draw: fix another decompose bug affecting constant interpolated attributes
[mesa.git] / src / gallium / auxiliary / util / u_vbuf.c
1 /**************************************************************************
2 *
3 * Copyright 2011 Marek Olšák <maraeo@gmail.com>
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * This module uploads user buffers and translates the vertex buffers which
30 * contain incompatible vertices (i.e. not supported by the driver/hardware)
31 * into compatible ones, based on the Gallium CAPs.
32 *
33 * It does not upload index buffers.
34 *
35 * The module heavily uses bitmasks to represent per-buffer and
36 * per-vertex-element flags to avoid looping over the list of buffers just
37 * to see if there's a non-zero stride, or user buffer, or unsupported format,
38 * etc.
39 *
40 * There are 3 categories of vertex elements, which are processed separately:
41 * - per-vertex attribs (stride != 0, instance_divisor == 0)
42 * - instanced attribs (stride != 0, instance_divisor > 0)
43 * - constant attribs (stride == 0)
44 *
45 * All needed uploads and translations are performed every draw command, but
46 * only the subset of vertices needed for that draw command is uploaded or
47 * translated. (the module never translates whole buffers)
48 *
49 *
50 * The module consists of two main parts:
51 *
52 *
53 * 1) Translate (u_vbuf_translate_begin/end)
54 *
55 * This is pretty much a vertex fetch fallback. It translates vertices from
56 * one vertex buffer to another in an unused vertex buffer slot. It does
57 * whatever is needed to make the vertices readable by the hardware (changes
58 * vertex formats and aligns offsets and strides). The translate module is
59 * used here.
60 *
61 * Each of the 3 categories is translated to a separate buffer.
62 * Only the [min_index, max_index] range is translated. For instanced attribs,
63 * the range is [start_instance, start_instance+instance_count]. For constant
64 * attribs, the range is [0, 1].
65 *
66 *
67 * 2) User buffer uploading (u_vbuf_upload_buffers)
68 *
69 * Only the [min_index, max_index] range is uploaded (just like Translate)
70 * with a single memcpy.
71 *
72 * This method works best for non-indexed draw operations or indexed draw
73 * operations where the [min_index, max_index] range is not being way bigger
74 * than the vertex count.
75 *
76 * If the range is too big (e.g. one triangle with indices {0, 1, 10000}),
77 * the per-vertex attribs are uploaded via the translate module, all packed
78 * into one vertex buffer, and the indexed draw call is turned into
79 * a non-indexed one in the process. This adds additional complexity
80 * to the translate part, but it prevents bad apps from bringing your frame
81 * rate down.
82 *
83 *
84 * If there is nothing to do, it forwards every command to the driver.
85 * The module also has its own CSO cache of vertex element states.
86 */
87
88 #include "util/u_vbuf.h"
89
90 #include "util/u_dump.h"
91 #include "util/u_format.h"
92 #include "util/u_inlines.h"
93 #include "util/u_memory.h"
94 #include "util/u_upload_mgr.h"
95 #include "translate/translate.h"
96 #include "translate/translate_cache.h"
97 #include "cso_cache/cso_cache.h"
98 #include "cso_cache/cso_hash.h"
99
100 struct u_vbuf_elements {
101 unsigned count;
102 struct pipe_vertex_element ve[PIPE_MAX_ATTRIBS];
103
104 unsigned src_format_size[PIPE_MAX_ATTRIBS];
105
106 /* If (velem[i].src_format != native_format[i]), the vertex buffer
107 * referenced by the vertex element cannot be used for rendering and
108 * its vertex data must be translated to native_format[i]. */
109 enum pipe_format native_format[PIPE_MAX_ATTRIBS];
110 unsigned native_format_size[PIPE_MAX_ATTRIBS];
111
112 /* Which buffers are used by the vertex element state. */
113 uint32_t used_vb_mask;
114 /* This might mean two things:
115 * - src_format != native_format, as discussed above.
116 * - src_offset % 4 != 0 (if the caps don't allow such an offset). */
117 uint32_t incompatible_elem_mask; /* each bit describes a corresp. attrib */
118 /* Which buffer has at least one vertex element referencing it
119 * incompatible. */
120 uint32_t incompatible_vb_mask_any;
121 /* Which buffer has all vertex elements referencing it incompatible. */
122 uint32_t incompatible_vb_mask_all;
123 /* Which buffer has at least one vertex element referencing it
124 * compatible. */
125 uint32_t compatible_vb_mask_any;
126 /* Which buffer has all vertex elements referencing it compatible. */
127 uint32_t compatible_vb_mask_all;
128
129 /* Which buffer has at least one vertex element referencing it
130 * non-instanced. */
131 uint32_t noninstance_vb_mask_any;
132
133 void *driver_cso;
134 };
135
136 enum {
137 VB_VERTEX = 0,
138 VB_INSTANCE = 1,
139 VB_CONST = 2,
140 VB_NUM = 3
141 };
142
143 struct u_vbuf {
144 struct u_vbuf_caps caps;
145
146 struct pipe_context *pipe;
147 struct translate_cache *translate_cache;
148 struct cso_cache *cso_cache;
149 struct u_upload_mgr *uploader;
150
151 /* This is what was set in set_vertex_buffers.
152 * May contain user buffers. */
153 struct pipe_vertex_buffer vertex_buffer[PIPE_MAX_ATTRIBS];
154 uint32_t enabled_vb_mask;
155
156 /* Saved vertex buffer. */
157 unsigned aux_vertex_buffer_slot;
158 struct pipe_vertex_buffer aux_vertex_buffer_saved;
159
160 /* Vertex buffers for the driver.
