u_upload_mgr: pass alignment to u_upload_alloc manually
[mesa.git] / src / gallium / auxiliary / util / u_vbuf.c
1 /**************************************************************************
2 *
3 * Copyright 2011 Marek Olšák <maraeo@gmail.com>
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * This module uploads user buffers and translates the vertex buffers which
30 * contain incompatible vertices (i.e. not supported by the driver/hardware)
31 * into compatible ones, based on the Gallium CAPs.
32 *
33 * It does not upload index buffers.
34 *
35 * The module heavily uses bitmasks to represent per-buffer and
36 * per-vertex-element flags to avoid looping over the list of buffers just
37 * to see if there's a non-zero stride, or user buffer, or unsupported format,
38 * etc.
39 *
40 * There are 3 categories of vertex elements, which are processed separately:
41 * - per-vertex attribs (stride != 0, instance_divisor == 0)
42 * - instanced attribs (stride != 0, instance_divisor > 0)
43 * - constant attribs (stride == 0)
44 *
45 * All needed uploads and translations are performed every draw command, but
46 * only the subset of vertices needed for that draw command is uploaded or
47 * translated. (the module never translates whole buffers)
48 *
49 *
50 * The module consists of two main parts:
51 *
52 *
53 * 1) Translate (u_vbuf_translate_begin/end)
54 *
55 * This is pretty much a vertex fetch fallback. It translates vertices from
56 * one vertex buffer to another in an unused vertex buffer slot. It does
57 * whatever is needed to make the vertices readable by the hardware (changes
58 * vertex formats and aligns offsets and strides). The translate module is
59 * used here.
60 *
61 * Each of the 3 categories is translated to a separate buffer.
62 * Only the [min_index, max_index] range is translated. For instanced attribs,
63 * the range is [start_instance, start_instance+instance_count]. For constant
64 * attribs, the range is [0, 1].
65 *
66 *
67 * 2) User buffer uploading (u_vbuf_upload_buffers)
68 *
69 * Only the [min_index, max_index] range is uploaded (just like Translate)
70 * with a single memcpy.
71 *
72 * This method works best for non-indexed draw operations or indexed draw
73 * operations where the [min_index, max_index] range is not being way bigger
74 * than the vertex count.
75 *
76 * If the range is too big (e.g. one triangle with indices {0, 1, 10000}),
77 * the per-vertex attribs are uploaded via the translate module, all packed
78 * into one vertex buffer, and the indexed draw call is turned into
79 * a non-indexed one in the process. This adds additional complexity
80 * to the translate part, but it prevents bad apps from bringing your frame
81 * rate down.
82 *
83 *
84 * If there is nothing to do, it forwards every command to the driver.
85 * The module also has its own CSO cache of vertex element states.
86 */
87
88 #include "util/u_vbuf.h"
89
90 #include "util/u_dump.h"
91 #include "util/u_format.h"
92 #include "util/u_inlines.h"
93 #include "util/u_memory.h"
94 #include "util/u_upload_mgr.h"
95 #include "translate/translate.h"
96 #include "translate/translate_cache.h"
97 #include "cso_cache/cso_cache.h"
98 #include "cso_cache/cso_hash.h"
99
100 struct u_vbuf_elements {
101 unsigned count;
102 struct pipe_vertex_element ve[PIPE_MAX_ATTRIBS];
103
104 unsigned src_format_size[PIPE_MAX_ATTRIBS];
105
106 /* If (velem[i].src_format != native_format[i]), the vertex buffer
107 * referenced by the vertex element cannot be used for rendering and
108 * its vertex data must be translated to native_format[i]. */
109 enum pipe_format native_format[PIPE_MAX_ATTRIBS];
110 unsigned native_format_size[PIPE_MAX_ATTRIBS];
111
112 /* Which buffers are used by the vertex element state. */
113 uint32_t used_vb_mask;
114 /* This might mean two things:
115 * - src_format != native_format, as discussed above.
116 * - src_offset % 4 != 0 (if the caps don't allow such an offset). */
117 uint32_t incompatible_elem_mask; /* each bit describes a corresp. attrib */
118 /* Which buffer has at least one vertex element referencing it
119 * incompatible. */
120 uint32_t incompatible_vb_mask_any;
121 /* Which buffer has all vertex elements referencing it incompatible. */
122 uint32_t incompatible_vb_mask_all;
123 /* Which buffer has at least one vertex element referencing it
124 * compatible. */
125 uint32_t compatible_vb_mask_any;
126 /* Which buffer has all vertex elements referencing it compatible. */
127 uint32_t compatible_vb_mask_all;
128
129 /* Which buffer has at least one vertex element referencing it
130 * non-instanced. */
131 uint32_t noninstance_vb_mask_any;
132
133 void *driver_cso;
134 };
135
136 enum {
137 VB_VERTEX = 0,
138 VB_INSTANCE = 1,
139 VB_CONST = 2,
140 VB_NUM = 3
141 };
142
143 struct u_vbuf {
144 struct u_vbuf_caps caps;
145
146 struct pipe_context *pipe;
147 struct translate_cache *translate_cache;
148 struct cso_cache *cso_cache;
149 struct u_upload_mgr *uploader;
150
151 /* This is what was set in set_vertex_buffers.
152 * May contain user buffers. */
153 struct pipe_vertex_buffer vertex_buffer[PIPE_MAX_ATTRIBS];
154 uint32_t enabled_vb_mask;
155
156 /* Saved vertex buffer. */
157 unsigned aux_vertex_buffer_slot;
158 struct pipe_vertex_buffer aux_vertex_buffer_saved;
159
160 /* Vertex buffers for the driver.
