Revert "u_vbuf: Regard non-constant vbufs with non-instance elements as free"
[mesa.git] / src / gallium / auxiliary / util / u_vbuf.c
1 /**************************************************************************
2 *
3 * Copyright 2011 Marek Olšák <maraeo@gmail.com>
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * This module uploads user buffers and translates the vertex buffers which
30 * contain incompatible vertices (i.e. not supported by the driver/hardware)
31 * into compatible ones, based on the Gallium CAPs.
32 *
33 * It does not upload index buffers.
34 *
35 * The module heavily uses bitmasks to represent per-buffer and
36 * per-vertex-element flags to avoid looping over the list of buffers just
37 * to see if there's a non-zero stride, or user buffer, or unsupported format,
38 * etc.
39 *
40 * There are 3 categories of vertex elements, which are processed separately:
41 * - per-vertex attribs (stride != 0, instance_divisor == 0)
42 * - instanced attribs (stride != 0, instance_divisor > 0)
43 * - constant attribs (stride == 0)
44 *
45 * All needed uploads and translations are performed every draw command, but
46 * only the subset of vertices needed for that draw command is uploaded or
47 * translated. (the module never translates whole buffers)
48 *
49 *
50 * The module consists of two main parts:
51 *
52 *
53 * 1) Translate (u_vbuf_translate_begin/end)
54 *
55 * This is pretty much a vertex fetch fallback. It translates vertices from
56 * one vertex buffer to another in an unused vertex buffer slot. It does
57 * whatever is needed to make the vertices readable by the hardware (changes
58 * vertex formats and aligns offsets and strides). The translate module is
59 * used here.
60 *
61 * Each of the 3 categories is translated to a separate buffer.
62 * Only the [min_index, max_index] range is translated. For instanced attribs,
63 * the range is [start_instance, start_instance+instance_count]. For constant
64 * attribs, the range is [0, 1].
65 *
66 *
67 * 2) User buffer uploading (u_vbuf_upload_buffers)
68 *
69 * Only the [min_index, max_index] range is uploaded (just like Translate)
70 * with a single memcpy.
71 *
72 * This method works best for non-indexed draw operations or indexed draw
73 * operations where the [min_index, max_index] range is not being way bigger
74 * than the vertex count.
75 *
76 * If the range is too big (e.g. one triangle with indices {0, 1, 10000}),
77 * the per-vertex attribs are uploaded via the translate module, all packed
78 * into one vertex buffer, and the indexed draw call is turned into
79 * a non-indexed one in the process. This adds additional complexity
80 * to the translate part, but it prevents bad apps from bringing your frame
81 * rate down.
82 *
83 *
84 * If there is nothing to do, it forwards every command to the driver.
85 * The module also has its own CSO cache of vertex element states.
86 */
87
88 #include "util/u_vbuf.h"
89
90 #include "util/u_dump.h"
91 #include "util/format/u_format.h"
92 #include "util/u_inlines.h"
93 #include "util/u_memory.h"
94 #include "util/u_screen.h"
95 #include "util/u_upload_mgr.h"
96 #include "translate/translate.h"
97 #include "translate/translate_cache.h"
98 #include "cso_cache/cso_cache.h"
99 #include "cso_cache/cso_hash.h"
100
101 struct u_vbuf_elements {
102 unsigned count;
103 struct pipe_vertex_element ve[PIPE_MAX_ATTRIBS];
104
105 unsigned src_format_size[PIPE_MAX_ATTRIBS];
106
107 /* If (velem[i].src_format != native_format[i]), the vertex buffer
108 * referenced by the vertex element cannot be used for rendering and
109 * its vertex data must be translated to native_format[i]. */
110 enum pipe_format native_format[PIPE_MAX_ATTRIBS];
111 unsigned native_format_size[PIPE_MAX_ATTRIBS];
112
113 /* Which buffers are used by the vertex element state. */
114 uint32_t used_vb_mask;
115 /* This might mean two things:
116 * - src_format != native_format, as discussed above.
117 * - src_offset % 4 != 0 (if the caps don't allow such an offset). */
118 uint32_t incompatible_elem_mask; /* each bit describes a corresp. attrib */
119 /* Which buffer has at least one vertex element referencing it
120 * incompatible. */
121 uint32_t incompatible_vb_mask_any;
122 /* Which buffer has all vertex elements referencing it incompatible. */
123 uint32_t incompatible_vb_mask_all;
124 /* Which buffer has at least one vertex element referencing it
125 * compatible. */
126 uint32_t compatible_vb_mask_any;
127 /* Which buffer has all vertex elements referencing it compatible. */
128 uint32_t compatible_vb_mask_all;
129
130 /* Which buffer has at least one vertex element referencing it
131 * non-instanced. */
132 uint32_t noninstance_vb_mask_any;
133
134 void *driver_cso;
135 };
136
137 enum {
138 VB_VERTEX = 0,
139 VB_INSTANCE = 1,
140 VB_CONST = 2,
141 VB_NUM = 3
142 };
143
144 struct u_vbuf {
145 struct u_vbuf_caps caps;
146 bool has_signed_vb_offset;
147
148 struct pipe_context *pipe;
149 struct translate_cache *translate_cache;
150 struct cso_cache *cso_cache;
151
152 /* This is what was set in set_vertex_buffers.
153 * May contain user buffers. */
154 struct pipe_vertex_buffer vertex_buffer[PIPE_MAX_ATTRIBS];
155 uint32_t enabled_vb_mask;
156
157 /* Saved vertex buffer. */
158 struct pipe_vertex_buffer vertex_buffer0_saved;
159
160 /* Vertex buffers for the driver.