161 * There are usually no user buffers. */
162 struct pipe_vertex_buffer real_vertex_buffer[PIPE_MAX_ATTRIBS];
163 uint32_t dirty_real_vb_mask; /* which buffers are dirty since the last
164 call of set_vertex_buffers */
165
166 /* The index buffer. */
167 struct pipe_index_buffer index_buffer;
168
169 /* Vertex elements. */
170 struct u_vbuf_elements *ve, *ve_saved;
171
172 /* Vertex elements used for the translate fallback. */
173 struct pipe_vertex_element fallback_velems[PIPE_MAX_ATTRIBS];
174 /* If non-NULL, this is a vertex element state used for the translate
175 * fallback and therefore used for rendering too. */
176 boolean using_translate;
177 /* The vertex buffer slot index where translated vertices have been
178 * stored in. */
179 unsigned fallback_vbs[VB_NUM];
180
181 /* Which buffer is a user buffer. */
182 uint32_t user_vb_mask; /* each bit describes a corresp. buffer */
183 /* Which buffer is incompatible (unaligned). */
184 uint32_t incompatible_vb_mask; /* each bit describes a corresp. buffer */
185 /* Which buffer has a non-zero stride. */
186 uint32_t nonzero_stride_vb_mask; /* each bit describes a corresp. buffer */
187 };
188
189 static void *
190 u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
191 const struct pipe_vertex_element *attribs);
192 static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso);
193
194 static const struct {
195 enum pipe_format from, to;
196 } vbuf_format_fallbacks[] = {
197 { PIPE_FORMAT_R32_FIXED, PIPE_FORMAT_R32_FLOAT },
198 { PIPE_FORMAT_R32G32_FIXED, PIPE_FORMAT_R32G32_FLOAT },
199 { PIPE_FORMAT_R32G32B32_FIXED, PIPE_FORMAT_R32G32B32_FLOAT },
200 { PIPE_FORMAT_R32G32B32A32_FIXED, PIPE_FORMAT_R32G32B32A32_FLOAT },
201 { PIPE_FORMAT_R16_FLOAT, PIPE_FORMAT_R32_FLOAT },
202 { PIPE_FORMAT_R16G16_FLOAT, PIPE_FORMAT_R32G32_FLOAT },
203 { PIPE_FORMAT_R16G16B16_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT },
204 { PIPE_FORMAT_R16G16B16A16_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT },
205 { PIPE_FORMAT_R64_FLOAT, PIPE_FORMAT_R32_FLOAT },
206 { PIPE_FORMAT_R64G64_FLOAT, PIPE_FORMAT_R32G32_FLOAT },
207 { PIPE_FORMAT_R64G64B64_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT },
208 { PIPE_FORMAT_R64G64B64A64_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT },
209 { PIPE_FORMAT_R32_UNORM, PIPE_FORMAT_R32_FLOAT },
210 { PIPE_FORMAT_R32G32_UNORM, PIPE_FORMAT_R32G32_FLOAT },
211 { PIPE_FORMAT_R32G32B32_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
212 { PIPE_FORMAT_R32G32B32A32_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
213 { PIPE_FORMAT_R32_SNORM, PIPE_FORMAT_R32_FLOAT },
214 { PIPE_FORMAT_R32G32_SNORM, PIPE_FORMAT_R32G32_FLOAT },
215 { PIPE_FORMAT_R32G32B32_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
216 { PIPE_FORMAT_R32G32B32A32_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
217 { PIPE_FORMAT_R32_USCALED, PIPE_FORMAT_R32_FLOAT },
218 { PIPE_FORMAT_R32G32_USCALED, PIPE_FORMAT_R32G32_FLOAT },
219 { PIPE_FORMAT_R32G32B32_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
220 { PIPE_FORMAT_R32G32B32A32_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
221 { PIPE_FORMAT_R32_SSCALED, PIPE_FORMAT_R32_FLOAT },
222 { PIPE_FORMAT_R32G32_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
223 { PIPE_FORMAT_R32G32B32_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
224 { PIPE_FORMAT_R32G32B32A32_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
225 { PIPE_FORMAT_R16_UNORM, PIPE_FORMAT_R32_FLOAT },
226 { PIPE_FORMAT_R16G16_UNORM, PIPE_FORMAT_R32G32_FLOAT },
227 { PIPE_FORMAT_R16G16B16_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
228 { PIPE_FORMAT_R16G16B16A16_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
229 { PIPE_FORMAT_R16_SNORM, PIPE_FORMAT_R32_FLOAT },
230 { PIPE_FORMAT_R16G16_SNORM, PIPE_FORMAT_R32G32_FLOAT },
231 { PIPE_FORMAT_R16G16B16_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
232 { PIPE_FORMAT_R16G16B16A16_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
233 { PIPE_FORMAT_R16_USCALED, PIPE_FORMAT_R32_FLOAT },
234 { PIPE_FORMAT_R16G16_USCALED, PIPE_FORMAT_R32G32_FLOAT },
235 { PIPE_FORMAT_R16G16B16_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
236 { PIPE_FORMAT_R16G16B16A16_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
237 { PIPE_FORMAT_R16_SSCALED, PIPE_FORMAT_R32_FLOAT },
238 { PIPE_FORMAT_R16G16_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
239 { PIPE_FORMAT_R16G16B16_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
240 { PIPE_FORMAT_R16G16B16A16_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
241 { PIPE_FORMAT_R8_UNORM, PIPE_FORMAT_R32_FLOAT },
242 { PIPE_FORMAT_R8G8_UNORM, PIPE_FORMAT_R32G32_FLOAT },
243 { PIPE_FORMAT_R8G8B8_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
244 { PIPE_FORMAT_R8G8B8A8_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
245 { PIPE_FORMAT_R8_SNORM, PIPE_FORMAT_R32_FLOAT },
246 { PIPE_FORMAT_R8G8_SNORM, PIPE_FORMAT_R32G32_FLOAT },
247 { PIPE_FORMAT_R8G8B8_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
248 { PIPE_FORMAT_R8G8B8A8_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
249 { PIPE_FORMAT_R8_USCALED, PIPE_FORMAT_R32_FLOAT },
250 { PIPE_FORMAT_R8G8_USCALED, PIPE_FORMAT_R32G32_FLOAT },
251 { PIPE_FORMAT_R8G8B8_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
252 { PIPE_FORMAT_R8G8B8A8_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
253 { PIPE_FORMAT_R8_SSCALED, PIPE_FORMAT_R32_FLOAT },
254 { PIPE_FORMAT_R8G8_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
255 { PIPE_FORMAT_R8G8B8_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
256 { PIPE_FORMAT_R8G8B8A8_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
257 };
258
259 boolean u_vbuf_get_caps(struct pipe_screen *screen, struct u_vbuf_caps *caps)
260 {
261 unsigned i;
262 boolean fallback = FALSE;
263
264 /* I'd rather have a bitfield of which formats are supported and a static
265 * table of the translations indexed by format, but since we don't have C99
266 * we can't easily make a sparsely-populated table indexed by format. So,
267 * we construct the sparse table here.