161 * There are usually no user buffers. */
162 struct pipe_vertex_buffer real_vertex_buffer[PIPE_MAX_ATTRIBS];
163 uint32_t dirty_real_vb_mask; /* which buffers are dirty since the last
164 call of set_vertex_buffers */
165
166 /* The index buffer. */
167 struct pipe_index_buffer index_buffer;
168
169 /* Vertex elements. */
170 struct u_vbuf_elements *ve, *ve_saved;
171
172 /* Vertex elements used for the translate fallback. */
173 struct pipe_vertex_element fallback_velems[PIPE_MAX_ATTRIBS];
174 /* If non-NULL, this is a vertex element state used for the translate
175 * fallback and therefore used for rendering too. */
176 boolean using_translate;
177 /* The vertex buffer slot index where translated vertices have been
178 * stored in. */
179 unsigned fallback_vbs[VB_NUM];
180
181 /* Which buffer is a user buffer. */
182 uint32_t user_vb_mask; /* each bit describes a corresp. buffer */
183 /* Which buffer is incompatible (unaligned). */
184 uint32_t incompatible_vb_mask; /* each bit describes a corresp. buffer */
185 /* Which buffer has a non-zero stride. */
186 uint32_t nonzero_stride_vb_mask; /* each bit describes a corresp. buffer */
187 };
188
189 static void *
190 u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
191 const struct pipe_vertex_element *attribs);
192 static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso);
193
194 static const struct {
195 enum pipe_format from, to;
196 } vbuf_format_fallbacks[] = {
197 { PIPE_FORMAT_R32_FIXED, PIPE_FORMAT_R32_FLOAT },
198 { PIPE_FORMAT_R32G32_FIXED, PIPE_FORMAT_R32G32_FLOAT },
199 { PIPE_FORMAT_R32G32B32_FIXED, PIPE_FORMAT_R32G32B32_FLOAT },
200 { PIPE_FORMAT_R32G32B32A32_FIXED, PIPE_FORMAT_R32G32B32A32_FLOAT },
201 { PIPE_FORMAT_R16_FLOAT, PIPE_FORMAT_R32_FLOAT },
202 { PIPE_FORMAT_R16G16_FLOAT, PIPE_FORMAT_R32G32_FLOAT },
203 { PIPE_FORMAT_R16G16B16_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT },
204 { PIPE_FORMAT_R16G16B16A16_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT },
205 { PIPE_FORMAT_R64_FLOAT, PIPE_FORMAT_R32_FLOAT },
206 { PIPE_FORMAT_R64G64_FLOAT, PIPE_FORMAT_R32G32_FLOAT },
207 { PIPE_FORMAT_R64G64B64_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT },
208 { PIPE_FORMAT_R64G64B64A64_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT },
209 { PIPE_FORMAT_R32_UNORM, PIPE_FORMAT_R32_FLOAT },
210 { PIPE_FORMAT_R32G32_UNORM, PIPE_FORMAT_R32G32_FLOAT },
211 { PIPE_FORMAT_R32G32B32_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
212 { PIPE_FORMAT_R32G32B32A32_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
213 { PIPE_FORMAT_R32_SNORM, PIPE_FORMAT_R32_FLOAT },
214 { PIPE_FORMAT_R32G32_SNORM, PIPE_FORMAT_R32G32_FLOAT },
215 { PIPE_FORMAT_R32G32B32_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
216 { PIPE_FORMAT_R32G32B32A32_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
217 { PIPE_FORMAT_R32_USCALED, PIPE_FORMAT_R32_FLOAT },
218 { PIPE_FORMAT_R32G32_USCALED, PIPE_FORMAT_R32G32_FLOAT },
219 { PIPE_FORMAT_R32G32B32_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
220 { PIPE_FORMAT_R32G32B32A32_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
221 { PIPE_FORMAT_R32_SSCALED, PIPE_FORMAT_R32_FLOAT },
222 { PIPE_FORMAT_R32G32_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
223 { PIPE_FORMAT_R32G32B32_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
224 { PIPE_FORMAT_R32G32B32A32_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
225 { PIPE_FORMAT_R16_UNORM, PIPE_FORMAT_R32_FLOAT },
226 { PIPE_FORMAT_R16G16_UNORM, PIPE_FORMAT_R32G32_FLOAT },
227 { PIPE_FORMAT_R16G16B16_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
228 { PIPE_FORMAT_R16G16B16A16_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
229 { PIPE_FORMAT_R16_SNORM, PIPE_FORMAT_R32_FLOAT },
230 { PIPE_FORMAT_R16G16_SNORM, PIPE_FORMAT_R32G32_FLOAT },
231 { PIPE_FORMAT_R16G16B16_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
232 { PIPE_FORMAT_R16G16B16A16_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
233 { PIPE_FORMAT_R16_USCALED, PIPE_FORMAT_R32_FLOAT },
234 { PIPE_FORMAT_R16G16_USCALED, PIPE_FORMAT_R32G32_FLOAT },
235 { PIPE_FORMAT_R16G16B16_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
236 { PIPE_FORMAT_R16G16B16A16_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
237 { PIPE_FORMAT_R16_SSCALED, PIPE_FORMAT_R32_FLOAT },
238 { PIPE_FORMAT_R16G16_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
239 { PIPE_FORMAT_R16G16B16_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
240 { PIPE_FORMAT_R16G16B16A16_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
241 { PIPE_FORMAT_R8_UNORM, PIPE_FORMAT_R32_FLOAT },
242 { PIPE_FORMAT_R8G8_UNORM, PIPE_FORMAT_R32G32_FLOAT },
243 { PIPE_FORMAT_R8G8B8_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
244 { PIPE_FORMAT_R8G8B8A8_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
245 { PIPE_FORMAT_R8_SNORM, PIPE_FORMAT_R32_FLOAT },
246 { PIPE_FORMAT_R8G8_SNORM, PIPE_FORMAT_R32G32_FLOAT },
247 { PIPE_FORMAT_R8G8B8_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
248 { PIPE_FORMAT_R8G8B8A8_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
249 { PIPE_FORMAT_R8_USCALED, PIPE_FORMAT_R32_FLOAT },
250 { PIPE_FORMAT_R8G8_USCALED, PIPE_FORMAT_R32G32_FLOAT },
251 { PIPE_FORMAT_R8G8B8_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
252 { PIPE_FORMAT_R8G8B8A8_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
253 { PIPE_FORMAT_R8_SSCALED, PIPE_FORMAT_R32_FLOAT },
254 { PIPE_FORMAT_R8G8_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
255 { PIPE_FORMAT_R8G8B8_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
256 { PIPE_FORMAT_R8G8B8A8_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
257 };
258
259 boolean u_vbuf_get_caps(struct pipe_screen *screen, struct u_vbuf_caps *caps)
260 {
261 unsigned i;
262 boolean fallback = FALSE;
263
264 /* I'd rather have a bitfield of which formats are supported and a static
265 * table of the translations indexed by format, but since we don't have C99
266 * we can't easily make a sparsely-populated table indexed by format. So,
267 * we construct the sparse table here.