161 * There are usually no user buffers. */
162 struct pipe_vertex_buffer real_vertex_buffer[PIPE_MAX_ATTRIBS];
163 uint32_t dirty_real_vb_mask; /* which buffers are dirty since the last
164 call of set_vertex_buffers */
165
166 /* Vertex elements. */
167 struct u_vbuf_elements *ve, *ve_saved;
168
169 /* Vertex elements used for the translate fallback. */
170 struct pipe_vertex_element fallback_velems[PIPE_MAX_ATTRIBS];
171 /* If non-NULL, this is a vertex element state used for the translate
172 * fallback and therefore used for rendering too. */
173 boolean using_translate;
174 /* The vertex buffer slot index where translated vertices have been
175 * stored in. */
176 unsigned fallback_vbs[VB_NUM];
177
178 /* Which buffer is a user buffer. */
179 uint32_t user_vb_mask; /* each bit describes a corresp. buffer */
180 /* Which buffer is incompatible (unaligned). */
181 uint32_t incompatible_vb_mask; /* each bit describes a corresp. buffer */
182 /* Which buffer has a non-zero stride. */
183 uint32_t nonzero_stride_vb_mask; /* each bit describes a corresp. buffer */
184 /* Which buffers are allowed (supported by hardware). */
185 uint32_t allowed_vb_mask;
186 };
187
188 static void *
189 u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
190 const struct pipe_vertex_element *attribs);
191 static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso);
192
193 static const struct {
194 enum pipe_format from, to;
195 } vbuf_format_fallbacks[] = {
196 { PIPE_FORMAT_R32_FIXED, PIPE_FORMAT_R32_FLOAT },
197 { PIPE_FORMAT_R32G32_FIXED, PIPE_FORMAT_R32G32_FLOAT },
198 { PIPE_FORMAT_R32G32B32_FIXED, PIPE_FORMAT_R32G32B32_FLOAT },
199 { PIPE_FORMAT_R32G32B32A32_FIXED, PIPE_FORMAT_R32G32B32A32_FLOAT },
200 { PIPE_FORMAT_R16_FLOAT, PIPE_FORMAT_R32_FLOAT },
201 { PIPE_FORMAT_R16G16_FLOAT, PIPE_FORMAT_R32G32_FLOAT },
202 { PIPE_FORMAT_R16G16B16_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT },
203 { PIPE_FORMAT_R16G16B16A16_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT },
204 { PIPE_FORMAT_R64_FLOAT, PIPE_FORMAT_R32_FLOAT },
205 { PIPE_FORMAT_R64G64_FLOAT, PIPE_FORMAT_R32G32_FLOAT },
206 { PIPE_FORMAT_R64G64B64_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT },
207 { PIPE_FORMAT_R64G64B64A64_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT },
208 { PIPE_FORMAT_R32_UNORM, PIPE_FORMAT_R32_FLOAT },
209 { PIPE_FORMAT_R32G32_UNORM, PIPE_FORMAT_R32G32_FLOAT },
210 { PIPE_FORMAT_R32G32B32_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
211 { PIPE_FORMAT_R32G32B32A32_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
212 { PIPE_FORMAT_R32_SNORM, PIPE_FORMAT_R32_FLOAT },
213 { PIPE_FORMAT_R32G32_SNORM, PIPE_FORMAT_R32G32_FLOAT },
214 { PIPE_FORMAT_R32G32B32_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
215 { PIPE_FORMAT_R32G32B32A32_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
216 { PIPE_FORMAT_R32_USCALED, PIPE_FORMAT_R32_FLOAT },
217 { PIPE_FORMAT_R32G32_USCALED, PIPE_FORMAT_R32G32_FLOAT },
218 { PIPE_FORMAT_R32G32B32_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
219 { PIPE_FORMAT_R32G32B32A32_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
220 { PIPE_FORMAT_R32_SSCALED, PIPE_FORMAT_R32_FLOAT },
221 { PIPE_FORMAT_R32G32_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
222 { PIPE_FORMAT_R32G32B32_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
223 { PIPE_FORMAT_R32G32B32A32_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
224 { PIPE_FORMAT_R16_UNORM, PIPE_FORMAT_R32_FLOAT },
225 { PIPE_FORMAT_R16G16_UNORM, PIPE_FORMAT_R32G32_FLOAT },
226 { PIPE_FORMAT_R16G16B16_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
227 { PIPE_FORMAT_R16G16B16A16_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
228 { PIPE_FORMAT_R16_SNORM, PIPE_FORMAT_R32_FLOAT },
229 { PIPE_FORMAT_R16G16_SNORM, PIPE_FORMAT_R32G32_FLOAT },
230 { PIPE_FORMAT_R16G16B16_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
231 { PIPE_FORMAT_R16G16B16A16_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
232 { PIPE_FORMAT_R16_USCALED, PIPE_FORMAT_R32_FLOAT },
233 { PIPE_FORMAT_R16G16_USCALED, PIPE_FORMAT_R32G32_FLOAT },
234 { PIPE_FORMAT_R16G16B16_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
235 { PIPE_FORMAT_R16G16B16A16_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
236 { PIPE_FORMAT_R16_SSCALED, PIPE_FORMAT_R32_FLOAT },
237 { PIPE_FORMAT_R16G16_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
238 { PIPE_FORMAT_R16G16B16_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
239 { PIPE_FORMAT_R16G16B16A16_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
240 { PIPE_FORMAT_R8_UNORM, PIPE_FORMAT_R32_FLOAT },
241 { PIPE_FORMAT_R8G8_UNORM, PIPE_FORMAT_R32G32_FLOAT },
242 { PIPE_FORMAT_R8G8B8_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
243 { PIPE_FORMAT_R8G8B8A8_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
244 { PIPE_FORMAT_R8_SNORM, PIPE_FORMAT_R32_FLOAT },
245 { PIPE_FORMAT_R8G8_SNORM, PIPE_FORMAT_R32G32_FLOAT },
246 { PIPE_FORMAT_R8G8B8_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
247 { PIPE_FORMAT_R8G8B8A8_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
248 { PIPE_FORMAT_R8_USCALED, PIPE_FORMAT_R32_FLOAT },
249 { PIPE_FORMAT_R8G8_USCALED, PIPE_FORMAT_R32G32_FLOAT },
250 { PIPE_FORMAT_R8G8B8_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
251 { PIPE_FORMAT_R8G8B8A8_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
252 { PIPE_FORMAT_R8_SSCALED, PIPE_FORMAT_R32_FLOAT },
253 { PIPE_FORMAT_R8G8_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
254 { PIPE_FORMAT_R8G8B8_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
255 { PIPE_FORMAT_R8G8B8A8_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
256 };
257
258 boolean u_vbuf_get_caps(struct pipe_screen *screen, struct u_vbuf_caps *caps,
259 unsigned flags)
260 {
261 unsigned i;
262 boolean fallback = FALSE;
263
264 /* I'd rather have a bitfield of which formats are supported and a static
265 * table of the translations indexed by format, but since we don't have C99
266 * we can't easily make a sparsely-populated table indexed by format. So,
267 * we construct the sparse table here.
268 */
269 for (i = 0; i < PIPE_FORMAT_COUNT; i++)
270 caps->format_translation[i] = i;
271
272 for (i = 0; i < ARRAY_SIZE(vbuf_format_fallbacks); i++) {
273 enum pipe_format format = vbuf_format_fallbacks[i].from;
274
275 if (!screen->is_format_supported(screen, format, PIPE_BUFFER, 0, 0,
276 PIPE_BIND_VERTEX_BUFFER)) {
277 caps->format_translation[format] = vbuf_format_fallbacks[i].to;
278 fallback = TRUE;
279 }
280 }
281
282 caps->buffer_offset_unaligned =
283 !screen->get_param(screen,
284 PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY);
285 caps->buffer_stride_unaligned =
286 !screen->get_param(screen,
287 PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY);
288 caps->velem_src_offset_unaligned =
289 !screen->get_param(screen,
290 PIPE_CAP_VERTEX_ELEMENT_SRC_OFFSET_4BYTE_ALIGNED_ONLY);
291 caps->user_vertex_buffers =