268 */
269 for (i = 0; i < PIPE_FORMAT_COUNT; i++)
270 caps->format_translation[i] = i;
271
272 for (i = 0; i < Elements(vbuf_format_fallbacks); i++) {
273 enum pipe_format format = vbuf_format_fallbacks[i].from;
274
275 if (!screen->is_format_supported(screen, format, PIPE_BUFFER, 0,
276 PIPE_BIND_VERTEX_BUFFER)) {
277 caps->format_translation[format] = vbuf_format_fallbacks[i].to;
278 fallback = TRUE;
279 }
280 }
281
282 caps->buffer_offset_unaligned =
283 !screen->get_param(screen,
284 PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY);
285 caps->buffer_stride_unaligned =
286 !screen->get_param(screen,
287 PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY);
288 caps->velem_src_offset_unaligned =
289 !screen->get_param(screen,
290 PIPE_CAP_VERTEX_ELEMENT_SRC_OFFSET_4BYTE_ALIGNED_ONLY);
291 caps->user_vertex_buffers =
292 screen->get_param(screen, PIPE_CAP_USER_VERTEX_BUFFERS);
293
294 if (!caps->buffer_offset_unaligned ||
295 !caps->buffer_stride_unaligned ||
296 !caps->velem_src_offset_unaligned ||
297 !caps->user_vertex_buffers) {
298 fallback = TRUE;
299 }
300
301 return fallback;
302 }
303
304 struct u_vbuf *
305 u_vbuf_create(struct pipe_context *pipe,
306 struct u_vbuf_caps *caps, unsigned aux_vertex_buffer_index)
307 {
308 struct u_vbuf *mgr = CALLOC_STRUCT(u_vbuf);
309
310 mgr->caps = *caps;
311 mgr->aux_vertex_buffer_slot = aux_vertex_buffer_index;
312 mgr->pipe = pipe;
313 mgr->cso_cache = cso_cache_create();
314 mgr->translate_cache = translate_cache_create();
315 memset(mgr->fallback_vbs, ~0, sizeof(mgr->fallback_vbs));
316
317 mgr->uploader = u_upload_create(pipe, 1024 * 1024, 4,
318 PIPE_BIND_VERTEX_BUFFER);
319
320 return mgr;
321 }
322
323 /* u_vbuf uses its own caching for vertex elements, because it needs to keep
324 * its own preprocessed state per vertex element CSO. */
325 static struct u_vbuf_elements *
326 u_vbuf_set_vertex_elements_internal(struct u_vbuf *mgr, unsigned count,
327 const struct pipe_vertex_element *states)
328 {
329 struct pipe_context *pipe = mgr->pipe;
330 unsigned key_size, hash_key;
331 struct cso_hash_iter iter;
332 struct u_vbuf_elements *ve;
333 struct cso_velems_state velems_state;
334
335 /* need to include the count into the stored state data too. */
336 key_size = sizeof(struct pipe_vertex_element) * count + sizeof(unsigned);
337 velems_state.count = count;
338 memcpy(velems_state.velems, states,
339 sizeof(struct pipe_vertex_element) * count);
340 hash_key = cso_construct_key((void*)&velems_state, key_size);
341 iter = cso_find_state_template(mgr->cso_cache, hash_key, CSO_VELEMENTS,
342 (void*)&velems_state, key_size);
343
344 if (cso_hash_iter_is_null(iter)) {
345 struct cso_velements *cso = MALLOC_STRUCT(cso_velements);
346 memcpy(&cso->state, &velems_state, key_size);
347 cso->data = u_vbuf_create_vertex_elements(mgr, count, states);
348 cso->delete_state = (cso_state_callback)u_vbuf_delete_vertex_elements;
349 cso->context = (void*)mgr;
350
351 iter = cso_insert_state(mgr->cso_cache, hash_key, CSO_VELEMENTS, cso);
352 ve = cso->data;
353 } else {
354 ve = ((struct cso_velements *)cso_hash_iter_data(iter))->data;
355 }
356
357 assert(ve);
358
359 if (ve != mgr->ve)
360 pipe->bind_vertex_elements_state(pipe, ve->driver_cso);
361
362 return ve;
363 }
364
365 void u_vbuf_set_vertex_elements(struct u_vbuf *mgr, unsigned count,
366 const struct pipe_vertex_element *states)
367 {
368 mgr->ve = u_vbuf_set_vertex_elements_internal(mgr, count, states);
369 }
370
371 void u_vbuf_destroy(struct u_vbuf *mgr)
372 {
373 struct pipe_screen *screen = mgr->pipe->screen;
374 unsigned i;
375 unsigned num_vb = screen->get_shader_param(screen, PIPE_SHADER_VERTEX,
376 PIPE_SHADER_CAP_MAX_INPUTS);
377
378 mgr->pipe->set_index_buffer(mgr->pipe, NULL);
379 pipe_resource_reference(&mgr->index_buffer.buffer, NULL);
380
381 mgr->pipe->set_vertex_buffers(mgr->pipe, 0, num_vb, NULL);
382
383 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
384 pipe_resource_reference(&mgr->vertex_buffer[i].buffer, NULL);
385 }
386 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
387 pipe_resource_reference(&mgr->real_vertex_buffer[i].buffer, NULL);
388 }
389 pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, NULL);
390
391 translate_cache_destroy(mgr->translate_cache);
392 u_upload_destroy(mgr->uploader);
393 cso_cache_delete(mgr->cso_cache);
394 FREE(mgr);
395 }
396
397 static enum pipe_error
398 u_vbuf_translate_buffers(struct u_vbuf *mgr, struct translate_key *key,
399 unsigned vb_mask, unsigned out_vb,
400 int start_vertex, unsigned num_vertices,
401 int start_index, unsigned num_indices, int min_index,
402 boolean unroll_indices)
403 {
404 struct translate *tr;
405 struct pipe_transfer *vb_transfer[PIPE_MAX_ATTRIBS] = {0};
406 struct pipe_resource *out_buffer = NULL;
407 uint8_t *out_map;
408 unsigned out_offset, mask;
409 enum pipe_error err;
410
411 /* Get a translate object. */
412 tr = translate_cache_find(mgr->translate_cache, key);
413
414 /* Map buffers we want to translate. */
415 mask = vb_mask;
416 while (mask) {
417 struct pipe_vertex_buffer *vb;
418 unsigned offset;
419 uint8_t *map;
420 unsigned i = u_bit_scan(&mask);
421
422 vb = &mgr->vertex_buffer[i];
423 offset = vb->buffer_offset + vb->stride * start_vertex;
424
425 if (vb->user_buffer) {
426 map = (uint8_t*)vb->user_buffer + offset;
427 } else {
428 unsigned size = vb->stride ? num_vertices * vb->stride
429 : sizeof(double)*4;
430
431 if (offset+size > vb->buffer->width0) {
432 size = vb->buffer->width0 - offset;
433 }
434
435 map = pipe_buffer_map_range(mgr->pipe, vb->buffer, offset, size,
436 PIPE_TRANSFER_READ, &vb_transfer[i]);
437 }
438
