FILTER_3D(0);
601 FILTER_3D(1);
602 FILTER_3D(2);
603 FILTER_3D(3);
604 }
605 }
606 else if ((datatype == DTYPE_USHORT) && (comps == 3)) {
607 DECLARE_ROW_POINTERS(ushort, 3);
608
609 for (i = j = 0, k = k0; i < (uint) dstWidth;
610 i++, j += colStride, k += colStride) {
611 FILTER_3D(0);
612 FILTER_3D(1);
613 FILTER_3D(2);
614 }
615 }
616 else if ((datatype == DTYPE_USHORT) && (comps == 2)) {
617 DECLARE_ROW_POINTERS(ushort, 2);
618
619 for (i = j = 0, k = k0; i < (uint) dstWidth;
620 i++, j += colStride, k += colStride) {
621 FILTER_3D(0);
622 FILTER_3D(1);
623 }
624 }
625 else if ((datatype == DTYPE_USHORT) && (comps == 1)) {
626 DECLARE_ROW_POINTERS(ushort, 1);
627
628 for (i = j = 0, k = k0; i < (uint) dstWidth;
629 i++, j += colStride, k += colStride) {
630 FILTER_3D(0);
631 }
632 }
633 else if ((datatype == DTYPE_FLOAT) && (comps == 4)) {
634 DECLARE_ROW_POINTERS(float, 4);
635
636 for (i = j = 0, k = k0; i < (uint) dstWidth;
637 i++, j += colStride, k += colStride) {
638 FILTER_F_3D(0);
639 FILTER_F_3D(1);
640 FILTER_F_3D(2);
641 FILTER_F_3D(3);
642 }
643 }
644 else if ((datatype == DTYPE_FLOAT) && (comps == 3)) {
645 DECLARE_ROW_POINTERS(float, 3);
646
647 for (i = j = 0, k = k0; i < (uint) dstWidth;
648 i++, j += colStride, k += colStride) {
649 FILTER_F_3D(0);
650 FILTER_F_3D(1);
651 FILTER_F_3D(2);
652 }
653 }
654 else if ((datatype == DTYPE_FLOAT) && (comps == 2)) {
655 DECLARE_ROW_POINTERS(float, 2);
656
657 for (i = j = 0, k = k0; i < (uint) dstWidth;
658 i++, j += colStride, k += colStride) {
659 FILTER_F_3D(0);
660 FILTER_F_3D(1);
661 }
662 }
663 else if ((datatype == DTYPE_FLOAT) && (comps == 1)) {
664 DECLARE_ROW_POINTERS(float, 1);
665
666 for (i = j = 0, k = k0; i < (uint) dstWidth;
667 i++, j += colStride, k += colStride) {
668 FILTER_F_3D(0);
669 }
670 }
671 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 4)) {
672 DECLARE_ROW_POINTERS(half_float, 4);
673
674 for (i = j = 0, k = k0; i < (uint) dstWidth;
675 i++, j += colStride, k += colStride) {
676 FILTER_HF_3D(0);
677 FILTER_HF_3D(1);
678 FILTER_HF_3D(2);
679 FILTER_HF_3D(3);
680 }
681 }
682 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 3)) {
683 DECLARE_ROW_POINTERS(half_float, 4);
684
685 for (i = j = 0, k = k0; i < (uint) dstWidth;
686 i++, j += colStride, k += colStride) {
687 FILTER_HF_3D(0);
688 FILTER_HF_3D(1);
689 FILTER_HF_3D(2);
690 }
691 }
692 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 2)) {
693 DECLARE_ROW_POINTERS(half_float, 4);
694
695 for (i = j = 0, k = k0; i < (uint) dstWidth;
696 i++, j += colStride, k += colStride) {
697 FILTER_HF_3D(0);
698 FILTER_HF_3D(1);
699 }
700 }
701 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 1)) {
702 DECLARE_ROW_POINTERS(half_float, 4);
703
704 for (i = j = 0, k = k0; i < (uint) dstWidth;
705 i++, j += colStride, k += colStride) {
706 FILTER_HF_3D(0);
707 }
708 }
709 else if ((datatype == DTYPE_UINT) && (comps == 1)) {
710 const uint *rowA = (const uint *) srcRowA;
711 const uint *rowB = (const uint *) srcRowB;
712 const uint *rowC = (const uint *) srcRowC;
713 const uint *rowD = (const uint *) srcRowD;
714 float *dst = (float *) dstRow;
715
716 for (i = j = 0, k = k0; i < (uint) dstWidth;
717 i++, j += colStride, k += colStride) {
718 const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
719 + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
720 + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
721 + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
722 dst[i] = (float)((double) tmp * 0.125);
723 }
724 }
725 else if ((datatype == DTYPE_USHORT_5_6_5) && (comps == 3)) {
726 DECLARE_ROW_POINTERS0(ushort);
727
728 for (i = j = 0, k = k0; i < (uint) dstWidth;
729 i++, j += colStride, k += colStride) {
730 const int rowAr0 = rowA[j] & 0x1f;
731 const int rowAr1 = rowA[k] & 0x1f;
732 const int rowBr0 = rowB[j] & 0x1f;
733 const int rowBr1 = rowB[k] & 0x1f;
734 const int rowCr0 = rowC[j] & 0x1f;
735 const int rowCr1 = rowC[k] & 0x1f;
736 const int rowDr0 = rowD[j] & 0x1f;
737 const int rowDr1 = rowD[k] & 0x1f;
738 const int rowAg0 = (rowA[j] >> 5) & 0x3f;
739 const int rowAg1 = (rowA[k] >> 5) & 0x3f;
740 const int rowBg0 = (rowB[j] >> 5) & 0x3f;
741 const int rowBg1 = (rowB[k] >> 5) & 0x3f;
742 const int rowCg0 = (rowC[j] >> 5) & 0x3f;