268 */
269 for (i = 0; i < PIPE_FORMAT_COUNT; i++)
270 caps->format_translation[i] = i;
271
272 for (i = 0; i < Elements(vbuf_format_fallbacks); i++) {
273 enum pipe_format format = vbuf_format_fallbacks[i].from;
274
275 if (!screen->is_format_supported(screen, format, PIPE_BUFFER, 0,
276 PIPE_BIND_VERTEX_BUFFER)) {
277 caps->format_translation[format] = vbuf_format_fallbacks[i].to;
278 fallback = TRUE;
279 }
280 }
281
282 caps->buffer_offset_unaligned =
283 !screen->get_param(screen,
284 PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY);
285 caps->buffer_stride_unaligned =
286 !screen->get_param(screen,
287 PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY);
288 caps->velem_src_offset_unaligned =
289 !screen->get_param(screen,
290 PIPE_CAP_VERTEX_ELEMENT_SRC_OFFSET_4BYTE_ALIGNED_ONLY);
291 caps->user_vertex_buffers =
292 screen->get_param(screen, PIPE_CAP_USER_VERTEX_BUFFERS);
293
294 if (!caps->buffer_offset_unaligned ||
295 !caps->buffer_stride_unaligned ||
296 !caps->velem_src_offset_unaligned ||
297 !caps->user_vertex_buffers) {
298 fallback = TRUE;
299 }
300
301 return fallback;
302 }
303
304 struct u_vbuf *
305 u_vbuf_create(struct pipe_context *pipe,
306 struct u_vbuf_caps *caps, unsigned aux_vertex_buffer_index)
307 {
308 struct u_vbuf *mgr = CALLOC_STRUCT(u_vbuf);
309
310 mgr->caps = *caps;
311 mgr->aux_vertex_buffer_slot = aux_vertex_buffer_index;
312 mgr->pipe = pipe;
313 mgr->cso_cache = cso_cache_create();
314 mgr->translate_cache = translate_cache_create();
315 memset(mgr->fallback_vbs, ~0, sizeof(mgr->fallback_vbs));
316
317 mgr->uploader = u_upload_create(pipe, 1024 * 1024, 4,
318 PIPE_BIND_VERTEX_BUFFER);
319
320 return mgr;
321 }
322
323 /* u_vbuf uses its own caching for vertex elements, because it needs to keep
324 * its own preprocessed state per vertex element CSO. */
325 static struct u_vbuf_elements *
326 u_vbuf_set_vertex_elements_internal(struct u_vbuf *mgr, unsigned count,
327 const struct pipe_vertex_element *states)
328 {
329 struct pipe_context *pipe = mgr->pipe;
330 unsigned key_size, hash_key;
331 struct cso_hash_iter iter;
332 struct u_vbuf_elements *ve;
333 struct cso_velems_state velems_state;
334
335 /* need to include the count into the stored state data too. */
336 key_size = sizeof(struct pipe_vertex_element) * count + sizeof(unsigned);
337 velems_state.count = count;
338 memcpy(velems_state.velems, states,
339 sizeof(struct pipe_vertex_element) * count);
340 hash_key = cso_construct_key((void*)&velems_state, key_size);
341 iter = cso_find_state_template(mgr->cso_cache, hash_key, CSO_VELEMENTS,
342 (void*)&velems_state, key_size);
343
344 if (cso_hash_iter_is_null(iter)) {
345 struct cso_velements *cso = MALLOC_STRUCT(cso_velements);
346 memcpy(&cso->state, &velems_state, key_size);
347 cso->data = u_vbuf_create_vertex_elements(mgr, count, states);
348 cso->delete_state = (cso_state_callback)u_vbuf_delete_vertex_elements;
349 cso->context = (void*)mgr;
350
351 iter = cso_insert_state(mgr->cso_cache, hash_key, CSO_VELEMENTS, cso);
352 ve = cso->data;
353 } else {
354 ve = ((struct cso_velements *)cso_hash_iter_data(iter))->data;
355 }
356
357 assert(ve);
358
359 if (ve != mgr->ve)
360 pipe->bind_vertex_elements_state(pipe, ve->driver_cso);
361
362 return ve;
363 }
364
365 void u_vbuf_set_vertex_elements(struct u_vbuf *mgr, unsigned count,
366 const struct pipe_vertex_element *states)
367 {
368 mgr->ve = u_vbuf_set_vertex_elements_internal(mgr, count, states);
369 }
370
371 void u_vbuf_destroy(struct u_vbuf *mgr)
372 {
373 struct pipe_screen *screen = mgr->pipe->screen;
374 unsigned i;
375 unsigned num_vb = screen->get_shader_param(screen, PIPE_SHADER_VERTEX,
376 PIPE_SHADER_CAP_MAX_INPUTS);
377
378 mgr->pipe->set_index_buffer(mgr->pipe, NULL);
379 pipe_resource_reference(&mgr->index_buffer.buffer, NULL);
380
381 mgr->pipe->set_vertex_buffers(mgr->pipe, 0, num_vb, NULL);
382
383 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
384 pipe_resource_reference(&mgr->vertex_buffer[i].buffer, NULL);
385 }
386 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
387 pipe_resource_reference(&mgr->real_vertex_buffer[i].buffer, NULL);
388 }
389 pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, NULL);
390
391 translate_cache_destroy(mgr->translate_cache);
392 u_upload_destroy(mgr->uploader);
393 cso_cache_delete(mgr->cso_cache);
394 FREE(mgr);
395 }
396
397 static enum pipe_error
398 u_vbuf_translate_buffers(struct u_vbuf *mgr, struct translate_key *key,
399 unsigned vb_mask, unsigned out_vb,
400 int start_vertex, unsigned num_vertices,
401 int start_index, unsigned num_indices, int min_index,
402 boolean unroll_indices)
403 {
404 struct translate *tr;
405 struct pipe_transfer *vb_transfer[PIPE_MAX_ATTRIBS] = {0};
406 struct pipe_resource *out_buffer = NULL;
407 uint8_t *out_map;
408 unsigned out_offset, mask;
409
410 /* Get a translate object. */
411 tr = translate_cache_find(mgr->translate_cache, key);
412
413 /* Map buffers we want to translate. */
414 mask = vb_mask;
415 while (mask) {
416 struct pipe_vertex_buffer *vb;
417 unsigned offset;
418 uint8_t *map;
419 unsigned i = u_bit_scan(&mask);
420
421 vb = &mgr->vertex_buffer[i];
422 offset = vb->buffer_offset + vb->stride * start_vertex;
423
424 if (vb->user_buffer) {
425 map = (uint8_t*)vb->user_buffer + offset;
426 } else {
427 unsigned size = vb->stride ? num_vertices * vb->stride
428 : sizeof(double)*4;
429
430 if (offset+size > vb->buffer->width0) {
431 size = vb->buffer->width0 - offset;
432 }
433
434 map = pipe_buffer_map_range(mgr->pipe, vb->buffer, offset, size,
435 PIPE_TRANSFER_READ, &vb_transfer[i]);
436 }
437
438 /* Subtract min_index so that indexing with the index buffer works. */