439 /* Subtract min_index so that indexing with the index buffer works. */
440 if (unroll_indices) {
441 map -= (ptrdiff_t)vb->stride * min_index;
442 }
443
444 tr->set_buffer(tr, i, map, vb->stride, ~0);
445 }
446
447 /* Translate. */
448 if (unroll_indices) {
449 struct pipe_index_buffer *ib = &mgr->index_buffer;
450 struct pipe_transfer *transfer = NULL;
451 unsigned offset = ib->offset + start_index * ib->index_size;
452 uint8_t *map;
453
454 assert((ib->buffer || ib->user_buffer) && ib->index_size);
455
456 /* Create and map the output buffer. */
457 err = u_upload_alloc(mgr->uploader, 0,
458 key->output_stride * num_indices,
459 &out_offset, &out_buffer,
460 (void**)&out_map);
461 if (err != PIPE_OK)
462 return err;
463
464 if (ib->user_buffer) {
465 map = (uint8_t*)ib->user_buffer + offset;
466 } else {
467 map = pipe_buffer_map_range(mgr->pipe, ib->buffer, offset,
468 num_indices * ib->index_size,
469 PIPE_TRANSFER_READ, &transfer);
470 }
471
472 switch (ib->index_size) {
473 case 4:
474 tr->run_elts(tr, (unsigned*)map, num_indices, 0, 0, out_map);
475 break;
476 case 2:
477 tr->run_elts16(tr, (uint16_t*)map, num_indices, 0, 0, out_map);
478 break;
479 case 1:
480 tr->run_elts8(tr, map, num_indices, 0, 0, out_map);
481 break;
482 }
483
484 if (transfer) {
485 pipe_buffer_unmap(mgr->pipe, transfer);
486 }
487 } else {
488 /* Create and map the output buffer. */
489 err = u_upload_alloc(mgr->uploader,
490 key->output_stride * start_vertex,
491 key->output_stride * num_vertices,
492 &out_offset, &out_buffer,
493 (void**)&out_map);
494 if (err != PIPE_OK)
495 return err;
496
497 out_offset -= key->output_stride * start_vertex;
498
499 tr->run(tr, 0, num_vertices, 0, 0, out_map);
500 }
501
502 /* Unmap all buffers. */
503 mask = vb_mask;
504 while (mask) {
505 unsigned i = u_bit_scan(&mask);
506
507 if (vb_transfer[i]) {
508 pipe_buffer_unmap(mgr->pipe, vb_transfer[i]);
509 }
510 }
511
512 /* Setup the new vertex buffer. */
513 mgr->real_vertex_buffer[out_vb].buffer_offset = out_offset;
514 mgr->real_vertex_buffer[out_vb].stride = key->output_stride;
515
516 /* Move the buffer reference. */
517 pipe_resource_reference(
518 &mgr->real_vertex_buffer[out_vb].buffer, NULL);
519 mgr->real_vertex_buffer[out_vb].buffer = out_buffer;
520
521 return PIPE_OK;
522 }
523
524 static boolean
525 u_vbuf_translate_find_free_vb_slots(struct u_vbuf *mgr,
526 unsigned mask[VB_NUM])
527 {
528 unsigned type;
529 unsigned fallback_vbs[VB_NUM];
530 /* Set the bit for each buffer which is incompatible, or isn't set. */
531 uint32_t unused_vb_mask =
532 mgr->ve->incompatible_vb_mask_all | mgr->incompatible_vb_mask |
533 ~mgr->enabled_vb_mask;
534
535 memset(fallback_vbs, ~0, sizeof(fallback_vbs));
536
537 /* Find free slots for each type if needed. */
538 for (type = 0; type < VB_NUM; type++) {
539 if (mask[type]) {
540 uint32_t index;
541
542 if (!unused_vb_mask) {
543 return FALSE;
544 }
545
546 index = ffs(unused_vb_mask) - 1;
547 fallback_vbs[type] = index;
548 /*printf("found slot=%i for type=%i\n", index, type);*/
549 }
550 }
551
552 for (type = 0; type < VB_NUM; type++) {
553 if (mask[type]) {
554 mgr->dirty_real_vb_mask |= 1 << fallback_vbs[type];
555 }
556 }
557
558 memcpy(mgr->fallback_vbs, fallback_vbs, sizeof(fallback_vbs));
559 return TRUE;
560 }
561
562 static boolean
563 u_vbuf_translate_begin(struct u_vbuf *mgr,
564 int start_vertex, unsigned num_vertices,
565 int start_instance, unsigned num_instances,
566 int start_index, unsigned num_indices, int min_index,
567 boolean unroll_indices)
568 {
569 unsigned mask[VB_NUM] = {0};
570 struct translate_key key[VB_NUM];
571 unsigned elem_index[VB_NUM][PIPE_MAX_ATTRIBS]; /* ... into key.elements */
572 unsigned i, type;
573 unsigned incompatible_vb_mask = mgr->incompatible_vb_mask &
574 mgr->ve->used_vb_mask;
575
576 int start[VB_NUM] = {
577 start_vertex, /* VERTEX */
578 start_instance, /* INSTANCE */
579 0 /* CONST */
580 };
581
582 unsigned num[VB_NUM] = {
583 num_vertices, /* VERTEX */
584 num_instances, /* INSTANCE */
585 1 /* CONST */
586 };
587
588 memset(key, 0, sizeof(key));
589 memset(elem_index, ~0, sizeof(elem_index));
590
591 /* See if there are vertex attribs of each type to translate and
592 * which ones. */
593 for (i = 0; i < mgr->ve->count; i++) {
594 unsigned vb_index = mgr->ve->ve[i].vertex_buffer_index;
595
596 if (!mgr->vertex_buffer[vb_index].stride) {
597 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
598 !(incompatible_vb_mask & (1 << vb_index))) {
599 continue;
600 }
601 mask[VB_CONST] |= 1 << vb_index;
602 } else if (mgr->ve->ve[i].instance_divisor) {
603 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
604 !(incompatible_vb_mask & (1 << vb_index))) {
605 continue;
606 }
607 mask[VB_INSTANCE] |= 1 << vb_index;
608 } else {
609 if (!unroll_indices &&
610 !(mgr->ve->incompatible_elem_mask & (1 << i)) &&
611 !(incompatible_vb_mask & (1 << vb_index))) {
612 continue;
613 }
614 mask[VB_VERTEX] |= 1 << vb_index;
615 }
616 }
617
618 assert(mask[VB_VERTEX] || mask[VB_INSTANCE] || mask[VB_CONST]);
619
620 /* Find free vertex buffer slots. */
621 if (!u_vbuf_translate_find_free_vb_slots(mgr, mask)) {
622 return FALSE;
623 }
624
625 /* Initialize the translate keys. */
626 for (i = 0; i < mgr->ve->count; i++) {
627 struct translate_key *k;
628 struct translate_element *te;
629 unsigned bit, vb_index = mgr->ve->ve[i].vertex_buffer_index;
630 bit = 1 << vb_index;
631
632 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
633 !(incompatible_vb_mask & (1 << vb_index)) &&
634 (!unroll_indices || !(mask[VB_VERTEX] & bit))) {
635 continue;
636 }
637
638 /* Set type to what we will translate.
