Merge remote-tracking branch 'origin/master' into pipe-video
[mesa.git] / src / gallium / auxiliary / util / u_math.h
1 /**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 /**
30 * Math utilities and approximations for common math functions.
31 * Reduced precision is usually acceptable in shaders...
32 *
33 * "fast" is used in the names of functions which are low-precision,
34 * or at least lower-precision than the normal C lib functions.
35 */
36
37
38 #ifndef U_MATH_H
39 #define U_MATH_H
40
41
42 #include "pipe/p_compiler.h"
43 #include "util/u_debug.h"
44
45
46 #ifdef __cplusplus
47 extern "C" {
48 #endif
49
50
51 #if defined(PIPE_SUBSYSTEM_WINDOWS_MINIPORT)
52 __inline double ceil(double val)
53 {
54 double ceil_val;
55
56 if ((val - (long) val) == 0) {
57 ceil_val = val;
58 }
59 else {
60 if (val > 0) {
61 ceil_val = (long) val + 1;
62 }
63 else {
64 ceil_val = (long) val;
65 }
66 }
67
68 return ceil_val;
69 }
70
71 #ifndef PIPE_SUBSYSTEM_WINDOWS_CE_OGL
72 __inline double floor(double val)
73 {
74 double floor_val;
75
76 if ((val - (long) val) == 0) {
77 floor_val = val;
78 }
79 else {
80 if (val > 0) {
81 floor_val = (long) val;
82 }
83 else {
84 floor_val = (long) val - 1;
85 }
86 }
87
88 return floor_val;
89 }
90 #endif
91
92 #pragma function(pow)
93 __inline double __cdecl pow(double val, double exponent)
94 {
95 /* XXX */
96 assert(0);
97 return 0;
98 }
99
100 #pragma function(log)
101 __inline double __cdecl log(double val)
102 {
103 /* XXX */
104 assert(0);
105 return 0;
106 }
107
108 #pragma function(atan2)
109 __inline double __cdecl atan2(double val)
110 {
111 /* XXX */
112 assert(0);
113 return 0;
114 }
115 #else
116 #include <math.h>
117 #include <stdarg.h>
118 #endif
119
120
121 #ifndef M_SQRT2
122 #define M_SQRT2 1.41421356237309504880
123 #endif
124
125
126 #if defined(_MSC_VER)
127
128 #if _MSC_VER < 1400 && !defined(__cplusplus) || defined(PIPE_SUBSYSTEM_WINDOWS_CE)
129
130 static INLINE float cosf( float f )
131 {
132 return (float) cos( (double) f );
133 }
134
135 static INLINE float sinf( float f )
136 {
137 return (float) sin( (double) f );
138 }
139
140 static INLINE float ceilf( float f )
141 {
142 return (float) ceil( (double) f );
143 }
144
145 static INLINE float floorf( float f )
146 {
147 return (float) floor( (double) f );
148 }
149
150 static INLINE float powf( float f, float g )
151 {
152 return (float) pow( (double) f, (double) g );
153 }
154
155 static INLINE float sqrtf( float f )
156 {
157 return (float) sqrt( (double) f );
158 }
159
160 static INLINE float fabsf( float f )
161 {
162 return (float) fabs( (double) f );
163 }
164
165 static INLINE float logf( float f )
166 {
167 return (float) log( (double) f );
168 }
169
170 #else
171 /* Work-around an extra semi-colon in VS 2005 logf definition */
172 #ifdef logf
173 #undef logf
174 #define logf(x) ((float)log((double)(x)))
175 #endif /* logf */
176
177 #define isfinite(x) _finite((double)(x))
178 #define isnan(x) _isnan((double)(x))
179 #endif /* _MSC_VER < 1400 && !defined(__cplusplus) */
180
181 static INLINE double log2( double x )
182 {
183 const double invln2 = 1.442695041;
184 return log( x ) * invln2;
185 }
186
187 static INLINE double
188 round(double x)
189 {
190 return x >= 0.0 ? floor(x + 0.5) : ceil(x - 0.5);
191 }
192
193 static INLINE float
194 roundf(float x)
195 {
196 return x >= 0.0f ? floorf(x + 0.5f) : ceilf(x - 0.5f);
197 }
198
199 #endif /* _MSC_VER */
200
201
202
203
204
205 #define POW2_TABLE_SIZE_LOG2 9
206 #define POW2_TABLE_SIZE (1 << POW2_TABLE_SIZE_LOG2)
207 #define POW2_TABLE_OFFSET (POW2_TABLE_SIZE/2)
208 #define POW2_TABLE_SCALE ((float)(POW2_TABLE_SIZE/2))
209 extern float pow2_table[POW2_TABLE_SIZE];
210
211
212 /**
213 * Initialize math module. This should be called before using any
214 * other functions in this module.