439 if (unroll_indices) {
440 map -= (ptrdiff_t)vb->stride * min_index;
441 }
442
443 tr->set_buffer(tr, i, map, vb->stride, ~0);
444 }
445
446 /* Translate. */
447 if (unroll_indices) {
448 struct pipe_index_buffer *ib = &mgr->index_buffer;
449 struct pipe_transfer *transfer = NULL;
450 unsigned offset = ib->offset + start_index * ib->index_size;
451 uint8_t *map;
452
453 assert((ib->buffer || ib->user_buffer) && ib->index_size);
454
455 /* Create and map the output buffer. */
456 u_upload_alloc(mgr->uploader, 0,
457 key->output_stride * num_indices, 4,
458 &out_offset, &out_buffer,
459 (void**)&out_map);
460 if (!out_buffer)
461 return PIPE_ERROR_OUT_OF_MEMORY;
462
463 if (ib->user_buffer) {
464 map = (uint8_t*)ib->user_buffer + offset;
465 } else {
466 map = pipe_buffer_map_range(mgr->pipe, ib->buffer, offset,
467 num_indices * ib->index_size,
468 PIPE_TRANSFER_READ, &transfer);
469 }
470
471 switch (ib->index_size) {
472 case 4:
473 tr->run_elts(tr, (unsigned*)map, num_indices, 0, 0, out_map);
474 break;
475 case 2:
476 tr->run_elts16(tr, (uint16_t*)map, num_indices, 0, 0, out_map);
477 break;
478 case 1:
479 tr->run_elts8(tr, map, num_indices, 0, 0, out_map);
480 break;
481 }
482
483 if (transfer) {
484 pipe_buffer_unmap(mgr->pipe, transfer);
485 }
486 } else {
487 /* Create and map the output buffer. */
488 u_upload_alloc(mgr->uploader,
489 key->output_stride * start_vertex,
490 key->output_stride * num_vertices, 4,
491 &out_offset, &out_buffer,
492 (void**)&out_map);
493 if (!out_buffer)
494 return PIPE_ERROR_OUT_OF_MEMORY;
495
496 out_offset -= key->output_stride * start_vertex;
497
498 tr->run(tr, 0, num_vertices, 0, 0, out_map);
499 }
500
501 /* Unmap all buffers. */
502 mask = vb_mask;
503 while (mask) {
504 unsigned i = u_bit_scan(&mask);
505
506 if (vb_transfer[i]) {
507 pipe_buffer_unmap(mgr->pipe, vb_transfer[i]);
508 }
509 }
510
511 /* Setup the new vertex buffer. */
512 mgr->real_vertex_buffer[out_vb].buffer_offset = out_offset;
513 mgr->real_vertex_buffer[out_vb].stride = key->output_stride;
514
515 /* Move the buffer reference. */
516 pipe_resource_reference(
517 &mgr->real_vertex_buffer[out_vb].buffer, NULL);
518 mgr->real_vertex_buffer[out_vb].buffer = out_buffer;
519
520 return PIPE_OK;
521 }
522
523 static boolean
524 u_vbuf_translate_find_free_vb_slots(struct u_vbuf *mgr,
525 unsigned mask[VB_NUM])
526 {
527 unsigned type;
528 unsigned fallback_vbs[VB_NUM];
529 /* Set the bit for each buffer which is incompatible, or isn't set. */
530 uint32_t unused_vb_mask =
531 mgr->ve->incompatible_vb_mask_all | mgr->incompatible_vb_mask |
532 ~mgr->enabled_vb_mask;
533
534 memset(fallback_vbs, ~0, sizeof(fallback_vbs));
535
536 /* Find free slots for each type if needed. */
537 for (type = 0; type < VB_NUM; type++) {
538 if (mask[type]) {
539 uint32_t index;
540
541 if (!unused_vb_mask) {
542 return FALSE;
543 }
544
545 index = ffs(unused_vb_mask) - 1;
546 fallback_vbs[type] = index;
547 unused_vb_mask &= ~(1 << index);
548 /*printf("found slot=%i for type=%i\n", index, type);*/
549 }
550 }
551
552 for (type = 0; type < VB_NUM; type++) {
553 if (mask[type]) {
554 mgr->dirty_real_vb_mask |= 1 << fallback_vbs[type];
555 }
556 }
557
558 memcpy(mgr->fallback_vbs, fallback_vbs, sizeof(fallback_vbs));
559 return TRUE;
560 }
561
562 static boolean
563 u_vbuf_translate_begin(struct u_vbuf *mgr,
564 int start_vertex, unsigned num_vertices,
565 int start_instance, unsigned num_instances,
566 int start_index, unsigned num_indices, int min_index,
567 boolean unroll_indices)
568 {
569 unsigned mask[VB_NUM] = {0};
570 struct translate_key key[VB_NUM];
571 unsigned elem_index[VB_NUM][PIPE_MAX_ATTRIBS]; /* ... into key.elements */
572 unsigned i, type;
573 unsigned incompatible_vb_mask = mgr->incompatible_vb_mask &
574 mgr->ve->used_vb_mask;
575
576 int start[VB_NUM] = {
577 start_vertex, /* VERTEX */
578 start_instance, /* INSTANCE */
579 0 /* CONST */
580 };
581
582 unsigned num[VB_NUM] = {
583 num_vertices, /* VERTEX */
584 num_instances, /* INSTANCE */
585 1 /* CONST */
586 };
587
588 memset(key, 0, sizeof(key));
589 memset(elem_index, ~0, sizeof(elem_index));
590
591 /* See if there are vertex attribs of each type to translate and
592 * which ones. */
593 for (i = 0; i < mgr->ve->count; i++) {
594 unsigned vb_index = mgr->ve->ve[i].vertex_buffer_index;
595
596 if (!mgr->vertex_buffer[vb_index].stride) {
597 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
598 !(incompatible_vb_mask & (1 << vb_index))) {
599 continue;
600 }
601 mask[VB_CONST] |= 1 << vb_index;
602 } else if (mgr->ve->ve[i].instance_divisor) {
603 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
604 !(incompatible_vb_mask & (1 << vb_index))) {
605 continue;
606 }
607 mask[VB_INSTANCE] |= 1 << vb_index;
608 } else {
609 if (!unroll_indices &&
610 !(mgr->ve->incompatible_elem_mask & (1 << i)) &&
611 !(incompatible_vb_mask & (1 << vb_index))) {
612 continue;
613 }
614 mask[VB_VERTEX] |= 1 << vb_index;
615 }
616 }
617
618 assert(mask[VB_VERTEX] || mask[VB_INSTANCE] || mask[VB_CONST]);
619
620 /* Find free vertex buffer slots. */
621 if (!u_vbuf_translate_find_free_vb_slots(mgr, mask)) {
622 return FALSE;
623 }
624
625 /* Initialize the translate keys. */
626 for (i = 0; i < mgr->ve->count; i++) {
627 struct translate_key *k;
628 struct translate_element *te;
629 unsigned bit, vb_index = mgr->ve->ve[i].vertex_buffer_index;
630 bit = 1 << vb_index;
631
632 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
633 !(incompatible_vb_mask & (1 << vb_index)) &&
634 (!unroll_indices || !(mask[VB_VERTEX] & bit))) {
635 continue;
636 }
637
638 /* Set type to what we will translate.