292 screen->get_param(screen, PIPE_CAP_USER_VERTEX_BUFFERS);
293 caps->max_vertex_buffers =
294 screen->get_param(screen, PIPE_CAP_MAX_VERTEX_BUFFERS);
295
296 /* OpenGL 2.0 requires a minimum of 16 vertex buffers */
297 if (caps->max_vertex_buffers < 16)
298 fallback = TRUE;
299
300 if (!caps->buffer_offset_unaligned ||
301 !caps->buffer_stride_unaligned ||
302 !caps->velem_src_offset_unaligned ||
303 (!(flags & U_VBUF_FLAG_NO_USER_VBOS) && !caps->user_vertex_buffers)) {
304 fallback = TRUE;
305 }
306
307 return fallback;
308 }
309
310 struct u_vbuf *
311 u_vbuf_create(struct pipe_context *pipe, struct u_vbuf_caps *caps)
312 {
313 struct u_vbuf *mgr = CALLOC_STRUCT(u_vbuf);
314
315 mgr->caps = *caps;
316 mgr->pipe = pipe;
317 mgr->cso_cache = cso_cache_create();
318 mgr->translate_cache = translate_cache_create();
319 memset(mgr->fallback_vbs, ~0, sizeof(mgr->fallback_vbs));
320 mgr->allowed_vb_mask = u_bit_consecutive(0, mgr->caps.max_vertex_buffers);
321
322 mgr->has_signed_vb_offset =
323 pipe->screen->get_param(pipe->screen,
324 PIPE_CAP_SIGNED_VERTEX_BUFFER_OFFSET);
325
326 return mgr;
327 }
328
329 /* u_vbuf uses its own caching for vertex elements, because it needs to keep
330 * its own preprocessed state per vertex element CSO. */
331 static struct u_vbuf_elements *
332 u_vbuf_set_vertex_elements_internal(struct u_vbuf *mgr, unsigned count,
333 const struct pipe_vertex_element *states)
334 {
335 struct pipe_context *pipe = mgr->pipe;
336 unsigned key_size, hash_key;
337 struct cso_hash_iter iter;
338 struct u_vbuf_elements *ve;
339 struct cso_velems_state velems_state;
340
341 /* need to include the count into the stored state data too. */
342 key_size = sizeof(struct pipe_vertex_element) * count + sizeof(unsigned);
343 velems_state.count = count;
344 memcpy(velems_state.velems, states,
345 sizeof(struct pipe_vertex_element) * count);
346 hash_key = cso_construct_key((void*)&velems_state, key_size);
347 iter = cso_find_state_template(mgr->cso_cache, hash_key, CSO_VELEMENTS,
348 (void*)&velems_state, key_size);
349
350 if (cso_hash_iter_is_null(iter)) {
351 struct cso_velements *cso = MALLOC_STRUCT(cso_velements);
352 memcpy(&cso->state, &velems_state, key_size);
353 cso->data = u_vbuf_create_vertex_elements(mgr, count, states);
354 cso->delete_state = (cso_state_callback)u_vbuf_delete_vertex_elements;
355 cso->context = (void*)mgr;
356
357 iter = cso_insert_state(mgr->cso_cache, hash_key, CSO_VELEMENTS, cso);
358 ve = cso->data;
359 } else {
360 ve = ((struct cso_velements *)cso_hash_iter_data(iter))->data;
361 }
362
363 assert(ve);
364
365 if (ve != mgr->ve)
366 pipe->bind_vertex_elements_state(pipe, ve->driver_cso);
367
368 return ve;
369 }
370
371 void u_vbuf_set_vertex_elements(struct u_vbuf *mgr, unsigned count,
372 const struct pipe_vertex_element *states)
373 {
374 mgr->ve = u_vbuf_set_vertex_elements_internal(mgr, count, states);
375 }
376
377 void u_vbuf_destroy(struct u_vbuf *mgr)
378 {
379 struct pipe_screen *screen = mgr->pipe->screen;
380 unsigned i;
381 const unsigned num_vb = screen->get_shader_param(screen, PIPE_SHADER_VERTEX,
382 PIPE_SHADER_CAP_MAX_INPUTS);
383
384 mgr->pipe->set_vertex_buffers(mgr->pipe, 0, num_vb, NULL);
385
386 for (i = 0; i < PIPE_MAX_ATTRIBS; i++)
387 pipe_vertex_buffer_unreference(&mgr->vertex_buffer[i]);
388 for (i = 0; i < PIPE_MAX_ATTRIBS; i++)
389 pipe_vertex_buffer_unreference(&mgr->real_vertex_buffer[i]);
390
391 pipe_vertex_buffer_unreference(&mgr->vertex_buffer0_saved);
392
393 translate_cache_destroy(mgr->translate_cache);
394 cso_cache_delete(mgr->cso_cache);
395 FREE(mgr);
396 }
397
398 static enum pipe_error
399 u_vbuf_translate_buffers(struct u_vbuf *mgr, struct translate_key *key,
400 const struct pipe_draw_info *info,
401 unsigned vb_mask, unsigned out_vb,
402 int start_vertex, unsigned num_vertices,
403 int min_index, boolean unroll_indices)
404 {
405 struct translate *tr;
406 struct pipe_transfer *vb_transfer[PIPE_MAX_ATTRIBS] = {0};
407 struct pipe_resource *out_buffer = NULL;
408 uint8_t *out_map;
409 unsigned out_offset, mask;
410
411 /* Get a translate object. */
412 tr = translate_cache_find(mgr->translate_cache, key);
413
414 /* Map buffers we want to translate. */
415 mask = vb_mask;
416 while (mask) {
417 struct pipe_vertex_buffer *vb;
418 unsigned offset;
419 uint8_t *map;
420 unsigned i = u_bit_scan(&mask);
421
422 vb = &mgr->vertex_buffer[i];
423 offset = vb->buffer_offset + vb->stride * start_vertex;
424
425 if (vb->is_user_buffer) {
426 map = (uint8_t*)vb->buffer.user + offset;
427 } else {
428 unsigned size = vb->stride ? num_vertices * vb->stride
429 : sizeof(double)*4;
430
431 if (!vb->buffer.resource)
432 continue;
433
434 if (offset + size > vb->buffer.resource->width0) {
435 /* Don't try to map past end of buffer. This often happens when
436 * we're translating an attribute that's at offset > 0 from the
437 * start of the vertex. If we'd subtract attrib's offset from
438 * the size, this probably wouldn't happen.
439 */
440 size = vb->buffer.resource->width0 - offset;
441
442 /* Also adjust num_vertices. A common user error is to call
443 * glDrawRangeElements() with incorrect 'end' argument. The 'end
444 * value should be the max index value, but people often
445 * accidentally add one to this value. This adjustment avoids
446 * crashing (by reading past the end of a hardware buffer mapping)
447 * when people do that.
448 */
449 num_vertices = (size + vb->stride - 1) / vb->stride;
450 }
451
452 map = pipe_buffer_map_range(mgr->pipe, vb->buffer.resource, offset, size,
453 PIPE_TRANSFER_READ, &vb_transfer[i]);
454 }
455
456 /* Subtract min_index so that indexing with the index buffer works. */
457 if (unroll_indices) {
458 map -= (ptrdiff_t)vb->stride * min_index;
459 }
460
461 tr->set_buffer(tr, i, map, vb->stride, info->max_index);
462 }
463
464 /* Translate. */
465 if (unroll_indices) {
466 struct pipe_transfer *transfer = NULL;
467 const unsigned offset = info->start * info->index_size;
468 uint8_t *map;
469
470 /* Create and map the output buffer. */
471 u_upload_alloc(mgr->pipe->stream_uploader, 0,
472 key->output_stride * info->count, 4,
473 &out_offset, &out_buffer,
474 (void**)&out_map);
475 if (!out_buffer)
476 return PIPE_ERROR_OUT_OF_MEMORY;
477
478 if (info->has_user_indices) {
479 map = (uint8_t*)info->index.user + offset;
480 } else {
481 map = pipe_buffer_map_range(mgr->pipe, info->index.resource, offset,
482 info->count * info->index_size,
483 PIPE_TRANSFER_READ, &transfer);
484 }
485
486 switch (info->index_size) {
487 case 4:
488 tr->run_elts(tr, (unsigned*)map, info->count, 0, 0, out_map);
489 break;
490 case 2:
491 tr->run_elts16(tr, (uint16_t*)map, info->count, 0, 0, out_map);
492 break;
493 case 1:
494 tr->run_elts8(tr, map, info->count, 0, 0, out_map);
495 break;
496 }
497
498 if (transfer) {
499 pipe_buffer_unmap(mgr->pipe, transfer);
500 }
501 } else {
502 /* Create and map the output buffer. */
503 u_upload_alloc(mgr->pipe->stream_uploader,
504 mgr->has_signed_vb_offset ?