215 */
216 extern void
217 util_init_math(void);
218
219
220 union fi {
221 float f;
222 int32_t i;
223 uint32_t ui;
224 };
225
226
227 /**
228 * Fast version of 2^x
229 * Identity: exp2(a + b) = exp2(a) * exp2(b)
230 * Let ipart = int(x)
231 * Let fpart = x - ipart;
232 * So, exp2(x) = exp2(ipart) * exp2(fpart)
233 * Compute exp2(ipart) with i << ipart
234 * Compute exp2(fpart) with lookup table.
235 */
236 static INLINE float
237 util_fast_exp2(float x)
238 {
239 int32_t ipart;
240 float fpart, mpart;
241 union fi epart;
242
243 if(x > 129.00000f)
244 return 3.402823466e+38f;
245
246 if (x < -126.99999f)
247 return 0.0f;
248
249 ipart = (int32_t) x;
250 fpart = x - (float) ipart;
251
252 /* same as
253 * epart.f = (float) (1 << ipart)
254 * but faster and without integer overflow for ipart > 31
255 */
256 epart.i = (ipart + 127 ) << 23;
257
258 mpart = pow2_table[POW2_TABLE_OFFSET + (int)(fpart * POW2_TABLE_SCALE)];
259
260 return epart.f * mpart;
261 }
262
263
264 /**
265 * Fast approximation to exp(x).
266 */
267 static INLINE float
268 util_fast_exp(float x)
269 {
270 const float k = 1.44269f; /* = log2(e) */
271 return util_fast_exp2(k * x);
272 }
273
274
275 #define LOG2_TABLE_SIZE_LOG2 16
276 #define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2)
277 #define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1)
278 extern float log2_table[LOG2_TABLE_SIZE];
279
280
281 /**
282 * Fast approximation to log2(x).
283 */
284 static INLINE float
285 util_fast_log2(float x)
286 {
287 union fi num;
288 float epart, mpart;
289 num.f = x;
290 epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
291 /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */
292 mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)];
293 return epart + mpart;
294 }
295
296
297 /**
298 * Fast approximation to x^y.
299 */
300 static INLINE float
301 util_fast_pow(float x, float y)
302 {
303 return util_fast_exp2(util_fast_log2(x) * y);
304 }
305
306 /* Note that this counts zero as a power of two.
307 */
308 static INLINE boolean
309 util_is_power_of_two( unsigned v )
310 {
311 return (v & (v-1)) == 0;
312 }
313
314
315 /**
316 * Floor(x), returned as int.
317 */
318 static INLINE int
319 util_ifloor(float f)
320 {
321 int ai, bi;
322 double af, bf;
323 union fi u;
324 af = (3 << 22) + 0.5 + (double) f;
325 bf = (3 << 22) + 0.5 - (double) f;
326 u.f = (float) af; ai = u.i;
327 u.f = (float) bf; bi = u.i;
328 return (ai - bi) >> 1;
329 }
330
331
332 /**
333 * Round float to nearest int.