639 * Whether vertex, instance, or constant attribs. */
640 for (type = 0; type < VB_NUM; type++) {
641 if (mask[type] & bit) {
642 break;
643 }
644 }
645 assert(type < VB_NUM);
646 assert(translate_is_output_format_supported(mgr->ve->native_format[i]));
647 /*printf("velem=%i type=%i\n", i, type);*/
648
649 /* Add the vertex element. */
650 k = &key[type];
651 elem_index[type][i] = k->nr_elements;
652
653 te = &k->element[k->nr_elements];
654 te->type = TRANSLATE_ELEMENT_NORMAL;
655 te->instance_divisor = 0;
656 te->input_buffer = vb_index;
657 te->input_format = mgr->ve->ve[i].src_format;
658 te->input_offset = mgr->ve->ve[i].src_offset;
659 te->output_format = mgr->ve->native_format[i];
660 te->output_offset = k->output_stride;
661
662 k->output_stride += mgr->ve->native_format_size[i];
663 k->nr_elements++;
664 }
665
666 /* Translate buffers. */
667 for (type = 0; type < VB_NUM; type++) {
668 if (key[type].nr_elements) {
669 enum pipe_error err;
670 err = u_vbuf_translate_buffers(mgr, &key[type], mask[type],
671 mgr->fallback_vbs[type],
672 start[type], num[type],
673 start_index, num_indices, min_index,
674 unroll_indices && type == VB_VERTEX);
675 if (err != PIPE_OK)
676 return FALSE;
677
678 /* Fixup the stride for constant attribs. */
679 if (type == VB_CONST) {
680 mgr->real_vertex_buffer[mgr->fallback_vbs[VB_CONST]].stride = 0;
681 }
682 }
683 }
684
685 /* Setup new vertex elements. */
686 for (i = 0; i < mgr->ve->count; i++) {
687 for (type = 0; type < VB_NUM; type++) {
688 if (elem_index[type][i] < key[type].nr_elements) {
689 struct translate_element *te = &key[type].element[elem_index[type][i]];
690 mgr->fallback_velems[i].instance_divisor = mgr->ve->ve[i].instance_divisor;
691 mgr->fallback_velems[i].src_format = te->output_format;
692 mgr->fallback_velems[i].src_offset = te->output_offset;
693 mgr->fallback_velems[i].vertex_buffer_index = mgr->fallback_vbs[type];
694
695 /* elem_index[type][i] can only be set for one type. */
696 assert(type > VB_INSTANCE || elem_index[type+1][i] == ~0);
697 assert(type > VB_VERTEX || elem_index[type+2][i] == ~0);
698 break;
699 }
700 }
701 /* No translating, just copy the original vertex element over. */
702 if (type == VB_NUM) {
703 memcpy(&mgr->fallback_velems[i], &mgr->ve->ve[i],
704 sizeof(struct pipe_vertex_element));
705 }
706 }
707
708 u_vbuf_set_vertex_elements_internal(mgr, mgr->ve->count,
709 mgr->fallback_velems);
710 mgr->using_translate = TRUE;
711 return TRUE;
712 }
713
714 static void u_vbuf_translate_end(struct u_vbuf *mgr)
715 {
716 unsigned i;
717
718 /* Restore vertex elements. */
719 mgr->pipe->bind_vertex_elements_state(mgr->pipe, mgr->ve->driver_cso);
720 mgr->using_translate = FALSE;
721
722 /* Unreference the now-unused VBOs. */
723 for (i = 0; i < VB_NUM; i++) {
724 unsigned vb = mgr->fallback_vbs[i];
725 if (vb != ~0) {
726 pipe_resource_reference(&mgr->real_vertex_buffer[vb].buffer, NULL);
727 mgr->fallback_vbs[i] = ~0;
728
729 /* This will cause the buffer to be unbound in the driver later. */
730 mgr->dirty_real_vb_mask |= 1 << vb;
731 }
732 }
733 }
734
735 static void *
736 u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
737 const struct pipe_vertex_element *attribs)
738 {
739 struct pipe_context *pipe = mgr->pipe;
740 unsigned i;
741 struct pipe_vertex_element driver_attribs[PIPE_MAX_ATTRIBS];
742 struct u_vbuf_elements *ve = CALLOC_STRUCT(u_vbuf_elements);
743 uint32_t used_buffers = 0;
744
745 ve->count = count;
746
747 memcpy(ve->ve, attribs, sizeof(struct pipe_vertex_element) * count);
748 memcpy(driver_attribs, attribs, sizeof(struct pipe_vertex_element) * count);
749
750 /* Set the best native format in case the original format is not
751 * supported. */
752 for (i = 0; i < count; i++) {
753 enum pipe_format format = ve->ve[i].src_format;
754
755 ve->src_format_size[i] = util_format_get_blocksize(format);
756
757 used_buffers |= 1 << ve->ve[i].vertex_buffer_index;
758
759 if (!ve->ve[i].instance_divisor) {
760 ve->noninstance_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
761 }
762
763 format = mgr->caps.format_translation[format];
764
765 driver_attribs[i].src_format = format;
766 ve->native_format[i] = format;
767 ve->native_format_size[i] =
768 util_format_get_blocksize(ve->native_format[i]);
769
770 if (ve->ve[i].src_format != format ||
771 (!mgr->caps.velem_src_offset_unaligned &&
772 ve->ve[i].src_offset % 4 != 0)) {
773 ve->incompatible_elem_mask |= 1 << i;
774 ve->incompatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
775 } else {
776 ve->compatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
777 }
778 }
779
780 ve->used_vb_mask = used_buffers;
781 ve->compatible_vb_mask_all = ~ve->incompatible_vb_mask_any & used_buffers;
782 ve->incompatible_vb_mask_all = ~ve->compatible_vb_mask_any & used_buffers;
783
784 /* Align the formats to the size of DWORD if needed. */
785 if (!mgr->caps.velem_src_offset_unaligned) {
786 for (i = 0; i < count; i++) {
787 ve->native_format_size[i] = align(ve->native_format_size[i], 4);
788 }
789 }
790
791 ve->driver_cso =
792 pipe->create_vertex_elements_state(pipe, count, driver_attribs);
793 return ve;
794 }
795
796 static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso)
797 {
798 struct pipe_context *pipe = mgr->pipe;
799 struct u_vbuf_elements *ve = cso;
800
801 pipe->delete_vertex_elements_state(pipe, ve->driver_cso);
802 FREE(ve);
803 }
804
805 void u_vbuf_set_vertex_buffers(struct u_vbuf *mgr,
806 unsigned start_slot, unsigned count,
807 const struct pipe_vertex_buffer *bufs)
808 {
809 unsigned i;
810 /* which buffers are enabled */
811 uint32_t enabled_vb_mask = 0;
812 /* which buffers are in user memory */
813 uint32_t user_vb_mask = 0;
814 /* which buffers are incompatible with the driver */
815 uint32_t incompatible_vb_mask = 0;
816 /* which buffers have a non-zero stride */
817 uint32_t nonzero_stride_vb_mask = 0;
818 uint32_t mask = ~(((1ull << count) - 1) << start_slot);
819
820 /* Zero out the bits we are going to rewrite completely. */
821 mgr->user_vb_mask &= mask;