505 0 : key->output_stride * start_vertex,
506 key->output_stride * num_vertices, 4,
507 &out_offset, &out_buffer,
508 (void**)&out_map);
509 if (!out_buffer)
510 return PIPE_ERROR_OUT_OF_MEMORY;
511
512 out_offset -= key->output_stride * start_vertex;
513
514 tr->run(tr, 0, num_vertices, 0, 0, out_map);
515 }
516
517 /* Unmap all buffers. */
518 mask = vb_mask;
519 while (mask) {
520 unsigned i = u_bit_scan(&mask);
521
522 if (vb_transfer[i]) {
523 pipe_buffer_unmap(mgr->pipe, vb_transfer[i]);
524 }
525 }
526
527 /* Setup the new vertex buffer. */
528 mgr->real_vertex_buffer[out_vb].buffer_offset = out_offset;
529 mgr->real_vertex_buffer[out_vb].stride = key->output_stride;
530
531 /* Move the buffer reference. */
532 pipe_vertex_buffer_unreference(&mgr->real_vertex_buffer[out_vb]);
533 mgr->real_vertex_buffer[out_vb].buffer.resource = out_buffer;
534 mgr->real_vertex_buffer[out_vb].is_user_buffer = false;
535
536 return PIPE_OK;
537 }
538
539 static boolean
540 u_vbuf_translate_find_free_vb_slots(struct u_vbuf *mgr,
541 unsigned mask[VB_NUM])
542 {
543 unsigned type;
544 unsigned fallback_vbs[VB_NUM];
545 /* Set the bit for each buffer which is incompatible, or isn't set. */
546 uint32_t unused_vb_mask =
547 mgr->ve->incompatible_vb_mask_all | mgr->incompatible_vb_mask |
548 ~mgr->enabled_vb_mask;
549 uint32_t unused_vb_mask_orig;
550 boolean insufficient_buffers = false;
551
552 /* No vertex buffers available at all */
553 if (!unused_vb_mask)
554 return FALSE;
555
556 memset(fallback_vbs, ~0, sizeof(fallback_vbs));
557
558 /* Find free slots for each type if needed. */
559 unused_vb_mask_orig = unused_vb_mask;
560 for (type = 0; type < VB_NUM; type++) {
561 if (mask[type]) {
562 uint32_t index;
563
564 if (!unused_vb_mask) {
565 insufficient_buffers = true;
566 break;
567 }
568
569 index = ffs(unused_vb_mask) - 1;
570 fallback_vbs[type] = index;
571 unused_vb_mask &= ~(1 << index);
572 /*printf("found slot=%i for type=%i\n", index, type);*/
573 }
574 }
575
576 if (insufficient_buffers) {
577 /* not enough vbs for all types supported by the hardware, they will have to share one
578 * buffer */
579 uint32_t index = ffs(unused_vb_mask_orig) - 1;
580 /* When sharing one vertex buffer use per-vertex frequency for everything. */
581 fallback_vbs[VB_VERTEX] = index;
582 mask[VB_VERTEX] = mask[VB_VERTEX] | mask[VB_CONST] | mask[VB_INSTANCE];
583 mask[VB_CONST] = 0;
584 mask[VB_INSTANCE] = 0;
585 }
586
587 for (type = 0; type < VB_NUM; type++) {
588 if (mask[type]) {
589 mgr->dirty_real_vb_mask |= 1 << fallback_vbs[type];
590 }
591 }
592
593 memcpy(mgr->fallback_vbs, fallback_vbs, sizeof(fallback_vbs));
594 return TRUE;
595 }
596
597 static boolean
598 u_vbuf_translate_begin(struct u_vbuf *mgr,
599 const struct pipe_draw_info *info,
600 int start_vertex, unsigned num_vertices,
601 int min_index, boolean unroll_indices)
602 {
603 unsigned mask[VB_NUM] = {0};
604 struct translate_key key[VB_NUM];
605 unsigned elem_index[VB_NUM][PIPE_MAX_ATTRIBS]; /* ... into key.elements */
606 unsigned i, type;
607 const unsigned incompatible_vb_mask = mgr->incompatible_vb_mask &
608 mgr->ve->used_vb_mask;
609
610 const int start[VB_NUM] = {
611 start_vertex, /* VERTEX */
612 info->start_instance, /* INSTANCE */
613 0 /* CONST */
614 };
615
616 const unsigned num[VB_NUM] = {
617 num_vertices, /* VERTEX */
618 info->instance_count, /* INSTANCE */
619 1 /* CONST */
620 };
621
622 memset(key, 0, sizeof(key));
623 memset(elem_index, ~0, sizeof(elem_index));
624
625 /* See if there are vertex attribs of each type to translate and
626 * which ones. */
627 for (i = 0; i < mgr->ve->count; i++) {
628 unsigned vb_index = mgr->ve->ve[i].vertex_buffer_index;
629
630 if (!mgr->vertex_buffer[vb_index].stride) {
631 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
632 !(incompatible_vb_mask & (1 << vb_index))) {
633 continue;
634 }
635 mask[VB_CONST] |= 1 << vb_index;
636 } else if (mgr->ve->ve[i].instance_divisor) {
637 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
638 !(incompatible_vb_mask & (1 << vb_index))) {
639 continue;
640 }
641 mask[VB_INSTANCE] |= 1 << vb_index;
642 } else {
643 if (!unroll_indices &&
644 !(mgr->ve->incompatible_elem_mask & (1 << i)) &&
645 !(incompatible_vb_mask & (1 << vb_index))) {
646 continue;
647 }
648 mask[VB_VERTEX] |= 1 << vb_index;
649 }
650 }
651
652 assert(mask[VB_VERTEX] || mask[VB_INSTANCE] || mask[VB_CONST]);
653
654 /* Find free vertex buffer slots. */
655 if (!u_vbuf_translate_find_free_vb_slots(mgr, mask)) {
656 return FALSE;
657 }
658
659 /* Initialize the translate keys. */
660 for (i = 0; i < mgr->ve->count; i++) {
661 struct translate_key *k;
662 struct translate_element *te;
663 enum pipe_format output_format = mgr->ve->native_format[i];
664 unsigned bit, vb_index = mgr->ve->ve[i].vertex_buffer_index;
665 bit = 1 << vb_index;
666
667 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
668 !(incompatible_vb_mask & (1 << vb_index)) &&
669 (!unroll_indices || !(mask[VB_VERTEX] & bit))) {
670 continue;
671 }
672
673 /* Set type to what we will translate.