743 const int rowCg1 = (rowC[k] >> 5) & 0x3f;
744 const int rowDg0 = (rowD[j] >> 5) & 0x3f;
745 const int rowDg1 = (rowD[k] >> 5) & 0x3f;
746 const int rowAb0 = (rowA[j] >> 11) & 0x1f;
747 const int rowAb1 = (rowA[k] >> 11) & 0x1f;
748 const int rowBb0 = (rowB[j] >> 11) & 0x1f;
749 const int rowBb1 = (rowB[k] >> 11) & 0x1f;
750 const int rowCb0 = (rowC[j] >> 11) & 0x1f;
751 const int rowCb1 = (rowC[k] >> 11) & 0x1f;
752 const int rowDb0 = (rowD[j] >> 11) & 0x1f;
753 const int rowDb1 = (rowD[k] >> 11) & 0x1f;
754 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
755 rowCr0, rowCr1, rowDr0, rowDr1);
756 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
757 rowCg0, rowCg1, rowDg0, rowDg1);
758 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
759 rowCb0, rowCb1, rowDb0, rowDb1);
760 dst[i] = (b << 11) | (g << 5) | r;
761 }
762 }
763 else if ((datatype == DTYPE_USHORT_4_4_4_4) && (comps == 4)) {
764 DECLARE_ROW_POINTERS0(ushort);
765
766 for (i = j = 0, k = k0; i < (uint) dstWidth;
767 i++, j += colStride, k += colStride) {
768 const int rowAr0 = rowA[j] & 0xf;
769 const int rowAr1 = rowA[k] & 0xf;
770 const int rowBr0 = rowB[j] & 0xf;
771 const int rowBr1 = rowB[k] & 0xf;
772 const int rowCr0 = rowC[j] & 0xf;
773 const int rowCr1 = rowC[k] & 0xf;
774 const int rowDr0 = rowD[j] & 0xf;
775 const int rowDr1 = rowD[k] & 0xf;
776 const int rowAg0 = (rowA[j] >> 4) & 0xf;
777 const int rowAg1 = (rowA[k] >> 4) & 0xf;
778 const int rowBg0 = (rowB[j] >> 4) & 0xf;
779 const int rowBg1 = (rowB[k] >> 4) & 0xf;
780 const int rowCg0 = (rowC[j] >> 4) & 0xf;
781 const int rowCg1 = (rowC[k] >> 4) & 0xf;
782 const int rowDg0 = (rowD[j] >> 4) & 0xf;
783 const int rowDg1 = (rowD[k] >> 4) & 0xf;
784 const int rowAb0 = (rowA[j] >> 8) & 0xf;
785 const int rowAb1 = (rowA[k] >> 8) & 0xf;
786 const int rowBb0 = (rowB[j] >> 8) & 0xf;
787 const int rowBb1 = (rowB[k] >> 8) & 0xf;
788 const int rowCb0 = (rowC[j] >> 8) & 0xf;
789 const int rowCb1 = (rowC[k] >> 8) & 0xf;
790 const int rowDb0 = (rowD[j] >> 8) & 0xf;
791 const int rowDb1 = (rowD[k] >> 8) & 0xf;
792 const int rowAa0 = (rowA[j] >> 12) & 0xf;
793 const int rowAa1 = (rowA[k] >> 12) & 0xf;
794 const int rowBa0 = (rowB[j] >> 12) & 0xf;
795 const int rowBa1 = (rowB[k] >> 12) & 0xf;
796 const int rowCa0 = (rowC[j] >> 12) & 0xf;
797 const int rowCa1 = (rowC[k] >> 12) & 0xf;
798 const int rowDa0 = (rowD[j] >> 12) & 0xf;
799 const int rowDa1 = (rowD[k] >> 12) & 0xf;
800 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
801 rowCr0, rowCr1, rowDr0, rowDr1);
802 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
803 rowCg0, rowCg1, rowDg0, rowDg1);
804 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
805 rowCb0, rowCb1, rowDb0, rowDb1);
806 const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
807 rowCa0, rowCa1, rowDa0, rowDa1);
808
809 dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
810 }
811 }
812 else if ((datatype == DTYPE_USHORT_1_5_5_5_REV) && (comps == 4)) {
813 DECLARE_ROW_POINTERS0(ushort);
814
815 for (i = j = 0, k = k0; i < (uint) dstWidth;
816 i++, j += colStride, k += colStride) {
817 const int rowAr0 = rowA[j] & 0x1f;
818 const int rowAr1 = rowA[k] & 0x1f;
819 const int rowBr0 = rowB[j] & 0x1f;
820 const int rowBr1 = rowB[k] & 0x1f;
821 const int rowCr0 = rowC[j] & 0x1f;
822 const int rowCr1 = rowC[k] & 0x1f;
823 const int rowDr0 = rowD[j] & 0x1f;
824 const int rowDr1 = rowD[k] & 0x1f;
825 const int rowAg0 = (rowA[j] >> 5) & 0x1f;
826 const int rowAg1 = (rowA[k] >> 5) & 0x1f;
827 const int rowBg0 = (rowB[j] >> 5) & 0x1f;
828 const int rowBg1 = (rowB[k] >> 5) & 0x1f;
829 const int rowCg0 = (rowC[j] >> 5) & 0x1f;
830 const int rowCg1 = (rowC[k] >> 5) & 0x1f;
831 const int rowDg0 = (rowD[j] >> 5) & 0x1f;
832 const int rowDg1 = (rowD[k] >> 5) & 0x1f;
833 const int rowAb0 = (rowA[j] >> 10) & 0x1f;
834 const int rowAb1 = (rowA[k] >> 10) & 0x1f;
835 const int rowBb0 = (rowB[j] >> 10) & 0x1f;
836 const int rowBb1 = (rowB[k] >> 10) & 0x1f;
837 const int rowCb0 = (rowC[j] >> 10) & 0x1f;
838 const int rowCb1 = (rowC[k] >> 10) & 0x1f;
839 const int rowDb0 = (rowD[j] >> 10) & 0x1f;
840 const int rowDb1 = (rowD[k] >> 10) & 0x1f;
841 const int rowAa0 = (rowA[j] >> 15) & 0x1;
842 const int rowAa1 = (rowA[k] >> 15) & 0x1;