334 */
335 static INLINE int
336 util_iround(float f)
337 {
338 #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
339 int r;
340 __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
341 return r;
342 #elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
343 int r;
344 _asm {
345 fld f
346 fistp r
347 }
348 return r;
349 #else
350 if (f >= 0.0f)
351 return (int) (f + 0.5f);
352 else
353 return (int) (f - 0.5f);
354 #endif
355 }
356
357
358 /**
359 * Approximate floating point comparison
360 */
361 static INLINE boolean
362 util_is_approx(float a, float b, float tol)
363 {
364 return fabs(b - a) <= tol;
365 }
366
367
368 /**
369 * Test if x is NaN or +/- infinity.
370 */
371 static INLINE boolean
372 util_is_inf_or_nan(float x)
373 {
374 union fi tmp;
375 tmp.f = x;
376 return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
377 }
378
379
380 /**
381 * Find first bit set in word. Least significant bit is 1.
382 * Return 0 if no bits set.
383 */
384 #if defined(_MSC_VER) && _MSC_VER >= 1300 && (_M_IX86 || _M_AMD64 || _M_IA64)
385 unsigned char _BitScanForward(unsigned long* Index, unsigned long Mask);
386 #pragma intrinsic(_BitScanForward)
387 static INLINE
388 unsigned long ffs( unsigned long u )
389 {
390 unsigned long i;
391 if (_BitScanForward(&i, u))
392 return i + 1;
393 else
394 return 0;
395 }
396 #elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
397 static INLINE
398 unsigned ffs( unsigned u )
399 {
400 unsigned i;
401
402 if (u == 0) {
403 return 0;
404 }
405
406 __asm bsf eax, [u]
407 __asm inc eax
408 __asm mov [i], eax
409
410 return i;
411 }
412 #elif defined(__MINGW32__)
413 #define ffs __builtin_ffs
414 #endif
415
416 #ifdef __MINGW32__
417 #define ffs __builtin_ffs
418 #endif
419
420
421 /* Could also binary search for the highest bit.
422 */
423 static INLINE unsigned
424 util_unsigned_logbase2(unsigned n)
425 {
426 unsigned log2 = 0;
427 while (n >>= 1)
428 ++log2;
429 return log2;
430 }
431
432
433 /**
434 * Return float bits.
435 */
436 static INLINE unsigned
437 fui( float f )
438 {
439 union fi fi;
440 fi.f = f;
441 return fi.ui;
442 }
443
444
445 /**
446 * Convert ubyte to float in [0, 1].
447 * XXX a 256-entry lookup table would be slightly faster.
448 */
449 static INLINE float
450 ubyte_to_float(ubyte ub)
451 {
452 return (float) ub * (1.0f / 255.0f);
453 }
454
455
456 /**
457 * Convert float in [0,1] to ubyte in [0,255] with clamping.
458 */
459 static INLINE ubyte
460 float_to_ubyte(float f)
461 {
462 const int ieee_0996 = 0x3f7f0000; /* 0.996 or so */
463 union fi tmp;
464
465 tmp.f = f;
466 if (tmp.i < 0) {
467 return (ubyte) 0;
468 }
469 else if (tmp.i >= ieee_0996) {
470 return (ubyte) 255;
471 }
472 else {
473 tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f;
474 return (ubyte) tmp.i;
475 }
476 }
477
478 static INLINE float
479 byte_to_float_tex(int8_t b)
480 {
481 return (b == -128) ? -1.0F : b * 1.0F / 127.0F;
482 }
483
484 static INLINE int8_t
485 float_to_byte_tex(float f)
486 {
487 return (int8_t) (127.0F * f);
488 }
489
490 /**
491 * Calc log base 2
492 */
493 static INLINE unsigned
494 util_logbase2(unsigned n)
495 {
496 unsigned log2 = 0;
497 while (n >>= 1)
498 ++log2;
499 return log2;
500 }
501
502
503 /**
504 * Returns the smallest power of two >= x
505 */
506 static INLINE unsigned
507 util_next_power_of_two(unsigned x)
508 {
509 unsigned i;
510
511 if (x == 0)
512 return 1;
513
514 --x;
515
516 for (i = 1; i < sizeof(unsigned) * 8; i <<= 1)
517 x |= x >> i;
518
519 return x + 1;
520 }
521
522
523 /**
524 * Return number of bits set in n.