674 * Whether vertex, instance, or constant attribs. */
675 for (type = 0; type < VB_NUM; type++) {
676 if (mask[type] & bit) {
677 break;
678 }
679 }
680 assert(type < VB_NUM);
681 if (mgr->ve->ve[i].src_format != output_format)
682 assert(translate_is_output_format_supported(output_format));
683 /*printf("velem=%i type=%i\n", i, type);*/
684
685 /* Add the vertex element. */
686 k = &key[type];
687 elem_index[type][i] = k->nr_elements;
688
689 te = &k->element[k->nr_elements];
690 te->type = TRANSLATE_ELEMENT_NORMAL;
691 te->instance_divisor = 0;
692 te->input_buffer = vb_index;
693 te->input_format = mgr->ve->ve[i].src_format;
694 te->input_offset = mgr->ve->ve[i].src_offset;
695 te->output_format = output_format;
696 te->output_offset = k->output_stride;
697
698 k->output_stride += mgr->ve->native_format_size[i];
699 k->nr_elements++;
700 }
701
702 /* Translate buffers. */
703 for (type = 0; type < VB_NUM; type++) {
704 if (key[type].nr_elements) {
705 enum pipe_error err;
706 err = u_vbuf_translate_buffers(mgr, &key[type], info, mask[type],
707 mgr->fallback_vbs[type],
708 start[type], num[type], min_index,
709 unroll_indices && type == VB_VERTEX);
710 if (err != PIPE_OK)
711 return FALSE;
712
713 /* Fixup the stride for constant attribs. */
714 if (type == VB_CONST) {
715 mgr->real_vertex_buffer[mgr->fallback_vbs[VB_CONST]].stride = 0;
716 }
717 }
718 }
719
720 /* Setup new vertex elements. */
721 for (i = 0; i < mgr->ve->count; i++) {
722 for (type = 0; type < VB_NUM; type++) {
723 if (elem_index[type][i] < key[type].nr_elements) {
724 struct translate_element *te = &key[type].element[elem_index[type][i]];
725 mgr->fallback_velems[i].instance_divisor = mgr->ve->ve[i].instance_divisor;
726 mgr->fallback_velems[i].src_format = te->output_format;
727 mgr->fallback_velems[i].src_offset = te->output_offset;
728 mgr->fallback_velems[i].vertex_buffer_index = mgr->fallback_vbs[type];
729
730 /* elem_index[type][i] can only be set for one type. */
731 assert(type > VB_INSTANCE || elem_index[type+1][i] == ~0u);
732 assert(type > VB_VERTEX || elem_index[type+2][i] == ~0u);
733 break;
734 }
735 }
736 /* No translating, just copy the original vertex element over. */
737 if (type == VB_NUM) {
738 memcpy(&mgr->fallback_velems[i], &mgr->ve->ve[i],
739 sizeof(struct pipe_vertex_element));
740 }
741 }
742
743 u_vbuf_set_vertex_elements_internal(mgr, mgr->ve->count,
744 mgr->fallback_velems);
745 mgr->using_translate = TRUE;
746 return TRUE;
747 }
748
749 static void u_vbuf_translate_end(struct u_vbuf *mgr)
750 {
751 unsigned i;
752
753 /* Restore vertex elements. */
754 mgr->pipe->bind_vertex_elements_state(mgr->pipe, mgr->ve->driver_cso);
755 mgr->using_translate = FALSE;
756
757 /* Unreference the now-unused VBOs. */
758 for (i = 0; i < VB_NUM; i++) {
759 unsigned vb = mgr->fallback_vbs[i];
760 if (vb != ~0u) {
761 pipe_resource_reference(&mgr->real_vertex_buffer[vb].buffer.resource, NULL);
762 mgr->fallback_vbs[i] = ~0;
763
764 /* This will cause the buffer to be unbound in the driver later. */
765 mgr->dirty_real_vb_mask |= 1 << vb;
766 }
767 }
768 }
769
770 static void *
771 u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
772 const struct pipe_vertex_element *attribs)
773 {
774 struct pipe_context *pipe = mgr->pipe;
775 unsigned i;
776 struct pipe_vertex_element driver_attribs[PIPE_MAX_ATTRIBS];
777 struct u_vbuf_elements *ve = CALLOC_STRUCT(u_vbuf_elements);
778 uint32_t used_buffers = 0;
779
780 ve->count = count;
781
782 memcpy(ve->ve, attribs, sizeof(struct pipe_vertex_element) * count);
783 memcpy(driver_attribs, attribs, sizeof(struct pipe_vertex_element) * count);
784
785 /* Set the best native format in case the original format is not
786 * supported. */
787 for (i = 0; i < count; i++) {
788 enum pipe_format format = ve->ve[i].src_format;
789
790 ve->src_format_size[i] = util_format_get_blocksize(format);
791
792 used_buffers |= 1 << ve->ve[i].vertex_buffer_index;
793
794 if (!ve->ve[i].instance_divisor) {
795 ve->noninstance_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
796 }
797
798 format = mgr->caps.format_translation[format];
799
800 driver_attribs[i].src_format = format;
801 ve->native_format[i] = format;
802 ve->native_format_size[i] =
803 util_format_get_blocksize(ve->native_format[i]);
804
805 if (ve->ve[i].src_format != format ||
806 (!mgr->caps.velem_src_offset_unaligned &&
807 ve->ve[i].src_offset % 4 != 0)) {
808 ve->incompatible_elem_mask |= 1 << i;
809 ve->incompatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
810 } else {
811 ve->compatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
812 }
813 }
814
815 if (used_buffers & ~mgr->allowed_vb_mask) {
816 /* More vertex buffers are used than the hardware supports. In
817 * principle, we only need to make sure that less vertex buffers are
818 * used, and mark some of the latter vertex buffers as incompatible.
819 * For now, mark all vertex buffers as incompatible.
820 */
821 ve->incompatible_vb_mask_any = used_buffers;
822 ve->compatible_vb_mask_any = 0;
823 ve->incompatible_elem_mask = u_bit_consecutive(0, count);
824 }
825
826 ve->used_vb_mask = used_buffers;
827 ve->compatible_vb_mask_all = ~ve->incompatible_vb_mask_any & used_buffers;
828 ve->incompatible_vb_mask_all = ~ve->compatible_vb_mask_any & used_buffers;
829
830 /* Align the formats and offsets to the size of DWORD if needed. */
831 if (!mgr->caps.velem_src_offset_unaligned) {
832 for (i = 0; i < count; i++) {
833 ve->native_format_size[i] = align(ve->native_format_size[i], 4);
834 driver_attribs[i].src_offset = align(ve->ve[i].src_offset, 4);
835 }
836 }
837
838 /* Only create driver CSO if no incompatible elements */
839 if (!ve->incompatible_elem_mask) {
840 ve->driver_cso =
841 pipe->create_vertex_elements_state(pipe, count, driver_attribs);
842 }
843
844 return ve;
845 }
846
847 static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso)
848 {
849 struct pipe_context *pipe = mgr->pipe;
850 struct u_vbuf_elements *ve = cso;
851
852 pipe->delete_vertex_elements_state(pipe, ve->driver_cso);
853 FREE(ve);
854 }
855
856 void u_vbuf_set_vertex_buffers(struct u_vbuf *mgr,
857 unsigned start_slot, unsigned count,
858 const struct pipe_vertex_buffer *bufs)
859 {
860 unsigned i;
861 /* which buffers are enabled */
862 uint32_t enabled_vb_mask = 0;
863 /* which buffers are in user memory */
864 uint32_t user_vb_mask = 0;
865 /* which buffers are incompatible with the driver */
866 uint32_t incompatible_vb_mask = 0;
867 /* which buffers have a non-zero stride */
868 uint32_t nonzero_stride_vb_mask = 0;
869 const uint32_t mask = ~(((1ull << count) - 1) << start_slot);
870
871 /* Zero out the bits we are going to rewrite completely. */
872 mgr->user_vb_mask &= mask;
873 mgr->incompatible_vb_mask &= mask;