843 const int rowBa0 = (rowB[j] >> 15) & 0x1;
844 const int rowBa1 = (rowB[k] >> 15) & 0x1;
845 const int rowCa0 = (rowC[j] >> 15) & 0x1;
846 const int rowCa1 = (rowC[k] >> 15) & 0x1;
847 const int rowDa0 = (rowD[j] >> 15) & 0x1;
848 const int rowDa1 = (rowD[k] >> 15) & 0x1;
849 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
850 rowCr0, rowCr1, rowDr0, rowDr1);
851 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
852 rowCg0, rowCg1, rowDg0, rowDg1);
853 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
854 rowCb0, rowCb1, rowDb0, rowDb1);
855 const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
856 rowCa0, rowCa1, rowDa0, rowDa1);
857
858 dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
859 }
860 }
861 else if ((datatype == DTYPE_UBYTE_3_3_2) && (comps == 3)) {
862 DECLARE_ROW_POINTERS0(ushort);
863
864 for (i = j = 0, k = k0; i < (uint) dstWidth;
865 i++, j += colStride, k += colStride) {
866 const int rowAr0 = rowA[j] & 0x3;
867 const int rowAr1 = rowA[k] & 0x3;
868 const int rowBr0 = rowB[j] & 0x3;
869 const int rowBr1 = rowB[k] & 0x3;
870 const int rowCr0 = rowC[j] & 0x3;
871 const int rowCr1 = rowC[k] & 0x3;
872 const int rowDr0 = rowD[j] & 0x3;
873 const int rowDr1 = rowD[k] & 0x3;
874 const int rowAg0 = (rowA[j] >> 2) & 0x7;
875 const int rowAg1 = (rowA[k] >> 2) & 0x7;
876 const int rowBg0 = (rowB[j] >> 2) & 0x7;
877 const int rowBg1 = (rowB[k] >> 2) & 0x7;
878 const int rowCg0 = (rowC[j] >> 2) & 0x7;
879 const int rowCg1 = (rowC[k] >> 2) & 0x7;
880 const int rowDg0 = (rowD[j] >> 2) & 0x7;
881 const int rowDg1 = (rowD[k] >> 2) & 0x7;
882 const int rowAb0 = (rowA[j] >> 5) & 0x7;
883 const int rowAb1 = (rowA[k] >> 5) & 0x7;
884 const int rowBb0 = (rowB[j] >> 5) & 0x7;
885 const int rowBb1 = (rowB[k] >> 5) & 0x7;
886 const int rowCb0 = (rowC[j] >> 5) & 0x7;
887 const int rowCb1 = (rowC[k] >> 5) & 0x7;
888 const int rowDb0 = (rowD[j] >> 5) & 0x7;
889 const int rowDb1 = (rowD[k] >> 5) & 0x7;
890 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
891 rowCr0, rowCr1, rowDr0, rowDr1);
892 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
893 rowCg0, rowCg1, rowDg0, rowDg1);
894 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
895 rowCb0, rowCb1, rowDb0, rowDb1);
896 dst[i] = (b << 5) | (g << 2) | r;
897 }
898 }
899 else {
900 debug_printf("bad format in do_row_3D()");
901 }
902 }
903
904
905
906 static void
907 format_to_type_comps(enum pipe_format pformat,
908 enum dtype *datatype, uint *comps)
909 {
910 /* XXX I think this could be implemented in terms of the pf_*() functions */
911 switch (pformat) {
912 case PIPE_FORMAT_B8G8R8A8_UNORM:
913 case PIPE_FORMAT_B8G8R8X8_UNORM:
914 case PIPE_FORMAT_A8R8G8B8_UNORM:
915 case PIPE_FORMAT_X8R8G8B8_UNORM:
916 case PIPE_FORMAT_A8B8G8R8_SRGB:
917 case PIPE_FORMAT_X8B8G8R8_SRGB:
918 case PIPE_FORMAT_B8G8R8A8_SRGB:
919 case PIPE_FORMAT_B8G8R8X8_SRGB:
920 case PIPE_FORMAT_A8R8G8B8_SRGB:
921 case PIPE_FORMAT_X8R8G8B8_SRGB:
922 case PIPE_FORMAT_R8G8B8_SRGB:
923 *datatype = DTYPE_UBYTE;
924 *comps = 4;
925 return;
926 case PIPE_FORMAT_B5G5R5X1_UNORM:
927 case PIPE_FORMAT_B5G5R5A1_UNORM:
928 *datatype = DTYPE_USHORT_1_5_5_5_REV;
929 *comps = 4;
930 return;
931 case PIPE_FORMAT_B4G4R4A4_UNORM:
932 *datatype = DTYPE_USHORT_4_4_4_4;
933 *comps = 4;
934 return;
935 case PIPE_FORMAT_B5G6R5_UNORM:
936 *datatype = DTYPE_USHORT_5_6_5;
937 *comps = 3;
938 return;
939 case PIPE_FORMAT_L8_UNORM:
940 case PIPE_FORMAT_L8_SRGB:
941 case PIPE_FORMAT_A8_UNORM:
942 case PIPE_FORMAT_I8_UNORM:
943 *datatype = DTYPE_UBYTE;
944 *comps = 1;
945 return;
946 case PIPE_FORMAT_L8A8_UNORM:
947 case PIPE_FORMAT_L8A8_SRGB:
948 *datatype = DTYPE_UBYTE;
949 *comps = 2;
950 return;
951 default:
952 assert(0);
953 *datatype = DTYPE_UBYTE;
954 *comps = 0;
955 break;
956 }
957 }
958
959
960 static void
961 reduce_1d(enum pipe_format pformat,
962 int srcWidth, const ubyte *srcPtr,
963 int dstWidth, ubyte *dstPtr)
964 {
965 enum dtype datatype;
966 uint comps;
967
968 format_to_type_comps(pformat, &datatype, &comps);
969
970 /* we just duplicate the input row, kind of hack, saves code */
971 do_row(datatype, comps,
972 srcWidth, srcPtr, srcPtr,
973 dstWidth, dstPtr);
974 }
975
976
977 /**
978 * Strides are in bytes. If zero, it'll be computed as width * bpp.