639 * Whether vertex, instance, or constant attribs. */
640 for (type = 0; type < VB_NUM; type++) {
641 if (mask[type] & bit) {
642 break;
643 }
644 }
645 assert(type < VB_NUM);
646 assert(translate_is_output_format_supported(mgr->ve->native_format[i]));
647 /*printf("velem=%i type=%i\n", i, type);*/
648
649 /* Add the vertex element. */
650 k = &key[type];
651 elem_index[type][i] = k->nr_elements;
652
653 te = &k->element[k->nr_elements];
654 te->type = TRANSLATE_ELEMENT_NORMAL;
655 te->instance_divisor = 0;
656 te->input_buffer = vb_index;
657 te->input_format = mgr->ve->ve[i].src_format;
658 te->input_offset = mgr->ve->ve[i].src_offset;
659 te->output_format = mgr->ve->native_format[i];
660 te->output_offset = k->output_stride;
661
662 k->output_stride += mgr->ve->native_format_size[i];
663 k->nr_elements++;
664 }
665
666 /* Translate buffers. */
667 for (type = 0; type < VB_NUM; type++) {
668 if (key[type].nr_elements) {
669 enum pipe_error err;
670 err = u_vbuf_translate_buffers(mgr, &key[type], mask[type],
671 mgr->fallback_vbs[type],
672 start[type], num[type],
673 start_index, num_indices, min_index,
674 unroll_indices && type == VB_VERTEX);
675 if (err != PIPE_OK)
676 return FALSE;
677
678 /* Fixup the stride for constant attribs. */
679 if (type == VB_CONST) {
680 mgr->real_vertex_buffer[mgr->fallback_vbs[VB_CONST]].stride = 0;
681 }
682 }
683 }
684
685 /* Setup new vertex elements. */
686 for (i = 0; i < mgr->ve->count; i++) {
687 for (type = 0; type < VB_NUM; type++) {
688 if (elem_index[type][i] < key[type].nr_elements) {
689 struct translate_element *te = &key[type].element[elem_index[type][i]];
690 mgr->fallback_velems[i].instance_divisor = mgr->ve->ve[i].instance_divisor;
691 mgr->fallback_velems[i].src_format = te->output_format;
692 mgr->fallback_velems[i].src_offset = te->output_offset;
693 mgr->fallback_velems[i].vertex_buffer_index = mgr->fallback_vbs[type];
694
695 /* elem_index[type][i] can only be set for one type. */
696 assert(type > VB_INSTANCE || elem_index[type+1][i] == ~0);
697 assert(type > VB_VERTEX || elem_index[type+2][i] == ~0);
698 break;
699 }
700 }
701 /* No translating, just copy the original vertex element over. */
702 if (type == VB_NUM) {
703 memcpy(&mgr->fallback_velems[i], &mgr->ve->ve[i],
704 sizeof(struct pipe_vertex_element));
705 }
706 }
707
708 u_vbuf_set_vertex_elements_internal(mgr, mgr->ve->count,
709 mgr->fallback_velems);
710 mgr->using_translate = TRUE;
711 return TRUE;
712 }
713
714 static void u_vbuf_translate_end(struct u_vbuf *mgr)
715 {
716 unsigned i;
717
718 /* Restore vertex elements. */
719 mgr->pipe->bind_vertex_elements_state(mgr->pipe, mgr->ve->driver_cso);
720 mgr->using_translate = FALSE;
721
722 /* Unreference the now-unused VBOs. */
723 for (i = 0; i < VB_NUM; i++) {
724 unsigned vb = mgr->fallback_vbs[i];
725 if (vb != ~0) {
726 pipe_resource_reference(&mgr->real_vertex_buffer[vb].buffer, NULL);
727 mgr->fallback_vbs[i] = ~0;
728
729 /* This will cause the buffer to be unbound in the driver later. */
730 mgr->dirty_real_vb_mask |= 1 << vb;
731 }
732 }
733 }
734
735 static void *
736 u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
737 const struct pipe_vertex_element *attribs)
738 {
739 struct pipe_context *pipe = mgr->pipe;
740 unsigned i;
741 struct pipe_vertex_element driver_attribs[PIPE_MAX_ATTRIBS];
742 struct u_vbuf_elements *ve = CALLOC_STRUCT(u_vbuf_elements);
743 uint32_t used_buffers = 0;
744
745 ve->count = count;
746
747 memcpy(ve->ve, attribs, sizeof(struct pipe_vertex_element) * count);
748 memcpy(driver_attribs, attribs, sizeof(struct pipe_vertex_element) * count);
749
750 /* Set the best native format in case the original format is not
751 * supported. */
752 for (i = 0; i < count; i++) {
753 enum pipe_format format = ve->ve[i].src_format;
754
755 ve->src_format_size[i] = util_format_get_blocksize(format);
756
757 used_buffers |= 1 << ve->ve[i].vertex_buffer_index;
758
759 if (!ve->ve[i].instance_divisor) {
760 ve->noninstance_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
761 }
762
763 format = mgr->caps.format_translation[format];
764
765 driver_attribs[i].src_format = format;
766 ve->native_format[i] = format;
767 ve->native_format_size[i] =
768 util_format_get_blocksize(ve->native_format[i]);
769
770 if (ve->ve[i].src_format != format ||
771 (!mgr->caps.velem_src_offset_unaligned &&
772 ve->ve[i].src_offset % 4 != 0)) {
773 ve->incompatible_elem_mask |= 1 << i;
774 ve->incompatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
775 } else {
776 ve->compatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
777 }
778 }
779
780 ve->used_vb_mask = used_buffers;
781 ve->compatible_vb_mask_all = ~ve->incompatible_vb_mask_any & used_buffers;
782 ve->incompatible_vb_mask_all = ~ve->compatible_vb_mask_any & used_buffers;
783
784 /* Align the formats and offsets to the size of DWORD if needed. */
785 if (!mgr->caps.velem_src_offset_unaligned) {
786 for (i = 0; i < count; i++) {
787 ve->native_format_size[i] = align(ve->native_format_size[i], 4);
788 driver_attribs[i].src_offset = align(ve->ve[i].src_offset, 4);
789 }
790 }
791
792 ve->driver_cso =
793 pipe->create_vertex_elements_state(pipe, count, driver_attribs);
794 return ve;
795 }
796
797 static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso)
798 {
799 struct pipe_context *pipe = mgr->pipe;
800 struct u_vbuf_elements *ve = cso;
801
802 pipe->delete_vertex_elements_state(pipe, ve->driver_cso);
803 FREE(ve);
804 }
805
806 void u_vbuf_set_vertex_buffers(struct u_vbuf *mgr,
807 unsigned start_slot, unsigned count,
808 const struct pipe_vertex_buffer *bufs)
809 {
810 unsigned i;
811 /* which buffers are enabled */
812 uint32_t enabled_vb_mask = 0;
813 /* which buffers are in user memory */
814 uint32_t user_vb_mask = 0;
815 /* which buffers are incompatible with the driver */
816 uint32_t incompatible_vb_mask = 0;
817 /* which buffers have a non-zero stride */
818 uint32_t nonzero_stride_vb_mask = 0;
819 uint32_t mask = ~(((1ull << count) - 1) << start_slot);
820
821 /* Zero out the bits we are going to rewrite completely. */