874 mgr->nonzero_stride_vb_mask &= mask;
875 mgr->enabled_vb_mask &= mask;
876
877 if (!bufs) {
878 struct pipe_context *pipe = mgr->pipe;
879 /* Unbind. */
880 mgr->dirty_real_vb_mask &= mask;
881
882 for (i = 0; i < count; i++) {
883 unsigned dst_index = start_slot + i;
884
885 pipe_vertex_buffer_unreference(&mgr->vertex_buffer[dst_index]);
886 pipe_vertex_buffer_unreference(&mgr->real_vertex_buffer[dst_index]);
887 }
888
889 pipe->set_vertex_buffers(pipe, start_slot, count, NULL);
890 return;
891 }
892
893 for (i = 0; i < count; i++) {
894 unsigned dst_index = start_slot + i;
895 const struct pipe_vertex_buffer *vb = &bufs[i];
896 struct pipe_vertex_buffer *orig_vb = &mgr->vertex_buffer[dst_index];
897 struct pipe_vertex_buffer *real_vb = &mgr->real_vertex_buffer[dst_index];
898
899 if (!vb->buffer.resource) {
900 pipe_vertex_buffer_unreference(orig_vb);
901 pipe_vertex_buffer_unreference(real_vb);
902 continue;
903 }
904
905 pipe_vertex_buffer_reference(orig_vb, vb);
906
907 if (vb->stride) {
908 nonzero_stride_vb_mask |= 1 << dst_index;
909 }
910 enabled_vb_mask |= 1 << dst_index;
911
912 if ((!mgr->caps.buffer_offset_unaligned && vb->buffer_offset % 4 != 0) ||
913 (!mgr->caps.buffer_stride_unaligned && vb->stride % 4 != 0)) {
914 incompatible_vb_mask |= 1 << dst_index;
915 real_vb->buffer_offset = vb->buffer_offset;
916 real_vb->stride = vb->stride;
917 pipe_vertex_buffer_unreference(real_vb);
918 real_vb->is_user_buffer = false;
919 continue;
920 }
921
922 if (!mgr->caps.user_vertex_buffers && vb->is_user_buffer) {
923 user_vb_mask |= 1 << dst_index;
924 real_vb->buffer_offset = vb->buffer_offset;
925 real_vb->stride = vb->stride;
926 pipe_vertex_buffer_unreference(real_vb);
927 real_vb->is_user_buffer = false;
928 continue;
929 }
930
931 pipe_vertex_buffer_reference(real_vb, vb);
932 }
933
934 mgr->user_vb_mask |= user_vb_mask;
935 mgr->incompatible_vb_mask |= incompatible_vb_mask;
936 mgr->nonzero_stride_vb_mask |= nonzero_stride_vb_mask;
937 mgr->enabled_vb_mask |= enabled_vb_mask;
938
939 /* All changed buffers are marked as dirty, even the NULL ones,
940 * which will cause the NULL buffers to be unbound in the driver later. */
941 mgr->dirty_real_vb_mask |= ~mask;
942 }
943
944 static enum pipe_error
945 u_vbuf_upload_buffers(struct u_vbuf *mgr,
946 int start_vertex, unsigned num_vertices,
947 int start_instance, unsigned num_instances)
948 {
949 unsigned i;
950 unsigned nr_velems = mgr->ve->count;
951 const struct pipe_vertex_element *velems =
952 mgr->using_translate ? mgr->fallback_velems : mgr->ve->ve;
953 unsigned start_offset[PIPE_MAX_ATTRIBS];
954 unsigned end_offset[PIPE_MAX_ATTRIBS];
955 uint32_t buffer_mask = 0;
956
957 /* Determine how much data needs to be uploaded. */
958 for (i = 0; i < nr_velems; i++) {
959 const struct pipe_vertex_element *velem = &velems[i];
960 unsigned index = velem->vertex_buffer_index;
961 struct pipe_vertex_buffer *vb = &mgr->vertex_buffer[index];
962 unsigned instance_div, first, size, index_bit;
963
964 /* Skip the buffers generated by translate. */
965 if (index == mgr->fallback_vbs[VB_VERTEX] ||
966 index == mgr->fallback_vbs[VB_INSTANCE] ||
967 index == mgr->fallback_vbs[VB_CONST]) {
968 continue;
969 }
970
971 if (!vb->is_user_buffer) {
972 continue;
973 }
974
975 instance_div = velem->instance_divisor;
976 first = vb->buffer_offset + velem->src_offset;
977
978 if (!vb->stride) {
979 /* Constant attrib. */
980 size = mgr->ve->src_format_size[i];
981 } else if (instance_div) {
982 /* Per-instance attrib. */
983
984 /* Figure out how many instances we'll render given instance_div. We
985 * can't use the typical div_round_up() pattern because the CTS uses
986 * instance_div = ~0 for a test, which overflows div_round_up()'s
987 * addition.
988 */
989 unsigned count = num_instances / instance_div;
990 if (count * instance_div != num_instances)
991 count++;
992
993 first += vb->stride * start_instance;
994 size = vb->stride * (count - 1) + mgr->ve->src_format_size[i];
995 } else {
996 /* Per-vertex attrib. */
997 first += vb->stride * start_vertex;
998 size = vb->stride * (num_vertices - 1) + mgr->ve->src_format_size[i];
999 }
1000
1001 index_bit = 1 << index;
1002
1003 /* Update offsets. */
1004 if (!(buffer_mask & index_bit)) {
1005 start_offset[index] = first;
1006 end_offset[index] = first + size;
1007 } else {
1008 if (first < start_offset[index])
1009 start_offset[index] = first;
1010 if (first + size > end_offset[index])
1011 end_offset[index] = first + size;
1012 }
1013
1014 buffer_mask |= index_bit;
1015 }
1016
1017 /* Upload buffers. */
1018 while (buffer_mask) {
1019 unsigned start, end;
1020 struct pipe_vertex_buffer *real_vb;
1021 const uint8_t *ptr;
1022
1023 i = u_bit_scan(&buffer_mask);
1024
1025 start = start_offset[i];
1026 end = end_offset[i];
1027 assert(start < end);
1028
1029 real_vb = &mgr->real_vertex_buffer[i];
1030 ptr = mgr->vertex_buffer[i].buffer.user;
1031
1032 u_upload_data(mgr->pipe->stream_uploader,
1033 mgr->has_signed_vb_offset ? 0 : start,
1034 end - start, 4,
1035 ptr + start, &real_vb->buffer_offset, &real_vb->buffer.resource);
1036 if (!real_vb->buffer.resource)
1037 return PIPE_ERROR_OUT_OF_MEMORY;
1038
1039 real_vb->buffer_offset -= start;
1040 }
1041
1042 return PIPE_OK;
1043 }
1044
1045 static boolean u_vbuf_need_minmax_index(const struct u_vbuf *mgr)
1046 {
1047 /* See if there are any per-vertex attribs which will be uploaded or
1048 * translated. Use bitmasks to get the info instead of looping over vertex
1049 * elements. */
1050 return (mgr->ve->used_vb_mask &
1051 ((mgr->user_vb_mask |
1052 mgr->incompatible_vb_mask |
1053 mgr->ve->incompatible_vb_mask_any) &
1054 mgr->ve->noninstance_vb_mask_any &
1055 mgr->nonzero_stride_vb_mask)) != 0;
1056 }
1057
1058 static boolean u_vbuf_mapping_vertex_buffer_blocks(const struct u_vbuf *mgr)
1059 {
1060 /* Return true if there are hw buffers which don't need to be translated.
1061 *
1062 * We could query whether each buffer is busy, but that would
1063 * be way more costly than this. */
1064 return (mgr->ve->used_vb_mask &
1065 (~mgr->user_vb_mask &
1066 ~mgr->incompatible_vb_mask &
1067 mgr->ve->compatible_vb_mask_all &
1068 mgr->ve->noninstance_vb_mask_any &
1069 mgr->nonzero_stride_vb_mask)) != 0;
1070 }
1071
1072 static void
1073 u_vbuf_get_minmax_index_mapped(const struct pipe_draw_info *info,
1074 const void *indices, unsigned *out_min_index,
1075 unsigned *out_max_index)
1076 {
1077 if (!info->count) {
1078 *out_min_index = 0;
1079 *out_max_index = 0;
1080 return;
1081 }
1082
1083 switch (info->index_size) {
1084 case 4: {
1085 const unsigned *ui_indices = (const unsigned*)indices;
1086 unsigned max = 0;
1087 unsigned min = ~0u;
1088 if (info->primitive_restart) {
1089 for (unsigned i = 0; i < info->count; i++) {