979 */
980 static void
981 reduce_2d(enum pipe_format pformat,
982 int srcWidth, int srcHeight,
983 int srcRowStride, const ubyte *srcPtr,
984 int dstWidth, int dstHeight,
985 int dstRowStride, ubyte *dstPtr)
986 {
987 enum dtype datatype;
988 uint comps;
989 const int bpt = util_format_get_blocksize(pformat);
990 const ubyte *srcA, *srcB;
991 ubyte *dst;
992 int row;
993
994 format_to_type_comps(pformat, &datatype, &comps);
995
996 if (!srcRowStride)
997 srcRowStride = bpt * srcWidth;
998
999 if (!dstRowStride)
1000 dstRowStride = bpt * dstWidth;
1001
1002 /* Compute src and dst pointers */
1003 srcA = srcPtr;
1004 if (srcHeight > 1)
1005 srcB = srcA + srcRowStride;
1006 else
1007 srcB = srcA;
1008 dst = dstPtr;
1009
1010 for (row = 0; row < dstHeight; row++) {
1011 do_row(datatype, comps,
1012 srcWidth, srcA, srcB,
1013 dstWidth, dst);
1014 srcA += 2 * srcRowStride;
1015 srcB += 2 * srcRowStride;
1016 dst += dstRowStride;
1017 }
1018 }
1019
1020
1021 static void
1022 reduce_3d(enum pipe_format pformat,
1023 int srcWidth, int srcHeight, int srcDepth,
1024 int srcRowStride, int srcImageStride, const ubyte *srcPtr,
1025 int dstWidth, int dstHeight, int dstDepth,
1026 int dstRowStride, int dstImageStride, ubyte *dstPtr)
1027 {
1028 const int bpt = util_format_get_blocksize(pformat);
1029 int img, row;
1030 int srcImageOffset, srcRowOffset;
1031 enum dtype datatype;
1032 uint comps;
1033
1034 format_to_type_comps(pformat, &datatype, &comps);
1035
1036 /* XXX I think we should rather assert those strides */
1037 if (!srcImageStride)
1038 srcImageStride = srcWidth * srcHeight * bpt;
1039 if (!dstImageStride)
1040 dstImageStride = dstWidth * dstHeight * bpt;
1041
1042 if (!srcRowStride)
1043 srcRowStride = srcWidth * bpt;
1044 if (!dstRowStride)
1045 dstRowStride = dstWidth * bpt;
1046
1047 /* Offset between adjacent src images to be averaged together */
1048 srcImageOffset = (srcDepth == dstDepth) ? 0 : srcImageStride;
1049
1050 /* Offset between adjacent src rows to be averaged together */
1051 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcRowStride;
1052
1053 /*
1054 * Need to average together up to 8 src pixels for each dest pixel.
1055 * Break that down into 3 operations:
1056 * 1. take two rows from source image and average them together.
1057 * 2. take two rows from next source image and average them together.
1058 * 3. take the two averaged rows and average them for the final dst row.
1059 */
1060
1061 /*
1062 printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1063 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1064 */
1065
1066 for (img = 0; img < dstDepth; img++) {
1067 /* first source image pointer */
1068 const ubyte *imgSrcA = srcPtr
1069 + img * (srcImageStride + srcImageOffset);
1070 /* second source image pointer */
1071 const ubyte *imgSrcB = imgSrcA + srcImageOffset;
1072 /* address of the dest image */
1073 ubyte *imgDst = dstPtr + img * dstImageStride;
1074
1075 /* setup the four source row pointers and the dest row pointer */
1076 const ubyte *srcImgARowA = imgSrcA;
1077 const ubyte *srcImgARowB = imgSrcA + srcRowOffset;
1078 const ubyte *srcImgBRowA = imgSrcB;
1079 const ubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1080 ubyte *dstImgRow = imgDst;
1081
1082 for (row = 0; row < dstHeight; row++) {
1083 do_row_3D(datatype, comps, srcWidth,
1084 srcImgARowA, srcImgARowB,
1085 srcImgBRowA, srcImgBRowB,
1086 dstWidth, dstImgRow);
1087
1088 /* advance to next rows */
1089 srcImgARowA += srcRowStride + srcRowOffset;
1090 srcImgARowB += srcRowStride + srcRowOffset;
1091 srcImgBRowA += srcRowStride + srcRowOffset;
1092 srcImgBRowB += srcRowStride + srcRowOffset;
1093 dstImgRow += dstImageStride;
1094 }
1095 }
1096 }
1097
1098
1099
1100
1101 static void
1102 make_1d_mipmap(struct gen_mipmap_state *ctx,
1103 struct pipe_resource *pt,
1104 uint layer, uint baseLevel, uint lastLevel)
1105 {
1106 struct pipe_context *pipe = ctx->pipe;
1107 uint dstLevel;
1108
1109 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1110 const uint srcLevel = dstLevel - 1;
1111 struct pipe_transfer *srcTrans, *dstTrans;
1112 void *srcMap, *dstMap;
1113
1114 srcTrans = pipe_get_transfer(pipe, pt, srcLevel, layer,
1115 PIPE_TRANSFER_READ, 0, 0,
1116 u_minify(pt->width0, srcLevel),
1117 u_minify(pt->height0, srcLevel));
1118 dstTrans = pipe_get_transfer(pipe, pt, dstLevel, layer,
1119 PIPE_TRANSFER_WRITE, 0, 0,
1120 u_minify(pt->width0, dstLevel),
1121 u_minify(pt->height0, dstLevel));