822 mgr->incompatible_vb_mask &= mask;
823 mgr->nonzero_stride_vb_mask &= mask;
824 mgr->enabled_vb_mask &= mask;
825
826 if (!bufs) {
827 struct pipe_context *pipe = mgr->pipe;
828 /* Unbind. */
829 mgr->dirty_real_vb_mask &= mask;
830
831 for (i = 0; i < count; i++) {
832 unsigned dst_index = start_slot + i;
833
834 pipe_resource_reference(&mgr->vertex_buffer[dst_index].buffer, NULL);
835 pipe_resource_reference(&mgr->real_vertex_buffer[dst_index].buffer,
836 NULL);
837 }
838
839 pipe->set_vertex_buffers(pipe, start_slot, count, NULL);
840 return;
841 }
842
843 for (i = 0; i < count; i++) {
844 unsigned dst_index = start_slot + i;
845 const struct pipe_vertex_buffer *vb = &bufs[i];
846 struct pipe_vertex_buffer *orig_vb = &mgr->vertex_buffer[dst_index];
847 struct pipe_vertex_buffer *real_vb = &mgr->real_vertex_buffer[dst_index];
848
849 if (!vb->buffer && !vb->user_buffer) {
850 pipe_resource_reference(&orig_vb->buffer, NULL);
851 pipe_resource_reference(&real_vb->buffer, NULL);
852 real_vb->user_buffer = NULL;
853 continue;
854 }
855
856 pipe_resource_reference(&orig_vb->buffer, vb->buffer);
857 orig_vb->user_buffer = vb->user_buffer;
858
859 real_vb->buffer_offset = orig_vb->buffer_offset = vb->buffer_offset;
860 real_vb->stride = orig_vb->stride = vb->stride;
861
862 if (vb->stride) {
863 nonzero_stride_vb_mask |= 1 << dst_index;
864 }
865 enabled_vb_mask |= 1 << dst_index;
866
867 if ((!mgr->caps.buffer_offset_unaligned && vb->buffer_offset % 4 != 0) ||
868 (!mgr->caps.buffer_stride_unaligned && vb->stride % 4 != 0)) {
869 incompatible_vb_mask |= 1 << dst_index;
870 pipe_resource_reference(&real_vb->buffer, NULL);
871 continue;
872 }
873
874 if (!mgr->caps.user_vertex_buffers && vb->user_buffer) {
875 user_vb_mask |= 1 << dst_index;
876 pipe_resource_reference(&real_vb->buffer, NULL);
877 continue;
878 }
879
880 pipe_resource_reference(&real_vb->buffer, vb->buffer);
881 real_vb->user_buffer = vb->user_buffer;
882 }
883
884 mgr->user_vb_mask |= user_vb_mask;
885 mgr->incompatible_vb_mask |= incompatible_vb_mask;
886 mgr->nonzero_stride_vb_mask |= nonzero_stride_vb_mask;
887 mgr->enabled_vb_mask |= enabled_vb_mask;
888
889 /* All changed buffers are marked as dirty, even the NULL ones,
890 * which will cause the NULL buffers to be unbound in the driver later. */
891 mgr->dirty_real_vb_mask |= ~mask;
892 }
893
894 void u_vbuf_set_index_buffer(struct u_vbuf *mgr,
895 const struct pipe_index_buffer *ib)
896 {
897 struct pipe_context *pipe = mgr->pipe;
898
899 if (ib) {
900 assert(ib->offset % ib->index_size == 0);
901 pipe_resource_reference(&mgr->index_buffer.buffer, ib->buffer);
902 memcpy(&mgr->index_buffer, ib, sizeof(*ib));
903 } else {
904 pipe_resource_reference(&mgr->index_buffer.buffer, NULL);
905 }
906
907 pipe->set_index_buffer(pipe, ib);
908 }
909
910 static enum pipe_error
911 u_vbuf_upload_buffers(struct u_vbuf *mgr,
912 int start_vertex, unsigned num_vertices,
913 int start_instance, unsigned num_instances)
914 {
915 unsigned i;
916 unsigned nr_velems = mgr->ve->count;
917 struct pipe_vertex_element *velems =
918 mgr->using_translate ? mgr->fallback_velems : mgr->ve->ve;
919 unsigned start_offset[PIPE_MAX_ATTRIBS];
920 unsigned end_offset[PIPE_MAX_ATTRIBS];
921 uint32_t buffer_mask = 0;
922
923 /* Determine how much data needs to be uploaded. */
924 for (i = 0; i < nr_velems; i++) {
925 struct pipe_vertex_element *velem = &velems[i];
926 unsigned index = velem->vertex_buffer_index;
927 struct pipe_vertex_buffer *vb = &mgr->vertex_buffer[index];
928 unsigned instance_div, first, size, index_bit;
929
930 /* Skip the buffers generated by translate. */
931 if (index == mgr->fallback_vbs[VB_VERTEX] ||
932 index == mgr->fallback_vbs[VB_INSTANCE] ||
933 index == mgr->fallback_vbs[VB_CONST]) {
934 continue;
935 }
936
937 if (!vb->user_buffer) {
938 continue;
939 }
940
941 instance_div = velem->instance_divisor;
942 first = vb->buffer_offset + velem->src_offset;
943
944 if (!vb->stride) {
945 /* Constant attrib. */
946 size = mgr->ve->src_format_size[i];
947 } else if (instance_div) {
948 /* Per-instance attrib. */
949 unsigned count = (num_instances + instance_div - 1) / instance_div;
950 first += vb->stride * start_instance;
951 size = vb->stride * (count - 1) + mgr->ve->src_format_size[i];
952 } else {
953 /* Per-vertex attrib. */
954 first += vb->stride * start_vertex;
955 size = vb->stride * (num_vertices - 1) + mgr->ve->src_format_size[i];
956 }
957
958 index_bit = 1 << index;
959
960 /* Update offsets. */
961 if (!(buffer_mask & index_bit)) {
962 start_offset[index] = first;
963 end_offset[index] = first + size;
964 } else {
965 if (first < start_offset[index])
966 start_offset[index] = first;
967 if (first + size > end_offset[index])
968 end_offset[index] = first + size;
969 }
970
971 buffer_mask |= index_bit;
972 }
973
974 /* Upload buffers. */
975 while (buffer_mask) {
976 unsigned start, end;
977 struct pipe_vertex_buffer *real_vb;
978 const uint8_t *ptr;
979 enum pipe_error err;
980
981 i = u_bit_scan(&buffer_mask);
982
983 start = start_offset[i];
984 end = end_offset[i];
985 assert(start < end);
986
987 real_vb = &mgr->real_vertex_buffer[i];
988 ptr = mgr->vertex_buffer[i].user_buffer;
989
990 err = u_upload_data(mgr->uploader, start, end - start, ptr + start,
991 &real_vb->buffer_offset, &real_vb->buffer);
992 if (err != PIPE_OK)
993 return err;
994
995 real_vb->buffer_offset -= start;
996 }
997
998 return PIPE_OK;
999 }
1000
1001 static boolean u_vbuf_need_minmax_index(struct u_vbuf *mgr)
1002 {
1003 /* See if there are any per-vertex attribs which will be uploaded or
1004 * translated. Use bitmasks to get the info instead of looping over vertex
1005 * elements. */
1006 return (mgr->ve->used_vb_mask &
1007 ((mgr->user_vb_mask | mgr->incompatible_vb_mask |
1008 mgr->ve->incompatible_vb_mask_any) &
1009 mgr->ve->noninstance_vb_mask_any & mgr->nonzero_stride_vb_mask)) != 0;
1010 }
1011
1012 static boolean u_vbuf_mapping_vertex_buffer_blocks(struct u_vbuf *mgr)
1013 {
1014 /* Return true if there are hw buffers which don't need to be translated.