822 mgr->user_vb_mask &= mask;
823 mgr->incompatible_vb_mask &= mask;
824 mgr->nonzero_stride_vb_mask &= mask;
825 mgr->enabled_vb_mask &= mask;
826
827 if (!bufs) {
828 struct pipe_context *pipe = mgr->pipe;
829 /* Unbind. */
830 mgr->dirty_real_vb_mask &= mask;
831
832 for (i = 0; i < count; i++) {
833 unsigned dst_index = start_slot + i;
834
835 pipe_resource_reference(&mgr->vertex_buffer[dst_index].buffer, NULL);
836 pipe_resource_reference(&mgr->real_vertex_buffer[dst_index].buffer,
837 NULL);
838 }
839
840 pipe->set_vertex_buffers(pipe, start_slot, count, NULL);
841 return;
842 }
843
844 for (i = 0; i < count; i++) {
845 unsigned dst_index = start_slot + i;
846 const struct pipe_vertex_buffer *vb = &bufs[i];
847 struct pipe_vertex_buffer *orig_vb = &mgr->vertex_buffer[dst_index];
848 struct pipe_vertex_buffer *real_vb = &mgr->real_vertex_buffer[dst_index];
849
850 if (!vb->buffer && !vb->user_buffer) {
851 pipe_resource_reference(&orig_vb->buffer, NULL);
852 pipe_resource_reference(&real_vb->buffer, NULL);
853 real_vb->user_buffer = NULL;
854 continue;
855 }
856
857 pipe_resource_reference(&orig_vb->buffer, vb->buffer);
858 orig_vb->user_buffer = vb->user_buffer;
859
860 real_vb->buffer_offset = orig_vb->buffer_offset = vb->buffer_offset;
861 real_vb->stride = orig_vb->stride = vb->stride;
862
863 if (vb->stride) {
864 nonzero_stride_vb_mask |= 1 << dst_index;
865 }
866 enabled_vb_mask |= 1 << dst_index;
867
868 if ((!mgr->caps.buffer_offset_unaligned && vb->buffer_offset % 4 != 0) ||
869 (!mgr->caps.buffer_stride_unaligned && vb->stride % 4 != 0)) {
870 incompatible_vb_mask |= 1 << dst_index;
871 pipe_resource_reference(&real_vb->buffer, NULL);
872 continue;
873 }
874
875 if (!mgr->caps.user_vertex_buffers && vb->user_buffer) {
876 user_vb_mask |= 1 << dst_index;
877 pipe_resource_reference(&real_vb->buffer, NULL);
878 continue;
879 }
880
881 pipe_resource_reference(&real_vb->buffer, vb->buffer);
882 real_vb->user_buffer = vb->user_buffer;
883 }
884
885 mgr->user_vb_mask |= user_vb_mask;
886 mgr->incompatible_vb_mask |= incompatible_vb_mask;
887 mgr->nonzero_stride_vb_mask |= nonzero_stride_vb_mask;
888 mgr->enabled_vb_mask |= enabled_vb_mask;
889
890 /* All changed buffers are marked as dirty, even the NULL ones,
891 * which will cause the NULL buffers to be unbound in the driver later. */
892 mgr->dirty_real_vb_mask |= ~mask;
893 }
894
895 void u_vbuf_set_index_buffer(struct u_vbuf *mgr,
896 const struct pipe_index_buffer *ib)
897 {
898 struct pipe_context *pipe = mgr->pipe;
899
900 if (ib) {
901 assert(ib->offset % ib->index_size == 0);
902 pipe_resource_reference(&mgr->index_buffer.buffer, ib->buffer);
903 memcpy(&mgr->index_buffer, ib, sizeof(*ib));
904 } else {
905 pipe_resource_reference(&mgr->index_buffer.buffer, NULL);
906 }
907
908 pipe->set_index_buffer(pipe, ib);
909 }
910
911 static enum pipe_error
912 u_vbuf_upload_buffers(struct u_vbuf *mgr,
913 int start_vertex, unsigned num_vertices,
914 int start_instance, unsigned num_instances)
915 {
916 unsigned i;
917 unsigned nr_velems = mgr->ve->count;
918 struct pipe_vertex_element *velems =
919 mgr->using_translate ? mgr->fallback_velems : mgr->ve->ve;
920 unsigned start_offset[PIPE_MAX_ATTRIBS];
921 unsigned end_offset[PIPE_MAX_ATTRIBS];
922 uint32_t buffer_mask = 0;
923
924 /* Determine how much data needs to be uploaded. */
925 for (i = 0; i < nr_velems; i++) {
926 struct pipe_vertex_element *velem = &velems[i];
927 unsigned index = velem->vertex_buffer_index;
928 struct pipe_vertex_buffer *vb = &mgr->vertex_buffer[index];
929 unsigned instance_div, first, size, index_bit;
930
931 /* Skip the buffers generated by translate. */
932 if (index == mgr->fallback_vbs[VB_VERTEX] ||
933 index == mgr->fallback_vbs[VB_INSTANCE] ||
934 index == mgr->fallback_vbs[VB_CONST]) {
935 continue;
936 }
937
938 if (!vb->user_buffer) {
939 continue;
940 }
941
942 instance_div = velem->instance_divisor;
943 first = vb->buffer_offset + velem->src_offset;
944
945 if (!vb->stride) {
946 /* Constant attrib. */
947 size = mgr->ve->src_format_size[i];
948 } else if (instance_div) {
949 /* Per-instance attrib. */
950 unsigned count = (num_instances + instance_div - 1) / instance_div;
951 first += vb->stride * start_instance;
952 size = vb->stride * (count - 1) + mgr->ve->src_format_size[i];
953 } else {
954 /* Per-vertex attrib. */
955 first += vb->stride * start_vertex;
956 size = vb->stride * (num_vertices - 1) + mgr->ve->src_format_size[i];
957 }
958
959 index_bit = 1 << index;
960
961 /* Update offsets. */
962 if (!(buffer_mask & index_bit)) {
963 start_offset[index] = first;
964 end_offset[index] = first + size;
965 } else {
966 if (first < start_offset[index])
967 start_offset[index] = first;
968 if (first + size > end_offset[index])
969 end_offset[index] = first + size;
970 }
971
972 buffer_mask |= index_bit;
973 }
974
975 /* Upload buffers. */
976 while (buffer_mask) {
977 unsigned start, end;
978 struct pipe_vertex_buffer *real_vb;
979 const uint8_t *ptr;
980
981 i = u_bit_scan(&buffer_mask);
982
983 start = start_offset[i];
984 end = end_offset[i];
985 assert(start < end);
986
987 real_vb = &mgr->real_vertex_buffer[i];
988 ptr = mgr->vertex_buffer[i].user_buffer;
989
990 u_upload_data(mgr->uploader, start, end - start, ptr + start,
991 &real_vb->buffer_offset, &real_vb->buffer);
992 if (!real_vb->buffer)
993 return PIPE_ERROR_OUT_OF_MEMORY;
994
995 real_vb->buffer_offset -= start;
996 }
997
998 return PIPE_OK;
999 }
1000
1001 static boolean u_vbuf_need_minmax_index(const struct u_vbuf *mgr)
1002 {
1003 /* See if there are any per-vertex attribs which will be uploaded or
1004 * translated. Use bitmasks to get the info instead of looping over vertex
1005 * elements. */
1006 return (mgr->ve->used_vb_mask &
1007 ((mgr->user_vb_mask |
1008 mgr->incompatible_vb_mask |
1009 mgr->ve->incompatible_vb_mask_any) &
1010 mgr->ve->noninstance_vb_mask_any &
1011 mgr->nonzero_stride_vb_mask)) != 0;
1012 }
1013
1014 static boolean u_vbuf_mapping_vertex_buffer_blocks(const struct u_vbuf *mgr)
1015 {
1016 /* Return true if there are hw buffers which don't need to be translated.