1090 if (ui_indices[i] != info->restart_index) {
1091 if (ui_indices[i] > max) max = ui_indices[i];
1092 if (ui_indices[i] < min) min = ui_indices[i];
1093 }
1094 }
1095 }
1096 else {
1097 for (unsigned i = 0; i < info->count; i++) {
1098 if (ui_indices[i] > max) max = ui_indices[i];
1099 if (ui_indices[i] < min) min = ui_indices[i];
1100 }
1101 }
1102 *out_min_index = min;
1103 *out_max_index = max;
1104 break;
1105 }
1106 case 2: {
1107 const unsigned short *us_indices = (const unsigned short*)indices;
1108 unsigned short max = 0;
1109 unsigned short min = ~((unsigned short)0);
1110 if (info->primitive_restart) {
1111 for (unsigned i = 0; i < info->count; i++) {
1112 if (us_indices[i] != info->restart_index) {
1113 if (us_indices[i] > max) max = us_indices[i];
1114 if (us_indices[i] < min) min = us_indices[i];
1115 }
1116 }
1117 }
1118 else {
1119 for (unsigned i = 0; i < info->count; i++) {
1120 if (us_indices[i] > max) max = us_indices[i];
1121 if (us_indices[i] < min) min = us_indices[i];
1122 }
1123 }
1124 *out_min_index = min;
1125 *out_max_index = max;
1126 break;
1127 }
1128 case 1: {
1129 const unsigned char *ub_indices = (const unsigned char*)indices;
1130 unsigned char max = 0;
1131 unsigned char min = ~((unsigned char)0);
1132 if (info->primitive_restart) {
1133 for (unsigned i = 0; i < info->count; i++) {
1134 if (ub_indices[i] != info->restart_index) {
1135 if (ub_indices[i] > max) max = ub_indices[i];
1136 if (ub_indices[i] < min) min = ub_indices[i];
1137 }
1138 }
1139 }
1140 else {
1141 for (unsigned i = 0; i < info->count; i++) {
1142 if (ub_indices[i] > max) max = ub_indices[i];
1143 if (ub_indices[i] < min) min = ub_indices[i];
1144 }
1145 }
1146 *out_min_index = min;
1147 *out_max_index = max;
1148 break;
1149 }
1150 default:
1151 assert(0);
1152 }
1153 }
1154
1155 void u_vbuf_get_minmax_index(struct pipe_context *pipe,
1156 const struct pipe_draw_info *info,
1157 unsigned *out_min_index, unsigned *out_max_index)
1158 {
1159 struct pipe_transfer *transfer = NULL;
1160 const void *indices;
1161
1162 if (info->has_user_indices) {
1163 indices = (uint8_t*)info->index.user +
1164 info->start * info->index_size;
1165 } else {
1166 indices = pipe_buffer_map_range(pipe, info->index.resource,
1167 info->start * info->index_size,
1168 info->count * info->index_size,
1169 PIPE_TRANSFER_READ, &transfer);
1170 }
1171
1172 u_vbuf_get_minmax_index_mapped(info, indices, out_min_index, out_max_index);
1173
1174 if (transfer) {
1175 pipe_buffer_unmap(pipe, transfer);
1176 }
1177 }
1178
1179 static void u_vbuf_set_driver_vertex_buffers(struct u_vbuf *mgr)
1180 {
1181 struct pipe_context *pipe = mgr->pipe;
1182 unsigned start_slot, count;
1183
1184 start_slot = ffs(mgr->dirty_real_vb_mask) - 1;
1185 count = util_last_bit(mgr->dirty_real_vb_mask >> start_slot);
1186
1187 pipe->set_vertex_buffers(pipe, start_slot, count,
1188 mgr->real_vertex_buffer + start_slot);
1189 mgr->dirty_real_vb_mask = 0;
1190 }
1191
1192 static void
1193 u_vbuf_split_indexed_multidraw(struct u_vbuf *mgr, struct pipe_draw_info *info,
1194 unsigned *indirect_data, unsigned stride,
1195 unsigned draw_count)
1196 {
1197 assert(info->index_size);
1198 info->indirect = NULL;
1199
1200 for (unsigned i = 0; i < draw_count; i++) {
1201 unsigned offset = i * stride / 4;
1202
1203 info->count = indirect_data[offset + 0];
1204 info->instance_count = indirect_data[offset + 1];
1205
1206 if (!info->count || !info->instance_count)
1207 continue;
1208
1209 info->start = indirect_data[offset + 2];
1210 info->index_bias = indirect_data[offset + 3];
1211 info->start_instance = indirect_data[offset + 4];
1212
1213 u_vbuf_draw_vbo(mgr, info);
1214 }
1215 }
1216
1217 void u_vbuf_draw_vbo(struct u_vbuf *mgr, const struct pipe_draw_info *info)
1218 {
1219 struct pipe_context *pipe = mgr->pipe;
1220 int start_vertex;
1221 unsigned min_index;
1222 unsigned num_vertices;
1223 boolean unroll_indices = FALSE;
1224 const uint32_t used_vb_mask = mgr->ve->used_vb_mask;
1225 uint32_t user_vb_mask = mgr->user_vb_mask & used_vb_mask;
1226 const uint32_t incompatible_vb_mask =
1227 mgr->incompatible_vb_mask & used_vb_mask;
1228 struct pipe_draw_info new_info;
1229
1230 /* Normal draw. No fallback and no user buffers. */
1231 if (!incompatible_vb_mask &&
1232 !mgr->ve->incompatible_elem_mask &&
1233 !user_vb_mask) {
1234
1235 /* Set vertex buffers if needed. */
1236 if (mgr->dirty_real_vb_mask & used_vb_mask) {
1237 u_vbuf_set_driver_vertex_buffers(mgr);
1238 }
1239
1240 pipe->draw_vbo(pipe, info);
1241 return;
1242 }
1243
1244 new_info = *info;
1245
1246 /* Handle indirect (multi)draws. */
1247 if (new_info.indirect) {
1248 const struct pipe_draw_indirect_info *indirect = new_info.indirect;
1249 unsigned draw_count = 0;
1250
1251 /* Get the number of draws. */
1252 if (indirect->indirect_draw_count) {
1253 pipe_buffer_read(pipe, indirect->indirect_draw_count,
1254 indirect->indirect_draw_count_offset,
1255 4, &draw_count);
1256 } else {
1257 draw_count = indirect->draw_count;
1258 }
1259
1260 if (!draw_count)
1261 return;
1262
1263 unsigned data_size = (draw_count - 1) * indirect->stride +
1264 (new_info.index_size ? 20 : 16);
1265 unsigned *data = malloc(data_size);
1266 if (!data)
1267 return; /* report an error? */
1268
1269 /* Read the used buffer range only once, because the read can be
1270 * uncached.
1271 */
1272 pipe_buffer_read(pipe, indirect->buffer, indirect->offset, data_size,
1273 data);
1274
1275 if (info->index_size) {
1276 /* Indexed multidraw. */
1277 unsigned index_bias0 = data[3];
1278 bool index_bias_same = true;
1279
1280 /* If we invoke the translate path, we have to split the multidraw. */
1281 if (incompatible_vb_mask ||
1282 mgr->ve->incompatible_elem_mask) {
1283 u_vbuf_split_indexed_multidraw(mgr, &new_info, data,
1284 indirect->stride, draw_count);
1285 free(data);
1286 return;
1287 }
1288
1289 /* See if index_bias is the same for all draws. */
1290 for (unsigned i = 1; i < draw_count; i++) {
1291 if (data[i * indirect->stride / 4 + 3] != index_bias0) {
1292 index_bias_same = false;
1293 break;
1294 }
1295 }
1296
1297 /* Split the multidraw if index_bias is different. */
1298 if (!index_bias_same) {
1299 u_vbuf_split_indexed_multidraw(mgr, &new_info, data,
1300 indirect->stride, draw_count);
1301 free(data);
1302 return;
1303 }
1304
1305 /* If we don't need to use the translate path and index_bias is
1306 * the same, we can process the multidraw with the time complexity
1307 * equal to 1 draw call (except for the index range computation).
1308 * We only need to compute the index range covering all draw calls
1309 * of the multidraw.
1310 *
1311 * The driver will not look at these values because indirect != NULL.
1312 * These values determine the user buffer bounds to upload.