1015 *
1016 * We could query whether each buffer is busy, but that would
1017 * be way more costly than this. */
1018 return (mgr->ve->used_vb_mask &
1019 (~mgr->user_vb_mask & ~mgr->incompatible_vb_mask &
1020 mgr->ve->compatible_vb_mask_all & mgr->ve->noninstance_vb_mask_any &
1021 mgr->nonzero_stride_vb_mask)) != 0;
1022 }
1023
1024 static void u_vbuf_get_minmax_index(struct pipe_context *pipe,
1025 struct pipe_index_buffer *ib,
1026 boolean primitive_restart,
1027 unsigned restart_index,
1028 unsigned start, unsigned count,
1029 int *out_min_index,
1030 int *out_max_index)
1031 {
1032 struct pipe_transfer *transfer = NULL;
1033 const void *indices;
1034 unsigned i;
1035
1036 if (ib->user_buffer) {
1037 indices = (uint8_t*)ib->user_buffer +
1038 ib->offset + start * ib->index_size;
1039 } else {
1040 indices = pipe_buffer_map_range(pipe, ib->buffer,
1041 ib->offset + start * ib->index_size,
1042 count * ib->index_size,
1043 PIPE_TRANSFER_READ, &transfer);
1044 }
1045
1046 switch (ib->index_size) {
1047 case 4: {
1048 const unsigned *ui_indices = (const unsigned*)indices;
1049 unsigned max_ui = 0;
1050 unsigned min_ui = ~0U;
1051 if (primitive_restart) {
1052 for (i = 0; i < count; i++) {
1053 if (ui_indices[i] != restart_index) {
1054 if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
1055 if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
1056 }
1057 }
1058 }
1059 else {
1060 for (i = 0; i < count; i++) {
1061 if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
1062 if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
1063 }
1064 }
1065 *out_min_index = min_ui;
1066 *out_max_index = max_ui;
1067 break;
1068 }
1069 case 2: {
1070 const unsigned short *us_indices = (const unsigned short*)indices;
1071 unsigned max_us = 0;
1072 unsigned min_us = ~0U;
1073 if (primitive_restart) {
1074 for (i = 0; i < count; i++) {
1075 if (us_indices[i] != restart_index) {
1076 if (us_indices[i] > max_us) max_us = us_indices[i];
1077 if (us_indices[i] < min_us) min_us = us_indices[i];
1078 }
1079 }
1080 }
1081 else {
1082 for (i = 0; i < count; i++) {
1083 if (us_indices[i] > max_us) max_us = us_indices[i];
1084 if (us_indices[i] < min_us) min_us = us_indices[i];
1085 }
1086 }
1087 *out_min_index = min_us;
1088 *out_max_index = max_us;
1089 break;
1090 }
1091 case 1: {
1092 const unsigned char *ub_indices = (const unsigned char*)indices;
1093 unsigned max_ub = 0;
1094 unsigned min_ub = ~0U;
1095 if (primitive_restart) {
1096 for (i = 0; i < count; i++) {
1097 if (ub_indices[i] != restart_index) {
1098 if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
1099 if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
1100 }
1101 }
1102 }
1103 else {
1104 for (i = 0; i < count; i++) {
1105 if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
1106 if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
1107 }
1108 }
1109 *out_min_index = min_ub;
1110 *out_max_index = max_ub;
1111 break;
1112 }
1113 default:
1114 assert(0);
1115 *out_min_index = 0;
1116 *out_max_index = 0;
1117 }
1118
1119 if (transfer) {
1120 pipe_buffer_unmap(pipe, transfer);
1121 }
1122 }
1123
1124 static void u_vbuf_set_driver_vertex_buffers(struct u_vbuf *mgr)
1125 {
1126 struct pipe_context *pipe = mgr->pipe;
1127 unsigned start_slot, count;
1128
1129 start_slot = ffs(mgr->dirty_real_vb_mask) - 1;
1130 count = util_last_bit(mgr->dirty_real_vb_mask >> start_slot);
1131
1132 pipe->set_vertex_buffers(pipe, start_slot, count,
1133 mgr->real_vertex_buffer + start_slot);
1134 mgr->dirty_real_vb_mask = 0;
1135 }
1136
1137 void u_vbuf_draw_vbo(struct u_vbuf *mgr, const struct pipe_draw_info *info)
1138 {
1139 struct pipe_context *pipe = mgr->pipe;
1140 int start_vertex, min_index;
1141 unsigned num_vertices;
1142 boolean unroll_indices = FALSE;
1143 uint32_t used_vb_mask = mgr->ve->used_vb_mask;
1144 uint32_t user_vb_mask = mgr->user_vb_mask & used_vb_mask;
1145 uint32_t incompatible_vb_mask = mgr->incompatible_vb_mask & used_vb_mask;
1146 struct pipe_draw_info new_info;
1147
1148 /* Normal draw. No fallback and no user buffers. */
1149 if (!incompatible_vb_mask &&
1150 !mgr->ve->incompatible_elem_mask &&
1151 !user_vb_mask) {
1152
1153 /* Set vertex buffers if needed. */
1154 if (mgr->dirty_real_vb_mask & used_vb_mask) {
1155 u_vbuf_set_driver_vertex_buffers(mgr);
1156 }
1157
1158 pipe->draw_vbo(pipe, info);
1159 return;
1160 }
1161
1162 new_info = *info;
1163
1164 /* Fallback. We need to know all the parameters. */
1165 if (new_info.indirect) {
1166 struct pipe_transfer *transfer = NULL;
1167 int *data;
1168
1169 if (new_info.indexed) {
1170 data = pipe_buffer_map_range(pipe, new_info.indirect,
1171 new_info.indirect_offset, 20,
1172 PIPE_TRANSFER_READ, &transfer);
1173 new_info.index_bias = data[3];
1174 new_info.start_instance = data[4];
1175 }
1176 else {
1177 data = pipe_buffer_map_range(pipe, new_info.indirect,
1178 new_info.indirect_offset, 16,
1179 PIPE_TRANSFER_READ, &transfer);
1180 new_info.start_instance = data[3];
1181 }
1182
1183 new_info.count = data[0];
1184 new_info.instance_count = data[1];
1185 new_info.start = data[2];
1186 pipe_buffer_unmap(pipe, transfer);
1187 new_info.indirect = NULL;
1188 }
1189
1190 if (new_info.indexed) {
1191 /* See if anything needs to be done for per-vertex attribs. */
1192 if (u_vbuf_need_minmax_index(mgr)) {
1193 int max_index;
1194
1195 if (new_info.max_index != ~0) {
1196 min_index = new_info.min_index;
1197 max_index = new_info.max_index;
1198 } else {
1199 u_vbuf_get_minmax_index(mgr->pipe, &mgr->index_buffer,
1200 new_info.primitive_restart,
1201 new_info.restart_index, new_info.start,
1202 new_info.count, &min_index, &max_index);
1203 }
1204
1205 assert(min_index <= max_index);
1206
1207 start_vertex = min_index + new_info.index_bias;
1208 num_vertices = max_index + 1 - min_index;
1209
1210 /* Primitive restart doesn't work when unrolling indices.