1122
1123 srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1124 dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1125
1126 reduce_1d(pt->format,
1127 srcTrans->box.width, srcMap,
1128 dstTrans->box.width, dstMap);
1129
1130 pipe->transfer_unmap(pipe, srcTrans);
1131 pipe->transfer_unmap(pipe, dstTrans);
1132
1133 pipe->transfer_destroy(pipe, srcTrans);
1134 pipe->transfer_destroy(pipe, dstTrans);
1135 }
1136 }
1137
1138
1139 static void
1140 make_2d_mipmap(struct gen_mipmap_state *ctx,
1141 struct pipe_resource *pt,
1142 uint layer, uint baseLevel, uint lastLevel)
1143 {
1144 struct pipe_context *pipe = ctx->pipe;
1145 uint dstLevel;
1146
1147 assert(util_format_get_blockwidth(pt->format) == 1);
1148 assert(util_format_get_blockheight(pt->format) == 1);
1149
1150 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1151 const uint srcLevel = dstLevel - 1;
1152 struct pipe_transfer *srcTrans, *dstTrans;
1153 ubyte *srcMap, *dstMap;
1154
1155 srcTrans = pipe_get_transfer(pipe, pt, srcLevel, layer,
1156 PIPE_TRANSFER_READ, 0, 0,
1157 u_minify(pt->width0, srcLevel),
1158 u_minify(pt->height0, srcLevel));
1159 dstTrans = pipe_get_transfer(pipe, pt, dstLevel, layer,
1160 PIPE_TRANSFER_WRITE, 0, 0,
1161 u_minify(pt->width0, dstLevel),
1162 u_minify(pt->height0, dstLevel));
1163
1164 srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1165 dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1166
1167 reduce_2d(pt->format,
1168 srcTrans->box.width, srcTrans->box.height,
1169 srcTrans->stride, srcMap,
1170 dstTrans->box.width, dstTrans->box.height,
1171 dstTrans->stride, dstMap);
1172
1173 pipe->transfer_unmap(pipe, srcTrans);
1174 pipe->transfer_unmap(pipe, dstTrans);
1175
1176 pipe->transfer_destroy(pipe, srcTrans);
1177 pipe->transfer_destroy(pipe, dstTrans);
1178 }
1179 }
1180
1181
1182 /* XXX looks a bit more like it could work now but need to test */
1183 static void
1184 make_3d_mipmap(struct gen_mipmap_state *ctx,
1185 struct pipe_resource *pt,
1186 uint face, uint baseLevel, uint lastLevel)
1187 {
1188 struct pipe_context *pipe = ctx->pipe;
1189 uint dstLevel;
1190 struct pipe_box src_box, dst_box;
1191
1192 assert(util_format_get_blockwidth(pt->format) == 1);
1193 assert(util_format_get_blockheight(pt->format) == 1);
1194
1195 src_box.x = src_box.y = src_box.z = 0;
1196 dst_box.x = dst_box.y = dst_box.z = 0;
1197
1198 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1199 const uint srcLevel = dstLevel - 1;
1200 struct pipe_transfer *srcTrans, *dstTrans;
1201 ubyte *srcMap, *dstMap;
1202 struct pipe_box src_box, dst_box;
1203 src_box.width = u_minify(pt->width0, srcLevel);
1204 src_box.height = u_minify(pt->height0, srcLevel);
1205 src_box.depth = u_minify(pt->depth0, srcLevel);
1206 dst_box.width = u_minify(pt->width0, dstLevel);
1207 dst_box.height = u_minify(pt->height0, dstLevel);
1208 dst_box.depth = u_minify(pt->depth0, dstLevel);
1209
1210 srcTrans = pipe->get_transfer(pipe, pt, srcLevel,
1211 PIPE_TRANSFER_READ,
1212 &src_box);
1213 dstTrans = pipe->get_transfer(pipe, pt, dstLevel,
1214 PIPE_TRANSFER_WRITE,
1215 &dst_box);
1216
1217 srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1218 dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1219
1220 reduce_3d(pt->format,
1221 srcTrans->box.width, srcTrans->box.height, srcTrans->box.depth,
1222 srcTrans->stride, srcTrans->layer_stride, srcMap,
1223 dstTrans->box.width, dstTrans->box.height, dstTrans->box.depth,
1224 dstTrans->stride, dstTrans->layer_stride, dstMap);
1225
1226 pipe->transfer_unmap(pipe, srcTrans);
1227 pipe->transfer_unmap(pipe, dstTrans);
1228
1229 pipe->transfer_destroy(pipe, srcTrans);
1230 pipe->transfer_destroy(pipe, dstTrans);
1231 }
1232 }
1233
1234
1235 static void
1236 fallback_gen_mipmap(struct gen_mipmap_state *ctx,
1237 struct pipe_resource *pt,
1238 uint layer, uint baseLevel, uint lastLevel)
1239 {
1240 switch (pt->target) {
1241 case PIPE_TEXTURE_1D:
1242 make_1d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1243 break;
1244 case PIPE_TEXTURE_2D:
1245 case PIPE_TEXTURE_RECT:
1246 case PIPE_TEXTURE_CUBE:
1247 make_2d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1248 break;
1249 case PIPE_TEXTURE_3D:
1250 make_3d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1251 break;
1252 default:
1253 assert(0);
1254 }
1255 }
1256
1257
1258 /**
1259 * Create a mipmap generation context.
1260 * The idea is to create one of these and re-use it each time we need to
1261 * generate a mipmap.