1313 */
1314 new_info.index_bias = index_bias0;
1315 new_info.min_index = ~0u;
1316 new_info.max_index = 0;
1317 new_info.start_instance = ~0u;
1318 unsigned end_instance = 0;
1319
1320 struct pipe_transfer *transfer = NULL;
1321 const uint8_t *indices;
1322
1323 if (info->has_user_indices) {
1324 indices = (uint8_t*)info->index.user;
1325 } else {
1326 indices = (uint8_t*)pipe_buffer_map(pipe, info->index.resource,
1327 PIPE_TRANSFER_READ, &transfer);
1328 }
1329
1330 for (unsigned i = 0; i < draw_count; i++) {
1331 unsigned offset = i * indirect->stride / 4;
1332 unsigned start = data[offset + 2];
1333 unsigned count = data[offset + 0];
1334 unsigned start_instance = data[offset + 4];
1335 unsigned instance_count = data[offset + 1];
1336
1337 if (!count || !instance_count)
1338 continue;
1339
1340 /* Update the ranges of instances. */
1341 new_info.start_instance = MIN2(new_info.start_instance,
1342 start_instance);
1343 end_instance = MAX2(end_instance, start_instance + instance_count);
1344
1345 /* Update the index range. */
1346 unsigned min, max;
1347 new_info.count = count; /* only used by get_minmax_index */
1348 u_vbuf_get_minmax_index_mapped(&new_info,
1349 indices +
1350 new_info.index_size * start,
1351 &min, &max);
1352
1353 new_info.min_index = MIN2(new_info.min_index, min);
1354 new_info.max_index = MAX2(new_info.max_index, max);
1355 }
1356 free(data);
1357
1358 if (transfer)
1359 pipe_buffer_unmap(pipe, transfer);
1360
1361 /* Set the final instance count. */
1362 new_info.instance_count = end_instance - new_info.start_instance;
1363
1364 if (new_info.start_instance == ~0u || !new_info.instance_count)
1365 return;
1366 } else {
1367 /* Non-indexed multidraw.
1368 *
1369 * Keep the draw call indirect and compute minimums & maximums,
1370 * which will determine the user buffer bounds to upload, but
1371 * the driver will not look at these values because indirect != NULL.
1372 *
1373 * This efficiently processes the multidraw with the time complexity
1374 * equal to 1 draw call.
1375 */
1376 new_info.start = ~0u;
1377 new_info.start_instance = ~0u;
1378 unsigned end_vertex = 0;
1379 unsigned end_instance = 0;
1380
1381 for (unsigned i = 0; i < draw_count; i++) {
1382 unsigned offset = i * indirect->stride / 4;
1383 unsigned start = data[offset + 2];
1384 unsigned count = data[offset + 0];
1385 unsigned start_instance = data[offset + 3];
1386 unsigned instance_count = data[offset + 1];
1387
1388 new_info.start = MIN2(new_info.start, start);
1389 new_info.start_instance = MIN2(new_info.start_instance,
1390 start_instance);
1391
1392 end_vertex = MAX2(end_vertex, start + count);
1393 end_instance = MAX2(end_instance, start_instance + instance_count);
1394 }
1395 free(data);
1396
1397 /* Set the final counts. */
1398 new_info.count = end_vertex - new_info.start;
1399 new_info.instance_count = end_instance - new_info.start_instance;
1400
1401 if (new_info.start == ~0u || !new_info.count || !new_info.instance_count)
1402 return;
1403 }
1404 }
1405
1406 if (new_info.index_size) {
1407 /* See if anything needs to be done for per-vertex attribs. */
1408 if (u_vbuf_need_minmax_index(mgr)) {
1409 unsigned max_index;
1410
1411 if (new_info.max_index != ~0u) {
1412 min_index = new_info.min_index;
1413 max_index = new_info.max_index;
1414 } else {
1415 u_vbuf_get_minmax_index(mgr->pipe, &new_info,
1416 &min_index, &max_index);
1417 }
1418
1419 assert(min_index <= max_index);
1420
1421 start_vertex = min_index + new_info.index_bias;
1422 num_vertices = max_index + 1 - min_index;
1423
1424 /* Primitive restart doesn't work when unrolling indices.
1425 * We would have to break this drawing operation into several ones. */
1426 /* Use some heuristic to see if unrolling indices improves
1427 * performance. */
1428 if (!info->indirect &&
1429 !new_info.primitive_restart &&
1430 num_vertices > new_info.count*2 &&
1431 num_vertices - new_info.count > 32 &&
1432 !u_vbuf_mapping_vertex_buffer_blocks(mgr)) {
1433 unroll_indices = TRUE;
1434 user_vb_mask &= ~(mgr->nonzero_stride_vb_mask &
1435 mgr->ve->noninstance_vb_mask_any);
1436 }
1437 } else {
1438 /* Nothing to do for per-vertex attribs. */
1439 start_vertex = 0;
1440 num_vertices = 0;
1441 min_index = 0;
1442 }
1443 } else {
1444 start_vertex = new_info.start;
1445 num_vertices = new_info.count;
1446 min_index = 0;
1447 }
1448
1449 /* Translate vertices with non-native layouts or formats. */
1450 if (unroll_indices ||
1451 incompatible_vb_mask ||
1452 mgr->ve->incompatible_elem_mask) {
1453 if (!u_vbuf_translate_begin(mgr, &new_info, start_vertex, num_vertices,
1454 min_index, unroll_indices)) {
1455 debug_warn_once("u_vbuf_translate_begin() failed");
1456 return;
1457 }
1458
1459 if (unroll_indices) {
1460 new_info.index_size = 0;
1461 new_info.index_bias = 0;
1462 new_info.min_index = 0;
1463 new_info.max_index = new_info.count - 1;
1464 new_info.start = 0;
1465 }
1466
1467 user_vb_mask &= ~(incompatible_vb_mask |
1468 mgr->ve->incompatible_vb_mask_all);
1469 }
1470
1471 /* Upload user buffers. */
1472 if (user_vb_mask) {
1473 if (u_vbuf_upload_buffers(mgr, start_vertex, num_vertices,
1474 new_info.start_instance,
1475 new_info.instance_count) != PIPE_OK) {
1476 debug_warn_once("u_vbuf_upload_buffers() failed");
1477 return;
1478 }
1479
1480 mgr->dirty_real_vb_mask |= user_vb_mask;
1481 }
1482
1483 /*
1484 if (unroll_indices) {
1485 printf("unrolling indices: start_vertex = %i, num_vertices = %i\n",
1486 start_vertex, num_vertices);
1487 util_dump_draw_info(stdout, info);
1488 printf("\n");
1489 }
1490
1491 unsigned i;
1492 for (i = 0; i < mgr->nr_vertex_buffers; i++) {
1493 printf("input %i: ", i);
1494 util_dump_vertex_buffer(stdout, mgr->vertex_buffer+i);
1495 printf("\n");
1496 }
1497 for (i = 0; i < mgr->nr_real_vertex_buffers; i++) {
1498 printf("real %i: ", i);
1499 util_dump_vertex_buffer(stdout, mgr->real_vertex_buffer+i);
1500 printf("\n");
1501 }
1502 */
1503
1504 u_upload_unmap(pipe->stream_uploader);
1505 u_vbuf_set_driver_vertex_buffers(mgr);
1506
1507 pipe->draw_vbo(pipe, &new_info);
1508
1509 if (mgr->using_translate) {
1510 u_vbuf_translate_end(mgr);
1511 }
1512 }
1513
1514 void u_vbuf_save_vertex_elements(struct u_vbuf *mgr)
1515 {
1516 assert(!mgr->ve_saved);
1517 mgr->ve_saved = mgr->ve;
1518 }
1519
1520 void u_vbuf_restore_vertex_elements(struct u_vbuf *mgr)
1521 {
1522 if (mgr->ve != mgr->ve_saved) {
1523 struct pipe_context *pipe = mgr->pipe;
1524
1525 mgr->ve = mgr->ve_saved;
1526 pipe->bind_vertex_elements_state(pipe,
1527 mgr->ve ? mgr->ve->driver_cso : NULL);
1528 }
1529 mgr->ve_saved = NULL;
1530 }
1531
1532 void u_vbuf_save_vertex_buffer0(struct u_vbuf *mgr)
1533 {
1534 pipe_vertex_buffer_reference(&mgr->vertex_buffer0_saved,
1535 &mgr->vertex_buffer[0]);
1536 }
1537
1538 void u_vbuf_restore_vertex_buffer0(struct u_vbuf *mgr)
1539 {
1540 u_vbuf_set_vertex_buffers(mgr, 0, 1, &mgr->vertex_buffer0_saved);
1541 pipe_vertex_buffer_unreference(&mgr->vertex_buffer0_saved);
1542 }