525 */
526 static INLINE unsigned
527 util_bitcount(unsigned n)
528 {
529 #if defined(PIPE_CC_GCC)
530 return __builtin_popcount(n);
531 #else
532 /* K&R classic bitcount.
533 *
534 * For each iteration, clear the LSB from the bitfield.
535 * Requires only one iteration per set bit, instead of
536 * one iteration per bit less than highest set bit.
537 */
538 unsigned bits = 0;
539 for (bits; n; bits++) {
540 n &= n - 1;
541 }
542 return bits;
543 #endif
544 }
545
546
547 /**
548 * Reverse byte order of a 32 bit word.
549 */
550 static INLINE uint32_t
551 util_bswap32(uint32_t n)
552 {
553 #if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 403)
554 return __builtin_bswap32(n);
555 #else
556 return (n >> 24) |
557 ((n >> 8) & 0x0000ff00) |
558 ((n << 8) & 0x00ff0000) |
559 (n << 24);
560 #endif
561 }
562
563
564 /**
565 * Reverse byte order of a 16 bit word.
566 */
567 static INLINE uint16_t
568 util_bswap16(uint16_t n)
569 {
570 return (n >> 8) |
571 (n << 8);
572 }
573
574
575 /**
576 * Clamp X to [MIN, MAX].
577 * This is a macro to allow float, int, uint, etc. types.
578 */
579 #define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
580
581 #define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
582 #define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
583
584 #define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
585 #define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
586
587 #define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D))
588 #define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D))
589
590
591 /**
592 * Align a value, only works pot alignemnts.
593 */
594 static INLINE int
595 align(int value, int alignment)
596 {
597 return (value + alignment - 1) & ~(alignment - 1);
598 }
599
600 /**
601 * Works like align but on npot alignments.
602 */
603 static INLINE size_t
604 util_align_npot(size_t value, size_t alignment)
605 {
606 if (value % alignment)
607 return value + (alignment - (value % alignment));
608 return value;
609 }
610
611 static INLINE unsigned
612 u_minify(unsigned value, unsigned levels)
613 {
614 return MAX2(1, value >> levels);
615 }
616
617 #ifndef COPY_4V
618 #define COPY_4V( DST, SRC ) \
619 do { \
620 (DST)[0] = (SRC)[0]; \
621 (DST)[1] = (SRC)[1]; \
622 (DST)[2] = (SRC)[2]; \
623 (DST)[3] = (SRC)[3]; \
624 } while (0)
625 #endif
626
627
628 #ifndef COPY_4FV
629 #define COPY_4FV( DST, SRC ) COPY_4V(DST, SRC)
630 #endif
631
632
633 #ifndef ASSIGN_4V
634 #define ASSIGN_4V( DST, V0, V1, V2, V3 ) \
635 do { \
636 (DST)[0] = (V0); \
637 (DST)[1] = (V1); \
638 (DST)[2] = (V2); \
639 (DST)[3] = (V3); \
640 } while (0)
641 #endif
642
643
644 static INLINE uint32_t util_unsigned_fixed(float value, unsigned frac_bits)
645 {
646 return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits));
647 }
648
649 static INLINE int32_t util_signed_fixed(float value, unsigned frac_bits)
650 {
651 return (int32_t)(value * (1<<frac_bits));
652 }
653
654
655
656 #ifdef __cplusplus
657 }
658 #endif
659
660 #endif /* U_MATH_H */