1262 */
1263 struct gen_mipmap_state *
1264 util_create_gen_mipmap(struct pipe_context *pipe,
1265 struct cso_context *cso)
1266 {
1267 struct gen_mipmap_state *ctx;
1268 uint i;
1269
1270 ctx = CALLOC_STRUCT(gen_mipmap_state);
1271 if (!ctx)
1272 return NULL;
1273
1274 ctx->pipe = pipe;
1275 ctx->cso = cso;
1276
1277 /* disabled blending/masking */
1278 memset(&ctx->blend_keep_color, 0, sizeof(ctx->blend_keep_color));
1279 memset(&ctx->blend_write_color, 0, sizeof(ctx->blend_write_color));
1280 ctx->blend_write_color.rt[0].colormask = PIPE_MASK_RGBA;
1281
1282 /* no-op depth/stencil/alpha */
1283 memset(&ctx->dsa_keep_depth, 0, sizeof(ctx->dsa_keep_depth));
1284 memset(&ctx->dsa_write_depth, 0, sizeof(ctx->dsa_write_depth));
1285 ctx->dsa_write_depth.depth.enabled = 1;
1286 ctx->dsa_write_depth.depth.func = PIPE_FUNC_ALWAYS;
1287 ctx->dsa_write_depth.depth.writemask = 1;
1288
1289 /* rasterizer */
1290 memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer));
1291 ctx->rasterizer.cull_face = PIPE_FACE_NONE;
1292 ctx->rasterizer.gl_rasterization_rules = 1;
1293 ctx->rasterizer.depth_clip = 1;
1294
1295 /* sampler state */
1296 memset(&ctx->sampler, 0, sizeof(ctx->sampler));
1297 ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1298 ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1299 ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1300 ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST;
1301 ctx->sampler.normalized_coords = 1;
1302
1303 /* vertex elements state */
1304 memset(&ctx->velem[0], 0, sizeof(ctx->velem[0]) * 2);
1305 for (i = 0; i < 2; i++) {
1306 ctx->velem[i].src_offset = i * 4 * sizeof(float);
1307 ctx->velem[i].instance_divisor = 0;
1308 ctx->velem[i].vertex_buffer_index = 0;
1309 ctx->velem[i].src_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
1310 }
1311
1312 /* vertex data that doesn't change */
1313 for (i = 0; i < 4; i++) {
1314 ctx->vertices[i][0][2] = 0.0f; /* z */
1315 ctx->vertices[i][0][3] = 1.0f; /* w */
1316 ctx->vertices[i][1][3] = 1.0f; /* q */
1317 }
1318
1319 /* Note: the actual vertex buffer is allocated as needed below */
1320
1321 return ctx;
1322 }
1323
1324
1325 /**
1326 * Helper function to set the fragment shaders.
1327 */
1328 static INLINE void
1329 set_fragment_shader(struct gen_mipmap_state *ctx, uint type,
1330 boolean output_depth)
1331 {
1332 if (output_depth) {
1333 if (!ctx->fs_depth[type])
1334 ctx->fs_depth[type] =
1335 util_make_fragment_tex_shader_writedepth(ctx->pipe, type,
1336 TGSI_INTERPOLATE_LINEAR);
1337
1338 cso_set_fragment_shader_handle(ctx->cso, ctx->fs_depth[type]);
1339 }
1340 else {
1341 if (!ctx->fs_color[type])
1342 ctx->fs_color[type] =
1343 util_make_fragment_tex_shader(ctx->pipe, type,
1344 TGSI_INTERPOLATE_LINEAR);
1345
1346 cso_set_fragment_shader_handle(ctx->cso, ctx->fs_color[type]);
1347 }
1348 }
1349
1350
1351 /**
1352 * Helper function to set the vertex shader.
1353 */
1354 static INLINE void
1355 set_vertex_shader(struct gen_mipmap_state *ctx)
1356 {
1357 /* vertex shader - still required to provide the linkage between
1358 * fragment shader input semantics and vertex_element/buffers.
1359 */
1360 if (!ctx->vs)
1361 {
1362 const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
1363 TGSI_SEMANTIC_GENERIC };
1364 const uint semantic_indexes[] = { 0, 0 };
1365 ctx->vs = util_make_vertex_passthrough_shader(ctx->pipe, 2,
1366 semantic_names,
1367 semantic_indexes);
1368 }
1369
1370 cso_set_vertex_shader_handle(ctx->cso, ctx->vs);
1371 }
1372
1373
1374 /**
1375 * Get next "slot" of vertex space in the vertex buffer.
1376 * We're allocating one large vertex buffer and using it piece by piece.
1377 */
1378 static unsigned
1379 get_next_slot(struct gen_mipmap_state *ctx)
1380 {
1381 const unsigned max_slots = 4096 / sizeof ctx->vertices;
1382
1383 if (ctx->vbuf_slot >= max_slots) {
1384 pipe_resource_reference(&ctx->vbuf, NULL);
1385 ctx->vbuf_slot = 0;
1386 }
1387
1388 if (!ctx->vbuf) {
1389 ctx->vbuf = pipe_buffer_create(ctx->pipe->screen,
1390 PIPE_BIND_VERTEX_BUFFER,
1391 PIPE_USAGE_STREAM,
1392 max_slots * sizeof ctx->vertices);
1393 }
1394
1395 return ctx->vbuf_slot++ * sizeof ctx->vertices;
1396 }
1397
1398
1399 static unsigned
1400 set_vertex_data(struct gen_mipmap_state *ctx,
1401 enum pipe_texture_target tex_target,
1402 uint layer, float r)
1403 {
1404 unsigned offset;
1405
1406 /* vert[0].position */
1407 ctx->vertices[0][0][0] = -1.0f; /*x*/
1408 ctx->vertices[0][0][1] = -1.0f; /*y*/
1409
1410 /* vert[1].position */
1411 ctx->vertices[1][0][0] = 1.0f;
1412 ctx->vertices[1][0][1] = -1.0f;
1413
1414 /* vert[2].position */
1415 ctx->vertices[2][0][0] = 1.0f;
1416 ctx->vertices[2][0][1] = 1.0f;
1417
1418 /* vert[3].position */
1419 ctx->vertices[3][0][0] = -1.0f;
1420 ctx->vertices[3][0][1] = 1.0f;