1211 * We would have to break this drawing operation into several ones. */
1212 /* Use some heuristic to see if unrolling indices improves
1213 * performance. */
1214 if (!new_info.primitive_restart &&
1215 num_vertices > new_info.count*2 &&
1216 num_vertices - new_info.count > 32 &&
1217 !u_vbuf_mapping_vertex_buffer_blocks(mgr)) {
1218 unroll_indices = TRUE;
1219 user_vb_mask &= ~(mgr->nonzero_stride_vb_mask &
1220 mgr->ve->noninstance_vb_mask_any);
1221 }
1222 } else {
1223 /* Nothing to do for per-vertex attribs. */
1224 start_vertex = 0;
1225 num_vertices = 0;
1226 min_index = 0;
1227 }
1228 } else {
1229 start_vertex = new_info.start;
1230 num_vertices = new_info.count;
1231 min_index = 0;
1232 }
1233
1234 /* Translate vertices with non-native layouts or formats. */
1235 if (unroll_indices ||
1236 incompatible_vb_mask ||
1237 mgr->ve->incompatible_elem_mask) {
1238 if (!u_vbuf_translate_begin(mgr, start_vertex, num_vertices,
1239 new_info.start_instance,
1240 new_info.instance_count, new_info.start,
1241 new_info.count, min_index, unroll_indices)) {
1242 debug_warn_once("u_vbuf_translate_begin() failed");
1243 return;
1244 }
1245
1246 if (unroll_indices) {
1247 new_info.indexed = FALSE;
1248 new_info.index_bias = 0;
1249 new_info.min_index = 0;
1250 new_info.max_index = new_info.count - 1;
1251 new_info.start = 0;
1252 }
1253
1254 user_vb_mask &= ~(incompatible_vb_mask |
1255 mgr->ve->incompatible_vb_mask_all);
1256 }
1257
1258 /* Upload user buffers. */
1259 if (user_vb_mask) {
1260 if (u_vbuf_upload_buffers(mgr, start_vertex, num_vertices,
1261 new_info.start_instance,
1262 new_info.instance_count) != PIPE_OK) {
1263 debug_warn_once("u_vbuf_upload_buffers() failed");
1264 return;
1265 }
1266
1267 mgr->dirty_real_vb_mask |= user_vb_mask;
1268 }
1269
1270 /*
1271 if (unroll_indices) {
1272 printf("unrolling indices: start_vertex = %i, num_vertices = %i\n",
1273 start_vertex, num_vertices);
1274 util_dump_draw_info(stdout, info);
1275 printf("\n");
1276 }
1277
1278 unsigned i;
1279 for (i = 0; i < mgr->nr_vertex_buffers; i++) {
1280 printf("input %i: ", i);
1281 util_dump_vertex_buffer(stdout, mgr->vertex_buffer+i);
1282 printf("\n");
1283 }
1284 for (i = 0; i < mgr->nr_real_vertex_buffers; i++) {
1285 printf("real %i: ", i);
1286 util_dump_vertex_buffer(stdout, mgr->real_vertex_buffer+i);
1287 printf("\n");
1288 }
1289 */
1290
1291 u_upload_unmap(mgr->uploader);
1292 u_vbuf_set_driver_vertex_buffers(mgr);
1293
1294 pipe->draw_vbo(pipe, &new_info);
1295
1296 if (mgr->using_translate) {
1297 u_vbuf_translate_end(mgr);
1298 }
1299 }
1300
1301 void u_vbuf_save_vertex_elements(struct u_vbuf *mgr)
1302 {
1303 assert(!mgr->ve_saved);
1304 mgr->ve_saved = mgr->ve;
1305 }
1306
1307 void u_vbuf_restore_vertex_elements(struct u_vbuf *mgr)
1308 {
1309 if (mgr->ve != mgr->ve_saved) {
1310 struct pipe_context *pipe = mgr->pipe;
1311
1312 mgr->ve = mgr->ve_saved;
1313 pipe->bind_vertex_elements_state(pipe,
1314 mgr->ve ? mgr->ve->driver_cso : NULL);
1315 }
1316 mgr->ve_saved = NULL;
1317 }
1318
1319 void u_vbuf_save_aux_vertex_buffer_slot(struct u_vbuf *mgr)
1320 {
1321 struct pipe_vertex_buffer *vb =
1322 &mgr->vertex_buffer[mgr->aux_vertex_buffer_slot];
1323
1324 pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, vb->buffer);
1325 memcpy(&mgr->aux_vertex_buffer_saved, vb, sizeof(*vb));
1326 }
1327
1328 void u_vbuf_restore_aux_vertex_buffer_slot(struct u_vbuf *mgr)
1329 {
1330 u_vbuf_set_vertex_buffers(mgr, mgr->aux_vertex_buffer_slot, 1,
1331 &mgr->aux_vertex_buffer_saved);
1332 pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, NULL);
1333 }