1017 *
1018 * We could query whether each buffer is busy, but that would
1019 * be way more costly than this. */
1020 return (mgr->ve->used_vb_mask &
1021 (~mgr->user_vb_mask &
1022 ~mgr->incompatible_vb_mask &
1023 mgr->ve->compatible_vb_mask_all &
1024 mgr->ve->noninstance_vb_mask_any &
1025 mgr->nonzero_stride_vb_mask)) != 0;
1026 }
1027
1028 static void u_vbuf_get_minmax_index(struct pipe_context *pipe,
1029 struct pipe_index_buffer *ib,
1030 boolean primitive_restart,
1031 unsigned restart_index,
1032 unsigned start, unsigned count,
1033 int *out_min_index,
1034 int *out_max_index)
1035 {
1036 struct pipe_transfer *transfer = NULL;
1037 const void *indices;
1038 unsigned i;
1039
1040 if (ib->user_buffer) {
1041 indices = (uint8_t*)ib->user_buffer +
1042 ib->offset + start * ib->index_size;
1043 } else {
1044 indices = pipe_buffer_map_range(pipe, ib->buffer,
1045 ib->offset + start * ib->index_size,
1046 count * ib->index_size,
1047 PIPE_TRANSFER_READ, &transfer);
1048 }
1049
1050 switch (ib->index_size) {
1051 case 4: {
1052 const unsigned *ui_indices = (const unsigned*)indices;
1053 unsigned max_ui = 0;
1054 unsigned min_ui = ~0U;
1055 if (primitive_restart) {
1056 for (i = 0; i < count; i++) {
1057 if (ui_indices[i] != restart_index) {
1058 if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
1059 if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
1060 }
1061 }
1062 }
1063 else {
1064 for (i = 0; i < count; i++) {
1065 if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
1066 if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
1067 }
1068 }
1069 *out_min_index = min_ui;
1070 *out_max_index = max_ui;
1071 break;
1072 }
1073 case 2: {
1074 const unsigned short *us_indices = (const unsigned short*)indices;
1075 unsigned max_us = 0;
1076 unsigned min_us = ~0U;
1077 if (primitive_restart) {
1078 for (i = 0; i < count; i++) {
1079 if (us_indices[i] != restart_index) {
1080 if (us_indices[i] > max_us) max_us = us_indices[i];
1081 if (us_indices[i] < min_us) min_us = us_indices[i];
1082 }
1083 }
1084 }
1085 else {
1086 for (i = 0; i < count; i++) {
1087 if (us_indices[i] > max_us) max_us = us_indices[i];
1088 if (us_indices[i] < min_us) min_us = us_indices[i];
1089 }
1090 }
1091 *out_min_index = min_us;
1092 *out_max_index = max_us;
1093 break;
1094 }
1095 case 1: {
1096 const unsigned char *ub_indices = (const unsigned char*)indices;
1097 unsigned max_ub = 0;
1098 unsigned min_ub = ~0U;
1099 if (primitive_restart) {
1100 for (i = 0; i < count; i++) {
1101 if (ub_indices[i] != restart_index) {
1102 if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
1103 if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
1104 }
1105 }
1106 }
1107 else {
1108 for (i = 0; i < count; i++) {
1109 if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
1110 if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
1111 }
1112 }
1113 *out_min_index = min_ub;
1114 *out_max_index = max_ub;
1115 break;
1116 }
1117 default:
1118 assert(0);
1119 *out_min_index = 0;
1120 *out_max_index = 0;
1121 }
1122
1123 if (transfer) {
1124 pipe_buffer_unmap(pipe, transfer);
1125 }
1126 }
1127
1128 static void u_vbuf_set_driver_vertex_buffers(struct u_vbuf *mgr)
1129 {
1130 struct pipe_context *pipe = mgr->pipe;
1131 unsigned start_slot, count;
1132
1133 start_slot = ffs(mgr->dirty_real_vb_mask) - 1;
1134 count = util_last_bit(mgr->dirty_real_vb_mask >> start_slot);
1135
1136 pipe->set_vertex_buffers(pipe, start_slot, count,
1137 mgr->real_vertex_buffer + start_slot);
1138 mgr->dirty_real_vb_mask = 0;
1139 }
1140
1141 void u_vbuf_draw_vbo(struct u_vbuf *mgr, const struct pipe_draw_info *info)
1142 {
1143 struct pipe_context *pipe = mgr->pipe;
1144 int start_vertex, min_index;
1145 unsigned num_vertices;
1146 boolean unroll_indices = FALSE;
1147 uint32_t used_vb_mask = mgr->ve->used_vb_mask;
1148 uint32_t user_vb_mask = mgr->user_vb_mask & used_vb_mask;
1149 uint32_t incompatible_vb_mask = mgr->incompatible_vb_mask & used_vb_mask;
1150 struct pipe_draw_info new_info;
1151
1152 /* Normal draw. No fallback and no user buffers. */
1153 if (!incompatible_vb_mask &&
1154 !mgr->ve->incompatible_elem_mask &&
1155 !user_vb_mask) {
1156
1157 /* Set vertex buffers if needed. */
1158 if (mgr->dirty_real_vb_mask & used_vb_mask) {
1159 u_vbuf_set_driver_vertex_buffers(mgr);
1160 }
1161
1162 pipe->draw_vbo(pipe, info);
1163 return;
1164 }
1165
1166 new_info = *info;
1167
1168 /* Fallback. We need to know all the parameters. */
1169 if (new_info.indirect) {
1170 struct pipe_transfer *transfer = NULL;
1171 int *data;
1172
1173 if (new_info.indexed) {
1174 data = pipe_buffer_map_range(pipe, new_info.indirect,
1175 new_info.indirect_offset, 20,
1176 PIPE_TRANSFER_READ, &transfer);
1177 new_info.index_bias = data[3];
1178 new_info.start_instance = data[4];
1179 }
1180 else {
1181 data = pipe_buffer_map_range(pipe, new_info.indirect,
1182 new_info.indirect_offset, 16,
1183 PIPE_TRANSFER_READ, &transfer);
1184 new_info.start_instance = data[3];
1185 }
1186
1187 new_info.count = data[0];
1188 new_info.instance_count = data[1];
1189 new_info.start = data[2];
1190 pipe_buffer_unmap(pipe, transfer);
1191 new_info.indirect = NULL;
1192 }
1193
1194 if (new_info.indexed) {
1195 /* See if anything needs to be done for per-vertex attribs. */
1196 if (u_vbuf_need_minmax_index(mgr)) {
1197 int max_index;
1198
1199 if (new_info.max_index != ~0) {
1200 min_index = new_info.min_index;
1201 max_index = new_info.max_index;
1202 } else {
1203 u_vbuf_get_minmax_index(mgr->pipe, &mgr->index_buffer,
1204 new_info.primitive_restart,
1205 new_info.restart_index, new_info.start,
1206 new_info.count, &min_index, &max_index);
1207 }
1208
1209 assert(min_index <= max_index);
1210
1211 start_vertex = min_index + new_info.index_bias;
1212 num_vertices = max_index + 1 - min_index;
1213
1214 /* Primitive restart doesn't work when unrolling indices.