1421
1422 /* Setup vertex texcoords. This is a little tricky for cube maps. */
1423 if (tex_target == PIPE_TEXTURE_CUBE) {
1424 static const float st[4][2] = {
1425 {0.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}, {0.0f, 1.0f}
1426 };
1427
1428 util_map_texcoords2d_onto_cubemap(layer, &st[0][0], 2,
1429 &ctx->vertices[0][1][0], 8);
1430 }
1431 else if (tex_target == PIPE_TEXTURE_1D_ARRAY) {
1432 /* 1D texture array */
1433 ctx->vertices[0][1][0] = 0.0f; /*s*/
1434 ctx->vertices[0][1][1] = r; /*t*/
1435 ctx->vertices[0][1][2] = 0.0f; /*r*/
1436
1437 ctx->vertices[1][1][0] = 1.0f;
1438 ctx->vertices[1][1][1] = r;
1439 ctx->vertices[1][1][2] = 0.0f;
1440
1441 ctx->vertices[2][1][0] = 1.0f;
1442 ctx->vertices[2][1][1] = r;
1443 ctx->vertices[2][1][2] = 0.0f;
1444
1445 ctx->vertices[3][1][0] = 0.0f;
1446 ctx->vertices[3][1][1] = r;
1447 ctx->vertices[3][1][2] = 0.0f;
1448 } else {
1449 /* 1D/2D/3D/2D array */
1450 ctx->vertices[0][1][0] = 0.0f; /*s*/
1451 ctx->vertices[0][1][1] = 0.0f; /*t*/
1452 ctx->vertices[0][1][2] = r; /*r*/
1453
1454 ctx->vertices[1][1][0] = 1.0f;
1455 ctx->vertices[1][1][1] = 0.0f;
1456 ctx->vertices[1][1][2] = r;
1457
1458 ctx->vertices[2][1][0] = 1.0f;
1459 ctx->vertices[2][1][1] = 1.0f;
1460 ctx->vertices[2][1][2] = r;
1461
1462 ctx->vertices[3][1][0] = 0.0f;
1463 ctx->vertices[3][1][1] = 1.0f;
1464 ctx->vertices[3][1][2] = r;
1465 }
1466
1467 offset = get_next_slot( ctx );
1468
1469 pipe_buffer_write_nooverlap(ctx->pipe, ctx->vbuf,
1470 offset, sizeof(ctx->vertices), ctx->vertices);
1471
1472 return offset;
1473 }
1474
1475
1476
1477 /**
1478 * Destroy a mipmap generation context
1479 */
1480 void
1481 util_destroy_gen_mipmap(struct gen_mipmap_state *ctx)
1482 {
1483 struct pipe_context *pipe = ctx->pipe;
1484 unsigned i;
1485
1486 for (i = 0; i < Elements(ctx->fs_color); i++)
1487 if (ctx->fs_color[i])
1488 pipe->delete_fs_state(pipe, ctx->fs_color[i]);
1489
1490 for (i = 0; i < Elements(ctx->fs_depth); i++)
1491 if (ctx->fs_depth[i])
1492 pipe->delete_fs_state(pipe, ctx->fs_depth[i]);
1493
1494 if (ctx->vs)
1495 pipe->delete_vs_state(pipe, ctx->vs);
1496
1497 pipe_resource_reference(&ctx->vbuf, NULL);
1498
1499 FREE(ctx);
1500 }
1501
1502
1503 /**
1504 * Generate mipmap images. It's assumed all needed texture memory is
1505 * already allocated.
1506 *
1507 * \param psv the sampler view to the texture to generate mipmap levels for
1508 * \param face which cube face to generate mipmaps for (0 for non-cube maps)
1509 * \param baseLevel the first mipmap level to use as a src
1510 * \param lastLevel the last mipmap level to generate
1511 * \param filter the minification filter used to generate mipmap levels with
1512 * \param filter one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST
1513 */
1514 void
1515 util_gen_mipmap(struct gen_mipmap_state *ctx,
1516 struct pipe_sampler_view *psv,
1517 uint face, uint baseLevel, uint lastLevel, uint filter)
1518 {
1519 struct pipe_context *pipe = ctx->pipe;
1520 struct pipe_screen *screen = pipe->screen;
1521 struct pipe_framebuffer_state fb;
1522 struct pipe_resource *pt = psv->texture;
1523 uint dstLevel;
1524 uint offset;
1525 uint type;
1526 boolean is_depth = util_format_is_depth_or_stencil(psv->format);
1527
1528 /* The texture object should have room for the levels which we're
1529 * about to generate.
1530 */
1531 assert(lastLevel <= pt->last_level);
1532
1533 /* If this fails, why are we here? */
1534 assert(lastLevel > baseLevel);
1535
1536 assert(filter == PIPE_TEX_FILTER_LINEAR ||
1537 filter == PIPE_TEX_FILTER_NEAREST);
1538
1539 switch (pt->target) {
1540 case PIPE_TEXTURE_1D:
1541 type = TGSI_TEXTURE_1D;
1542 break;
1543 case PIPE_TEXTURE_2D:
1544 type = TGSI_TEXTURE_2D;
1545 break;
1546 case PIPE_TEXTURE_3D:
1547 type = TGSI_TEXTURE_3D;
1548 break;
1549 case PIPE_TEXTURE_CUBE:
1550 type = TGSI_TEXTURE_CUBE;
1551 break;
1552 case PIPE_TEXTURE_1D_ARRAY:
1553 type = TGSI_TEXTURE_1D_ARRAY;
1554 break;
1555 case PIPE_TEXTURE_2D_ARRAY:
1556 type = TGSI_TEXTURE_2D_ARRAY;
1557 break;
1558 default:
1559 assert(0);
1560 type = TGSI_TEXTURE_2D;
1561 }
1562
1563 /* check if we can render in the texture's format */
1564 if (!screen->is_format_supported(screen, psv->format, pt->target,
1565 pt->nr_samples,
1566 is_depth ? PIPE_BIND_DEPTH_STENCIL :
1567 PIPE_BIND_RENDER_TARGET)) {
1568 fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel);
1569 return;
1570 }
1571
1572 /* save state (restored below) */
1573 cso_save_blend(ctx->cso);
1574 cso_save_depth_stencil_alpha(ctx->cso);
1575 cso_save_rasterizer(ctx->cso);
1576 cso_save_sample_mask(ctx->cso);
1577 cso_save_samplers(ctx->cso, PIPE_SHADER_FRAGMENT);
1578 cso_save_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT);
1579 cso_save_stream_outputs(ctx->cso);
1580 cso_save_framebuffer(ctx->cso);
1581 cso_save_fragment_shader(ctx->cso);
1582 cso_save_vertex_shader(ctx->cso);
1583 cso_save_geometry_shader(ctx->cso);
1584 cso_save_viewport(ctx->cso);
1585 cso_save_vertex_elements(ctx->cso);
1586 cso_save_vertex_buffers(ctx->cso);
1587
1588 /* bind our state */
1589 cso_set_blend(ctx->cso, is_depth ? &ctx->blend_keep_color :
1590 &ctx->blend_write_color);
1591 cso_set_depth_stencil_alpha(ctx->cso, is_depth ? &ctx->dsa_write_depth :
1592 &ctx->dsa_keep_depth);
1593 cso_set_rasterizer(ctx->cso, &ctx->rasterizer);
1594 cso_set_sample_mask(ctx->cso, ~0);
1595 cso_set_vertex_elements(ctx->cso, 2, ctx->velem);
1596 cso_set_stream_outputs(ctx->cso, 0, NULL, 0);
1597
1598 set_fragment_shader(ctx, type, is_depth);
1599 set_vertex_shader(ctx);
1600 cso_set_geometry_shader_handle(ctx->cso, NULL);
1601
1602 /* init framebuffer state */
1603 memset(&fb, 0, sizeof(fb));
1604
1605 /* set min/mag to same filter for faster sw speed */
1606 ctx->sampler.mag_img_filter = filter;
1607 ctx->sampler.min_img_filter = filter;
1608
1609 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1610 const uint srcLevel = dstLevel - 1;
1611 struct pipe_viewport_state vp;
1612 unsigned nr_layers, layer, i;
1613 float rcoord = 0.0f;
1614
1615 if (pt->target == PIPE_TEXTURE_3D)
1616 nr_layers = u_minify(pt->depth0, dstLevel);
1617 else if (pt->target == PIPE_TEXTURE_2D_ARRAY || pt->target == PIPE_TEXTURE_1D_ARRAY)
1618 nr_layers = pt->array_size;
1619 else
1620 nr_layers = 1;
1621
1622 for (i = 0; i < nr_layers; i++) {
1623 struct pipe_surface *surf, surf_templ;
1624 if (pt->target == PIPE_TEXTURE_3D) {
1625 /* in theory with geom shaders and driver with full layer support
1626 could do that in one go. */
1627 layer = i;
1628 /* XXX hmm really? */
1629 rcoord = (float)layer / (float)nr_layers + 1.0f / (float)(nr_layers * 2);
1630 } else if (pt->target == PIPE_TEXTURE_2D_ARRAY || pt->target == PIPE_TEXTURE_1D_ARRAY) {
1631 layer = i;
1632 rcoord = (float)layer;
1633 } else
1634 layer = face;
1635
1636 memset(&surf_templ, 0, sizeof(surf_templ));
1637 u_surface_default_template(&surf_templ, pt,
1638 is_depth ? PIPE_BIND_DEPTH_STENCIL :
1639 PIPE_BIND_RENDER_TARGET);
1640 surf_templ.u.tex.level = dstLevel;
1641 surf_templ.u.tex.first_layer = layer;
1642 surf_templ.u.tex.last_layer = layer;
1643 surf = pipe->create_surface(pipe, pt, &surf_templ);
1644
1645 /*
1646 * Setup framebuffer / dest surface
1647 */
1648 if (is_depth) {
1649 fb.nr_cbufs = 0;
1650 fb.zsbuf = surf;
1651 }
1652 else {
1653 fb.nr_cbufs = 1;
1654 fb.cbufs[0] = surf;
1655 }
1656 fb.width = u_minify(pt->width0, dstLevel);
1657 fb.height = u_minify(pt->height0, dstLevel);
1658 cso_set_framebuffer(ctx->cso, &fb);
1659
1660 /* viewport */
1661 vp.scale[0] = 0.5f * fb.width;
1662 vp.scale[1] = 0.5f * fb.height;
1663 vp.scale[2] = 1.0f;
1664 vp.scale[3] = 1.0f;
1665 vp.translate[0] = 0.5f * fb.width;
1666 vp.translate[1] = 0.5f * fb.height;
1667 vp.translate[2] = 0.0f;
1668 vp.translate[3] = 0.0f;
1669 cso_set_viewport(ctx->cso, &vp);
1670
1671 /*
1672 * Setup sampler state
1673 * Note: we should only have to set the min/max LOD clamps to ensure
1674 * we grab texels from the right mipmap level. But some hardware
1675 * has trouble with min clamping so we also set the lod_bias to
1676 * try to work around that.
1677 */
1678 ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel;
1679 ctx->sampler.lod_bias = (float) srcLevel;
1680 cso_single_sampler(ctx->cso, PIPE_SHADER_FRAGMENT, 0, &ctx->sampler);
1681 cso_single_sampler_done(ctx->cso, PIPE_SHADER_FRAGMENT);
1682
1683 cso_set_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT, 1, &psv);
1684
1685 /* quad coords in clip coords */
1686 offset = set_vertex_data(ctx,
1687 pt->target,
1688 face,
1689 rcoord);
1690
1691 util_draw_vertex_buffer(ctx->pipe,
1692 ctx->cso,
1693 ctx->vbuf,
1694 offset,
1695 PIPE_PRIM_TRIANGLE_FAN,
1696 4, /* verts */
1697 2); /* attribs/vert */
1698
1699 /* need to signal that the texture has changed _after_ rendering to it */
1700 pipe_surface_reference( &surf, NULL );
1701 }
1702 }
1703
1704 /* restore state we changed */
1705 cso_restore_blend(ctx->cso);
1706 cso_restore_depth_stencil_alpha(ctx->cso);
1707 cso_restore_rasterizer(ctx->cso);
1708 cso_restore_sample_mask(ctx->cso);
1709 cso_restore_samplers(ctx->cso, PIPE_SHADER_FRAGMENT);
1710 cso_restore_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT);
1711 cso_restore_framebuffer(ctx->cso);
1712 cso_restore_fragment_shader(ctx->cso);
1713 cso_restore_vertex_shader(ctx->cso);
1714 cso_restore_geometry_shader(ctx->cso);
1715 cso_restore_viewport(ctx->cso);
1716 cso_restore_vertex_elements(ctx->cso);
1717 cso_restore_stream_outputs(ctx->cso);
1718 cso_restore_vertex_buffers(ctx->cso);
1719 }