1215 * We would have to break this drawing operation into several ones. */
1216 /* Use some heuristic to see if unrolling indices improves
1217 * performance. */
1218 if (!new_info.primitive_restart &&
1219 num_vertices > new_info.count*2 &&
1220 num_vertices - new_info.count > 32 &&
1221 !u_vbuf_mapping_vertex_buffer_blocks(mgr)) {
1222 unroll_indices = TRUE;
1223 user_vb_mask &= ~(mgr->nonzero_stride_vb_mask &
1224 mgr->ve->noninstance_vb_mask_any);
1225 }
1226 } else {
1227 /* Nothing to do for per-vertex attribs. */
1228 start_vertex = 0;
1229 num_vertices = 0;
1230 min_index = 0;
1231 }
1232 } else {
1233 start_vertex = new_info.start;
1234 num_vertices = new_info.count;
1235 min_index = 0;
1236 }
1237
1238 /* Translate vertices with non-native layouts or formats. */
1239 if (unroll_indices ||
1240 incompatible_vb_mask ||
1241 mgr->ve->incompatible_elem_mask) {
1242 if (!u_vbuf_translate_begin(mgr, start_vertex, num_vertices,
1243 new_info.start_instance,
1244 new_info.instance_count, new_info.start,
1245 new_info.count, min_index, unroll_indices)) {
1246 debug_warn_once("u_vbuf_translate_begin() failed");
1247 return;
1248 }
1249
1250 if (unroll_indices) {
1251 new_info.indexed = FALSE;
1252 new_info.index_bias = 0;
1253 new_info.min_index = 0;
1254 new_info.max_index = new_info.count - 1;
1255 new_info.start = 0;
1256 }
1257
1258 user_vb_mask &= ~(incompatible_vb_mask |
1259 mgr->ve->incompatible_vb_mask_all);
1260 }
1261
1262 /* Upload user buffers. */
1263 if (user_vb_mask) {
1264 if (u_vbuf_upload_buffers(mgr, start_vertex, num_vertices,
1265 new_info.start_instance,
1266 new_info.instance_count) != PIPE_OK) {
1267 debug_warn_once("u_vbuf_upload_buffers() failed");
1268 return;
1269 }
1270
1271 mgr->dirty_real_vb_mask |= user_vb_mask;
1272 }
1273
1274 /*
1275 if (unroll_indices) {
1276 printf("unrolling indices: start_vertex = %i, num_vertices = %i\n",
1277 start_vertex, num_vertices);
1278 util_dump_draw_info(stdout, info);
1279 printf("\n");
1280 }
1281
1282 unsigned i;
1283 for (i = 0; i < mgr->nr_vertex_buffers; i++) {
1284 printf("input %i: ", i);
1285 util_dump_vertex_buffer(stdout, mgr->vertex_buffer+i);
1286 printf("\n");
1287 }
1288 for (i = 0; i < mgr->nr_real_vertex_buffers; i++) {
1289 printf("real %i: ", i);
1290 util_dump_vertex_buffer(stdout, mgr->real_vertex_buffer+i);
1291 printf("\n");
1292 }
1293 */
1294
1295 u_upload_unmap(mgr->uploader);
1296 u_vbuf_set_driver_vertex_buffers(mgr);
1297
1298 pipe->draw_vbo(pipe, &new_info);
1299
1300 if (mgr->using_translate) {
1301 u_vbuf_translate_end(mgr);
1302 }
1303 }
1304
1305 void u_vbuf_save_vertex_elements(struct u_vbuf *mgr)
1306 {
1307 assert(!mgr->ve_saved);
1308 mgr->ve_saved = mgr->ve;
1309 }
1310
1311 void u_vbuf_restore_vertex_elements(struct u_vbuf *mgr)
1312 {
1313 if (mgr->ve != mgr->ve_saved) {
1314 struct pipe_context *pipe = mgr->pipe;
1315
1316 mgr->ve = mgr->ve_saved;
1317 pipe->bind_vertex_elements_state(pipe,
1318 mgr->ve ? mgr->ve->driver_cso : NULL);
1319 }
1320 mgr->ve_saved = NULL;
1321 }
1322
1323 void u_vbuf_save_aux_vertex_buffer_slot(struct u_vbuf *mgr)
1324 {
1325 struct pipe_vertex_buffer *vb =
1326 &mgr->vertex_buffer[mgr->aux_vertex_buffer_slot];
1327
1328 pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, vb->buffer);
1329 memcpy(&mgr->aux_vertex_buffer_saved, vb, sizeof(*vb));
1330 }
1331
1332 void u_vbuf_restore_aux_vertex_buffer_slot(struct u_vbuf *mgr)
1333 {
1334 u_vbuf_set_vertex_buffers(mgr, mgr->aux_vertex_buffer_slot, 1,
1335 &mgr->aux_vertex_buffer_saved);
1336 pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, NULL);
1337 }